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Abstract
Air-coupled ultrasound was used for assessing natural defects in wood boards by 
through-transmission scanning measurements. Gas matrix piezoelectric (GMP) 
and ferroelectret (FE) transducers were studied. The study also included tests with 
additional bias voltage with the ferroelectret receivers. Signal analyses, analyses of 
the measurement dynamics and statistical analyses of the signal parameters were 
conducted. After the measurement series, the samples were cut from the measure-
ment regions and the defects were analyzed visually from the cross sections. The 
ultrasound responses were compared with the results of the visual examination of 
the cross sections. With the additional bias voltage, the ferroelectret measurement 
showed increased signal-to-noise ratio, which is especially important for air-coupled 
measurement of high-attenuation materials like wood. When comparing the defect 
response of GMP and FE sensors, it was found that FE sensors had more sensi-
tive dynamic range, resulting from better s/n ratio and short response pulse. Clas-
sification test was made to test the possibility of detecting defects in sound wood. 
Machine learning methods including decision trees, k-nearest neighbor and support 
vector machine were used. The classification accuracy varied between 72 and 77% 
in the tests. All the tested machine learning methods could be used efficiently for the 
classification.

Introduction

Ultrasound and other acoustic techniques are widely used as nondestructive testing 
techniques for the detection of internal defects and strength determination of wood 
(Bucur 2003, 2005, 2011; Chimenti 2014; Fang et al. 2017; Ross and Pellerin 2002; 
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Solodov et al. 2004). Density, wood structure and different types of discontinuities 
exert various effects on ultrasound propagation. Wood defects affect the mechani-
cal properties of wood and thus the propagation of ultrasound signal in wood. For 
example, delaminations cause additional reflections, which reduce the transmission 
signal. Various studies have been conducted to evaluate defects by ultrasound (Kabir 
et al. 2002; Schmoldt et al. 1994; Tiitta 2006; Tiitta et al. 1998, 2001, 2017; Tomppo 
2013; van Dyk and Rice 2005). Unsound knots, decay, bark pockets, holes and wane 
cause variation in ultrasound signal compared to clear wood even in fresh-cut high 
moisture content (MC) state (Kabir et al. 2002). Internal checks and surface cracks 
increase the ultrasound transmission time perpendicular to grain (Fuller et al. 1994). 
In addition, the bacterially infected sections of wetwood increase the stress wave 
travel time (Verkasalo et al. 1993). Presumably, the internal cracking in wood causes 
scattering of the ultrasound, whereas wetwood increases the viscoelastic damping, 
both resulting in attenuated sound signals (Schafer et al. 1999).

The development of air-coupled ultrasound (ACU) techniques (Bhardwaj 2004) 
has made the ultrasound method more feasible for online industrial applications. 
Recent ACU techniques include ferroelectric sensors with and without additional 
bias voltage (Gaal et al. 2016a, b, 2019; Vössing et al. 2018; Vössing and Nieder-
leithinger 2018). Online wood MC measurement based on ACU has been proposed 
(Vun et al. 2008), and density and defects in wood have been studied using ACU 
(Marchetti et al. 2004). In addition, through-transmission ACU has been utilized in 
the detection of cracks in wood and thermally modified timber (TMT) (Gan et al. 
2005; Tomppo et al. 2016), delamination in wood (Bucur 2010, 2011) and in glulam 
beams of an arbitrary number of lamellas up to 500 mm thickness (Sanabria 2012; 
Sanabria et  al. 2013). In wood-based panels, both density and particle type affect 
ultrasound transmission (Vun and Bhardwaj 2004; Hilbers et al. 2012).

This study is part of a research project, where new nondestructive methods were 
tested and developed for wood analyses. Oak, spruce and TMT spruce sawn timber 
samples were measured using ACU under laboratory conditions to find out relations 
between defects of wood and the responses. A substantial number of studies has 
been conducted to detect artificial defects in wood and wood products using ACU. 
In this study, the natural defects included knots and cracks from wood processing 
and tree growth. The objective of the study was to evaluate and compare novel ACU 
sensors for the detection of the natural defects in wood. Machine learning techniques 
were used for the defect classification.

