Skip to main content
Log in

Relationship Between Arterial Calcification and Bone Loss in a New Combined Model Rat by Ovariectomy and Vitamin D3 Plus Nicotine

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Epidemiological studies have reported an association between arterial calcification and bone loss after menopause. However, the underlying mechanism of the association remains unclear. Therefore, to explore the possible mechanisms of the association, we tried to develop a new combined model rat of ovariectomy (OVX, an animal model of osteoporosis) and vitamin D3 plus nicotine (VDN rat, an animal model of arterial calcification). We tested them by using sham-operated control rats (SC), OVX control rats (OC), and OVX plus VDN-treated rats (OVN). Dissections were performed twice at 4 (4SC, 4OC, and 4OVN) and 8 (8SC, 8OC, and 8OVN) weeks after treatment. 8OVN showed bone loss and arterial calcification, although 8OC showed only bone loss. Moreover, arterial calcium content was associated with indexes of bone loss at 8 weeks. Thus, the OVN rat is considered a good model to examine the relationship of the two disorders after menopause. Additionally, the arterial endothelin-1 (ET-1, a potent regulator of arterial calcification) levels increased in both 4OVN and 8OVN, and the level was associated with arterial calcium content at 8 weeks. Furthermore, the arterial endothelial nitric oxide synthase (eNOS) protein, which is an enzyme that produces nitric oxide (an antiatherosclerotic substance), was significantly reduced in only 8OVN. Estrogens affect the alterations of the eNOS and ET-1 proteins. Therefore, we suggest that impairment of the ET-1- and NO-producing system in arterial tissue during periods of rapid bone loss by estrogen deficiency might be a mechanism of the relationship between the two disorders seen in postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Farhat GN, Strotmeyer ES, Newman AB, Sutton-Tyrrell K, Bauer DC, Harris T, Johnson KC, Taaffe DR, Cauley JA (2006) Volumetric and areal bone mineral density measures are associated with cardiovascular disease in older men and women: the Health, Aging, and Body Composition Study. Calcif Tissue Int 79:102–111

    Article  PubMed  CAS  Google Scholar 

  2. Shaffer JR, Kammerer CM, Rainwater DL, O’Leary DH, Bruder JM, Bauer RL, Mitchell BD (2007) Decreased bone mineral density is correlated with increased subclinical atherosclerosis in older, but not younger, Mexican American women and men: the San Antonio Family Osteoporosis Study. Calcif Tissue Int 81:430–441

    Article  PubMed  CAS  Google Scholar 

  3. Mosca L, Manson JE, Sutherland SE, Langer RD, Manolio T, Barrett-Connor E (1997) Cardiovascular disease in women: a statement for healthcare professionals from the American Heart Association. Writing Group. Circulation 96:2468–2482

    PubMed  CAS  Google Scholar 

  4. Kuh D, Langenberg C, Hardy R, Kok H, Cooper R, Butterworth S, Wadsworth ME (2005) Cardiovascular risk at age 53 years in relation to the menopause transition and use of hormone replacement therapy: a prospective British birth cohort study. BJOG 112:476–485

    Article  PubMed  CAS  Google Scholar 

  5. Nordin BE, Polley KJ (1987) Metabolic consequences of the menopause. A cross-sectional, longitudinal, and intervention study on 557 normal postmenopausal women. Calcif Tissue Int 41:S1–S59

    Article  PubMed  Google Scholar 

  6. Fischer M, Raue F (1999) Measurements of bone mineral density. Mineral density in metabolic bone disease. Q J Nucl Med 43:233–240

    PubMed  CAS  Google Scholar 

  7. Tankò LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20

    Article  PubMed  CAS  Google Scholar 

  8. Garcia-Perez MA, Moreno-Mercer J, Tarin JJ, Cano A (2006) Similar efficacy of low and standard doses of transdermal estradiol in controlling bone turnover in postmenopausal women. Gynecol Endocrinol 22:179–184

