Skip to main content

Advertisement

Log in

Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The prevalence of obesity in children has reached epidemic proportions. Concern about bone health in obese children, in part, derives from the potentially increased fracture risk associated with obesity. Additional risk factors that affect bone mineral accretion, may also contribute to obesity, such as low physical activity and nutritional factors. Consequences of obesity, such as inflammation, insulin resistance, and non-alcoholic fatty liver disease, may also affect bone mineral acquisition, especially during the adolescent years when rapid increases in bone contribute to attaining peak bone mass. Further, numerous pediatric health conditions are associated with excess adiposity, altered body composition, or endocrine disturbances that can affect bone accretion. Thus, there is a multitude of reasons for considering clinical assessment of bone health in an obese child. Multiple diagnostic challenges affect the measurement of bone density and its interpretation. These include greater precision error, difficulty in positioning, and the effects of increased lean and fat tissue on bone health outcomes. Future research is required to address these issues to improve bone health assessment in obese children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Adapted from Zemel et al. [101]

Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ogden CL, Carroll MD, Fryar CD, Flegal KM (2015) Prevalence of obesity among adults and youth: United States, 2011–2014. NCHS Data Brief 219:1–8

    Google Scholar 

  2. de Onis M, Blossner M, Borghi E (2010) Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr 92:1257–1264

    Article  PubMed  CAS  Google Scholar 

  3. Deckelbaum RJ, Williams CL (2001) Childhood obesity: the health issue. Obes Res 9(Suppl 4):239S–243S

    Article  PubMed  Google Scholar 

  4. Baxter-Jones AD, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739

    Article  Google Scholar 

  5. Gordon CM, Bachrach LK, Carpenter TO, Crabtree N, El-Hajj Fuleihan G, Kutilek S, Lorenc RS, Tosi LL, Ward KA, Ward LM, Kalkwarf HJ (2008) Dual energy X-ray absorptiometry interpretation and reporting in children and adolescents: the 2007 ISCD pediatric official positions. J Clin Densitom 11:43–58

    Article  PubMed  Google Scholar 

  6. Adams JE, Engelke K, Zemel BS, Ward KA, International Society of Clinical D (2014) Quantitative computer tomography in children and adolescents: the 2013 ISCD Pediatric Official Positions. J Clin Densitom 17:258–274

    Article  PubMed  Google Scholar 

  7. Gilsanz V, Roe TF, Mora S, Costin G, Goodman WG (1991) Changes in vertebral bone density in black girls and white girls during childhood and puberty. N Engl J Med 325:1597–1600

    Article  CAS  PubMed  Google Scholar 

  8. Leonard MB, Elmi A, Mostoufi-Moab S, Shults J, Burnham JM, Thayu M, Kibe L, Wetzsteon RJ, Zemel BS (2010) Effects of sex, race, and puberty on cortical bone and the functional muscle bone unit in children, adolescents, and young adults. J Clin Endocrinol Metab 95:1681–1689

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kirmani S, Christen D, van Lenthe GH, Fischer PR, Bouxsein ML, McCready LK, Melton LJ 3rd, Riggs BL, Amin S, Muller R, Khosla S (2009) Bone structure at the distal radius during adolescent growth. J Bone Miner Res 24:1033–1042

    Article  PubMed  Google Scholar 

  10. Leonard MB, Shults J, Wilson BA, Tershakovec AM, Zemel BS (2004) Obesity during childhood and adolescence augments bone mass and bone dimensions. Am J Clin Nutr 80:514–523

    CAS  PubMed  Google Scholar 

  11. Leonard MB, Zemel BS, Wrotniak BH, Klieger SB, Shults J, Stallings VA, Stettler N (2015) Tibia and radius bone geometry and volumetric density in obese compared to non-obese adolescents. Bone 73:69–76

    Article  PubMed  Google Scholar 

  12. Stettler N, Berkowtiz RI, Cronquist JL, Shults J, Wadden TA, Zemel BS, Leonard MB (2008) Observational study of bone accretion during successful weight loss in obese adolescents. Obesity 16:96–101

