Theory of Computing Systems (2019) 63:1207-1227
https://doi.org/10.1007/500224-018-9898-6

@ CrossMark

On Black-Box Transformations in Downward-Closed
Environments

Warut Suksompong'?

Published online: 23 November 2018
© The Author(s) 2018

Abstract

Black-box transformations have been extensively studied in algorithmic mecha-
nism design as a generic tool for converting algorithms into truthful mechanisms
without degrading the approximation guarantees. While such transformations have
been designed for a variety of settings, Chawla et al. showed that no fully general
black-box transformation exists for single-parameter environments. In this paper, we
investigate the potentials and limits of black-box transformations in the prior-free
(i.e., non-Bayesian) setting in downward-closed single-parameter environments, a
large and important class of environments in mechanism design. On the positive side,
we show that such a transformation can preserve a constant fraction of the welfare at
every input if the private valuations of the agents take on a constant number of values
that are far apart, while on the negative side, we show that this task is not possible for
general private valuations.

Keywords Black-box transformation - Downward-closed - Mechanism design -
Social welfare

1 Introduction

Mechanism design is a science of rule-making. Its goal is to design rules so that
individual strategic behavior of the agents leads to desirable global outcomes. Algo-
rithmic mechanism design, one of the initial and most well-studied branches of
algorithmic game theory, studies the tradeoff between optimizing the global outcome,
respecting the incentive constraints for individual agents, and maintaining the com-
putational tractability of the mechanism [13]. A major line of work in algorithmic

An abstract appeared in Proceedings of the 10th International Symposium on Algorithmic Game Theory

< Warut Suksompong
warut@cs.stanford.edu

' Department of Computer Science, Stanford University, Stanford, CA USA

2 Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s00224-018-9898-6&domain=pdf
mailto: warut@cs.stanford.edu

1208 Theory of Computing Systems (2019) 63:1207-1227

mechanism design involves taking a setting where the optimization problem is com-
putationally intractable, and designing computationally tractable mechanisms that
yield a good global outcome and such that the agents have a truth-telling incentive.
Ideally, the mechanisms would match the best-known approximation guarantees for
computationally tractable optimization algorithms in that setting. In other words, we
want to obtain truthfulness from agents in as many settings as possible without having
to pay for more computation.

In the past two decades, this goal of algorithmic mechanism design has been met
in a wide range of prior-free as well as Bayesian settings. For instance, Briest et
al. [3] showed how to transform pseudopolynomial algorithms for several problems,
including knapsack, constrained shortest path, and scheduling, into monotone fully
polynomial time approximation schemes (FPTAS), which lead to efficient and truth-
ful auctions for these problems. Lavi and Swamy [11] constructed a general reduction
technique via linear programming that applies to a wide range of problems. The
widespread success of designing computationally tractable mechanisms with optimal
approximation guarantees has raised the question of whether there exists a generic
method for transforming any computationally tractable algorithm into a computa-
tionally tractable mechanism without degrading the approximation guarantee. Such
a method would not be allowed access to the description of the algorithm but instead
would only be able to query the algorithm at specific inputs, and is therefore known
as a “black-box transformation”.

Animportant work that demonstrates a limit of the powers of black-box transforma-
tions was done by Chawla et al. [5], who showed among other things that no fully gen-
eral black-box transformation exists for single-parameter environments in the prior-
free setting. In particular, for any transformation, there exists an algorithm (along
with a feasibility set) such that the transformation degrades the approximation ratio of
the algorithm by at least a polynomial factor. The result holds even when the private
valuations can take on only two values; Chawla et al. provided a construction with
two private valuations [< h satisfying i/l =n"/10, where n is the number of agents.
Pass and Seth [14] extended this result by allowing the transformation access to the
feasibility set while assuming the existence of cryptographic one-way functions.

Even though no fully general black-box transformation exists for single-parameter
environments, it is still conceivable that there are transformations that work for cer-
tain large subclasses of such environments. One important subclass, which is the
main subject of our paper, is that of downward-closed environments, i.e., environ-
ments in which any subset of a feasible allocation is also feasible. The construction
used by Chawla et al. [5], later built upon by Pass and Seth [14], relies heavily on the
non-downward-closedness of the feasibility set. The construction only includes three
feasible allocations, and it is crucial that the transformation cannot arbitrarily “round
down” the allocations as it would be able to if the feasibility set were downward-
closed. Since downward-closed environments occur in a wide variety of settings in
mechanism design, including knapsack auctions and combinatorial auctions, we find
the question that we study to be a natural and important one. We consider such
settings and assume, crucially, that the black-box transformation is aware that the
feasible set is downward-closed. As a result, when the transformation makes a query
to the algorithm, it can potentially learn many more feasible allocations than merely

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1209

the one it obtains. In this paper, we investigate the potentials and limits of black-box
transformations when they are endowed with this extra power.

1.1 Ourresults

Throughout the paper, we consider the prior-free (i.e., non-Bayesian) setting. In
Section 3, we show the limits of black-box transformations in downward-closed envi-
ronments. We prove that such transformations cannot preserve the full welfare at
every input, even when the private valuations can take on only two arbitrary values
(Theorem 1). Preserving a constant fraction of the welfare pointwise is impossible if
the ratio between the two values [< h is sublinear, i.e., 1/l € O((n?*) fora € [0, 1),
where n is the number of agents (Theorems 2 and 3), while preserving the approxi-
mation ratio is also impossible if the values are within a constant factor of each other
and the transformation is restricted to querying inputs of Hamming distance o(n)
away from its input (Theorem 4).

In Section 4, we show the powers of black-box transformations in downward-
closed environments. We prove that when the private valuations can take on only
a constant number of values, each pair of values separated by a ratio of 2 (n), it
becomes possible for a transformation to preserve a constant fraction of the welfare
pointwise, and therefore the approximation ratio as well (Theorem 5). The same is
also true if the private valuations are all within a constant factor of each other (The-
orem 8). Combined with the negative results, this gives us a complete picture of
transformations that preserve the welfare pointwise for any number of input values.
Not only are these results interesting in their own right, but they also demonstrate the
borders of the negative results that we can hope to prove.

Table 1 Summary of our results for the case where the private valuations take on two values / < h

100% pointwise ~ Constant fraction 100% approx ratio Constant fraction

pointwise approx ratio
/1l = n'1% No[5] No [5] No [5] No [5]
JF cannot be
queried, not
downward-closed
h/l € Qn); F No (Theorem 1) Yes (Theorem 5) ? Yes (Theorem 5)

can be queried,
downward-closed

h/l € O©(); F No (Theorem 1) No (Theorem 2) No if restricted Yes (Theorem 8)

can be queried, to Hamming dis-
downward-closed tance f(n) €

o(n), F cannot

be queried (Theo-

rem 4)
h/l € 0O@n%) No (Theorem 1) No (Theorem 3) ? ?
for « € (0,1);

JF can be queried,
downward-closed

The results can be generalized to any constant-size range of private valuations

@ Springer

1210 Theory of Computing Systems (2019) 63:1207-1227

The results are summarized in Table 1 for the case where the private valuations can
take on two values, but they can be generalized to any constant-size range of private
valuations as well.