    Article  PubMed  CAS  Google Scholar 

  9. Hirose K, Tomiyama H, Okazaki R, Arai T, Koji Y, Zaydun G, Hori S, Yamashina A (2003) Increased pulse wave velocity associated with reduced calcaneal quantitative osteo-sono index: possible relationship between atherosclerosis and osteopenia. J Clin Endocrinol Metab 88:2573–2578

    Article  PubMed  CAS  Google Scholar 

  10. Hyder JA, Allison MA, Criqui MH, Wright CM (2007) Association between systemic calcified atherosclerosis and bone density. Calcif Tissue Int 80:301–306

    Article  PubMed  CAS  Google Scholar 

  11. Omi N, Ezawa I (1995) The effect of ovariectomy on bone metabolism in rats. Bone 17:163S–168S

    PubMed  CAS  Google Scholar 

  12. Kalu DN, Liu CC, Hardin RR, Hollis BW (1989) The aged rat model of ovarian hormone deficiency bone loss. Endocrinology 124:7–16

    PubMed  CAS  Google Scholar 

  13. Tatchum-Talom R, Martel C, Marette A (2002) Influence of estrogen on aortic stiffness and endothelial function in female rats. Am J Physiol Heart Circ Physiol 282:H491–H498

    PubMed  CAS  Google Scholar 

  14. Park JH, Omi N, Nosaka T, Kitajima A, Ezawa I (2008) Estrogen deficiency and low calcium diet increased bone loss and urinary calcium excretion, but did not alter arterial stiffness in young female rats. J Bone Miner Metab 26:218–225

    Article  PubMed  CAS  Google Scholar 

  15. Fleckenstein A, Frey M, Zorn J, Fleckensteingreon G (1990) Calcium, a neglected key factor in hypertension and arteriosclerosis. In: Laragh JH, Brenner BM (eds) Hypertension: pathophysiology, diagnosis and management. Raven, New York, pp 471–509

    Google Scholar 

  16. Niederhoffer N, Bobryshev YV, Lartaud-Idjouadiene I, Giummelly P, Atkinson J (1997) Aortic calcification produced by vitamin D3 plus nicotine. J Vasc Res 34:386–398

    Article  PubMed  CAS  Google Scholar 

  17. Lartaud-Idjouadiene I, Lompre AM, Kieffer P, Colas T, Atkinson J (1999) Cardiac consequences of prolonged exposure to an isolated increase in aortic stiffness. Hypertension 34:63–69

    PubMed  CAS  Google Scholar 

  18. Palmer RMJ, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327:524–526

    Article  PubMed  CAS  Google Scholar 

  19. Moncada S, Palmer RM, Higgs EA (1991) Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol Rev 43:109–142

    PubMed  CAS  Google Scholar 

  20. Yanagisawa M, Kurihara H, Kimura S, Tomobe Y, Kobayashi M, Mitsui Y, Yazaki Y, Goto K, Masaki T (1988) A novel potent vasoconstrictor peptide produced by vascular endothelial cells. Nature 332:411–415

    Article  PubMed  CAS  Google Scholar 

  21. Rizvi MA, Myers PR (1997) Nitric oxide modulates basal and endothelin-induced coronary artery vascular smooth muscle cell proliferation and collagen levels. J Mol Cell Cardiol 29:1779–1789

    Article  PubMed  CAS  Google Scholar 

  22. Wu SY, Zhang BH, Pan CS, Jiang HF, Pang YZ, Tang CS, Qi YF (2003) Endothelin-1 is a potent regulator in vivo in vascular calcification and in vitro in calcification of vascular smooth muscle cells. Peptides 24:1149–1156

    Article  PubMed  CAS  Google Scholar 

  23. Bakker EN, van der Linden PJ, Sipkema P (1997) Endothelin-1-induced constriction inhibits nitric-oxide-mediated dilation in isolated rat resistance arteries. J Vasc Res 34:418–424