    Article  PubMed  Google Scholar 

  13. Vandewalle S, Taes Y, Van Helvoirt M, Debode P, Herregods N, Ernst C, Roef G, Van Caenegem E, Roggen I, Verhelle F, Kaufman JM, De Schepper J (2013) Bone size and bone strength are increased in obese male adolescents. J Clin Endocrinol Metab 98:3019–3028

    Article  CAS  PubMed  Google Scholar 

  14. Forwood MR, Turner CH (1995) Skeletal adaptations to mechanical usage: results from tibial loading studies in rats. Bone 17:197S–205S

    CAS  PubMed  Google Scholar 

  15. Schoenau E (2005) From mechanostat theory to development of the “functional muscle-bone-unit”. J Musculoskelet Neuronal Interact 5:232–238

    CAS  PubMed  Google Scholar 

  16. Ashby RL, Adams JE, Roberts SA, Mughal MZ, Ward KA (2011) The muscle-bone unit of peripheral and central skeletal sites in children and young adults. Osteoporos Int 22:121–132

    Article  CAS  PubMed  Google Scholar 

  17. Ausili E, Rigante D, Salvaggio E, Focarelli B, Rendeli C, Ansuini V, Paolucci V, Triarico S, Martini L, Caradonna P (2012) Determinants of bone mineral density, bone mineral content, and body composition in a cohort of healthy children: influence of sex, age, puberty, and physical activity. Rheumatol Int 32:2737–2743

    Article  PubMed  Google Scholar 

  18. Wetzsteon RJ, Petit MA, Macdonald HM, Hughes JM, Beck TJ, McKay HA (2008) Bone structure and volumetric BMD in overweight children: a longitudinal study. J Bone Miner Res 23:1946–1953

    Article  PubMed  Google Scholar 

  19. Clark EM, Ness AR, Tobias JH (2006) Adipose tissue stimulates bone growth in prepubertal children. J Clin Endocrinol Metab 91:2534–2541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Sayers A, Tobias JH (2010) Fat mass exerts a greater effect on cortical bone mass in girls than boys. J Clin Endocrinol Metab 95:699–706

    Article  CAS  PubMed  Google Scholar 

  21. Gilsanz V, Chalfant J, Mo AO, Lee DC, Dorey FJ, Mittelman SD (2009) Reciprocal relations of subcutaneous and visceral fat to bone structure and strength. J Clin Endocrinol Metab 94:3387–3393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Janicka A, Wren TA, Sanchez MM, Dorey F, Kim PS, Mittelman SD, Gilsanz V (2007) Fat mass is not beneficial to bone in adolescents and young adults. J Clin Endocrinol Metab 92:143–147

    Article  CAS  PubMed  Google Scholar 

  23. Farr JN, Funk JL, Chen Z, Lisse JR, Blew RM, Lee VR, Laudermilk M, Lohman TG, Going SB (2011) Skeletal muscle fat content is inversely associated with bone strength in young girls. J Bone Miner Res 26:2217–2225

    Article  PubMed  PubMed Central  Google Scholar 

  24. Farr JN, Chen Z, Lisse JR, Lohman TG, Going SB (2010) Relationship of total body fat mass to weight-bearing bone volumetric density, geometry, and strength in young girls. Bone 46:977–984

    Article  PubMed  PubMed Central  Google Scholar 

  25. Wey HE, Binkley TL, Beare TM, Wey CL, Specker BL (2011) Cross-sectional versus longitudinal associations of lean and fat mass with pQCT bone outcomes in children. J Clin Endocrinol Metab 96:106–114

    Article  CAS  PubMed  Google Scholar 

  26. Pollock NK, Laing EM, Baile CA, Hamrick MW, Hall DB, Lewis RD (2007) Is adiposity advantageous for bone strength? A peripheral quantitative computed tomography study in late adolescent females. Am J Clin Nutr 86:1530–1538

    CAS  PubMed  Google Scholar 

  27. Deere K, Sayers A, Viljakainen HT, Lawlor DA, Sattar N, Kemp JP, Fraser WD, Tobias JH (2013) Distinct relationships of intramuscular and subcutaneous fat with cortical bone: findings from a cross-sectional study of young adult males and females. J Clin Endocrinol Metab 98:E1041–E1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Utsal L, Tillmann V, Zilmer M, Maestu J, Purge P, Jurimae J, Saar M, Latt E, Maasalu K, Jurimae T (2012) Elevated serum IL-6, IL-8, MCP-1, CRP, and IFN-gamma levels in 10- to 11-year-old boys with increased BMI. Horm Res Paediatr 78:31–39