1.2 Related work

Besides the works already mentioned, black-box transformations have been obtained
in a variety of other prior-free and Bayesian settings. In the prior-free setting, Goel
et al. [7] presented a reduction for symmetric single-parameter problems with a log-
arithmic loss in approximation, and later Huang et al. [10] improved the reduction to
obtain arbitrarily small loss. Dughmi and Roughgarden [6] designed a reduction for
the class of multi-parameter problems that admit an FPTAS and can be encoded as
a packing problem, while Babaioff et al. [1] considered reductions for single-valued
combinatorial auction problems. Reductions that preserve the approximation guaran-
tees have also been obtained in the single-parameter Bayesian setting by Hartline and
Lucier [9], and their work was later extended to multi-parameter settings by Bei and
Huang [2], Cai et al. [4], and Hartline et al. [8].

2 Preliminaries

We will be concerned with single-parameter environments. Such an environment
consists of some number n of agents. Each agent i has a private valuation v; €
R, its value “per unit of stuff” that it gets. In addition, there is a feasibility set
JF, which specifies the allocations that can be made to the agents. Each element
of F is a vector (x;)7_,, where x; € R denotes the “amount of stuff” given
to agent i. For instance, in single-item auctions, J consists of the vectors with
xi € {0,1} and >} ;x; = 1. A more general and well-studied type of auc-
tions is called knapsack auctions, in which each agent is endowed with a public
size w; along with its private valuation v;, and the seller has some public capac-
ity W. The feasibility set of a knapsack auction consists of the vectors with x; €
{0, 1} and "7, wix; < W. In this paper, we assume that the feasibility set F is
downward-closed, which means that if we take a feasible allocation and decrease
the amount of stuff given to one of the agents in the allocation, then the result-
ing allocation is also feasible. Downward-closedness is an assumption that holds
in many natural settings, including the auctions above. We assume in addition
that each x; is either O or 1; this is also the case for both of the aforementioned
auctions.

Algorithms An algorithm (or allocation rule) A is a function that takes as input a
valuation vector v = (v;)_; and outputs an allocation x = (x;)}"_,. We will consider
the social welfare objective—the welfare of A at vis givenby v-x = vix; +--- +
vpXn, Where X € F is the allocation that 4 returns at v. We denote by O PTx(v)
the maximum welfare at valuation vector v over all allocations in F. The (worst-
case) approximation ratio of A is given by approxr(A) = miny 01;4+;)(v), where we
slightly abuse notation and use .A(v) to denote the the allocation returned by .A at v as

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1211

well as the welfare of that allocation at v. Note that by definition, approxr(A) < 1
for all F and A.

Transformations A transformation T is an algorithm that has black-box access to
some other algorithm A, i.e., it can make queries to .A. In each query, 7 specifies a
valuation vector v and obtains the allocation that A returns at v. We write 7 (A) for a
transformation 7~ with access to the algorithm 4. Importantly, we assume that 7 has
the knowledge that the feasibility set F is downward-closed. For the strongest possi-
ble negative results, we assume whenever possible that (i) 7 can make a polynomial
number of queries to ask whether a particular allocation belongs to F; (ii) 7 is adap-
tive, i.e., it can adjust its next query based on the responses it received for previous
queries; and (iii) 7 is randomized. For the strongest positive results, our transforma-
tion 7 does not make queries about F and is also not adaptive. We will be clear about
our assumptions on 7 for each result.

Mechanisms A mechanism is a procedure that consists of eliciting declared private
valuations (b;)!_, from the agents, and then applying an allocation rule and a pay-
ment rule on the elicited valuations. The allocation rule determines the allocation
(x;)7_, and the payment rule determines the prices (p;)7_; to charge the agents.
We are interested in transformations that, when coupled with any algorithm, lead to
truthful mechanisms, meaning that it is always in the best interest for each agent i to
declare the true valuation v; to the mechanism, no matter what the other agents do.
A seminal result by Myerson [12] states that an allocation rule can be supplemented
with a payment rule to yield a truthful mechanism exactly when the allocation rule
is monotone. Monotonicity of an allocation rule means that if an agent increases its
declared valuation while the declared valuations of the remaining agents stay fixed,
then the agent is allocated at least as much stuff as before by the allocation rule.
Therefore, the transformations that yield truthful mechanisms are exactly the ones
that constitute a monotone allocation rule for any algorithm.

Properties of transformations We call a transformation 7 monotone if T (A) is a
monotone allocation rule for any algorithm .A. Furthermore, 7 is called welfare-
preserving if T (A) preserves the welfare of A at every input for any algorithm A,
and constant-fraction welfare-preserving if T (A) preserves a constant fraction of
the welfare of A at every input for any algorithm A. Similarly, T is approximation-
ratio-preserving if T (A) preserves the approximation ratio of 4 for any algorithm
A, and constant-fraction approximation-ratio-preserving if T (A) preserves a con-
stant fraction of the approximation ratio of 4 for any algorithm 4. Note that
a (constant-fraction) welfare-preserving transformation is also (constant-fraction)
approximation-ratio-preserving.

3 Negative Results

In this section, we consider the limits of black-box transformation in downward-
closed environments. First, we show that no monotone black-box transformation

@ Springer

1212 Theory of Computing Systems (2019) 63:1207-1227

preserves, up to a constant factor, the welfare of any original algorithm A pointwise.
We then show that if a monotone black-box transformation preserves the approxima-
tion ratio of any given input algorithm A, then on some input v it must query A on
an input that has Hamming distance €2 (n) from v.

3.1 Welfare-preserving transformations

We begin by considering the highest possible benchmark for the transformation: pre-
serving the full welfare of any algorithm at every input. Our first theorem shows that
this benchmark is impossible to fulfill even when the private valuations can take on
only two arbitrary values.

Theorem 1 Letl < h be arbitrary values (possibly depending on n), and assume that
the private valuation of each agent is either | or h. There does not exist a polynomial-
time, monotone, welfare-preserving transformation, even when the transformation is
allowed to be randomized and adaptive and make a polynomial number of queries
to F.