Materials and methods

Table 1 shows the properties and defects of examined wood board samples includ-
ing hardwood, softwood and thermally modified timber (TMT). After the ultrasound 
tests, all the samples were cut to 10 mm slices for visual analysis of growth ring 
angle (GRA) and defects. All samples included regions free of defects and regions 
with defects. Analyzed defects include cracks, knots, resin pockets, ring shake and 
compression wood. Analyses were made by naked eye.
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The ultrasound measurements were performed using the air-coupled ultrasonic 
system USPC 4000 AirTech from Hillger NDT GmbH (Braunschweig, Germany, 
Fig. 1), and pulse length was adjusted to the resonance frequency f, that means equal 
to 1/(2f). The sample was placed between the transmitter and the receiver, which 
were synchronized and moved over the surface. The distance between transmitter 
and wood varied between 30 and 70  mm, and the distance between receiver and 
wood varied between 40 and 55 mm, always adjusted to the focusing distance of the 
applied transducers. C-scan images from signal height and the time of flight (ToF) 
were displayed while scanning.

GMP and FE transducers differed in terms of frequency, apparatus diameter and 
focusing (Table  2). The studied frequency range was 100–200  kHz, and the sen-
sor diameter range was 19–27 mm (Gaal et al. 2016a). The GMP transmitters were 
excited with a unipolar square pulse with 200 V amplitude, while the FE transmit-
ters were excited with 1.8 kV unipolar pulses, so that the electrostatic compression 
of this cellular material makes a significant contribution to its vibration (Döring 
et  al. 2010, 2012). In the last part of the scanning tests when scanning the high-
attenuation TMT samples, the FE receiver was connected to a high-voltage bias unit 
providing 2  kV DC voltage, which increased the sensitivity of the receiver (Gaal 

Table 1  Examined samples including visually detected defects from cross sections and surface

N is the number of measured boards

Species Type Defects Sample dimension (mm) N

Red Oak Hardwood Cracks 700 × 92 × 23 3
Spruce Softwood Knots, compression wood 700 × 110 × 30 2
Spruce Softwood End crack, knots, resin pocket 630 × 247 × 51 1
Spruce TMT-softwood Resin pockets, cracks, knots, ring shake (645 − 700) × 130 × 38 3

Fig. 1  Scanning measurement system. The scanning was made in 2 mm pixel size. The samples were 
placed between the transmitter and receiver. Samples requiring the same setup of the ultrasonic equip-
ment were connected with a glue. Ultrasound propagation direction was radial/tangential. The red oak 
samples are shown
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et al. 2019). This sensitivity increase can be understood if the FE is modeled as a 
capacitor and the FE receiver as a capacitive microphone. The internal polarization 
of the voids in FE has the effect of bias voltage in a capacitive microphone, which is 
responsible for piezoelectric properties of FE. External bias voltage with the same 
polarity increases the total bias voltage and thus the sensitivity of the FE receiver.

Data analysis

Classification tests were made using three different classifiers: decision trees (DT), 
k-nearest neighbor (KNN) and support vector machines (SVM) (Fig. 2). The clas-
sification was tested and compared by using training and testing sets. The input from 
the training set was fed into a classifier, and the classifier was trained. After the 
training, the testing set was fed into the trained classifier and the correctness of the 
operation was determined. Cross-validation was used for each of the models because 
the number of tested samples was relatively small (420). Cross-validation gives 
more generalized results and prevents overfitting of the predicted model because the 
accuracy is based on the whole dataset. 50-times cross-validation was used, so data 
were split to 50 different training and test sets, and accuracy of the model is the 
mean accuracy from all the trained models. The training time varied from 2 to 3 s. 
The tests were made using Matlab2018b and Classification Learner app (The Math-
Works, Inc., Natick, MA, USA).

Decision tree is a nonparametric classifier. It builds a tree model based on the 
input of the data. The root of the tree is the entire population of the data, and each 
leaf presents different classification result of the data. Nodes of the tree are called 
the decision nodes, and they represent different input values. The output leaf is 
selected based on these decision nodes.

