Skip to main content

Advertisement

Log in

Are Antiresorptive Drugs Effective Against Fractures in Patients with Diabetes?

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

We studied whether the reduction in bone turnover by use of antiresorptive drugs is detrimental in patients with diabetes who already have low bone turnover due to hyperglycemia in a nationwide cohort study from Denmark. All users of antiresorptive drugs against osteoporosis between 1996 and 2006 (n = 103,562) were the exposed group, with three age- and gender-matched controls from the general population (n = 310,683). Patients on bisphosphonates and raloxifene had a higher risk of hip, spine, and forearm fractures. However, no difference was observed in the antifracture efficacy between patients with diabetes and nondiabetic controls or between patients with type 1 and type 2 diabetes. Too few were users of strontium to allow analysis for this compound. The excess risk of fractures among patients treated with bisphosphonates or raloxifene compared to nonexposed controls was due to the higher a priori risk of fractures among patients treated for osteoporosis. Diabetes does not seem to affect the fracture-preventive potential of bisphosphonates or raloxifene. The low-turnover state of diabetes thus does not seem to be a hindrance to the effect of these drugs against osteoporosis. Therefore, patients with diabetes should receive treatment for osteoporosis in the same way as nondiabetic patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Vestergaard P (2007) Discrepancies in bone mineral density and fracture risk in patients with type 1 and type 2 diabetes—a meta-analysis. Osteoporos Int 18:427–444

    Article  PubMed  CAS  Google Scholar 

  2. Janghorbani M, van Dam R, Willett W, Hu F (2007) Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 166:495–505

    Article  PubMed  Google Scholar 

  3. Follak N, Kl”ting I, Wolf E, Merk H (2004) Improving metabolic control reverses the histomorphometric and biomechanical abnormalities of an experimentally induced bone deficit in spontaneously diabetic rats. Calcif Tissue Int 74:551–560

    Article  PubMed  CAS  Google Scholar 

  4. Achemlal L, Tellal S, Rkiouak F, Nouijai A, Bezza A, Derouiche EM, Ghafir D, El Maghraoui A (2005) Bone metabolism in male patients with type 2 diabetes. Clin Rheumatol 24:493–496

    Article  PubMed  Google Scholar 

  5. Bouillon R (1992) Diabetic bone disease. Low turnover osteoporosis related to decreased IGF-I production. Verh K Acad Geneeskd Belg 54:365–392

    PubMed  CAS  Google Scholar 

  6. Berberoglu Z, Gursoy A, bayraktar N, Yazici A, Tutuncu N, Demirag N (2007) Rosiglitazone decreases serum bone specific alkaline phosphatase activity in postmenopausal diabetic women. J Clin Endocrinol Metab 92:3523–3530

    Article  PubMed  CAS  Google Scholar 

  7. Kindblom JM, Ohlsson C, Ljunggren O, Karlsson MK, Tivesten A, Smith U, Mellström D (2009) Plasma osteocalcin is inversely related to fat mass and plasma glucose in elderly Swedish men. J Bone Miner Res 24:867–874

    Article  Google Scholar 

  8. Akin O, Gol K, Akturk M, Erkaya S (2003) Evaluation of bone turnover in postmenopausal patients with type 2 diabetes mellitus using biochemical markers and bone mineral density measurements. Gynecol Endocrinol 17:19–29

    PubMed  CAS  Google Scholar 

  9. Gerdhem P, Isaksson A, Akesson K, Obrant K (2005) Increased bone density and decreased bone turnover, but no evident alteration of fracture susceptibility in elderly women with diabetes mellitus. Osteoporos Int 16:1506–1512

    Article  PubMed  CAS  Google Scholar 

  10. Lee N, Sowa H, Hinoi E, Ferron M, Ahn J, Confavreux C, Dacquin R, Mee P, McKee M, Jung D, Zhang Z, Kim J, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  PubMed  CAS  Google Scholar 

  11. Clowes J, Allen H, Prentis D, Eastell R, Blumsohn A (2003) Octreotide abolishes the acute decrease in bone turnover in response to oral glucose. J Clin Endocrinol Metab 88:4867–4873

    Article  PubMed  CAS  Google Scholar 

  12. Black D, Greenspan S, Ensrud K, Palermo L, McGowan J, Lang T, Garnero P, Bouxsein M, Bilezikian J, Rosen C (2003) The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Engl J Med 349:1207–1215

    Article  PubMed  CAS  Google Scholar 

  13. Bonnick S, Saag K, Kiel D, McClung M, Hochberg M, Burnett S, Sebba A, Kagan R, Chen E, Thompson D, de Papp A (2006) Comparison of weekly treatment of postmenopausal osteoporosis with alendronate versus risedronate over two years. J Clin Endocrinol Metab 91:2631–2637