Before we go into the formal proof, we give a high-level intuition. We will con-
sider a class of algorithms from which one algorithm A is selected randomly. For
each algorithm A, our feasibility set contains two maximal allocations C and D along
with some low-value allocations that we insert to prevent the transformation from
learning new information when it makes queries on allocations with low welfare. The
allocation C is only returned at a “special input” By, and the allocation itself as well
as the special input depends on the algorithm .4 we choose from the class. At any
other input, the allocation D is returned. Since C yields higher welfare than D at By,
the transformation must return C at Bj in order to preserve the full welfare. By con-
sidering a chain of inputs starting from Bj, each consecutive pair of which differ in
one position, and using the monotonicity of the transformation, we can show that at
an input that is “far away” from Bj, the transformation still needs to know the alloca-
tion C in order to preserve the full welfare. However, because of the randomization,
the probability the transformation can discover either the allocation C or the special
input B; when it is given the faraway input is exponentially low, meaning that the
transformation cannot achieve its goal.

Proof Assume first that the transformation 7 is deterministic. Suppose that the input
is of length n = 4m. The algorithm .4 will be chosen randomly. To begin, we define
the preliminary algorithm A’ as follows.

2m m m
. ————
e Atinput By =hh...hhh...hil...l, A returns output
m+1 are 1’s m m

— e ——

C =10110...100...011...1, where the m 4+ 1 1’s in the first 2m posi-
tions are uniformly randomized. Note that the randomization is in the step of
choosing the algorithm A’, but the resulting algorithm A’ itself is a deterministic
algorithm. We call this input the special input;

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1213

2m m m

—— —— ——
e At any other input, A returns D =00...011...111...1.

Besides the two allocations C and D and their subsets, we also insert all allocations
with m/2 — 1 1’s in the first 2m positions and all 1’s in the last m positions along
with subsets of these allocations into F.

In the real algorithm A, we permute uniformly at random the last 3m /2 positions
of the inputs as well as the corresponding allocations. Again, this permutation is only
for choosing the algorithm A, which is a deterministic algorithm.

Consider any algorithm A that we might choose, and assume without loss of gen-
erality that in the special input of this algorithm, the /’s are in the last m positions.
To preserve the welfare at input By, 7 must return C = A(B) itself, since returning
any strict subset of C or returning D (or any subset of D) would yield a lower wel-
fare. Indeed, the welfare of C at By is (m + 1)h + ml, while the welfare of D at this
input is only mh + ml.

2m m m
—— e —

Next, consider the input B = hh...hhh...hlll...l, with the only change from
B being in the rightmost position of the middle block. By monotonicity, 7 must
return 0 in that position. In order to preserve the welfare at By, 7 must return a subset
of C, since otherwise it would have to return a strict subset of D, which would yield
a lower welfare.

2
m m m
Now, consider inputs B3 = hh...hhh.. ”hllll...l, By =
2
hh...hhh.. RhllIl...I, and so on with one extra [/ in each input, up to
2m m/2 m/2 m

——— o

Bpnpy1 = hh...hhh.. hil.. . lll...l. By a similar argument, 7 must return a
subset of C at all of these inputs. In particular, 7 must return a subset of C at By, /21 1.

In order to preserve the welfare at By, 211, 7 must return at least m /2 1’s in the
first 2m positions. If T tries to find such an allocation by querying F, then since the
positions of the m—+1 1’s in the first 2m positions are chosen randomly, the probability
)
&y <
“fake” allocations that we insert into JF, any query to J that contains at most m /2 — 1
1’s in the first 2m positions does not give 7 any information. Hence 7 will succeed
within a polynomial number of queries with less than constant probability.

Alternatively, 7 might try to find the special input B; by querying .A. In order to
find the special input By, 7 must correctly choose m /2 out of the 3m /2 positions to
change to h. However, recall that when we define the real algorithm 4 based on the
preliminary algorithm A’, we randomly permute the last 3m /2 positions of the inputs
and their corresponding allocations. The probability of success of T for each query

is therefore at most —— - < Oreover, eacn unsuccessiul query to ives
therefore at most 03 M h ful query to A

1
(m/z) poly(n)*
T no new information. Hence 7 will again succeed within a polynomial number
of queries with less than constant probability. Combined with the previous para-
graph, this means that the probability that 7 succeeds within a polynomial number
of queries is less than constant if 7 is deterministic.

of success for each query is at most Note also that because of the

@ Springer

1214 Theory of Computing Systems (2019) 63:1207-1227

Finally, assume that 7 is allowed to be randomized. As before, 7 still has to
guess correctly either the special input or an allocation that returns at least m/2 1’s
in the first 2m positions, and any unsuccessful query gives 7 no new information.
Since we choose the positions of the m + 1 1’s in the first 2m positions uniformly
at random in the preliminary algorithm 4’, the probability that each guess of 7 (no

m+1
matter whether deterministic or randomized) is successful is still at most (’Z,/"z))
m/2
m. Likewise, since we permute the last 3m /2 positions of the inputs and their
corresponding allocations uniformly at random when we define the real algorithm A
based on the preliminary algorithm .4’, the probability that each guess of 7 (no matter

whether deterministic or randomized) is successful is still at most -1 <

o)
We therefore conclude that the probability of success of 7 in guessing the special
input or an allocation that returns at least m/2 1’s in the first 2m positions cannot

increase even if it randomizes its choices. O]

1
poly(n)*

3.2 Constant-fraction welfare-preserving transformations

Even though Theorem 1 shows that it is impossible for a transformation to pre-
serve the full welfare pointwise, it would still be interesting if the transformation
can preserve a constant fraction of the welfare pointwise. However, as we show in
this subsection, it turns out that this weaker requirement is also impossible to sat-
isfy. Our next two theorems show that preserving a constant fraction pointwise is
impossible when the ratio //! is sublinear, i.e., i/l € O(n*) for some « € [0, 1).
We first consider the case where &/ is constant (Theorem 2), and later generalize
toh/l € O(n*) for some « € [0, 1) (Theorem 3). Together with Theorem 5, which
exhibits an example of a constant-fraction welfare-preserving transformation when
h/l € Q(n), we have a complete picture of constant-fraction welfare-preserving
transformations when there are two input values.

Theorem 2 Letl < h be such that h/l is constant, and assume that the private valu-
ation of each agent is either [or h. There does not exist a polynomial-time, monotone,
constant-fraction welfare-preserving transformation, even when the transformation
is allowed to be randomized and make a polynomial number of queries to F.

The proof of Theorem 2 uses similar ideas to that of Theorem 1 but contains
differences in the execution.

Proof Assume first that the transformation 7 is deterministic. Suppose that the input
is of length n = m® + m>. Note that the sets poly(m) and poly(n) are identical.

Let X denote the set of inputs with m>’s in the first m® positions followed by
m3h’s, and let ¥ denote the set of inputs with m> — ml’s in the first m® positions,
followed by m3h’s. We have |X| = ("s) and Y| = (2). Since [X| > Y] -
poly(n), there exists an input in X that is not in the (polynomially long) query list
of T for any input in Y. Assume without loss of generality that B;, defined below, is
one such input.