    Article  CAS  PubMed  Google Scholar 

  29. Pollock NK (2015) Childhood obesity, bone development, and cardiometabolic risk factors. Mol Cell Endocrinol 410:52–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Crabtree NJ, Arabi A, Bachrach LK, Fewtrell M, El-Hajj Fuleihan G, Kecskemethy HH, Jaworski M, Gordon CM (2014) Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. J Clin Densitom 17:225–242

    Article  PubMed  Google Scholar 

  31. Rowlands AV (2016) Physical Activity, Inactivity, and health during youth. Pediatr Exerc Sci 28:19–22

    Article  PubMed  Google Scholar 

  32. Mitchell JA, Mattocks C, Ness AR, Leary SD, Pate RR, Dowda M, Blair SN, Riddoch C (2009) Sedentary behavior and obesity in a large cohort of children. Obesity 17:1596–1602

    Article  PubMed  PubMed Central  Google Scholar 

  33. Mitchell JA, Pate RR, Beets MW, Nader PR (2013) Time spent in sedentary behavior and changes in childhood BMI: a longitudinal study from ages 9 to 15 years. Int J Obes 37:54–60

    Article  CAS  Google Scholar 

  34. Janz KF, Letuchy EM, Burns TL, Eichenberger Gilmore JM, Torner JC, Levy SM (2014) Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. Br J Sports Med 48:1032–1036

    Article  PubMed  PubMed Central  Google Scholar 

  35. MacKelvie KJ, Khan KM, McKay HA (2002) Is there a critical period for bone response to weight-bearing exercise in children and adolescents? a systematic review. Br J Sports Med 36:250–257 (discussion 257)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hasnain SR, Singer MR, Bradlee ML, Moore LL (2014) Beverage intake in early childhood and change in body fat from preschool to adolescence. Child Obes 10:42–49

    Article  PubMed  PubMed Central  Google Scholar 

  37. Kavey RE (2010) How sweet it is: sugar-sweetened beverage consumption, obesity, and cardiovascular risk in childhood. J Am Diet Assoc 110:1456–1460

    Article  PubMed  Google Scholar 

  38. Kristensen M, Jensen M, Kudsk J, Henriksen M, Molgaard C (2005) Short-term effects on bone turnover of replacing milk with cola beverages: a 10-day interventional study in young men. Osteoporos Int 16:1803–1808

    Article  CAS  PubMed  Google Scholar 

  39. Libuda L, Alexy U, Remer T, Stehle P, Schoenau E, Kersting M (2008) Association between long-term consumption of soft drinks and variables of bone modeling and remodeling in a sample of healthy German children and adolescents. Am J Clin Nutr 88:1670–1677

    Article  CAS  PubMed  Google Scholar 

  40. Manias K, McCabe D, Bishop N (2006) Fractures and recurrent fractures in children; varying effects of environmental factors as well as bone size and mass. Bone 39:652–657

    Article  PubMed  Google Scholar 

  41. Wyshak G (2000) Teenaged girls, carbonated beverage consumption, and bone fractures. Arch Pediatr Adolesc Med 154:610–613

    Article  CAS  PubMed  Google Scholar 

  42. Wosje KS, Khoury PR, Claytor RP, Copeland KA, Hornung RW, Daniels SR, Kalkwarf HJ (2010) Dietary patterns associated with fat and bone mass in young children. Am J Clin Nutr 92:294–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vatanparast H, Baxter-Jones A, Faulkner RA, Bailey DA, Whiting SJ (2005) Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. Am J Clin Nutr 82:700–706

    CAS  PubMed  Google Scholar 

  44. Gilbert-Diamond D, Baylin A, Mora-Plazas M, Marin C, Arsenault JE, Hughes MD, Willett WC, Villamor E (2010) Vitamin D deficiency and anthropometric indicators of adiposity in school-age children: a prospective study. Am J Clin Nutr 92:1446–1451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Wallace TC, Reider C, Fulgoni VL 3rd (2013) Calcium and vitamin D disparities are related to gender, age, race, household income level, and weight classification but not vegetarian status in the United States: analysis of the NHANES 2001–2008 data set. J Am Coll Nutr 32:321–330

