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Abstract In the family of clustering problems we are given a set of objects (vertices
of the graph), together with some observed pairwise similarities (edges). The goal
is to identify clusters of similar objects by slightly modifying the graph to obtain a
cluster graph (disjoint union of cliques). Hiiffner et al. (Theory Comput. Syst. 47(1),
196-217, 2010) initiated the parameterized study of CLUSTER VERTEX DELE-
TION, where the allowed modification is vertex deletion, and presented an elegant
O (min(2kk6 logk + n3, 2km./nlog n))—time fixed-parameter algorithm, parame-
terized by the solution size. In the last 5 years, this algorithm remained the fastest
known algorithm for CLUSTER VERTEX DELETION and, thanks to its simplicity,
became one of the textbook examples of an application of the iterative compression
principle. In our work we break the 2%-barrier for CLUSTER VERTEX DELETION
and present an O1.9102%(n + m))-time branching algorithm. We achieve this
improvement by a number of structural observations which we incorporate into the
algorithm’s branching steps.
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1 Introduction

The problem to cluster objects based on their pairwise similarities has arisen from
applications both in computational biology [5] and machine learning [4]. In the
language of graph theory, as an input we are given a graph where vertices correspond
to objects, and two objects are connected by an edge if they are observed to be simi-
lar. The goal is to transform the graph into a cluster graph (a disjoint union of cliques)
using a minimum number of modifications.

The set of allowed modifications depends on the particular problem variant and
the application under consideration. Probably the most studied variant is the CLUS-
TER EDITING problem, known also as CORRELATION CLUSTERING, where we
seek for a minimal number of edge edits to obtain a cluster graph. The CLUS-
TER EDITING problem is APX-hard [9], and admints constant-factor approximations
[3, 9]. Also, no subexponential time algorithm exists [13, 18] unless exponential
time hypothesis fails. From the parameterized perspective, currently the fastest algo-
rithm runs in (9(1.62]‘ + n 4+ m) time [6], and both a small [10] and efficient
[19] polynomial kernels. For more references on the CLUSTER EDITING problem,
see [7].

The main principle of parameterized complexity is that we seek algorithms that
are efficient if the considered parameter is small. However, the distance measure
in CLUSTER EDITING, the number of edge edits, may be quite large in practical
instances, and, in the light of recent lower bounds refuting the existence of subex-
ponential FPT algorithms for CLUSTER EDITING [13, 17], it seems reasonable to
look for other distance measures (see, e.g., Komusiewicz’s PhD thesis [17]) and/or
different problem formulations.

In 2003, Gramm et al. [14] initiated the parameterized study of the CLUS-
TER VERTEX DELETION problem (CLUSTERVD for short). Here, the allowed
modifications are vertex deletions.

CLUSTER VERTEX DELETION (CLUSTERVD) Parameter: k
Input: An undirected graph G and an integer k.

Question: Does there exist a set S of at most k vertices of G such that G'\ S is a cluster graph, i.e., a
disjoint union of cliques?

In terms of motivation, we want to refute as few objects as possible to make the
set of observations completely consistent. Since a vertex deletion removes as well all
its incident edges, we may expect that this new editing measure may be significantly
smaller in practical applications than the edge-editing distance.

It can be shown that a graph is a cluster graph if and only if it contains no induced
P3s (paths on 3 vertices). As CLUSTERVD can be equivalently stated as the prob-
lem of hitting, with minimum number of vertices, all induced Pj3s in the input graph,
CLUSTERVD can be solved in O(3k (n 4+ m)) time by a straightforward branching
algorithm [8], where n and m denote the number of vertices and edges of G, respec-
tively. The dependency on k has been improved by considering more elaborate case
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distinction in the branching algorithm, first to O(2.26* 4 nm) using problem-specific
rules by Gramm et al. [14], and later to (9(2.179k + nm) via a general algorithm
by Fernau for the 3-HITTING SET problem [11]. The O(2.0755% 4 mn) running
time can be achieved if instead of the latter one applies an algorithm for 3-HITTING
SET described in the PhD thesis of Wahlstrom [21]. Hiiffner et al. [15] provided an
elegant O(2Kk® + nm)-time algorithm for CLUSTERV D, using the iterative compres-
sion principle [20] and a reduction to the weighted maximum matching problem.
This algorithm quickly became one of the textbook examples of an application of the
iterative compression technique.

In our work we pick up this line of research and obtain the fastest algorithm for
(unweighted) CLUSTERVD.

Theorem 1 CLUSTER VERTEX DELETION can be solved in ©(1.9102%(n 4+ m))
time and polynomial space on an input (G, k) with |V (G)| = n and |E(G)| = m.

The source of the exponential 2 factor in the time complexity of the algorithm of
[15] comes from enumeration of all possible intersections of the size-k solution we
are looking for with a solution of size k + 1 obtained from the previous phase of the
iterative compression process. As the next step in each subcase is a reduction to the
weighted maximum matching problem (with a definitely nontrivial polynomial-time
algorithm), it seems hard to break the 2%-barrier using the approach of [15]. Hence,
in the proof of Theorem 1 we go back to the bounded search tree approach. However,
to achieve the promised time bound, and at the same time avoiding very extensive
case analysis, we do not follow the general 3-HITTING SET approach. Instead, our
methodology is to carefully investigate the structure of the graph and an optimum
solution around a vertex already guessed to be not included in the solution. We note
that a somehow similar approach has been used in [15] to cope with a variant of
CLUSTERVD where we restrict the number of clusters in the resulting graph.