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1215

Consider the algorithm A as follows:

mS—mS S m3
. —— N ——
e Atinput By =hh...hll...lhh...h, Areturns
mO—m> m*are I’s m3

——— —N—— ——

C=00...010110...100...0. For now, we assume an arbitrary set of posi-
tions for the m* 1’s in the m® positions of the middle block; we will choose a
particular set later. We call B; the special input, and the corresponding allocation
C the special allocation;

mé—m? m’ m3

——— —— ——
e Atany other input, Areturns D =00...000...011...1.

For large enough m, to preserve a constant fraction of the welfare at input By, 7

cannot return a subset of D. Hence 7 must return a subset of C = A(By).

mb—m3 md m3

— e |

Consider the input B, = hh...hhll...lhh...h, with the only change from B
being in the leftmost position of the middle block. (Here we choose the leftmost
position because this position of C contains a 1 in the particular choice of C above;
otherwise we choose any position of C that contains a 1.) By monotonicity, 7 must
return a 1 in the middle block for B, so it cannot return a subset of D. Moreover, for
large enough m, to preserve a constant fraction of the welfare at By, 7 must return at
least m? 1’s in the middle block. In particular, there is still a 1 corresponding to an [
in the middle block.

Similarly, we can define inputs B3, By, ..., By4+1 so that B; has i — 1h’s in the
middle block and there is still a 1 corresponding to an / in the middle block. For
each of these inputs, 7 must return at least m? 1’s in the middle block. Note also that
Bm+1 eyY.

Now, the special allocation C is at By, and by our assumption above, 7 does not
discover C by querying A at By when it is presented with B, | € Y. The only other

possibility for 7 to discover C is to query F. There are (”’;5) inputs of ¥ whose first

m® — m? positions are all &’s, and these are the only inputs at which 7~ can benefit

from a “successful” query to F. When 7 makes a query at each of these inputs, it
must pick an allocation with at least m? 1’s in the m? positions. (Similarly to the proof
of Theorem 1, we insert all allocations with at most m2 — 1 1’s in the m> positions
into F to ensure that 7 learns no new information by querying such allocations.)
From the perspective of us preventing the transformation 7 from achieving its goal,

5.2 . . .
this rules out at most (247%2) allocations. The total number of possible allocations

C that we can choose is (zi) Since ("';5) . (ﬂi:n";

for some choice of 1’s in m* out of the m> positions in the middle block, 7~ does not
succeed in finding an allocation with at least m> 1’s. By making this choice of C, we
ensure that 7 cannot succeed within a polynomial number of queries.

Finally, assume that 7 is allowed to be randomized. We choose an input B; € X
for which the total probability of querying X given any input in Y is exponentially
small; such an input must exist since | X| > |Y|- poly(n). The choice of the allocation
C is made in the same way as before. O

i) - poly(n) < (Zi), this means that

@ Springer

1216 Theory of Computing Systems (2019) 63:1207-1227

Using a similar construction, we can generalize the impossibility result to the case
where i/l € O(n*) for any « € [0, 1).

Theorem 3 Let] < h be such that h/l € O(n%) for some constant « € [0, 1), and
assume that the private valuation of each agent is either | or h. There does not exist
a polynomial-time, monotone, constant-fraction welfare-preserving transformation,
even when the transformation is allowed to be randomized and make a polynomial
number of queries to F.

Proof We extend the example for the case where £/ is constant (Theorem 2). Let
b > ¢ > d > e > 3 be integer constants that we will choose later. Suppose that the
three blocks have length mb, m€, and m®, respectively, and that there are m? 1’s in
the middle block. We construct inputs By, Ba, ..., By+1 as before. In order for the
same argument to go through, we need three conditions:

1. For the transformation to necessarily return a subset of C at the special input B,
it is sufficient to have m9¢ = w(m®(m? +m¢+m®)?). This is because the welfare
from the allocation C at By is m< -1 , while the welfare from the allocation D
at By ism® - h < k - m¢(m® + m° + m)® - [for some constant k. To satisfy
the asymptotic relation, one may choose b > d > e so thatd > e + ba. Since
a < 1, such a choice is possible.

2. To guarantee the existence of an input in X that is not in the (polynomially long)

b c b c

query list of 7 for any input in ¥, we need (" ™) - poly(n) < (™ F"). This

b c b c
is because | X| = (" ™) and |Y| = (" ""). The inequality is equivalent to

mP +m)(m® +m —1)...(m° +1)
me(me —1)...(m¢ —m+1)

Foreachi = 1,2, ..., m, the ratio between the ith term of the numerator and
the ith term of the denominator is at least m?=¢/2 > m®=/2 for large enough
m. Hence the inequality holds for any b > c.

> poly(n).

3. To ensure that there is a valid choice of C, we need (':';) . (Zf;::"n;:ll) - poly(n) <

(:"1’2) The reasoning follows that in the penultimate paragraph of the proof of
Theorem 3, which corresponds to the special case (c,d,e) = (5,4,3). The
inequality is equivalent to

m! m€—=m)...(m“—m L4+ 1)
mHmd —1)...(m4 —m+1) (m4—m)...(m4 —me=1 +1)

> poly(n).

The first fraction on the left-hand side is at least 1/m?". For each i =
1,...,m* ' —m, the ratio between the ith term of the numerator and the ith term
of the denominator of the second fraction is at least m¢=¢/2 > m©=9/2 for large

enough m. Hence the second fraction is at least m¢~% (me=1=m)/2 The product of

the two fractions is therefore at least (mm)[("’d)(’"efz’l)/ 2I=d 5 poly(n). Hence
the inequality holds for any ¢ > d > e.

Therefore we can choose b, ¢, d, e so that all three conditions hold. O

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1217

Note that the examples so far cannot be used to show the non-existence of a mono-
tone (constant-fraction) approximation-ratio-preserving transformation. Indeed, con-
sider the transformation that simply returns the canonical allocation D. The points
at which this transformation fails to preserve the welfare of the algorithm are points
at which the algorithm is optimal, and elsewhere the algorithm is far from optimal,
implying that the approximation ratio is preserved.

3.3 Approximation-ratio-preserving transformations

In this subsection, we consider a weaker benchmark than preserving full welfare
pointwise: preserving the approximation ratio. We show that this benchmark is still
impossible to satisfy if we restrict the transformation 7 to querying inputs at Ham-
ming distance less than some function f(n) € o(n) from its input, and disallow T
from querying F. Note that our transformations for two or more input values that
are far apart (Theorems 5, 6, and 9) only query inputs at constant Hamming distance
from the given input. The following result therefore implies that such transformations
or minor modifications thereof cannot be approximation-ratio-preserving.