    Article  CAS  PubMed  Google Scholar 

  46. Esser N, Legrand-Poels S, Piette J, Scheen AJ, Paquot N (2014) Inflammation as a link between obesity, metabolic syndrome and type 2 diabetes. Diabetes Res Clin Pract 105:141–150

    Article  CAS  PubMed  Google Scholar 

  47. Mundy GR (2007) Osteoporosis and inflammation. Nutr Rev 65:S147–S151

    Article  PubMed  Google Scholar 

  48. Russell M, Mendes N, Miller KK, Rosen CJ, Lee H, Klibanski A, Misra M (2010) Visceral fat is a negative predictor of bone density measures in obese adolescent girls. J Clin Endocrinol Metab 95:1247–1255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kanazawa I (2012) Adiponectin in metabolic bone disease. Curr Med Chem 19:5481–5492

    Article  CAS  PubMed  Google Scholar 

  50. Papadopoulou F, Krassas GE, Kalothetou C, Koliakos G, Constantinidis TC (2004) Serum leptin values in relation to bone density and growth hormone-insulin like growth factors axis in healthy men. Arch Androl 50:97–103

    Article  CAS  PubMed  Google Scholar 

  51. Lorentzon M, Landin K, Mellstrom D, Ohlsson C (2006) Leptin is a negative independent predictor of areal BMD and cortical bone size in young adult Swedish men. J Bone Miner Res 21:1871–1878

    Article  CAS  PubMed  Google Scholar 

  52. do Prado WL, de Piano A, Lazaretti-Castro M, de Mello MT, Stella SG, Tufik S, do Nascimento CM, Oyama LM, Lofrano MC, Tock L, Caranti DA, Damaso AR (2009) Relationship between bone mineral density, leptin and insulin concentration in Brazilian obese adolescents. J Bone Miner Metab 27:613–619

    Article  CAS  PubMed  Google Scholar 

  53. Dimitri P, Jacques RM, Paggiosi M, King D, Walsh J, Taylor ZA, Frangi AF, Bishop N, Eastell R (2015) Leptin may play a role in bone microstructural alterations in obese children. J Clin Endocrinol Metab 100:594–602

    Article  CAS  PubMed  Google Scholar 

  54. Campos RM, de Mello MT, Tock L, da Silva PL, Corgosinho FC, Carnier J, de Piano A, Sanches PL, Masquio DC, Tufik S, Damaso AR (2013) Interaction of bone mineral density, adipokines and hormones in obese adolescents girls submitted in an interdisciplinary therapy. J Pediatr Endocrinol Metab 26:663–668

    Article  CAS  PubMed  Google Scholar 

  55. de L II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA (2005) Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam study. Osteoporos Int 16:1713–1720

    Article  Google Scholar 

  56. Szulc P, Varennes A, Delmas PD, Goudable J, Chapurlat R (2010) Men with metabolic syndrome have lower bone mineral density but lower fracture risk–the MINOS study. J Bone Miner Res 25:1446–1454

    Article  PubMed  Google Scholar 

  57. von Muhlen D, Safii S, Jassal SK, Svartberg J, Barrett-Connor E (2007) Associations between the metabolic syndrome and bone health in older men and women: the Rancho Bernardo Study. Osteoporos Int 18:1337–1344

    Article  Google Scholar 

  58. Afghani A, Cruz ML, Goran MI (2005) Impaired glucose tolerance and bone mineral content in overweight latino children with a family history of type 2 diabetes. Diabetes Care 28:372–378

    Article  CAS  PubMed  Google Scholar 

  59. Sayers A, Lawlor DA, Sattar N, Tobias JH (2012) The association between insulin levels and cortical bone: findings from a cross-sectional analysis of pQCT parameters in adolescents. J Bone Miner Res 27:610–618

