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Abstract
Protistan pathogens have been found to infect populations of some large brown macroalgae. Infection could reduce the 
ability of macroalgae to withstand hydrodynamic pressures through weakening tissues and reducing flexibility. Widespread 
mortality of macroalgae if disease outbreaks were to occur could have important flow-on consequences for biodiversity and 
ecosystem function. Recent discoveries of the protistan pathogen Maullinia infecting the ecologically keystone southern 
bull kelp Durvillaea in Chile, Australia, and on Marion Island, raise the possibility that this pathogen is dispersing across 
ocean basins with buoyant hosts. To determine whether Maullinia also infects southern bull kelp in New Zealand, samples 
of gall-like tissue from Durvillaea antarctica, D. poha, and D. willana were collected from intertidal sites, and genetic 
analyses (sequencing of partial 18S rRNA) carried out. Maullinia infections were detected in all three species of Durvil-
laea. Phylogenetic analyses show a close relationship of New Zealand Maullinia to M. braseltonii previously detected in 
Chile and on Marion Island. Based on its genetic similarity to distant lineages and its presence on buoyant hosts that have 
been shown to drift long distances at seas, we infer that Maullinia has dispersed across the Southern Ocean through rafting 
of infected bull kelp. Understanding the capacity of pathogens to disperse across oceans is critical part of forecasting and 
managing ecosystem responses to environmental change.

Introduction

Pathogens can have a major effect on ecosystem processes, 
and can exercise controls on populations through reducing 
the biomass and abundance of species, influencing the phe-
notypes of hosts, and altering species interactions (Price 
et al. 1986; Harvell et al. 2002; Groner et al. 2016; Fischhoff 
et al. 2020). Despite this, implications of disease have been 
understudied by ecologists relative to other biotic interac-
tions (Campbell et al. 2014).

Parasites and pathogens are common in macroalgae, and 
whilst not all diseases will go on to disrupt ecosystem pro-
cesses (Harley et al. 2012; Groner et al. 2016), when founda-
tional species such as macroalgae are disrupted, it can have 
disproportionate impacts which cascade through trophic lev-
els and alter habitat functioning (Harvell et al. 1999; Schiel 
2006; Cohen et al. 2018). Such impacts are of particular 
concern in marine ecosystems where high levels of connect-
edness can facilitate rapid spread of pathogens over large 
distances (McCallum et al. 2003). Dispersal to new areas 
is likely to result in novel contact between the pathogen 
and the host, which could have serious consequences if the 
hosts have little or no resistance to the unfamiliar pathogen 
(Harvell et al. 2002; Cohen et al. 2018). Climate change 
is predicted to exacerbate the problem, through expanding 
pathogen ranges and making hosts more susceptible to infec-
tion through increased stress (Campbell et al. 2011; Kumar 
et al. 2016; Cohen et al. 2018). Early monitoring in combi-
nation with long-term data collection, including assessing 
disease prevalence, is essential to enable us to effectively 
respond to and manage disease outbreaks through under-
standing how host–pathogen interactions vary with climate 
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change and extreme events (Harvell et al. 2002; Burge et al. 
2014; Groner et al. 2016).

Maullinia is an intracellular, protistan pathogen genus 
first described just 20 years ago when it was found on fila-
mentous brown algae in Chile (Maier et al. 2000). Thus far, 
relatively little research has been carried out to understand 
the ecology of this pathogen, and the potential impact it 
could have on macroalgal communities. Maullinia has been 
found across the Southern Hemisphere, in Chile, the Falk-
land Islands, sub-Antarctic islands, and Australia on both 
filamentous brown algae and on southern bull kelp species 
(Maier et al. 2000; Goecke et al. 2012; Blake et al. 2017; 
Murúa et al. 2017). Maullinia can cause yellowish galls, 
between 0.5 and 4.0 cm in size (Goecke et al. 2012; Blake 
et al. 2017; Murúa et al. 2017) to form on southern bull kelp 
blades. Additionally, M. ectocarpii has been found to infect 
gametophytes of kelp species Macrocystis and Desmarestia, 
which could disrupt the life cycle of these keystone kelp 
species, particularly in a commercial context (Maier et al. 
2000). Southern bull kelp (Durvillaea) are large and ecologi-
cally important keystone species occupying intertidal and 
shallow subtidal zones (Fraser et al. 2020). To withstand the 
wave forces in these dynamic environments, Durvillaea spe-
cies are highly flexible and strong (Kelly and Brown 2000). 
The formation of galls on the blades of Durvillaea could 
reduce the kelps’ elasticity and flexibility, which could affect 
their health and survival (Goecke et al. 2012). Durvillaea 
species provide refuge for understory species, and act as 
a substratum for various epiphyte taxa (Taylor and Schiel 
2005). Some species host diverse invertebrate fauna in their 
holdfasts, many of which depend on the macroalgae for food 
and habitat. Additionally, stranded Durvillaea detritus is an 
important food source for marine and terrestrial fauna (Jara-
millo et al. 2006; Dufour et al. 2012). These foundational 
species are essential for the healthy functioning of intertidal 
ecosystems in the cool-temperate Southern Hemisphere, as 
well as having important economic and social roles in aqua-
culture (Murúa et al. 2017).