More precisely, the main observation in the proof of Theorem 1 is that, if for some
vertex v we know that there exists a minimum solution S not containing v, then in
the neighbourhood of v the CLUSTERVD problem reduces to VERTEX COVER. Let
us define N1 and N; to be the vertices at distance 1 and 2 from v, respectively, and
define the auxiliary graph H, to be a graph on Ni U N; having an edge for each
edge of G between N and N and for each non-edge in G[N{]. In other words, two
vertices are connected by an edge in H, if, together with v, they form a P3 in G. We
observe that a minimum solution S not containing v needs to contain a vertex cover
of H,. Moreover, one can show that we may greedily choose a vertex cover with
inclusion-wise maximal intersection with N3, as deleting vertices from N, helps us
resolve the remaining part of the graph.

Branching to find the ‘correct’ vertex cover of H, is very efficient, with worst-
case (1,2) (i.e., golden-ratio) branching vector. However, we do not have the vertex
v beforehand, and branching to obtain such a vertex is costly. Our approach is to get
as much gain as possible from the vertex cover-style branching on the graph H,, to
be able to balance the loss from some inefficient branches used to obtain the initial
vertex v. Consequently, we employ involved analysis of properties and branching
algorithms for the auxiliary graph H,.
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Note that the algorithm of Theorem 1 can be pipelined with the kernelization
algorithm of 3-HITTING SET [1], yielding the following corollary.

Corollary 2 CLUSTER VERTEX DELETION can be solved in O(1.9102¢k* + nm)
time and polynomial space on an input (G, k) with |V(G)| = n and |E(G)| = m.

However, due to the O(nm) summand in the complexity of Corollary 2, for a wide
range of input instances the running time bound of Theorem 1 is better than the one
of Corollary 2. In fact, the advantage of our branching approach is that the obtained
dependency on the graph size in the running time is linear, whereas with the approach
of [15], one needs to spend at least quadratic time either on computing weighted
maximum matching or on kernelizing the instance.

We also analyse the co-cluster setting, where one aims at obtaining a co-cluster
graph instead of a cluster one, and show that the linear dependency on the size of the
input can be maintained also in this case. In other words, CLUSTERVD problem can
be also solved in O(1.9102% (n + 1)) if input graph is represented by its complement,
which has m = ; — m edges. Such representation leads to a more time- and
space-efficient solution for very dense input graphs. In particular, this would be a
better choice if one expects most of the vertices of the resulting cluster graph to form
a single clique.

The paper is organised as follows. We give some preliminary definitions and nota-
tion in Section 2. In Section 3 we analyse the structural properties of the auxiliary
graph H,. Then, in Section 4 we prove Theorem 1, with the main tool being a sub-
routine branching algorithm finding all relevant vertex covers of H,,. In Section 5 we
analyse the co-cluster setting. Section 6 concludes the paper. The Appendix contains
a Python script for computing the worst-case complexity of the algorithm.

2 Preliminaries

We use standard graph notation. All our graphs are undirected and simple. For a
graph G, by V(G) and E(G) we denote its vertex- and edge-set, respectively. For
v € V(G), the set Ng(v) = {u | uv € E(G)} is the neighbourhood of v in G and
Ngl[v] = Ng(v) U {v} is the closed neighbourhood. We extend these notions to sets
of vertices X € V(G) by Ng[X] = Uvex Nglv] and Ng(X) = Ng[X]\ X. We
omit the subscript if it is clear from the context. For a set X € V(G) we also define
G[X] to be the subgraph induced by X and G \ X is a shorthand for G[V(G) \ X].
An even cycle is a cycle with an even number of edges, and an even path is a path
with an even number of edges. A set X € V(G) is called a vertex cover of G if G\ X
is edgeless. By VC(G) we denote the size of the minimum vertex cover of G.

In all further sections, we assume we are given an instance (G, k) of CLUSTER
VERTEX DELETION, where G = (V, E). That is, we use V and E to denote the
vertex- and edge-set of the input instance G.

A Ps is an ordered set of 3 vertices (u, v, w) such that uv, vw € E and uw ¢
E. A graph is a cluster graph if and only if it does not contain any P3; hence, in

@ Springer



Theory Comput Syst (2016) 58:357-376 361

CLUSTERVD we seek for a set of at most k vertices that hits all P3s. We note also
the following.

Lemma 3 Let G be a connected graph which is not a clique. Then, for every v €
V(G), there is a Pz containing v.

Proof Consider N (v). If there exist vertices u, w € N(v) such that uw ¢ E(G)
then we have a P3(u, v, w). Otherwise, since N[v] induces a clique, we must have
w € N(N[v]) such that uw € E(G) for some u € N(v). Thus we have a Ps,
(v, u, w) involving v. O

If at some point a vertex v is fixed in the graph G, we define sets N1 = N1 (v) and
N> = Ny(v) as follows: N = Ng(v) and Ny = Ng(Ng[v]). That is, N and N, are
sets of vertices at distance 1 and 2 from v, respectively. For a fixed v € V, we define
an auxiliary graph H, with V(H,) = N; U N> and

E(Hy) ={uw |u,w € Nj,uw ¢ E}YU{uw |u € Nj,w € N, uw € E}.

Thus, H, consists of the vertices in N1 and N, along with non-edges among vertices
of N and edges between N; and N,. Note that N; is an independent set in H,.
Observe the following.

Lemma4 Foru,w € N1 U Ny, we have uw € E(H,) if and only if u, w and v form
aP;inG.