    Article  CAS  PubMed  Google Scholar 

  60. Kindler JM, Pollock NK, Laing EM, Jenkins NT, Oshri A, Isales C, Hamrick M, Lewis RD (2016) Insulin resistance negatively influences the Muscle-dependent IGF-1-bone mass relationship in premenarcheal girls. J Clin Endocrinol Metab 101:199–205

    Article  CAS  PubMed  Google Scholar 

  61. Buckner JL, Bowden SA, Mahan JD (2015) Optimizing bone health in duchenne muscular dystrophy. Int J Endocrinol 2015:928385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Willig TN, Carlier L, Legrand M, Riviere H, Navarro J (1993) Nutritional assessment in Duchenne muscular dystrophy. Dev Med Child Neurol 35:1074–1082

    Article  CAS  PubMed  Google Scholar 

  63. King WM, Ruttencutter R, Nagaraja HN, Matkovic V, Landoll J, Hoyle C, Mendell JR, Kissel JT (2007) Orthopedic outcomes of long-term daily corticosteroid treatment in Duchenne muscular dystrophy. Neurology 68:1607–1613

    Article  CAS  PubMed  Google Scholar 

  64. Larson CM, Henderson RC (2000) Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J Pediatr Orthop 20:71–74

    CAS  PubMed  Google Scholar 

  65. Matthews E, Brassington R, Kuntzer T, Jichi F, Manzur AY (2016) Corticosteroids for the treatment of Duchenne muscular dystrophy. Cochrane Database Syst Rev. doi:10.1002/14651858

    Google Scholar 

  66. Ricotti V, Ridout DA, Scott E, Quinlivan R, Robb SA, Manzur AY, Muntoni F, NorthStar Clinical N (2013) Long-term benefits and adverse effects of intermittent versus daily glucocorticoids in boys with Duchenne muscular dystrophy. J Neurol Neurosurg Psychiatry 84:698–705

    Article  PubMed  Google Scholar 

  67. Singh A, Schaeffer EK, Reilly CW (2016) Vertebral fractures in Duchenne muscular dystrophy patients managed With deflazacort. J Pediatr Orthop. doi:10.1097/BPO.0000000000000817

    PubMed  Google Scholar 

  68. Vestergaard P, Glerup H, Steffensen BF, Rejnmark L, Rahbek J, Moseklide L (2001) Fracture risk in patients with muscular dystrophy and spinal muscular atrophy. J Rehabil Med 33:150–155

    Article  CAS  PubMed  Google Scholar 

  69. Bianchi ML, Mazzanti A, Galbiati E, Saraifoger S, Dubini A, Cornelio F, Morandi L (2003) Bone mineral density and bone metabolism in duchenne muscular dystrophy. Osteoporos Int 14:761–767

    Article  CAS  PubMed  Google Scholar 

  70. Bianchi ML, Morandi L, Andreucci E, Vai S, Frasunkiewicz J, Cottafava R (2011) Low bone density and bone metabolism alterations in duchenne muscular dystrophy: response to calcium and vitamin D treatment. Osteoporos Int 22:529–539

    Article  CAS  PubMed  Google Scholar 

  71. Crabtree NJ, Roper H, McMurchie H, Shaw NJ (2010) Regional changes in bone area and bone mineral content in boys with duchenne muscular dystrophy receiving corticosteroid therapy. J Pediatr 156:450–455

    Article  CAS  PubMed  Google Scholar 

  72. Tian C, Wong BL, Hornung L, Khoury JC, Miller L, Bange J, Rybalsky I, Rutter MM (2016) Bone health measures in glucocorticoid-treated ambulatory boys with Duchenne muscular dystrophy. Neuromuscul Disord 26:760–767

    Article  PubMed  Google Scholar 

  73. Henderson RC, Berglund LM, May R, Zemel BS, Grossberg RI, Johnson J, Plotkin H, Stevenson RD, Szalay E, Wong B, Kecskemethy HH, Harcke HT (2010) The relationship between fractures and DXA measures of BMD in the distal femur of children and adolescents with cerebral palsy or muscular dystrophy. J Bone Miner Res 25:520–526

    Article  PubMed  Google Scholar 

  74. Longhi S, Grugni G, Gatti D, Spinozzi E, Sartorio A, Adami S, Fanolla A, Radetti G (2015) Adults with Prader-Willi syndrome have weaker bones: effect of treatment with GH and sex steroids. Calcif Tissue Int 96:160–166