The Durvillaea genus includes three buoyant species, 
whose thalli contain a gas-filled honeycomb structure 
(Fraser et al. 2020). This trait has promoted long-distance 
dispersal of Durvillaea species such as D. antarctica, which 
has been found washed up on coasts thousands—and even 
tens of thousands—of kilometres away from known source 
populations (Moore and Cribb 1952; Fraser et al. 2011, 
2018; Waters et al. 2018). These buoyant species are an 
important mechanism for the dispersal of coastal taxa, as 
they can transport other organisms with them, such as inver-
tebrates, other algal species, and marine parasites (Thiel and 
Gutow 2005a, b; Fraser and Waters 2013). Emerging data 
showing a wide distribution of Maullinia across the South-
ern Hemisphere suggest that Maullinia might also disperse 
with these buoyant hosts. Research into the dispersal of 

Maullinia without host organisms is limited. The life cycle 
of Maullinia does include resting spores (Maier et al. 2000; 
Parodi et al. 2010; Goecke et al. 2012; Murúa et al. 2017), 
which may be able to survive for periods without the host 
(Neuhauser et al. 2011), but the extent of this is currently 
unknown, as is its ability to disperse on artificial substrata. 
Additionally, M. ectocarpii has been found to form cysts 
on sporangia of filamentous seaweeds (Maier et al. 2000), 
but there are no records of M. ectocarpii forming cysts on 
artificial substrata and dispersing in this way. Blake et al. 
(2017) found evidence that a Maullinia lineage on buoyant 
Durvillaea in Chile was indistinguishable from a lineage 
on buoyant Durvillaea on the distant sub-Antarctic Marion 
Island in the Indian Ocean, and that a lineage found on the 
filamentous alga Ectocarpus in Chile was closely related to 
lineages detected on non-buoyant Durvillaea in Australia, 
suggesting long-distance dispersal had recently occurred. 
Additionally, Maullinia prevalence differed with latitude, 
suggesting that environmental parameters affect the suscep-
tibility of Durvillaea to infection (Blake et al. 2017).

New Zealand is a centre of diversity for southern bull kelp 
species, with several buoyant and non-buoyant species found 
in the region (Fraser et al. 2020). To date, however, Maul-
linia infections have not been recorded from New Zealand 
bull kelp populations. Given the evidence for long-distance 
dispersal of these marine pathogens around the Southern 
Hemisphere, we hypothesised that Maullinia would also be 
present in New Zealand. We tested this hypothesis using 
targeted sampling of tissue from three sympatric but eco-
logically and morphologically distinct Durvillaea species 
in New Zealand (the buoyant species D. antarctica and D. 
poha, and the non-buoyant species D. willana), followed 
by genetic sequencing to test for presence of the pathogen.

Methodology

Sampling

Sampling was conducted at eight sites on the south-east 
coast of the South Island, New Zealand, and one site on the 
North Island near Wellington (Fig. 1). The majority of the 
sampling occurred between February and March 2020 with 
the exception of Taieri Beach and Island Bay which were 
sampled in March and December 2019, respectively, in the 
intertidal zone of rock platforms (Appendix S1). Durvillaea 
poha, D. antarctica and D. willana were visually examined 
for signs of any pathogenic infection such as lesions or galls. 
123 tissue samples from individual Durvillaea species were 
collected from infected kelp to test the presence of Maullinia 
via genetic analysis. Samples were either air-dried on a clean 
paper towel after initial desiccation in high-concentration 
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ethanol, or air-dried in an oven at 50 ºC for several hours, 
and then stored over silica gel beads.