Theorem 4 Let I < h be such that h/1 is constant, and assume that the private
valuation of each agent is either | or h. Let f(n) € o(n). There does not exist a
polynomial-time, monotone, approximation-ratio-preserving transformation T. The
transformation T is allowed to be randomized and adaptive, but it cannot make
queries to F and can only make queries to A on inputs that are of Hamming distance
less than f(n) from the original input.

Proof Suppose that the input is of length n = 2m, and consider the algorithm A as
follows:

m m

—— ——
e At any input with at most m + f(n)h’s, Areturns 00...011...1;
m m

. —— ——
e Atany other input, Areturns 11...100...0.

m m

. ———
One can check that approxz(A) = [/ h. Let By denote the input hh ... ki1l ... 1.
m m

N ———
We have A(B;) = 00...011...1. At input Bj, the transformation 7 cannot
discover the other (undominated) allocation because of the Hamming distance restric-
tion. Hence it must return a subset of LA (B]). Moreover, since the approximation ratio
of A is worst at input By, 7 must return exactly A(By).
m m

—— ——

Consider the input By = hh...hhll...l, with the only change from B being in
the leftmost position of the second half. By monotonicity, 7 must return a subset of
A(B1) at By. Moreover, for large enough n, to preserve the approximation ratio, 7
must return at least one 1 on [in the second half.

Similarly, we can define inputs B3, By, ..., Byyq2f@n)+1 so that B; has i — 1h’s
in the second half and there is still a 1 corresponding to an / in the second half. A

@ Springer

1218 Theory of Computing Systems (2019) 63:1207-1227

sufficient condition to guarantee a 1 on an [in the second half is that putting 1’s on
all #’s in the second half is not enough to match the approximation ratio // k. That is,
W < % Since f(n) € o(n), we can choose n large enough so that this condition
is satisfied.

For each of the inputs B3, By, ..., Byy2fm)+1, 7 must return a subset of A(By).
At input By, 42 (n)+1, however, T cannot discover the allocation A(B;) because of
the Hamming distance restriction. Hence 7 cannot succeed. O

If we are only interested in preserving a constant factor of the approximation ratio,
then Theorem 8 shows that this is possible in the same setting of / /[constant, and
Theorem 5 shows that it is also possible when /] € €2 (n). It is not clear whether a
negative result can be obtained when /1 € O (n®) for some o € (0, 1).

4 Positive Results

In this section, we consider the powers of black-box transformations in downward-
closed environments. We show that when values are either high or low, and the
ratio between high and low is €(n), then there is a monotone transformation that
gives a constant approximation to the welfare of any given algorithm pointwise, and
therefore also preserves the approximation ratio up to a constant factor. This can be
generalized to any constant number of values, and the transformation can be modi-
fied so that it also preserves full welfare at a constant fraction of the inputs. While
these results are of independent interest, they also serve to demonstrate the limita-
tions of extending the negative results in Section 3. For the strongest possible results,
we exhibit transformations that do not query J or operate adaptively.

4.1 Two values

We begin by showing that when the private valuations take on two values that are far
apart, there exists a transformation that preserves a constant fraction of the welfare at
each input. This contrasts with the negative result when the values are close to each
other (Theorem 3).

Theorem S Let I < h be such that h/l € Q(n), and assume that the private val-
uation of each agent is either | or h. There exists a polynomial-time, monotone,
constant-fraction welfare-preserving transformation.

Proof First we give a high-level intuition of the transformation. A monotone trans-
formation needs to ensure that for any two adjacent inputs, it does not simultaneously
occur that a O appears on 4 and a 1 on / in the differing position. As such, we would
like to use the downward-closedness to “zero out” the I’s in a given input to avoid
the undesirable situation. If the algorithm already returns a 1 on some # for the input,
this can be done while still preserving a constant fraction of the welfare. Otherwise,
we look at nearby inputs and take an allocation that would return a 1 on some % for
our input, if such an allocation exists.

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1219

We now formally describe the transformation 7. Given an input v, 7 proceeds as
follows:

1. If A(v) already has a 1 on A, “zero out” all the [’s, and return that allocation.
Else, if some input adjacent to v has an allocation that would yield a 1 on % at
v, take that allocation and zero out all the I’s, and return that allocation. (Pick
arbitrarily if there are many such allocations.)

3. Else, if some input of Hamming distance 2 away from v has an allocation that
would yield a 1 on 4 at v, take that allocation and zero out all the I’s, and return
that allocation. (Pick arbitrarily if there are many such allocations.)

4. Else, return A(v).

The transformation takes polynomial time, and it only zeroes out the /’s when the
allocation already has a 1 on 4. Since i/l = €2(n), a constant fraction of the welfare
is preserved pointwise.

It remains to show that the resulting allocation rule is monotone. Suppose for
contradiction that for some neighboring inputs v and w, at the position where the
two inputs differ, there exists a 0 on & at v, and a 1 on [at w. The allocation at w
cannot have changed in Steps 1, 2, or 3 of the transformation, and w has 0 on all
the 4’s since otherwise Step 1 would have been activated on w. But then the original
allocation at v must have 0 on all the 4’s, except possibly at the position where the
two inputs differ, because otherwise Step 2 would have been activated on w. At the
differing position, however, the original allocation at v must have a 0 too, because
otherwise Step 1 would have been activated on v and the final allocation would have
a 1 at this position. Now, the allocation at v must have changed in Step 2, because the
original allocation at v has no 1 on £ and the allocation at w would yield a 1 on 4 at v.
The allocation at v did not change to the allocation at w, however, because otherwise
the non-monotonicity would not have occurred. Hence it must have changed to the
allocation at some other input with a 1 on 4 in a position where v and w do not
differ. But then Step 3 would have been activated on w, which gives us the desired
contradiction. O

Note that the transformation in Theorem 5 might preserve full welfare at a very
small number of inputs. Indeed, if .4 returns the allocations with all 1’s at every input,
then 7T preserves full welfare at only 2 out of the 2" inputs. Nevertheless, we can
improve the transformation so that not only does it preserve a constant fraction of the
welfare pointwise, but it also preserves full welfare at a 1/n fraction of the inputs. To
this end, we will need to make a slightly stronger assumption that 4// > n.

Theorem 6 Letl < h be such that h/l > n, and assume that the private valuation
of each agent is either | or h. There exists a polynomial-time, monotone, constant-
fraction welfare-preserving transformation that preserves the full welfare at a 1/n
fraction of the inputs.

Proof We exhibit such a transformation 7, which is a slight modification of the
transformation in Theorem 5.

@ Springer

1220 Theory of Computing Systems (2019) 63:1207-1227

We call an allocation (implicitly along with an input) an k-allocation if it has a 1
on h at the input, and an /-allocation otherwise. For any allocation (again implicitly
along with an input), call another allocation a higher h-allocation if it yields strictly
more 1’s on & than the original allocation at the input.