    Article  CAS  PubMed  Google Scholar 

  75. Bakker NE, Wolffenbuttel KP, Looijenga LH, Hokken-Koelega AC (2015) Testes in infants with Prader-Willi syndrome: human chorionic gonadotropin treatment, surgery and histology. J Urol 193:291–298

    Article  CAS  PubMed  Google Scholar 

  76. Carrel AL, Myers SE, Whitman BY, Allen DB (2001) Sustained benefits of growth hormone on body composition, fat utilization, physical strength and agility, and growth in Prader-Willi syndrome are dose-dependent. J Pediatr Endocrinol Metab 14:1097–1105

    Article  CAS  PubMed  Google Scholar 

  77. Shaikh MG, Crabtree N, Kirk JM, Shaw NJ (2014) The relationship between bone mass and body composition in children with hypothalamic and simple obesity. Clin Endocrinol 80:85–91

    Article  CAS  Google Scholar 

  78. Chemaitilly W, Li Z, Huang S, Ness KK, Clark KL, Green DM, Barnes N, Armstrong GT, Krasin MJ, Srivastava DK, Pui CH, Merchant TE, Kun LE, Gajjar A, Hudson MM, Robison LL, Sklar CA (2015) Anterior hypopituitarism in adult survivors of childhood cancers treated with cranial radiotherapy: a report from the St Jude Lifetime Cohort study. J Clin Oncol 33:492–500

    Article  PubMed  PubMed Central  Google Scholar 

  79. Mostoufi-Moab S, Magland J, Isaacoff EJ, Sun W, Rajapakse CS, Zemel B, Wehrli F, Shekdar K, Baker J, Long J, Leonard MB (2015) Adverse fat depots and marrow adiposity are associated with skeletal deficits and insulin resistance in long-term survivors of pediatric Hematopoietic stem cell transplantation. J Bone Miner Res 30:1657–1666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Clark EM (2014) The epidemiology of fractures in otherwise healthy children. Curr Osteoporos Rep 12:272–278

    Article  PubMed  Google Scholar 

  81. Khosla S, Melton LJ 3rd, Dekutoski MB, Achenbach SJ, Oberg AL, Riggs BL (2003) Incidence of childhood distal forearm fractures over 30 years: a population-based study. Jama 290:1479–1485

    Article  CAS  PubMed  Google Scholar 

  82. Mayranpaa MK, Makitie O, Kallio PE (2010) Decreasing incidence and changing pattern of childhood fractures: A population-based study. J Bone Miner Res 25:2752–2759

    Article  PubMed  Google Scholar 

  83. Goulding A, Cannan R, Williams SM, Gold EJ, Taylor RW, Lewis-Barned NJ (1998) Bone mineral density in girls with forearm fractures. J Bone Miner Res 13:143–148

    Article  CAS  PubMed  Google Scholar 

  84. Goulding A, Grant AM, Williams SM (2005) Bone and body composition of children and adolescents with repeated forearm fractures. J Bone Miner Res 20:2090–2096

    Article  PubMed  Google Scholar 

  85. Goulding A, Jones IE, Taylor RW, Manning PJ, Williams SM (2000) More broken bones: a 4-year double cohort study of young girls with and without distal forearm fractures. J Bone Miner Res 15:2011–2018

    Article  CAS  PubMed  Google Scholar 

  86. Goulding A, Jones IE, Taylor RW, Williams SM, Manning PJ (2001) Bone mineral density and body composition in boys with distal forearm fractures: a dual-energy X-ray absorptiometry study. J Pediatr 139:509–515

    Article  CAS  PubMed  Google Scholar 

  87. Clark EM, Ness AR, Bishop NJ, Tobias JH (2006) Association between bone mass and fractures in children: a prospective cohort study. J Bone Miner Res 21:1489–1495

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wren TA, Shepherd JA, Kalkwarf HJ, Zemel BS, Lappe JM, Oberfield S, Dorey FJ, Winer KK, Gilsanz V (2012) Racial disparity in fracture risk between white and nonwhite children in the United States. J Pediatr 161:1035–1040