    Article  PubMed  CAS  Google Scholar 

  24. Ramzy D, Rao V, Tumiati LC, Xu N, Sheshgiri R, Miriuka S, Delgado DH, Ross HJ (2006) Elevated endothelin-1 levels impair nitric oxide homeostasis through a PKC-dependent pathway. Circulation 114:I319–I326

    PubMed  Google Scholar 

  25. Potenza MA, Marasciulo FL, Chieppa DM, Brigiani GS, Formoso G, Quon MJ, Montagnani M (2005) Insulin resistance in spontaneously hypertensive rats is associated with endothelial dysfunction characterized by imbalance between NO and ET-1 production. Am J Physiol Heart Circ Physiol 289:H813–H822

    Article  PubMed  CAS  Google Scholar 

  26. Spina M, Garbin G (1976) Age-related chemical changes in human elastins from non-atherosclerotic areas of thoracic aorta. Atherosclerosis 24:267–279

    Article  PubMed  CAS  Google Scholar 

  27. Cattell MA, Anderson JC, Hasleton PS (1996) Age-related changes in amounts and concentrations of collagen and elastin in normotensive human thoracic aorta. Clin Chim 245:73–84

    Article  CAS  Google Scholar 

  28. Cola C, Almeida M, Li D, Romeo F, Mehta JL (2004) Regulatory role of endothelium in the expression of genes affecting arterial calcification. Biochem Biophys Res Commun 320:424–427

    Article  PubMed  CAS  Google Scholar 

  29. Guo X, Razandi M, Pedram A, Kassab G, Levin ER (2005) Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors alpha and beta. J Biol Chem 280:19704–19710

    Article  PubMed  CAS  Google Scholar 

  30. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3-OH kinase. Nature 407:538–541

    Article  PubMed  CAS  Google Scholar 

  31. Nosaka T, Tanaka H, Watanabe I, Sato M, Matsuda M (2003) Influence of regular exercise on age-related changes in arterial elasticity: mechanistic insights from wall compositions in rat aorta. Can J Appl Physiol 28:204–212

    PubMed  Google Scholar 

  32. Qi YF, Shi YR, Bu DF, Pang YZ, Tang CS (2003) Changes of adrenomedullin and receptor activity modifying protein 2 (RAMP2) in myocardium and aorta in rats with isoproterenol-induced myocardial ischemia. Peptides 24:463–468

    Article  PubMed  CAS  Google Scholar 

  33. Kaito K, Urayama H, Watanabe G (2003) Doxycycline treatment in a model of early abdominal aortic aneurysm. Surg Today 33:426–433

    Article  PubMed  CAS  Google Scholar 

  34. Jegger D, da Silva R, Jeanrenaud X, Nasratullah M, Tevaearai H, von Segesser LK, Segers P, Gaillard V, Atkinson J, Lartaud I, Stergiopulo N (2006) Ventricular–arterial coupling in a rat model of reduced arterial compliance provoked by hypervitaminosis D and nicotine. Am J Physiol Heart Circ Physiol 291:H1942–H1951

    Article  PubMed  CAS  Google Scholar 

  35. Omi N, Morikawa N, Ezawa I (1994) The effect of voluntary exercise on bone mineral density and skeletal muscles in the rat model at ovariectomized and sham stages. Bone Miner 24:211–222

    Article  PubMed  CAS  Google Scholar 

  36. Myburgh KH, Noakes TD, Roodt M, Hough FS (1989) Effect of exercise on the development of osteoporosis in adult rats. J Appl Physiol 66:14–19

    PubMed  CAS  Google Scholar 

  37. Sakai S, Miyauchi T, Sakurai T, Kasuya Y, Ihara M, Yamaguchi I, Goto K, Sugishita Y (1996) Endogenous endothelin-1 participates in the maintenance of cardiac function in rats with congestive heart failure. Marked increase in endothelin-1 production in the failing heart. Circulation 93:1214–1222