Proof For every uw € E(H,) with u, w € Ny, (u,v,w) isa Pz in G. For uw €
E(H,)withu € Ny and w € Ny, (v, u, w) forms a P3 in G. In the other direction, for
any P3 in G of the form (u, v, w) wehaveu, w € Ny anduw ¢ E,thusuw € E(H,).
Finally, for any Pz in G of the form (v, u, w) we haveu € Nj, w € Ny anduw € E,
hence uw € E(H,). ]

We call asubset S € V a solution when G\ S is a cluster graph, that is, a collection
of disjoint cliques. A solution with minimal cardinality is called a minimum solution.

Our algorithm is a typical branching algorithm, that is, it consists of a number
of branching steps. In a step (A1, A2, ..., Ay), A1, Az, ..., A, € V, we indepen-
dently consider r subcases. In the i-th subcase we look for a minimum solution S
containing A;: we delete A; from the graph and decrease the parameter k by |A;|.
If kK becomes negative, we terminate the current branch and return a negative answer
from the current subcase.

The branching vector for a step (A1, Az, ..., Ay) is (JA1], |A2], ..., |A/]). Tt is
well-known (see e.g. [12]) that the number of final subcases of a branching algorithm
is O(c*), where c is the largest positive root of the equation 1 = Z?le_m"‘ among
all branching steps (A1, Aa, ..., A,) in the algorithm.

At some places, the algorithm makes a greedy (but optimal) choice of including a
set A C V into the constructed solution. We formally treat it as length-one branching
step (A) with branching vector (|A]).
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3 The Auxiliary Graph H,

In this section we investigate properties of the auxiliary graph H,. Hence, we assume
that a CLUSTERVD input (G, k) is given with G = (V, E), and a vertex v € V is
fixed.

3.1 Basic Properties
First, note that an immediate consequence of Lemma 4 is the following.

Corollary 5 Let S be a solution such that v ¢ S. Then S contains a vertex cover of
H,.

In the other direction, the following holds.

Lemma 6 Let X be a vertex cover of Hy. Then, in G \ X, the connected component
of v is a clique.

Proof Suppose the connected component of v in G \ X is not a clique. Then by
Lemma 3, there is a P3 involving v. Such a P; is also present in G. However, by
Lemma 4, as X is a vertex cover of H,, X intersects such a P3, a contradiction. [

Lemma 7 Let S be a solution such that v ¢ S. Denote by X the set S NV (H,). Let
Y be a vertex cover of Hy. Suppose that X "N, C YN Ny. ThenT :=(S\ X)UY
is also a solution.

Proof Since Y (and hence, T NV (H,)) is a vertex cover of H, and v ¢ T, we know
by Lemma 6 that the connected component of v in G \ T is a clique. If T is not a
solution, then there must be a Pz contained in Z \ T, where Z = V' \ ({v} U N7). But
since SNZ CTNZ,G\ S would also contain such a Ps. O]

Lemma 7 motivates the following definition. For vertex covers of H,, X and Y,
we say that Y dominates X if |Y| < |X|, Y N N> © X N N; and at least one of these
inequalities is sharp. Two vertex covers X and Y are said to be equivalent if XN N, =
Y N N> and | X N Ni| = |Y N Np|. We note that the first aforementioned relation is
transitive and strongly anti-symmetric, whereas the second is an equivalence relation.

As a corollary of Lemma 7, we have:

Corollary 8 Let S be a solution such that v ¢ S. Suppose Y is a vertex cover of H,
which either dominates or is equivalent to the vertex cover X = S N V(Hy). Then
T :=(S\ X)UY isalso a solution with |T| < |S]|.

3.2 Special Cases of H,

We now carefully study the cases where H, has small vertex cover or has a special
structure, and discover some possible greedy decisions that can be made.
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Lemma 9 Suppose X is a vertex cover of H,. Then there is a minimum solution S
such that either v ¢ Sor | X \ S| > 2.

Proof Suppose S is a minimum solution such that v € S and [X \ S| < 1. We are
going to convert S to another minimum solution 7 that does not contain v.

Consider T := (S \ {v}) U X. Clearly, |T| < |S|. Since T contains X, a vertex
cover, by Lemma 6, the connected component of v in G \ T is a clique. Thus, there
is no P3 containing v. Since any Pz in G \ T which does not include v must also be
contained in G \ S, contradicting the fact that S is a solution, we obtain that T is also
a solution. Hence, T is a minimum solution. O

Corollary 10 If VC(H,) = 1, then there is a minimum solution S such that v & S.

Lemma 11 Let C be the connected component of G containing v, and assume that
neither C nor C \ {v} is a cluster graph. If X = {w, wa} is a minimum vertex cover
of Hy, then there exists a connected component C of G \ {v} that is not a clique and
CN{wy, wy} #40.

Proof Consider a component C of C \ {v} which is not a clique. Since v must be
adjacent to each connected component of C \ {v}, C N N; must be non-empty. For
any w € C N Nj, we have that w1, wy # w and wwi, wwy ¢ E(G), since otherwise
the result follows. If uw € E(G) with u € N», then, as {w, wy} is a vertex cover
of H, we must have u = wj or u = wy. We would then have w; or wy contained
in a non-clique C, contradicting our assumption. Hence uw € E(G) = u € Nj.

Thus Cc C Nj. As w; and w, are not contained in C and they cover all edges in H,,
C must be an independent set in H,. In G \ {v}, therefore, C must be a clique, a
contradiction. O

We now investigate the case when H, has a very specific structure. The motivation
for this analysis will become clear in Section 4.3.

A seagull is a connected component of H, that is isomorphic to a P; with middle
vertex in N and endpoints in N;. The graph H,, is called an s-skein if it is a disjoint
union of s seagulls and some isolated vertices.