    Article  PubMed  PubMed Central  Google Scholar 

  89. Kalkwarf HJ, Laor T, Bean JA (2011) Fracture risk in children with a forearm injury is associated with volumetric bone density and cortical area (by peripheral QCT) and areal bone density (by DXA). Osteoporos Int 22:607–616

    Article  CAS  PubMed  Google Scholar 

  90. Kessler J, Koebnick C, Smith N, Adams A (2013) Childhood obesity is associated with increased risk of most lower extremity fractures. Clin Orthop Relat Res 471:1199–1207

    Article  PubMed  Google Scholar 

  91. Fewtrell MS (2003) Bone densitometry in children assessed by dual X ray absorptiometry: uses and pitfalls. Arch Dis Child 88:795–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gafni RI, Baron J (2004) Overdiagnosis of osteoporosis in children due to misinterpretation of dual-energy X-ray absorptiometry (DEXA). J Pediatr 144:253–257

    Article  PubMed  Google Scholar 

  93. Carter DR, Bouxsein ML, Marcus R (1992) New approaches for interpreting projected bone densitometry data. J Bone Miner Res 7:137–145

    Article  CAS  PubMed  Google Scholar 

  94. Kroger H, Kotaniemi A, Vainio P, Alhava E (1992) Bone densitometry of the spine and femur in children by dual-energy X-ray absorptiometry. Bone Miner 17:75–85

    Article  CAS  PubMed  Google Scholar 

  95. Crabtree NJ, Kibirige MS, Fordham JN, Banks LM, Muntoni F, Chinn D, Boivin CM, Shaw NJ (2004) The relationship between lean body mass and bone mineral content in paediatric health and disease. Bone 35:965–972

    Article  CAS  PubMed  Google Scholar 

  96. Ellis KJ, Shypailo RJ, Hardin DS, Perez MD, Motil KJ, Wong WW, Abrams SA (2001) Z score prediction model for assessment of bone mineral content in pediatric diseases. J Bone Miner Res 16:1658–1664

    Article  CAS  PubMed  Google Scholar 

  97. Horlick M, Wang J, Pierson RN Jr, Thornton JC (2004) Prediction models for evaluation of total-body bone mass with dual-energy X-ray absorptiometry among children and adolescents. Pediatrics 114:e337–e345

    Article  PubMed  Google Scholar 

  98. Molgaard C, Thomsen BL, Michaelsen KF (1998) Influence of weight, age and puberty on bone size and bone mineral content in healthy children and adolescents. Acta Paediatr 87:494–499

    Article  CAS  PubMed  Google Scholar 

  99. Zemel BS, Leonard MB, Kelly A, Lappe JM, Gilsanz V, Oberfield S, Mahboubi S, Shepherd JA, Hangartner TN, Frederick MM, Winer KK, Kalkwarf HJ (2010) Height adjustment in assessing dual energy X-ray absorptiometry measurements of bone mass and density in children. J Clin Endocrinol Metab 95:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Prentice A, Parsons TJ, Cole TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60:837–842

    CAS  PubMed  Google Scholar 

  101. Zemel BS, Kalkwarf HJ, Gilsanz V, Lappe JM, Oberfield S, Shepherd JA, Frederick MM, Huang X, Lu M, Mahboubi S, Hangartner T, Winer KK (2011) Revised reference curves for bone mineral content and areal bone mineral density according to age and sex for black and non-black children: results of the bone mineral density in childhood study. J Clin Endocrinol Metab 96:3160–3169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Tothill P, Laskey MA, Orphanidou CI, van Wijk M (1999) Anomalies in dual energy X-ray absorptiometry measurements of total-body bone mineral during weight change using lunar, hologic and norland instruments. Br J Radiol 72:661–669

    Article  CAS  PubMed  Google Scholar 

  103. Shepherd JA, Wang L, Fan B, Gilsanz V, Kalkwarf HJ, Lappe J, Lu Y, Hangartner T, Zemel BS, Fredrick M, Oberfield S, Winer KK (2011) Optimal monitoring time interval between DXA measures in children. J Bone Miner Res 26:2745–2752