K-nearest neighbor classifier is a nonparametric classifier. The training set for 
each class represents a class, and the unknown pattern from the testing set is classi-
fied by finding the nearest neighbors from the sets of training patterns. Statistically, 
more reliable results can be achieved by using more than one nearest neighbor. In 

Table 2  Tested sensor models

Ultran sensors are GMP sensors from The Ultran Group (State Col-
lege, PA, USA), while CPP sensors are FE sensors made of cellular 
polypropylene and developed at BAM

Transducer pairs Frequency (kHz) Active 
diameter 
(mm)

CPP 710/709 A27 100 27
Ultran NCG100-D25 100 25
CPP 708/707 A27 130 27
Ultran NCT200-D25-P150 142 25
CPP 722/721 A27 200 27
Ultran NCG200-D19 200 19
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KNN, the unknown pattern is placed in a class with most of the k-nearest neighbors 
in the training set.

Support vector machine is a nonparametric classifier. It creates hyperplane, 
which separates dataset to different classes. This hyperplane maximizes the margin 
between the classes, and it can be linear or nonlinear separable. Support vectors are 
datapoints, which affect the position and orientation of the hyperplane.

Results and discussion

Cracks, growth ring angle (GRA: T—tangential, R—radial), resin pockets and 
knots were analyzed for their effects on air-coupled ultrasonic signal propaga-
tion in wood. GMP and FE sensors were compared. The effect of additional bias 
voltage with the FE sensors was analyzed too. Detected and non-detected defects 
are shown in Fig.  3. Figure  4 shows a C-scan image measured by FE 100  kHz 
sensors. Three boards were attached together with some glue for the scanning 
(Fig. 1). The cracks inside the boards were visible in the C-scan image, as well 

Fig. 2  Principle of the classifiers: a decision trees, b k-nearest neighbor, c support vector machine
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as the highly reflective glue between the boards. The response of a crack (Fig. 3a) 
can be seen in C-scan at positions (x = 30  mm, y = 400–600  mm). Examples of 
signals and defect responses are shown in Figs. 5 and 6. Decreased amplitude of 
ultrasound with the TMT samples is shown as increased noise level, which could 
be seen with all the tested sensors.   

One of the basic analyses to investigate the ultrasound responses of defects is to 
compare the signals measured through defect to the signals measured from defect-
free region near the defect (Table 3).

The effect of GRA was evident (Table  3). In radial direction, all sensors had 
clear response with the studied defects. Because of the low amplitude in sound 
R/T region, the effect of a defect is clearly smaller than when measuring a wood 
region with radial GRA. The effect can be seen with all sensor types. The used fre-
quency affected the response. For the same wood type, the lowest tested frequency 
had higher amplitude than the highest frequency. The effect was compensated by 
adjusting receiver amplification to get dynamically good signals levels. Typically, 
it is possible to detect smaller defects with smaller diameter transducer and higher 
frequency because of the narrower beam. The rule of thumb is that defects may be 
detected from half the size of the transmitter/receiver (Sanabria 2012). With the 
recent studies, even with a large sound field, very small defects could be found with 
small receivers using ACU-TR method (Marhenke et al. 2020). On the other hand, 
wood is very structured and non-uniform, which causes variation in the signal even 

Fig. 3  Detected and non-detected defects: a detected internal crack, red oak, b non-detected small resin 
pocket, c detected knot, d detected cracks and resin pocket, TMT spruce
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without defects. The ultrasound beam may be skewed inside the wood because of for 
example GRA or defects, which makes the analysis more complex.

All sensors detected the cracks in the oak samples and big cracks in TMT sam-
ples. For the spruce samples, some of the knots were detected. Small knots and small 
resin pockets within R/T region were not detected with any sensor, but big knots and 
knots in radial region were detected (Fig. 7); crack oriented parallel with ultrasound 

Fig. 4  C-scan attenuation (dB) 
image from the three red oak 
samples. FE 100 kHz sensors. 
The samples and sensors are 
shown in Fig. 1. The border 
lines between the samples are 
located at 75 mm and 170 mm 
at x-axis, and they are shown 
as low amplitude lines. Cracks 
were detected by 10–50 dB 
decrease in the signal compared 
to the surrounding sound wood. 
Cracks are shown at positions 
(x = 30–40, y = 400–600), 
(x = 150–160, y = 300–550) and 
(x = 215–250, y = 530–600) 
mm. The cracks detected by 
ultrasound corresponded to the 
visual findings from the cross 
sections
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Fig. 5  Example of a response. FE 200 kHz sensor pair with receiver bias. Through-transmission signal 
through TMT spruce; high amplitude (blue)—signal through sound wood; low amplitude (red)—signal 
through resin pocket (Fig. 3d) (color figure online)

Fig. 6  Example of a response. GMP 200 kHz sensor; spruce sample (thickness 51 mm), radial direction 
through-transmission signal through spruce S3; high amplitude (blue)—signal through sound wood; low 
amplitude (red)—signal through the knot (Fig. 3c) (color figure online)
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beam was not detected. The effect of GRA is clear, the highest amplitude is at nearly 
radial direction (GRA 2°, x = 150–180 mm). The nearly tangential direction (GRA 
63°, x = 0–20 mm) has higher amplitude than GRA near 45° (x = 90–110 mm).