Given any input v, the transformation 7 proceeds as follows:

1. If A(v) is an h-allocation, consider its adjacent inputs. If the allocation at one
of these inputs would yield a higher A-allocation at v, take that allocation pro-
visionally. (Break ties in a consistent manner if there are many such allocations,
e.g., by choosing the allocation at the input that differs from v at the leftmost
position among all corresponding inputs.)

2. Simulate Step 1 for each input w at Hamming distance 1 or 2 away from v by
checking whether any original allocation at a neighbor of w would yield a higher
h-allocation at w (if A(w) is an h-allocation), and taking such an allocation
provisionally for w if one exists.

3. If the allocation at v is an [-allocation, consider its adjacent inputs. If the pro-
visional allocation at one of these inputs would yield an %-allocation at v, take
that allocation provisionally. (Break ties in a consistent manner if there are many
such allocations.)

4. If the allocation at v is still an [-allocation, consider the inputs of Hamming
distance 2 away from v. If the provisional allocation at one of these inputs would
yield an h-allocation for v, take that allocation provisionally. (Break ties in a
consistent manner if there are many such allocations.)

5. If the allocation at v has improved to a higher A-allocation than the original
allocation, zero out all the /’s. Call the allocation at v at this point the almost-final
allocation.

6. Simulate Steps 1 through 5 for all inputs adjacent to v to arrive at an almost-final
allocation for each such input.

7. For any 1 on [at v, zero it out only if it yields a monotonicity conflict with the
almost-final allocation at a neighboring input. This is the final allocation at v.

The transformation takes polynomial time. The resulting allocation rule is mono-
tone, since any monotonicity conflict is fixed in Step 7. We next show that a constant
fraction of the welfare is preserved pointwise.

Consider any input v. If A(v) is an k-allocation, the worst that can happen is that
all of the 1’s on [are zeroed out, but even then half of the welfare is still preserved.
Assume that A(v) is an [-allocation, meaning that Step 1 is not activated on v. If the
allocation at v changes during Steps 1 through 6, the welfare can only increase, so
we may assume that the allocation remains the same throughout the first six steps. It
suffices to show that the allocation is also unchanged in Step 7.

To this end, suppose for contradiction that the almost-final allocation at a neigh-
boring input w has a O on / in a position where v has a 1 on /. The provisional
allocation at w after Step 2 must have 0 on all the /’s, except possibly at the position
where the two inputs differ, because otherwise Step 3 would have been activated on
v. At the differing position, however, the provisional allocation at w must have a 0
too, because if it has a 1 then the 1 cannot turn into a O later. So this allocation is an
[-allocation.

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1221

Now, the allocation at w must have changed in Step 3, because it is an /-allocation
and the provisional allocation at v would yield a 1 on /& at w. The allocation at w did
not change to the allocation at v, however, because otherwise the non-monotonicity
in the almost-final allocations would not have occurred. Hence it must have changed
to another allocation with a 1 on £ at a position where v and w do not differ. But
then Step 4 would have been activated on v and turned the allocation at v into an
h-allocation. This contradiction concludes the proof that a constant fraction of the
welfare is preserved pointwise.

We now show that at least a 1/n fraction of the inputs obtain weakly better welfare.
In particular, for each input that obtains strictly less welfare, we will find a neighbor
that obtains strictly better welfare.

An input v obtains strictly less welfare only if it has to zero out an / in Step 7. That
means that the almost-final allocation at v has a 1 on /. In particular, the allocation
has never been changed in Steps 1 through 6. On the other hand, a neighbor w has an
almost-final allocation with a 0 on % in that position. Assume for contradiction that
w obtains less (or equal) welfare than before. That means that the allocation at w has
also never been changed to a higher h-allocation during Steps 1 through 6. Consider
the n — 1 positions at which v and w do not differ. If the allocation at v has at least
as many 1’s on & among these positions as the allocation at w, then w could have
gotten a higher A-allocation by taking the allocation at v. Else, the allocation at v has
strictly fewer 1’s on A among these positions than the allocation at w, and v could
have gotten a higher A-allocation by taking the allocation at w. Either way, we have
a contradiction.

Hence, every time an input loses a 1 on [, it can point to a neighbor that got better.
Each input that got better can be pointed to at most n — 1 times (since it must have at
least one 1 on & and cannot have a monotonicity conflict in that position). Let W be
the set of inputs that got worse. We have |[W| < (n — 1) - (2" — |W]), and therefore
|W| < =L .2 as desired. O

If /1 > 2n, the transformation in Theorem 6 also preserves the expected welfare
over the uniform distribution over the 2" inputs, as we show next.

Theorem 7 Let | < h be such that h/l > 2n, and assume that the private
valuation of each agent is either | or h. There exists a polynomial-time, mono-
tone, constant-fraction welfare-preserving transformation that preserves full welfare
at a 1/n fraction of the inputs and preserves expected welfare over the uniform
distribution over the 2" inputs.

Proof Consider the transformation in Theorem 6. Every time an input loses a 1 on /,
it can point to a neighbor that got better. The welfare of that neighbor has increased
by at least h — nl > nl. Since each input that got better can be pointed to at most
n — 1 times, the expected welfare over the uniform distribution over the 2" inputs is
preserved. O

Finally, we consider the other extreme case where %/[is constant. In this case,
simply returning a constant allocation already preserves a constant fraction of the

@ Springer

1222 Theory of Computing Systems (2019) 63:1207-1227

approximation ratio. We focus on the allocation A(ll...1I), but a similar statement
can be obtained for any other constant allocation. The result can also be extended
to the case where we have multiple input values, all of which are within a constant
factor of each other.

Theorem 8 Let [< h be arbitrary values (possibly depending on n), and assume
that the private valuation of each agent is either | or h. Let T be a transformation
that returns the constant allocation A(ll . . .1) at any input. Then T preserves anl/h
fraction of the approximation ratio.

Proof One can check that 7 (A)(v) > A(ll...[) for any input v. Moreover, we have
that OPT (v) < % -OPT(l...1l), since any allocation at v would return at least an
1/ h fraction of the welfare when allocated to the input /[.. .[. Hence

T(A)(v)
mmn-—m—"—m
v OPTxr(v)
I-Adll...D)
~ h-OPTx(l...D

approxr(T(A)) =

v

!
5 - approxz(A),

as desired. O]

Combining this theorem with Theorem 5, we have that a constant fraction of the
approximation ratio can be preserved if either /[is constant or £/l € Q(n). This
means that if we were to obtain a negative result with two values, it would have to be
the case that 1/ lies strictly between constant and linear.