Genetic analysis

All 123 samples had DNA extracted and underwent PCR. 
DNA extraction and PCR followed methods described in Blake 
et al. (2017). Small (< 2 mm) pieces of infected, dried kelp tis-
sue were excised using a scalpel sterilized with bleach and 
ethanol, and DNA was extracted using the standard Chelex® 
protocol (Walsh et al. 1991). Extractions were diluted 1:100 
in MilliQ water to reduce the likelihood of alginates inhibiting 
PCR. PCR amplification was conducted in a 20 μl solution, 
comprising 12.9 μl of MilliQ water, 0.5 μM each of forward 
and reverse primer (Mau2F and Mau9R: Goecke et al. 2012), 
4 μl of MyTaq Red Reaction buffer, 0.1 μl of MyTaq Red DNA 
Polymerase (Bioline), and 1 μl of the diluted DNA extrac-
tion. The primers amplified part of the 18S nuclear ribosomal 
gene. PCRs were run in an Eppendorf Mastercycler using a 
touchdown PCR protocol: 96 ºC for 4 min initial denatura-
tion, followed by two cycles of 96 ºC for 25 s, 65 ºC for 25 s 
and 72 ºC for 1.5 min followed by two cycles each with a 
primer annealing temperature of 60 ºC and 58 ºC and finally 
30 cycles with a primer annealing temperature of 54 ºC and 
a final slope of 72 ºC for 10 min (Goecke et al. 2012). PCR 
products (~ 1200 bp in size) were purified using gel purifica-
tion via a MEGAquick-spin™ plus fragment DNA purification 
kit (iNtRON). Some samples also showed amplification of a 
smaller fragment (~ 300 bp); sequencing revealed that these 
amplicons were from the host (BLAST results showed close 
match to a part of the 18S marker amplified from Durvillaea), 
suggesting that the primers can sometimes anneal to New 

Zealand bull kelp DNA. By gel purifying amplicons, we were 
able to target the pathogen rather than the host. For samples 
where Maullinia sequences were confirmed, COI sequences 
of the host were subsequently obtained following methods in 
Fraser et al. (2009) to verify host identification, as D. poha 
and D. antarctica can sometimes be misidentified in the field. 
Sequencing was carried out using the forward primer by the 
University of Otago’s Genetic Analysis Services (Otago, 
New Zealand), using an Applied Biosystems 3730xl capillary 
sequencer (Thermo Fisher Scientific).

Phylogenetic analysis

Sequences were aligned, and ambiguities assessed by eye 
using Geneious Prime version 2020.1.1 (Kearse et al. 2012). 
Sequences were trimmed to 764 bases to remove poor-
quality sequence tails. Original sequences from Blake et al. 
2017, and published sequences from known Maullinia spe-
cies (M. braseltonii: GenBank Accession JX163857, and 
M. ectocarpii, Accession AF405547) were aligned with 
new sequences from this study. A mid-point rooted ML tree 
was built using PhyML (Guindon et al. 2010) via a TRN + I 
model (best model as assessed by the AICc of jModeltest2: 
Darriba et al. 2012), with the proportion of invariable sites 
set at 0.809.

Results and discussion

The protistan pathogen Maullinia was confirmed from three 
bull kelp species in New Zealand: the buoyant D. antarctica 
(one individual) and D. poha (three individuals), and the 

Fig. 1   Sites in New Zealand 
where field sampling was con-
ducted in b one site in the North 
Island and c eight sites in the 
South Island. Stars in panel (c) 
represent sites where Maullinia 
was confirmed from Durvillaea 
hosts
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solid-bladed D. willana (one individual) (Table 1). Maul-
linia was detected at three intertidal sites on the South 
Island across a coastal distance of > 70 km (Fig. 1) suggest-
ing the pathogen might be widespread, albeit probably at 
low prevalence, in southern New Zealand. Two sequences 
of Maullinia were detected. The first was detected from 
one individual of D. willana, a non-buoyant bull kelp spe-
cies, and was identical to the most common sequence of 
M. braseltonii detected from buoyant bull kelp in Chile 
by Blake et al. (2017), lineage MC1 (GenBank Accession 
MF872446) (Fig. 2). The second sequence was detected 
from one individual of D. antarctica and three individuals of 
D. poha—the two buoyant hosts—and were identical across 
all sites and samples to each other, but the sequence had not 
been previously detected elsewhere (GenBank Accession 
MW131091). This lineage is most likely also M. braseltonii, 
as it differed from the other D. willana-associated sequence 
at only five out of 764 nucleotide sites (< 1%; four transitions 
and two transversions). Both sequences found in this study 
were highly similar to sequences of M. braseltonii detected 
from buoyant species D. incurvata (recently split from D. 
antarctica (Fraser et al. 2020)) in Chile, and D. antarctica 
in the sub-Antarctic (Blake et al. 2017). That two lineages 
were detected could indicate multiple past introductions, or 
perhaps evolution of the pathogen driven by different host 
tissue types (buoyant, inflated blades versus non-buoyant, 
solid blades); a larger scale study could, in future, aim to 
test such hypotheses.