    Article  PubMed  PubMed Central  Google Scholar 

  104. Knapp KM, Welsman JR, Hopkins SJ, Shallcross A, Fogelman I, Blake GM (2015) Obesity increases precision errors in total body dual-energy X-ray absorptiometry measurements. J Clin Densitom 18:209–216

    Article  PubMed  Google Scholar 

  105. Wosje KS, Knipstein BL, Kalkwarf HJ (2006) Measurement error of DXA: interpretation of fat and lean mass changes in obese and non-obese children. J Clin Densitom 9:335–340

    Article  PubMed  Google Scholar 

  106. International Atomic Energy Agency (2011) Dual energy X ray absorptiometry for bone mineral density and body composition assessment. IAEA, Vienna

    Google Scholar 

  107. Tataranni PA, Ravussin E (1995) Use of dual-energy X-ray absorptiometry in obese individuals. Am J Clin Nutr 62:730–734

    CAS  PubMed  Google Scholar 

  108. Bolotin HH (2001) Inaccuracies inherent in dual-energy X-ray absorptiometry in vivo bone mineral densitometry may flaw osteopenic/osteoporotic interpretations and mislead assessment of antiresorptive therapy effectiveness. Bone 28:548–555

    Article  CAS  PubMed  Google Scholar 

  109. Bolotin HH, Sievanen H, Grashuis JL, Kuiper JW, Jarvinen TL (2001) Inaccuracies inherent in patient-specific dual-energy X-ray absorptiometry bone mineral density measurements: comprehensive phantom-based evaluation. J Bone Miner Res 16:417–426

    Article  CAS  PubMed  Google Scholar 

  110. Bolotin HH (1998) A new perspective on the causal influence of soft tissue composition on DXA-measured in vivo bone mineral density. J Bone Miner Res 13:1739–1746

    Article  CAS  PubMed  Google Scholar 

  111. Webber CE (1987) The effect of fat on bone mineral measurements in normal subjects with recommended values of bone, muscle and fat attenuation coefficients. Clin Phys. Physiol Meas 8:143–158

    Article  CAS  Google Scholar 

  112. Svendsen OL, Hassager C, Skodt V, Christiansen C (1995) Impact of soft tissue on in vivo accuracy of bone mineral measurements in the spine, hip, and forearm: a human cadaver study. J Bone Miner Res 10:868–873

    Article  CAS  PubMed  Google Scholar 

  113. LaForgia J, Dollman J, Dale MJ, Withers RT, Hill AM (2009) Validation of DXA body composition estimates in obese men and women. Obesity 17:821–826

    Article  PubMed  Google Scholar 

  114. Crabtree NJ, Shaw NJ, Boivin CM, Oldroyd B, Truscott JG (2005) Pediatric in vivo cross-calibration between the GE Lunar Prodigy and DPX-L bone densitometers. Osteoporos Int 16:2157–2167

    Article  PubMed  Google Scholar 

  115. Blake GM, Harrison EJ, Adams JE (2004) Dual X-ray absorptiometry: cross-calibration of a new fan-beam system. Calcif Tissue Int 75:7–14

    Article  CAS  PubMed  Google Scholar 

  116. Evans EM, Mojtahedi MC, Kessinger RB, Misic MM (2006) Simulated change in body fatness affects Hologic QDR 4500 A whole body and central DXA bone measures. J Clin Densitom 9:315–322

    Article  PubMed  Google Scholar 

  117. Laskey MA, Murgatroyd PR, Prentice A (2004) Comparison of narrow-angle fan-beam and pencil-beam densitometers: in vivo and phantom study of the effect of bone density, scan mode, and tissue depth on spine measurements. J Clin Densitom 7:341–348

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Babette S. Zemel.

Ethics declarations

Conflict of interest

Jennifer Kelley, Nicola Crabtree, and Babette Zemel have declared no conflict of interest.

Human and Animal Rights and Informed consent

The findings reported in this manuscript are based on previously published work. No original data was collected. All images have been deidentified for protection of privacy

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kelley, J.C., Crabtree, N. & Zemel, B.S. Bone Density in the Obese Child: Clinical Considerations and Diagnostic Challenges. Calcif Tissue Int 100, 514–527 (2017). https://doi.org/10.1007/s00223-016-0233-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-016-0233-4

Keywords

Navigation