    Article  PubMed  CAS  Google Scholar 

  14. Lufkin E, Whitaker M, Nickelsen T, Argueta R, Caplan R, Knickerbocker R, Riggs B (1998) Treatment of established postmenopausal osteoporosis with raloxifene: a randomized trial. J Bone Miner Res 13:1747–1754

    Article  PubMed  CAS  Google Scholar 

  15. Mashiba T, Turner CH, Hirano T, Forwood MR, Jacob DS, Johnston CC, Burr DB (2001) Effects of high-dose etidronate treatment on microdamage accumulation and biomechanical properties in beagle bone before occurrence of spontaneous fractures. Bone 29:271–278

    Article  PubMed  CAS  Google Scholar 

  16. Lenart BA, Lorich DG, Lane JM (2008) Atypical fractures of the femoral diaphysis in postmenopausal women taking alendronate. N Engl J Med 358:1304–1306

    Article  PubMed  CAS  Google Scholar 

  17. Lenart BA, Neviaser AS, Lyman S, Chang CC, Edobor-Osula F, Steele B, van der Meulen MCH, Lorich DG, Lane JM (2009) Association of low-energy femoral fractures with prolonged bisphosphonate use: a case control study. Osteoporos Int 20:1353–1362

    Article  PubMed  CAS  Google Scholar 

  18. Dagdelen S, Sener D, Bayraktar M (2007) Influence of type 2 diabetes mellitus on bone mineral density response to bisphosphonates in late postmenopausal osteoporosis. Adv Ther 24:1314–1320

    Article  PubMed  CAS  Google Scholar 

  19. Keegan THM, Schwartz AV, Bauer DC, Sellmeyer DE, Kelsey JL (2004) Effect of alendronate on bone mineral density and biochemical markers of bone turnover in type 2 diabetic women: the fracture intervention trial. Diabetes Care 27:1547–1553

    Article  PubMed  CAS  Google Scholar 

  20. Andersen T, Madsen M, Jørgensen J, Mellemkjær L, Olsen J (1999) The Danish National Hospital Register. Dan Med Bull 46:263–268

    PubMed  CAS  Google Scholar 

  21. Mosbech J, Jørgensen J, Madsen M, Rostgaard K, Thornberg K, Poulsen T (1995) The Danish National Patient Register: evaluation of data quality [in Danish]. Ugeskr Laeger 157:3741–3745

    PubMed  CAS  Google Scholar 

  22. Lévesque LE, Hanley JA, Kezouh A, Suissa S (2010) Problem of immortal time bias in cohort studies: example using statins for preventing progression of diabetes. BMJ 340:b5087

    Article  PubMed  Google Scholar 

  23. Black D, Cummings S, Karpf D, Cauley J, Thompson D, Nevitt M, Bauer D, Genant H, Haskell W, Marcus R, Ott S, Torner J, Quandt S, Reiss T, Ensrud K (1996) Randomised trial of the effect of alendronate on risk of fracture in women with existing vertebral fractures. Lancet 348:1535–1541

    Article  PubMed  CAS  Google Scholar 

  24. Abbassy MA, Watari I, Soma K (2010) The effect of diabetes mellitus on rat mandibular bone formation and microarchitecture. Eur J Oral Sci 118:364–369

    Article  PubMed  Google Scholar 

  25. Hamada Y, Kitazawa S, Kitazawa R, Fujii H, Kasuga M, Fukagawa M (2007) Histomorphometric analysis of diabetic osteopenia in streptozotocin-induced diabetic mice: a possible role of oxidative stress. Bone 40:1408–1414

    Article  PubMed  CAS  Google Scholar 

  26. Ferron M, Hinoi E, Karsenty G, Ducy P (2008) Osteocalcin differentially regulates beta cell and adipocyte gene expression and affects the development of metabolic diseases in wild-type mice. Proc Natl Acad Sci USA 105:5266–5270

    Article  PubMed  CAS  Google Scholar 

  27. Fujii H, Hamada Y, Fukagawa M (2008) Bone formation in spontaneously diabetic Torii—newly established model of non-obese type 2 diabetes rats. Bone 42:372–379

    Article  PubMed  CAS  Google Scholar 

  28. McNair P, Madsbad S, Christensen M, Christiansen C, Faber O, Binder C, Transbøl I (1979) Bone mineral loss in insulin-treated diabetes mellitus: studies on pathogenesis. Acta Endocrinol 90:463–472

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by an unrestricted grant from Servier Denmark and the Dandy Foundation. None of the sponsors had any role in obtaining data, analyzing data, or writing the report.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Vestergaard.

Additional information

The authors have stated that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vestergaard, P., Rejnmark, L. & Mosekilde, L. Are Antiresorptive Drugs Effective Against Fractures in Patients with Diabetes?. Calcif Tissue Int 88, 209–214 (2011). https://doi.org/10.1007/s00223-010-9450-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-010-9450-4

Keywords

Navigation