The discovery of M. braseltonii on bull kelp in New 
Zealand and its genetic similarity to geographically distant 
lineages suggests that M. braseltonii could have arrived 
through long-distance rafting of infected, buoyant kelp, 
either dispersing from Chile or sub-Antarctic islands to 
New Zealand, or vice versa. Further sampling could help 
to clarify the direction of travel. Our finding supports 
previous inferences of long-distance dispersal of marine 
pathogens via rafting with buoyant macroalgae (Fraser and 
Waters 2013; Blake et al. 2017). Blake et al. (2017) found 
M. ectocarpii in Australia on bull kelp taxa D. potatorum 
and D. amatheiae, so we might have expected to find M. 
ectocarpii in New Zealand (geographically relatively close 
to Australia), but these solid-bladed Durvillaea species are 
non-buoyant and thus have limited dispersal opportunities 
(Fraser et al. 2020; Hay 2020). In contrast, M. braselto-
nii—which as we show here can infect both buoyant and 

non-buoyant Durvillaea—has now been shown to have a 
wide geographic range, infecting bull kelp in Chile, Mar-
ion Island (sub-Antarctic Indian Ocean) and New Zea-
land—locations separated by thousands of kilometres of 
ocean. Maullinia braseltonii might also be a more general-
ist pathogen than M. ectocarpii, as the same strain of M. 
braseltonii was found to infect both D. antarctica and D. 
poha. In contrast, strains of M. ectocarpii appear to be 
host specific in Australia (Blake et al. 2017). The capacity 
of the pathogen to infect several host species, including 
both buoyant and non-buoyant taxa in addition to filamen-
tous alga previously found to be infected by M. ectocarpii 
(Maier et al. 2000), shows that Maullinia is a versatile and 
generalist pathogen.

Table 1   Maullinia sequences 
and host Durvillaea species 
with associated GenBank 
accession numbers and site 
locations

Maullinia sp. Host Durvillaea sp. GenBank acces-
sion number

Number of con-
firmed infections

Sample site

M. braseltonii D. willana MF872446 1 Akatore
M. braseltonii D. antarctica

D. poha
MW131091 4 Toko Mouth 

and Tautuku 
Peninsula

Fig. 2   Maximum likelihood phylogeny of published and new  Maul-
linia  partial 18S data. The samples from New Zealand (this study) 
group with previously detected sequences from southern bull kelp 
from Chile and the sub-Antarctic. Blue text indicates data from Blake 
et al. (2017) (code MA refers to Maullinia detected in Australia, and 
code MC refers to strains collected from Chile, in that study), and red 
text indicates sequences from this study. The phylogeny is mid-point-
rooted, with bootstrap values > 90% shown
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From previous reports of Maullinia infection of bull 
kelp, we expected to find yellowish galls to indicate the 
pathogen’s presence (Goecke et  al. 2012; Blake et  al. 
2017). None of the bull kelp populations surveyed, how-
ever, showed obvious, large galls—instead showing only 
minor blemishes on host tissue—suggesting that galls 
are not always indicative of Maullinia infections. There 
might, however, be some seasonality in gall development, 
or environmental factors that influence the prevalence and 
manifestation of infections (Schade et al. 2016; Ford et al. 
2018; Honjo et al. 2020). With the potential of disease 
outbreaks to have major impacts on population health 
and viability, further research is urgently needed to bet-
ter understand the characteristics of this relatively newly 
discovered (Goecke et al. 2012), but apparently highly 
dispersive (Blake et al. 2017; this study) kelp pathogen.

Maullinia prevalence on bull kelp hosts has been found 
to vary with latitude and the associated environmen-
tal parameters (Blake et al. 2017). Infection prevalence 
increased towards higher latitudes in both Chile and Aus-
tralia, which could be due to increased population density 
in southern parts of Durvillaea’s range, or it could be that 
the Maullinia pathogen is more prevalent in colder waters 
(Blake et al. 2017), which may mean that increased tem-
peratures could counteract the virulence of this pathogen 
(Blake et al. 2017). However this could be offset by physi-
ological stresses caused by higher temperatures increas-
ing organisms’ susceptibility to disease (Case et al. 2011; 
Campbell et al. 2011; Beattie et al. 2018; Thomsen et al. 
2019). Predicting how environmental change will affect 
the prevalence and impacts of Maullinia on Durvillaea is, 
therefore, currently difficult. Durvillaea species comprise 
a large proportion of the macroalgae biomass in coastal 
ecosystems in New Zealand (Thomsen et al. 2019; Hay 
2020) and it would be devastating for nearshore marine 
communities if a disease outbreak were to significantly 
reduce the biomass of these species (Taylor and Schiel 
2005; Jaramillo et al. 2006; Dufour et al. 2012; Murúa 
et  al. 2017). Previous mortality events of Durvillaea 
have led to the increased spread of the highly invasive 
kelp Undaria pinnatifida (Thomsen et al. 2019), and the 
replacement of Durvillaea with this species would change 
the character and functioning of the ecosystem (Stuart 
2004; Russell et al. 2008).

Understanding the controls of pathogen distributions 
is essential for monitoring and managing future disease 
outbreaks. Further assessment of macroalgal populations 
in New Zealand and elsewhere will be important to deter-
mine the virulence and potential risks this pathogen poses 
for coastal communities.
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