Lemma 12 Let v € V. Suppose that H, is an s-skein. Then there is a minimum
solution S such that v ¢ S.

Proof Let H, consist of seagulls (x1, y1, 21), (x2, ¥2, 22), . . ., (X5, Vs, Z5) and some
isolated vertices. That is, the middle vertices y; are in N1, while the endpoints x; and
zi arein Np. If s = 1, {y;} is a vertex cover of H,, and Corollary 10 yields the result.
Henceforth, we assume s > 2.

Let X = {y1,y2, ..., ¥s}. Clearly, X is a vertex cover of H,. Thus, we may use
X as in Lemma 9 and obtain a minimum solution S. If v ¢ S we are done, so let us
assume |X \ S| > 2. Take an arbitrary i such that y; € X \ S. As |[X \ S| > 2, we
may pick another j # i, y; € X \ S. The crucial observation from the definition of
H, isthat (y;, yi, x;) and (y;, ¥i, z;) are P3sin G. As y;, y; ¢ S, we have x;, z; € S.
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Hence, since the choice of i was arbitrary, we infer that for each 1 < i < s either
yi € Sorx;,z €585, and, consequently, S contains a vertex cover of H,. By Lemma
6, S\ {v} is also a solution in G, a contradiction to the minimality of S. O

4 Algorithm

In this section we show our algorithm for CLUSTERVD, proving Theorem 1. The
algorithm is a typical branching algorithm, where at each step we choose one branch-
ing rule and apply it. In each subcase, a number of vertices is deleted, and the
parameter k drops by this number. If £ becomes negative, the current subcase is ter-
minated with a negative answer. On the other hand, if k£ is non-negative and G is a
cluster graph, the vertices deleted in this subcase form a solution of size at most k.

4.1 Preprocessing

At each step, we first preprocess simple connected components of G.

Lemma 13 For each connected component C of G, in linear time, we can:
conclude that C is a clique; or

conclude that C is not a clique, but identify a vertex w such that C \ {w} is a

cluster graph, or
3. conclude that none of the above holds.

N —

Proof On each connected component C, we perform a depth-first search. At every
stage, we ensure that the set of already marked vertices induces a clique.

When we enter a new vertex, w, adjacent to a marked vertex v, we attempt to
maintain the above invariant. We check if the number of marked vertices is equal
to the number of neighbours of w which are marked; if so then the new vertex w
is marked. Since w is adjacent to every marked vertex, the set of marked vertices
remains a clique. Otherwise, there is a marked vertex u such that uw ¢ E(G), and we
may discover it by iterating once again over edges incident to w. In this case, we have
discovered a P3(u, v, w) and C is not a clique. At least one of u, v, w must be deleted
to make C into a cluster graph. We delete each one of them, and repeat the algorithm
(without further recursion) to check if the remaining graph is a cluster graph. If one
of the three possibilities returns a cluster graph, then (2) holds. Otherwise, (3) holds.

If we have marked all vertices in a component C while maintaining the invariant
that marked vertices form a clique, then the component C is a clique. O

For each connected component C that is a clique, we disregard C. For each con-
nected component C that is not a clique, but C \ {w} is a cluster graph for some w, we
may greedily delete w from G: we need to delete at least one vertex from C, and w
hits all P3s in C. Thus, henceforth we assume that for each connected component C
of G and for each v € V(C), C\ {v} is not a cluster graph. In other words, we assume
that we need to delete at least two vertices to solve each connected component of G.
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4.2 Accessing H, in Linear Time

Let us now fix a vertex v € V and let C be its connected component in G. Note that,
as H, contains parts of the complement of G, it may have size superlinear in the size
of G. Therefore we now develop a simple oracle access to H, that allows us to claim
linear dependency on the graph size in the time bound.

Lemma 14 Given a designated vertex v € V, one can, in time linear in the size of G,
either compute a vertex w of degree at least 3 in H,, together with its neighbourhood
in Hy, or explicitly construct the graph H,.

Proof First, mark vertices of N1 and N>. Second, for each vertex of G compute its
number of neighbours in N1 and N,. This information, together with | Ny |, suffices to
compute degrees of vertices in H,. Hence, we may identify a vertex of degree at least
3 in H,, if it exists. If we find such a vertex, say w, then computing Ny, (w) takes
time linear in the size of G. If no such vertex w exists, the complement of G[N]
has size linear in |N| and we may construct H, in linear time in a straightforward
manner. ]

In the algorithm of Theorem 1, we would like to make a decision depending on
the size of the minimum vertex cover of H,. By the preprocessing step, C is not a
clique, and by Lemma 3, H, contains at least one edge, thus VC(G) > 1. We now
note that we can find a small vertex cover of G in linear time.

Lemma 15 In linear time, we can determine whether H,, has a minimum vertex cover
of size 1, of size 2, or of size at least 3. Moreover, in the first two cases we can find
the vertex cover in the same time bound.

Proof We use Lemma 14 to find, in linear time, a vertex w with degree at least 3, or
generate H, explicitly. In the latter case, H, has vertices of degree at most 2, and it
is straightforward to compute its minimum vertex cover in linear time.