4.2 Multiple values

In this subsection, we show that we can generalize the transformation in Theorem 5 to
the case where we have multiple input values, each pair separated by a ratio of Q2 (n).
Recall that when some two input values are separated by O (n%) for some o € [0, 1),
we have from Theorem 3 that it is impossible to preserve a constant fraction of the
welfare pointwise. Hence we have a complete picture of constant-fraction welfare-
preserving transformations for multiple input values as well.

Theorem 9 Let k be a constant, and let ay, . .., ag be such that a;y1/a; € Q2(n) for
i =1,...,k—1. Assume that the private valuation of each agent is one of ay, . . . , a.
There exists a polynomial-time, monotone, constant-fraction welfare-preserving
transformation.

Moreover; if a;+1/a; > n for all i, then the transformation can be modified so that
it also preserves full welfare at a m fraction of the inputs.

Proof We first consider the case where there are three input values %, m, [, and focus
only on preserving a constant fraction of the welfare pointwise. It is possible to extend

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1223

to any constant number of inputs k and also preserve full welfare for a
fraction of the inputs, and we explain that later.

For any allocation (implicitly along with an input), we call it an & — allocation if
it has a 1 on 4 at the input. Otherwise, we call it an m — allocation if it has a 1 on
m at the input. Finally, we call it an / — allocation if it is neither an h-allocation nor
an m-allocation.

We exhibit a transformation 7 that preserves a constant fraction of the welfare
pointwise. Given any input v, the transformation 7 proceeds as follows:

1
k=D (n—D+1

1. If A(v) is an [-allocation and some input adjacent to v has an allocation that
would yield an m-allocation or an hk-allocation at v, or if A(v) is currently an
m-allocation and some input adjacent to v has an allocation that would yield
an h-allocation at v, take that allocation provisionally. (If there are many such
allocations, take the higher type if possible; otherwise pick arbitrarily.)

2. If the allocation at v is currently an [-allocation, and some input at Hamming
distance at most 2 away from v has an allocation that would yield an m-allocation
at v, take that allocation provisionally. (Pick arbitrarily if there are many such
allocations.)

3. If the allocation at v is currently not an h-allocation, and some input at Hamming
distance at most 3 away from v has an allocation that would yield an h-allocation
at v, take that allocation provisionally. (Pick arbitrarily if there are many such
allocations.)

4. If the allocation at v is currently an m-allocation, and some input at Hamming
distance at most 4 away from v has an allocation that would yield an A-allocation
at v, take that allocation provisionally. (Pick arbitrarily if there are many such
allocations.)

5. If the allocation at v is currently an [/-allocation, and some input at Hamming
distance at most 5 away from v has an allocation that would yield an /-allocation
at v, take that allocation provisionally. (Pick arbitrarily if there are many such
allocations.)

6. If the allocation at v is currently an A-allocation, zero out all the m’s and I’s. If it
is an m-allocation, zero out all the [’s. Return the current allocation A(v).

The transformation runs in polynomial time and since h/m, m/l € Q(n), a constant
fraction of the welfare is preserved pointwise. We now show that the resulting alloca-
tion rule is monotone. Suppose for contradiction that this is not true. There are three
cases.

e (Case I: For some neighboring inputs v and w, at the position where the two
inputs differ, there exists a 0 on 4 at v, and a 1 on / at w. The allocation at
w cannot have changed throughout the transformation, and this allocation is an
[-allocation. The original allocation at v must have 0 on all the 4’s, except possi-
bly at the position where the two inputs differ, because otherwise Step 1 would
have been activated on w. At the differing position, however, the original allo-
cation at v must have a 0 too, because otherwise this allocation would be an
h-allocation and the final allocation would have a 1 in this position. Now, the
allocation at v must have changed in Step 1, because the original allocation at v

@ Springer

1224 Theory of Computing Systems (2019) 63:1207-1227

is an /- or m-allocation and the allocation at w would yield an A-allocation. The
allocation at v did not change to the allocation at w, however, because otherwise
the non-monotonicity would not have occurred. Hence it must have changed to
the allocation of some other input with a 1 on /4 or m in a position where v
and w do not differ. But then Step 2 or 3 would have been activated on w, a
contradiction.

® (Case 2: For some neighboring inputs v and w, at the position where the two
inputs differ, there exists a 0 on % at v, and a 1 on m at w. The final allocation at
w is an m-allocation, so it has 0 on all the /’s and I’s. The original allocation at
v must have 0 on all the /’s, except possibly at the position where the two inputs
differ, because otherwise Step 1 would have been activated on w. At the differing
position, however, the original allocation at v must have a 0 too, because other-
wise this allocation would be an /-allocation and the final allocation would have
a 1 in this position. Now, the 1 on m in the allocation at w occurs at the latest in
Step 2, since in later steps an allocation can only turn into an A-allocation. This
means that after Step 3, the allocation at v must be an /A-allocation. This allo-
cation is different from the one at w, because otherwise the non-monotonicity
would not have occurred, so the allocation has a 1 on 4 in a position where
v and w do not differ. But then Step 4 would have been activated on w, a
contradiction.

e (Case 3: For some neighboring inputs v and w, at the position where the two
inputs differ, there exists a O on m at v, and a 1 on [/ at w. The allocation at w
cannot have changed throughout the transformation, and this allocation is an /-
allocation. The original allocation at v must have 0 on all the m’s and /’s, except
possibly at the position where the two inputs differ, because otherwise Step 1
would have been activated on w. After Step 1, the allocation at v is at least an m-
allocation, since it could change to the allocation at w. If this allocation has a 1 on
m or h in a position where v and w do not differ, the allocation at w should have
changed to an m- or h-allocation in Step 2 or 3. This means that the allocation at
v has a 1 on m at the position where the two inputs differ after Step 1, and yet
changes to an k-allocation later. This change occurs at the latest in Step 4, since
an m-allocation is not allowed to change in Step 5. But then Step 5 or an earlier
step would have been activated on w, a contradiction.

As mentioned, it is possible to extend the transformation to any constant number
k of input values. Suppose that the input values are a; < ay < --- < a, and define
an g;-allocation for each i analogously to the k = 3 case. The transformation takes

2
% steps.

77

a) — ap
7> a3
ay — as
a; — as
?—>a4
asz — a4
a) — agq

@ Springer

Theory of Computing Systems (2019) 63:1207-1227 1225

® a) — a4

® a1 — a

In each step, the transformation considers allocations at inputs within Hamming
distance one higher than the previous step. If the change in the type of allocation (e.g.,
from an ajz-allocation to an as-allocation) matches the specified change in that step,
the transformation executes the change. The question mark (e.g., ? — a3) denotes
any allocation of a lower type than the target allocation. In the first step, if there
are several candidate allocations, take one with the highest type possible. Finally,
the transformation zeroes out all the input values other than the highest one of the
allocation. Since the ratio between any two adjacent input values is at least linear,
this transformation preserves a constant fraction of the welfare pointwise.