With the TMT samples, the ultrasound response was poorer with all sensor types. 
Efficient detection of cracks and other defects was possible in radial GRA. Table 4 
shows the results of the determined signal parameters at 200 kHz. Signal-to-noise 
ratio was the best with the biased FE sensor, but the difference between non-biased 
and biased FE sensor for detecting defects was quite small, and the difference was 
− 12 dB and − 13 dB for biased and non-biased sensor, respectively. With the FE 
sensors, the response of cracks was higher than with GMP sensors (− 7.2  dB). 
According to this study, the signal height is the best parameter indicating cracks, 
which is well in accordance with the previous study (Tomppo et al. 2014). The effect 
of cracks on ToF and frequency seemed to be nonlinear and the parameters were 
highly affected by the wood structure even more than cracks. When the signal is 
very poor, stable ToF measurement is very difficult because threshold values may 
affect the response and it is not possible to detect the first crossing with high preci-
sion. Besides the advantages of FE transducers, a few words should be said about 
their disadvantages. The main one is the loss of sensitivity when they are exposed 
to temperatures above 70 °C, when they partially lose their charge, or below about 
0 °C, when they become stiffer and brittle. Another disadvantage is the mechanical 
sensitivity of the surface, which is deposited with 100 nm aluminum layer, which 
can easily be damaged. There are still no comprehensive studies on their long-term 
behavior. One FE transducer based on cellular polypropylene was in continuous 
use as a transmitter, excited with 2 kV square pulses with 100 Hz pulse repetition 
rate for 10 months, and it has shown a decrease in sensitivity of only 10%. How-
ever, it suffered a few electric breakthroughs, which damaged it locally. When using 
1800 V, there were no breakthroughs recorded after repeated use.

GMP 200 sensor (NCT200-D25-P150) had a very unique frequency response. 
Though the frequency was near 200 kHz, the frequency spectra included two sepa-
rate peaks. Thus, the frequency response changed a lot when moving sound region 
to cracked region. The response was highly affected by the crack type and orienta-
tion as well as the wood structure. Thus, it is difficult to use the parameter for stable 

Table 3  Change in amplitude (dB) between sound and defect region (cracks and knots)

GRA R versus R/T. Red oak and TMT samples contained cracks, whereas spruce samples contained 
knots
a Non-biased

Sensor Red oak R/T Red oak R TMT R Spruce R

CPP710 100 kHz  nba − 8.9 − 23.1 − 15.4 − 11.4
CPP708 128 kHz  nba − 9.4 − 23.1 − 14.0 − 11.4
CPP221 200 kHz  nba − 6.7 − 24.4 − 13.6 − 9.6
NCG100-D25 100 kHz − 4.4 − 23.1 − 3.3 − 23.1
NCT200-D25-P150 − 8.0 − 19.2 − 8.0 − 8.0
NCG200-D19 200 kHz − 8.0 − 24.4 − 6.0 − 20.9
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analysis. On the other hand, frequency may be used to distinguish different types of 
defects because it is known that for example decay is highly attenuating, especially 
the high frequencies compared to the low frequencies.