If we find a vertex w of degree at least 3 in H,, then w must be in any vertex
cover of size at most 2. We proceed to delete w and restart the algorithm of Lemma
14 on the remaining graph to check if H, in G \ w has a vertex cover of size 0 or
1. We perform at most 2 such restarts. Finally, if we do not find a vertex cover of
size at most 2, it must be the case that the minimum vertex cover contains at least 3
vertices. O

4.3 Subroutine: Branching on H,

We are now ready to present a branching algorithm that guesses the ‘correct’ vertex
cover of H,, for a fixed vertex v. That is, we are now working in the setting where
we look for a minimum solution to CLUSTERVD on (G, k) not containing v, thus,
by Corollary 5, containing a vertex cover of H,. Our goal is to branch into a num-
ber of subcases, in each subcase picking a vertex cover of H,. By Corollary 8, our
branching algorithm, to be correct, needs only to generate at least one element from
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each equivalence class of the ‘equivalent’ relation, among maximal elements in the
‘dominate’ relation.

The algorithm consists of a number of branching steps; in each subcase of each
step we take a number of vertices into the constructed vertex cover of H, and, conse-
quently, into the constructed minimum solution to CLUSTERVD on G. At any point,
the first applicable rule is applied.

First, we disregard isolated vertices in H,. Second, we take care of large-degree
vertices.

Rule 1 If there is a vertex u € V(H,) with degree at least 3 in H,, include either u
or Ny, (1) into the vertex cover. That is, use the branching step (1, Ny, (1)).

Note that Rule 1 yields a branching vector (1, d), where d > 3 is the degree of
u in H,. Henceforth, we can assume that vertices have degree 1 or 2 in H,. Assume
there exists u € Np of degree 1, with uw € E(H,). Moreover, assume there exists
a minimum solution § containing u. If w € §, then, by Lemma 7, S \ {u} is also a
solution, a contradiction. If w € Ny \ S, then (S \ {#}) U {w} dominates S. Finally,
ifw e Ny \ S, then (S \ {u}) U {w} is equivalent to S. Hence, we infer the following
greedy rule.

Rule 2 If there is a vertex u € Ny of degree 1 in H,, include Ny, (u) into the vertex
cover without branching. (Formally, use the branching step (Np, (1)).)

Now we assume vertices in N; are of degree exactly 2 in H,. Suppose we have
vertices u, w € N with uw € E(H,). We would like to branch on u as in Rule 1,
including either u or Ny, (1) into the vertex cover. However, note that in the case
where u is deleted, Rule 2 is triggered on w and consequently the other neighbour of
w is deleted. Hence, we infer the following rule.

Rule 3 If there are vertices u, w € N1, uw € E(H,) then include either Ny, (w) or
Np, (1) into the vertex cover, that is, use the branching step (Np, (w), Ng, (u)).

Note that Rule 3 yields the branching vector (2, 2).

We are left with the case where the maximum degree of H, is 2, there are no edges
with both endpoints in Ny, and no vertices of degree one in N{. Hence H, must be a
collection of even cycles and even paths (recall that N; is an independent set in H,).
On each such cycle C, of 2/ vertices, the vertices of N1 and N; alternate. Note that
we must use at least / vertices for the vertex cover of C. By Lemma 7 it is optimal to
greedily select the [ vertices in C N N.

Rule 4 If there is an even cycle C in H, with every second vertex in N, include
C N N, into the vertex cover without branching. (Formally, use the branching step

(CNN2))

For an even path P of length 2/, we have two choices. If we are allowed to use
[ + 1 vertices in the vertex cover of P, then, by Lemma 7, we may greedily take
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P N Nj. If we may use only [ vertices, the minimum possible number, we need to
choose P N Ny, as it is the unique vertex cover of size [ of such a path. Hence, we
have an (/, [ 4+ 1) branch with our last rule.

Rule 5 Take the longest possible even path P in H, and either include P N Nj or
P N N3 into the vertex cover. That is, use the branching step (P N Ny, P N Np).

In Rule 5, we pick the longest possible path to avoid the branching vector (1, 2)
as long as possible; this is the worst branching vector in the algorithm of this section.
Moreover, note that if we are forced to use the (1, 2) branch, the graph H, has a very
specific structure.

Lemma 16 The algorithm of Section 4.3 is forced to use Rule 5 with the branching
vector (1, 2) if and only if H, is an s-skein for some s > 1. Moroever, Rule 5 applied
to an s-skein results in an (s — 1)-skein in both branches.

We note that the statement of Lemma 16 is our sole motivation for introducing the
notion of skeins and proving their properties in Lemma 12.

We conclude this section with the observation that the oracle access to H, given
by Lemma 14 allows us to execute a single branching step in linear time.

4.4 Main Algorithm

We are now ready to present our algorithm for Theorem 1. We assume the prepro-
cessing (Lemma 13) is done. Pick an arbitrary vertex v. We first run the algorithm of
Lemma 15 to determine if H, has a minimum vertex cover of size 1 or 2. Then we
run the algorithm of Lemma 14 to check if H, is an s-skein for some s.

We consider the following cases2

Case 1. VC(H,) = 1 or H, is an s-skein for some s. Then, by Corollary 10 and
Lemma 12, we know there exists a minimum solution not containing v.
Hence, we run the algorithm of Section 4.3 on H,,.

Case 2. VC(H,) =2 and H, is not a 2-skein.! Assume the application of Lemma
15 returned a vertex cover X = {wi, wa} of H,. By Lemma 9, we may
branch into the following two subcases: in the first we look for minimum
solutions containing v and disjoint with X, and in the second, for minimum
solutions not containing v.

In the first case, we first delete v from the graph and decrease k by
one. Then we check whether the connected component containing w; or
wy is not a clique. By Lemma 11, for some w € {w, ws}, the con-
nected component of G \ {v} containing w is not a clique; finding such
w clearly takes linear time. We invoke the algorithm of Section 4.3 on
Hy.