    PubMed  CAS  Google Scholar 

  38. Iemitsu M, Miyauchi T, Maeda S, Matsuda M, Goto K, Yamaguchi I (2004) Time course alteration of endothelin-1 gene expression in the heart during exercise and recovery from post-exercise periods in rats. J Cardiovasc Pharmacol 44:S447–S450

    Article  PubMed  CAS  Google Scholar 

  39. Iemitsu M, Miyauchi T, Maeda S, Yuki K, Kobayashi T, Kumagai Y, Shimojo N, Yamaguchi I, Matsuda M (2000) Intense exercise causes decrease in expression of both endothelial NO synthase and tissue NOx level in hearts. Am J Physiol Regul Integr Comp Physiol 279:R951–R959

    PubMed  CAS  Google Scholar 

  40. Faggiotto A (1988) Smooth muscle cell proliferation in atherosclerosis. Agents Actions 26:201–221

    CAS  Google Scholar 

  41. Partridge SM, Keeley FW (1974) Age related and atherosclerotic changes in aortic elastin. Adv Exp Med Biol 43:173–191

    PubMed  CAS  Google Scholar 

  42. Mackey RH, Venkitachalam L, Sutton-Tyrrell K (2007) Calcifications, arterial stiffness and atherosclerosis. Adv Cardiol 44:234–244

    Article  PubMed  CAS  Google Scholar 

  43. Henrion D, Chillon JM, Godeau G, Muller F, Capdeville-Atkinson C, Hoffman M, Atkinson J (1991) The consequences of aortic calcium overload following vitamin D3 plus nicotine treatment in young rats. J Hypertens 9:919–926

    Article  PubMed  CAS  Google Scholar 

  44. Kieffer P, Robert A, Capdeville-Atkinson C, Atkinson J, Lartaud-Idjouadiene I (2000) Age-related arterial calcification in rats. Life Sci 66:2371–2381

    Article  PubMed  CAS  Google Scholar 

  45. Srivastava AK, Bhattacharyya S, Castillo G, Wergedal J, Mohan S, Baylink DJ (2000) Development and application of a serum C-telopeptide and osteocalcin assay to measure bone turnover in an ovariectomized rat model. Calcif Tissue Int 66:435–442

    Article  PubMed  CAS  Google Scholar 

  46. Nordin BE, Wishart JM, Clifton PM, McArthur R, Scopacasa F, Need AG, Morris HA, O’Loughlin PD, Horowitz M (2004) A longitudinal study of bone-related biochemical changes at the menopause. Clin Endocrinol 61:123–130

    Article  CAS  Google Scholar 

  47. Nordin BE, Need AG, Morris HA, Horowitz M, Robertson WG (1991) Evidence for a renal calcium leak in postmenopausal women. J Clin Endocrinol Metab 72:401–407

    Article  PubMed  CAS  Google Scholar 

  48. Hiruma Y, Inoue A, Shiohama A, Otsuka E, Hirose S, Yamaguchi A, Hagiwara H (1998) Endothelins inhibit the mineralization of osteoblastic MC3T3–E1 cells through the A-type endothelin receptor. Am J Physiol Regul Integr Comp Physiol 275:R1099–R1105

    CAS  Google Scholar 

  49. Christodoulakos GE, Lambrinoudaki IV, Botsis DC (2006) The cardiovascular effects of selective estrogen receptor modulators. Ann N Y Acad Sci 1092:374–384

    Article  PubMed  CAS  Google Scholar 

  50. Stump AL, Kelley KW, Wensel TM (2007) Bazedoxifene: a third-generation selective estrogen receptor modulator for treatment of postmenopausal osteoporosis. Ann Pharmacother 41:833–839

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Evan Thomas for help in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naomi Omi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Park, JH., Omi, N., Iemitsu, M. et al. Relationship Between Arterial Calcification and Bone Loss in a New Combined Model Rat by Ovariectomy and Vitamin D3 Plus Nicotine. Calcif Tissue Int 83, 192–201 (2008). https://doi.org/10.1007/s00223-008-9162-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9162-1

Keywords

Navigation