Three TMT-boards were tested with the three different classifiers using the 
200  kHz FE sensors with bias. Boards were separated to four different pieces 

Fig. 7  C-scan amplitude (%) image from spruce (thickness 51 mm) using GMP 200 kHz (NCG200-D19) 
sensors. Visual analysis was made from surface and cross section samples. GRA varied from 63° (x: 
0 mm) to 2° (x: 170 mm) to 42° (x: 250 mm). Visually detected knot location coordinates were [x (mm), 
y (mm)]: (28, 400); (115, 435); (116, 532); (138, 332); (160, 172); (160, 532); (170, 465); (212, 490) and 
(220, 420)
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widthwise and 1 cm pieces lengthwise resulting in 152, 136 and 132 pieces. Thus, 
there were 420 pieces in total for the classification analysis. Statistics were calcu-
lated from amplitude, attenuation, time of flight and frequency from measured data. 
Minimum, median, maximum, mean and standard deviation values were used, and 
thus the total number of inputs for each of the parts is 20 (4 × 5). First, test was made 
with two different classes; sound and cracked areas. Total number of samples were 
384. Table 5 shows the results of the classifiers:

Support vector machine gave the best results with 75.8% accuracy. The lowest 
accuracy was 71.9% with the decision trees. Table  6 shows the confusion tables 
from the trained models with knots. 

The knots and cracked knots did not change the overall classification remark-
ably as the number of samples from the cracked knots, and knots was clearly 
smaller than in cracked and sound areas. Cracked knots were classified mainly 
as cracks and knots as no crack. All the tested machine learning methods worked 
well for the classification; no clear differences between the methods were found. 
All the parts were visually classified, and knot areas are usually much smaller 
than the cracked areas. Thus, if there is any error in position in visual analysis, 
the accuracy of detecting knots and cracked knots also is much lower than in 
cracked areas.

Table 4  TMT-spruce analysis, 200  kHz sensors: mean, standard deviation (SD) and the difference 
between cracked and sound region

All scans were conducted from the same region and the same samples: R6a, R6b and R6c (GRA R/T). 
Amplitude or signal height (dB), Time of Flight (ToF) and the peak frequency (Freq. kHz)

Sensor pair Good mean ± SD Crack mean ± SD Difference mean ± SD

GMP 200 kHz
Signal height (dB) − 7.0 ± 1.4 − 14.2 ± 0.5 − 7.2 ± 1.5
ToF (µs) 352.6 ± 4.1 355.4 ± 4.3 2.8 ± 5.9
Freq. (kHz) 166.8 ± 12.0 264.4 ± 21.8 97.6 ± 24.9
FE 200 kHz
Signal height (dB) − 10.4 ± 2.3 − 23.5 ± 0.7 − 13.1 ± 2.4
ToF (µs) 248.6 ± 2.2 272.6 ± 3.1 24 ± 3.8
Freq. (kHz) 207.2 ± 3.4 207.6 ± 4.0 0.4 ± 5.2
FE 200 kHz with bias
Signal height (dB) − 3.5 ± 2.9 − 15.5 ± 1.2 − 12.0 ± 3.1
ToF (µs) 363.5 ± 1.9 369.8 ± 1.6 6.3 ± 2.5
Freq. (kHz) 196.7 ± 1.7 176.2 ± 7.6 − 20.5 ± 7.8

Table 5  Two-class classification 
accuracy without knots

Model N Parameters Classes Accuracy (%)

KNN 384 20 2 74.2
SVM 384 20 2 75.8
DT 384 20 2 71.9
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The detection sensitivity and accuracy of air-coupled ultrasound depend for 
example on the frequency, sensitivity, size and focus of the sensors. For wood analy-
ses, it is of  utmost importance to understand the wood structure and its effect on 
ultrasound propagation. Defect detection is highly affected by the structure of wood, 
defect type and orientation. This study suggests that air-coupled ultrasound and 
machine learning may be efficiently used to detect natural defects in wood.

Conclusion

Cellular polypropylene FE and GMP transducers were used to detect natural defects 
in wood. The study included tests with additional bias voltage with the FE receiv-
ers. This study suggests that air-coupled ultrasound may be efficiently used to detect 
natural defects like cracks and cracked knots in wood though it seems obvious that 
it is not possible to distinguish small knots or cracks from sound wood because of 
ring angle variations without advanced multiple parameter analysis. Classification 
test was made to test the possibility of detecting defects from sound wood. The test 
was made using the 200 kHz FE sensors with bias resulting in high sensitivity and 
improved signal-to-noise ratio compared to other sensors. Machine learning meth-
ods including decision trees, k-nearest neighbor and support vector machine were 
used. When sound areas and areas with cracks including cracked knots were used in 
the classification analysis (two classes), it was possible to distinguish cracked areas 
from sound ones with 77% efficiency. The study showed the potential of using the 
novel FE sensors and machine learning to detect natural defects in wood.
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