In the second case, we invoke the algorithm of Section 4.3 on H,,.

Case 3. VC(H,) > 3 and H, is not an s-skein for any s > 3. We branch into two
cases: we look for a minimum solution containing v or not containing v. In
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the first branch, we simply delete v and decrease k by one. In the second
branch, we invoke the algorithm of Section 4.3 on H,,.

4.5 Complexity Analysis

In the previous discussion we have argued that invoking each branching step takes
linear time. As in each branch we decrease the parameter k by at least one, the depth
of the recursion is at most k. In this section we analyse branching vectors occurring
in our algorithm. The main idea of the analysis is to treat the initial branching in Case
2. and Case 3., together with a few first branching steps of the subsequent invocation
of the algorithm of Section 4.3, as a single huge branching step, with a single (long)
branching vector. With such an analysis, the potential inefficiency coming from the
initial branchings is outweighted by the very efficient branchings of the algorithm of
Section 4.3. To finish the proof of Theorem 1, we show that the largest positive root
of the equation 1 = ) ;_, x % among all possible branching vectors (a1, az, . . ., ar)
obtained in the analysis is strictly less than 1.9102.

As the number of resulting branching vectors in the analysis is rather large, we
use a Python script for automated analysis.> The main reason for a large number
of branching vectors is that we need to analyse branchings on the graph H, in case
where we consider v not to be included in the solution. Let us now proceed with
formal arguments.

4.5.1 Analysis of the Algorithm of Section 4.3

In a few places, the algorithm of Section 4.3 is invoked on the graph H, and we
know that VC(H,) > h for some h € {1, 2, 3}. Consider the branching tree T of
this algorithm. For a node x € V(T), the depth of x is the number of vertices of H,
deleted on the path from x to the root. We mark some nodes of T; the marked nodes
correspond to the branching steps that we analyse together with the initial branching
in Case 2. and Case 3.

Each node of depth less than / is marked. Moreover, if a node x is of depth d < h
and the branching step at node x has branching vector (1, 2), Lemma 16 lets us infer
that the graph H, at this node is an s-skein for some s > h — d. Consquently, for
all the descendants of x in V(T) the graph H, is a (smaller) skein and thus, again by
Lemma 16, their branching vectors are all (1, 2). In this case, we mark all descendants
of x that are within distance (in T) less than &4 — d. Note that in this way we may
mark some descendants of x of depth equal to or larger than #. We refer to Fig. 1 for
some examples of branching trees and marked vertices.

We split the analysis of an application of the algorithm of Section 4.3 into two
phases: the first one contains all branching steps performed on marked nodes, and

Note that the size of a minimum vertex cover of an s-skein is exactly s, so this case is equivalent to
‘VC(Hy,) = 2 and H, is not an s-skein for any s’.
2 Available at http://www.mimuw.edu.pl/malcin/research/cvd and in the Appendix.
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2-skein detected ------

Fig. 1 Examples of branching trees for the subroutine on the graph H,. Marked nodes for 7 = 3 are
coloured black. In the last case, a 2-skein occurs in one branch, and an extra node (encircled) of depth 3 is
marked

the second on the remaining nodes. In the second phase, we simply observe that each
branching step has branching vector not worse than (1, 2). In the first phase, we aim
to write a single branching vector summarizing the phase, so that with its help we
can balance the loss from other branches when v is deleted.

We remark that, although in the analysis we aggregate some branching steps to
prove a better time bound, we always aggregate only a constant number of branches
(that is, we analyse the branching on marked vertices only for constant /). Conse-
quently, we maintain a linear dependency on the size of the graph in the running time
bound.

The main property of the marked nodes in T is that their existence is granted by
the assumption VC(H,) > h. That is, each leaf of T has depth at least %, and, if at
some node x of depth d < h the graph H, is an s-skein, we infer that s > h — d
(as the size of minimum vertex cover of an s-skein is s) and the algorithm performs
s independent branching steps with branching vectors (1, 2) in this case. Overall, no
leaf of T is marked.

To analyse such branchings for # = 2 and 7 = 3 we employ the Python script. The
procedure branch _Hv generates all possible branching vectors for the first phase,
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assuming the algorithm of Section 4.3 is allowed to pick branching vectors (1), (1, 3),
(2,2) or (1,2) (option allow_skein enables/disables the use of the (1,2) vector
in the first branch). Note that all other vectors described in Section 4.3 may be simu-
lated by applying a number of vectors (1) after one of the aforementioned branching
vectors.

4.5.2 Analysis of the Algorithm of Section 4.4

Case 1 Here the algorithm of Section 4.3 performs branchings with vectors not
worse than (1, 2).

Case 2 If v is deleted, we apply the algorithm of Section 4.3 to H,,, yielding at least
one branching step (as the connected component with w is not a clique). Hence, in
this case the resulting branching vector is any vector that came out of the algorithm
of Section 4.3, with all entries increased by one (for the deletion of v). Recall that in
the algorithm of Section 4.3, the worst branching vector is (1, 2), corresponding to
the case of H,, being a skein. Consequently, the worst branching vector if v is deleted
is (2, 3).

If v is not deleted, the algorithm of Section 4.3 is applied to H,,. The script invokes
the procedure branch Hvon i = 2 and allow_skein=False to obtain a list of
possible branching vectors. For each such vector, we append entries (2, 3) from the
subcase when v is deleted. See Fig. 2a for an illustration of the branching tree in this
case.

Case 3 The situation is analogous to the previous case. The script invokes the proce-
dure branch Hv on 7 = 3 and allow_skein=False to obtain a list of possible
branching vectors. For each such vector, we append the entry (1) from the sub-
case when v is deleted. See Fig. 2b for an illustration of the branching tree in this
case.