To show that the transformation is monotone, assume for contradiction that for
some neighboring inputs v and w, at the position where the two inputs differ, there
existsaOona; at v, and a 1 on g; at w, where i < j. This means that the final
allocation at w is an a; -allocation, so the allocation at w has O on all the a;1+1’s, a;+2’s,
..., a;’s throughout the transformation. Therefore the original allocation at v must
also have O on all the a; 1 1’s, a;42’s, . . ., a;’s at the positions where the two inputs do
not differ; otherwise Step 1 would have been activated on w. Now, the allocation at w
becomes an g;-allocation at some point (possibly at the beginning), at the latest in the
step a;—1 — a;. So the allocation at v must be at least an aj-allocation after the step
? — aj (or Step 1, if j = 2). If this allocation hasa 1 onone of aj, ajy1, ..., a, ata
position where the two inputs do not differ, the allocation at w would have changed
to at least an aj-allocation in a later step. This means that the allocation at v has a
1 on a; at the position where the two inputs differ after the step ? — a;. However,
the allocation later has a O in this position, so the allocation must have changed to
at least an a4 1-allocation. But then the allocation at w should also have changed to
this allocation in a later step instead of staying as an ag;-allocation. This gives us the
desired contradiction.

We can extend the transformation in a similar way as in Theorem 6 so that the
transformation also preserves full welfare at a m fraction of the inputs.
For any allocation (implicitly along with an input), call another allocation a higher
allocation if it yields either strictly more 1’s on a,, than the original allocation at the
input, or an equal number of 1’s on a, and strictly more 1’s on a,_1, or an equal
number of 1’s on a, and a,_1 and strictly more 1’s on a,_3, ..., or an equal number
of I’'sonay,, a,—1, ..., as and strictly more 1’s on a;. We add a preprocessing step in
which for each input, we check whether the allocation at any neighboring input would
yield a higher allocation, and if so, we take that allocation provisionally. We simulate
this step for every input of Hamming distance no more than kz"’# away, and assume
without loss of generality that all inputs start with these provisional allocations. We
then perform the kz*% steps as before. At the end, for any input whose allocation
has improved to a higher allocation, we zero out all the input values except the highest
one to arrive at an almost-final allocation of the input. We then zero out a 1 in an
almost-final allocation only if it yields a monotonicity conflict with the almost-final
allocation at a neighboring input.

@ Springer

1226 Theory of Computing Systems (2019) 63:1207-1227

The transformation is monotone by construction. To show that at least a
m fraction of the inputs obtain weakly better welfare, we establish in a
similar way as in Theorem 6 that each input that obtains strictly less welfare can point
to a neighbor that obtains strictly better welfare. Since each input that obtains better
welfare can be pointed to at most (k — 1)(n — 1) times, the claim follows. To show
that a constant fraction of the welfare is preserved at any input v, note that the only
case we have to deal with is when the allocation at v is an a;-allocation that remains
the same until it is an almost-final allocation. An argument similar to that for the ear-
lier transformation in this proof shows that such an allocation will also remain the
same until the end. O

5 Conclusion

In this paper, we consider black-box transformations in downward-closed single-
parameter environments, an important subclass of environments that occur in several
settings in mechanism design. We show both positive and negative results on the
power of such transformations (see Table 1). Several questions remain, the most
important of which is perhaps whether there exists a black-box transformation that
preserves the approximation ratio of any algorithm, or an approximation thereof,
when there is no Hamming distance restrictions on the transformation.

Acknowledgments This work was partially supported by NSF Award CCF-1813188, by the European
Research Council (ERC) under grant number 639945 (ACCORD), and by a Stanford Graduate Fellowship.
The author would like to thank Tim Roughgarden for helpful discussions and the reviewers for helpful
comments.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if changes were made.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Babaioff, M., Lavi, R., Pavlov, E.: Single-value combinatorial auctions and algorithmic implementa-
tion in undominated strategies. J. ACM 56(1), 4 (2009)

2. Bei, X., Huang, Z.: Bayesian incentive compatibility via fractional assignments. In: Proceedings
of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 720-733
(2011)

3. Briest, P, Krysta, P., Vocking, B.: Approximation techniques for utilitarian mechanism design. SIAM
J. Comput. 40(6), 1587-1622 (2011)

4. Cai, Y., Daskalakis, C., Weinberg, S.M.: Understanding incentives: Mechanism design becomes algo-
rithm design. In: Proceedings of the 54th Symposium on Foundations of Computer Science, pp.
618-627 (2013)

5. Chawla, S., Immorlica, N., Lucier, B.: On the limits of black-box reductions in mechanism design. In:
Proceedings of the 44th Symposium on Theory of Computing, pp. 435-448 (2012)

@ Springer

http://creativecommons.org/licenses/by/4.0/

Theory of Computing Systems (2019) 63:1207-1227 1227

6.

7.

12.
13.

Dughmi, S., Roughgarden, T.: Black-box randomized reductions in algorithmic mechanism design.
SIAM J. Comput. 43(1), 312-326 (2014)

Goel, G., Karande, C., Wang, L.: Single-parameter combinatorial auctions with partially public valua-
tions. In: Proceedings of the 3rd International Symposium on Algorithmic Game Theory, pp. 234-245
(2010)

. Hartline, J.D., Kleinberg, R., Malekian, A.: Bayesian incentive compatibility via matchings. Games

Econom. Behav. 92, 401-429 (2015)

. Hartline, J.D., Lucier, B.: Bayesian algorithmic mechanism design. In: Proceedings of the 42nd ACM

Symposium on Theory of Computing, pp. 301-310 (2010)

. Huang, Z., Wang, L., Zhou, Y.: Black-box reductions in mechanism design. In: Proceedings of the 14th

International Workshop on Approximation Algorithms for Combinatorial Optimization, pp. 254-265
(2011)

. Lavi, R., Swamy, C.: Truthful and near-optimal mechanism design via linear programming. J. ACM

58(6), 25 (2011)

Myerson, R.B.: Optimal auction design. Math. Oper. Res. 6(1), 58-73 (1981)

Nisan, N., Ronen, A.: Algorithmic mechanism design. Games Econom. Behav. 35(1-2), 166-196
(2001)

. Pass, R., Seth, K.: On the impossibility of black-box transformations in mechanism design. In:

Proceedings of the 7th International Symposium on Algorithmic Game Theory, pp. 279-290 (2014)

@ Springer

	On Black-Box Transformations in Downward-Closed Environments
	Abstract
	Introduction
	Our results
	Related work

	Preliminaries
	Algorithms
	Transformations
	Mechanisms
	Properties of transformations

	Negative Results
	Welfare-preserving transformations
	Constant-fraction welfare-preserving transformations
	Approximation-ratio-preserving transformations

	Positive Results
	Two values
	Multiple values

	Conclusion
	References