4.5.3 Summary

We infer that the largest root of the equation 1 = Y ;_, x % occurs for the branching
vector (1, 3, 3,4, 4,5) and is less than 1.9102. This branching vector corresponds to
Case 3. and the algorithm of Section 4.3, invoked on H,, first performs a branching
step with the vector (1, 3) and in the branch with 1 deleted vertex, finds H, to be
a 2-skein and performs two independent branching steps with vectors (1, 2). Note
that the last example on Fig. 1 corresponds to the branching on H, in this worst-case
scenario.

This analysis concludes the proof of Theorem 1. We remark that the worst branch-
ing vector in Case 2. is (2, 2, 3, 3, 3) (with solution x < 1.8933), corresponding to
the case with a single (1, 2)-branch when v is deleted and a 2-skein in the case when
v is kept. Obviously, the worst case in Case 1. is the golden-ratio branch (1, 2) with
solution x < 1.6181.
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Fig. 2 Branching trees for Case 2. and Case 3

5 Co-cluster Setting

In this section we show that the same result as in Theorem 1 holds for the complement
version of the problem, called CO-CLUSTER VERTEX DELETION (COCLUSTERVD
for short). Here, one wants to delete at most k vertices from the input graph to obtain
a co-cluster graph (a complement of a cluster graph).

Theorem 17 CO-CLUSTER VERTEX DELETION can be solved in O(1.9102%(n +
m)) time and polynomial space on an input (G, k) with |V(G)| = nand |E(G)| = m.

Observe that, if one wants to solve COCLUSTERVD, one may complement the
input graph and solve CLUSTERVD instead. However, with such an approach we
do not obtain a linear dependency on the size of the input. To obtain it, we need to
reengineer our preprocessing routine (Lemma 13) and the oracle access to the graph
H, (Section 4.2) to work in the co-cluster setting.

5.1 Preprocessing

We need to show the following variant of Lemma 13.
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Lemma 18 Given the complement of the graph G, in time linear in the input size,
we can for each connected component C of G:

1. conclude that C is a clique; or
conclude that C is not a clique, but identify a vertex w such that C \ {w} is a
cluster graph; or

3. conclude that none of the above holds.

Proof Denote by G the complement of G, given as an input. First, we compute
the connected components of G, i.e., the complement-connected components of G.
For this, we may use a linear-time algorithm of Ito and Yokohama [16]. Next, we
construct G[C] for each of the discovered components C. This also takes linear time.

Now, we can process each component separately. On each of them we shall spend
time proportional to the size of G[C]. The algorithm of [16] actually lets us compute
a DFS tree of G[C]. We exploit this feature to simulate our approach from Lemma
13: we arrange vertices in the preorder of the DFS tree. Now, it suffices to find the
first vertex w which in G[C] has a neighbour u among the preceding vertices. We
conclude that in G[C] vertices u, w are endpoints of a P3 whose midpoint is v, the
parent of w in the tree.

Thus, as in the proof of Lemma 13, u, v, w are the tree vertices which we need
to verify. In order to check these candidates we simply compute the complement-
connected components, again using the results of [16]. [

5.2 Accessing H, in Linear Time

Eecall that we have fixed vertex v, and we are to give an oracle access to H,,, given
G as an input. We first note the following.

Lemma 19 We can compute sets N1 and N, in time linear in the size of G.

Proof First compute N| by marking all non-neighbours of v in G. Then, for each
u € V\ (NyU/{v}) observe that u € N if and only if [N5(u) N Nyi| < |Ny|. This
condition can be verified in time linear in the size the neighbourhood of u in the
graph G, and hence in time linear in the size of G for all vertices u. U

We now prove an analogoue of Lemma 14.

Lemma 20 Given a designated vertex v € V, one can in time linear in the size of G
either compute a vertex w of degree at least 3 in H,, together with its neighbourhood

in Hy, or explicitly construct the graph H,.

Proof First, mark vertices of N and N using Lemma 19. Second, for each vertex
of V compute its number of neighbours in N and N»; note that this can be done by
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inspecting all edges of G. This information, together with |N1|, suffices to compute
degrees of vertices in H,. Hence, we may identify a vertex of degree at least 3 in H,,
if it exists. For such a vertex w, we may compute Ny, (w) in time linear in the size
of G by inspecting all vertices u € N1 U N, one-by-one.

If no such vertex w exists, the number of non-edges of G (i.e., edges of G) between
Njp and N; is linear in | N1| + | N2 | and we can compute them in time linear in the size
of G. Together with G[N1], they form H,. O]

Finally, we observe that the following analogoue of Lemma 15 is straightforward,
as the proof of Lemma 15 accesses the graph H, and G only via Lemma 14, and we
have already adapted this lemma to the co-cluster setting.

Lemma 21 In time linear in the size of G, we can determine whether H, has a
minimum vertex cover of size 1, of size 2, or of size at least 3. Moreover, in the first
two cases we can find the vertex cover in the same time bound.

This analysis concludes the proof of Theorem 17.

6 Conclusions and Open Problems

We have presented a new branching algorithm for CLUSTER VERTEX DELETION.
We hope our work will trigger a race for faster FPT algorithms for CLUSTERVD, as
it was in the case of the famous VERTEX COVER problem.

Repeating after Hiiffner et al. [15], we would like to re-pose here the question for
a linear vertex-kernel for CLUSTERVD. As CLUSTERVD is a special case of the 3-
HITTING SET problem, it admits an O (k?)-vertex kernel in the unweighted case and
an O(k3)-vertex kernel in the weighted one [1, 2]. However, CLUSTER EDITING is
known to admit a much smaller 2k-vertex kernel, so there is a hope for a similar result
for CLUSTERVD.

Acknowledgments This work has been partially supported by NCN grant N206567140 and Foundation
for Polish Science.

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
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Appendix
Python Script Automating Complexity Analysis
Below we include a Python script for automated complexity analysis, together with

a comment and pseudocode of the main routine. The script is also available at www.
mimuw.edu.pl/malcin/research/cvd.
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import scipy.optimize

def value(vector):
"""compute the value of a branching vector"""
def h(x):
return sum([x**(-v) for v in vector])-1
return scipy.optimize.brenth(h,1, 100)

def join(first, then):
"""peform ’then’ in each branch after the execution of ’first’ """
return [x+y for x in first for y in then]

def add(a, vector):
"""add a to each element of a vector"""
return join([a], vector)

golden_branch = [1,2] # golden-ratio branch, worst branch in Hv

def skein_vector(s):
"""returns branching vector from s-skein"""
if s ==
return [0]
else:
return join(skein_vector(s-1), golden_branch)

Hv_branches = dict()

def branch_Hv(h, allow_skein=True):
"""return list of possible branching vectors on Hv, where each subcase
deletes at least h vertices; if allow_skein=False, ignore the case when
Hv is a skein"""
if h <= 0:
return [[0]]
# Memoize for speed-up
if Hv_branches.has_key((h, allow_skein)):
return Hv_branches[(h, allow_skein)]
res = []
# If skein is allowed, add appriopriate vector.
if allow_skein:
res.append (skein_vector(h))
# Greedy step.
# Can be applied multiple times to simulate larger drop.
res += [add(1, v) for v in branch_Hv(h-1)]
# Rule 1: (1,3) branch.
# Branches (1,d) for d>3 may be simulated by subsequent greedy steps
res += [add(1, v1) + add(3, v2) for vl in branch_Hv(h-1) for v2 in branch_Hv(h-3)]
# Rule 3: (2,2) branch
res += [add(2, v1) + add(2, v2) for vl in branch_Hv(h-2) for v2 in branch_Hv(h-2)]
# Rule 5, if Hv is not a skein, yields (2,3) branch which can be simulated
# by (2,2) branch + greedy step in one branch, so we omit it here.
Hv_branches[(h, allow_skein)] = res
return res

vectors = [] # all branching vectors

# (1,2) vector from standard branching on Hv
vectors.append(golden_branch)

# Case: MinVC(Hv) = 2, Hv is not a 2-skein
vectors += [add(1, golden_branch) + v for v in branch_Hv(2, allow_skein=False)]

# Case: MinVC(Hv) >= 3, Hv is not a skein
vectors += [[1] + v for v in branch_Hv(3, allow_skein=True)]

for v in vectors:
print ("%.11f : " % value(v)), v

print "Largest root: %.11f" % max([value(v) for v in vectors])
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The script uses three small auxiliary routines.

The join routine takes as input two lists (branching vectors) /; and /> and pro-
duces a branching vector (a + b : a € I1,b € [p). It corresponds to the case
when we independently apply a branching step with branching vector /, in each
subcase of a branching step with branching vector /1.

The add routine takes as input an integer a and a list (branching vector) /; and
adds a to each element of /1. This is equivalent to join of /; and a single-
element list [a].

The skein_vector routine returns a branching vector on an s-skein, where s
is given as input. Note that the result is the golden ratio vector (1, 2), joined
with itself s times.

Most of the work is done in the branch Hv routine. The subsequent steps are as
follows.

DN =

For & < 0 (no lower bound on the size of minimum vertex cover of H,), we may
perform no branching at all, so we return a single branching vector (0).

We check whether the result for input values has been already computed and
memoized in some global dictionary.

If allow_skein = True, we append to the result a branching vector that
happens if the input graph is an A-skein. This vector is obtained through the
skein_vector routine.

We consider a greedy step, where some vertex is greedily added to the solution.
We invoke recursively branch Hv(h — 1) (allow_skein is set to True by
default) and add one to each element of each of the resulting branching vectors.
All computed vectors are appended to the result.

We consider Rule 1, where a (1, d) branch occurs for d > 3. Such a branch can
be simulated by a (1, 3) branch and some subsequent greedy steps. Hence, we
compute vi = branch Hv(h — 1), v» = branch Hv(h — 3), add 1 to each
element of each vector of v{, add 3 to each element of each vector of v, and con-
catenate each vector of vy with each vector of v,. All computed concatenations
are appended to the result.

We consider Rule 3, where a (2, 2) branch occurs. We proceed as in the previous
case, with v = vp = branch_Hv(h — 2).

We observe that all other branches may be simulated by either the (1, 3) branch
or the (2, 2) branch with some subsequent greedy steps. Hence, we return the
computed result after memoizing it in some global dictionary.

In the main body of the script, it first computes candidate branching vectors.

We first consider the golden-ratio branching vector (1, 2) from Case 1.

In Case 2, any branching vector consists of two parts. In the first part,
we delete v and perform at least one branch, not worse than the golden
ratio branch; hence, we add 1 to each element of the golden ratio branch.
In the second part, we consider all possible branching vectors returned by
branch Hv(2,allow_skein = False).
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3. 1In Case 3, we append (1) to each branching vector returned by branch Hv
(3,allow_skein = False).

Finally, the script computes the corresponding base of the exponent for each
candidate branching vector and outputs the largest one.
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