Skip to main content

Advertisement

Log in

Echogenic Carotid Artery Plaques are Associated with Vertebral Fractures in Postmenopausal Women with Low Bone Mass

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Although low bone mass has been associated with atherosclerosis even after adjustment for age, little is known about the association between vertebral fractures and calcified atherosclerotic plaques. Our objective was to investigate whether osteoporotic vertebral fractures are independently related to the prevalence of atherosclerotic carotid plaques in postmenopausal women with low bone mass. We enrolled 195 postmenopausal women with osteopenia or osteoporosis. Bone mineral density and the presence of vertebral fractures were assessed. Intima media thickness and atherosclerotic plaques of the carotid artery were assessed using ultrasonography. Of the 195 subjects in the study, 84 had no plaques and 111 had at least one. The percentage of women with vertebral fractures was significantly higher in subjects with echogenic carotid plaques than in those without (27% vs. 11%, respectively; P < 0.05). However, there was no difference in the prevalence of vertebral fractures between women with echolucent plaques and those without (10.9% vs. 10.7%, respectively; P = nonsignificant). By logistic regression analysis with multivariate adjustment, age (P < 0.01), dyslipidemia (P < 0.05), and the presence of vertebral fracture (P < 0.05) were independent risk factors for echogenic carotid plaques. Osteoporotic vertebral fractures are associated with an increased risk of echogenic atherosclerotic plaques in postmenopausal women with low bone mass. It appears that the high association of echogenic atherosclerotic plaques and vertebral fractures could partially explain why osteoporotic vertebral fractures are linked to increased mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Tunstall-Pedoe H, Kuulasmaa K, Amouyel P, Arveiler D, Rajakangas AM, Pajak A (1994) Myocardial infarction and coronary deaths in the World Health Organization MONICA Project. Registration procedures, event rates, and case-fatality rates in 38 populations from 21 countries in four continents. Circulation 90:583–612

    PubMed  CAS  Google Scholar 

  2. Kado DM, Browner WS, Blackwell T, Gove R, Cummings SR (2000) Rate of bone loss associated with mortality in older women: a prospective study. J Bone Miner Res 15:1974–1980

    Article  PubMed  CAS  Google Scholar 

  3. Johnell O, Kanis JA (2006) An estimate of the world prevalence and disability associated with osteoporotic fractures. Osteoporosis Int 17:1726–1733

    Article  CAS  Google Scholar 

  4. Hak AE, Pols HA, van Hemert AM, Hofman A, Witteman JC (2000) Progression of aortic calcification is associated with metacarpal bone loss during menopause: a population-based longitudinal study. Arterioscler Thromb Vasc Biol 20:1926–1931

    PubMed  CAS  Google Scholar 

  5. Kiel DP, Kauppila LI, Cupples LA, Hannan MT, O’Donnell CJ, Wilson PWF (2001) Bone loss and the progression of abdominal aortic calcification over a 25 year period: the Framingham Heart Study. Calcif Tissue Int 68:271–276

    Article  PubMed  CAS  Google Scholar 

  6. Tanko LB, Bagger YZ, Christiansen C (2003) Low bone mineral density in the hip as a marker of advanced atherosclerosis in elderly women. Calcif Tissue Int 73:15–20

    Article  PubMed  CAS  Google Scholar 

  7. Schulz E, Arfai K, Liu X, Sayre J, Gilsanz V (2004) Aortic calcification and the risk of osteoporosis and fractures. J Clin Endocrinol Metab 89:4246–4253

    Article  PubMed  CAS  Google Scholar 

  8. von der Recke P, Hansen MA, Hassager C (1999) The association between low bone mass at the menopause and cardiovascular mortality. Am J Med 106:273–278

    Article  PubMed  Google Scholar 

  9. Doherty TM, Detrano RC (1994) Coronary arterial calcification as an active process: a new perspective on an old problem. Calcif Tissue Int 54:224–230

    Article  PubMed  CAS  Google Scholar 

  10. Jørgensen L, Joakimsen O, Rosvold Berntsen GK, Heuch I, Jacobsen BK (2004) Low bone mineral density is related to echogenic carotid artery plaques: a population-based study. Am J Epidemiol 160:549–556

    Article  PubMed  Google Scholar 

  11. Willett WC, Sampson L, Stampfer MJ, Rosner B, Bain C, Witschi J, Hennekens CH, Speizer FE (1985) Reproducibility and validity of a semiquantitative food frequency questionnaire. Am J Epidemiol 122:51–65

    PubMed  CAS  Google Scholar 

  12. Fitti JE, Kovar MG (1987) The supplement on aging to the 1984 National Health Interview Survey. Vital Health Stat 1:1–115

    Google Scholar 

  13. Genant HK, Wu CY, Van Kuijk C, Nevitt M (1993) Vertebral fracture assessment using a SQ technique. J Bone Miner Res 8:1137–1148

    PubMed  CAS  Google Scholar 

  14. Yokoyama H, Aoki T, Imahori M, Kuramitsu M (2004) Subclinical atherosclerosis is increased in type 2 diabetic patients with microalbuminuria evaluated by intima-media thickness and pulse wave velocity. Kidney Int 66:448–454

    Article  PubMed  Google Scholar 

  15. Kim SH, Lee SJ, Kang ES, Kang S, Hur KY, Lee HJ, Ahn CW, Cha BS, Yoo JS, Lee CH (2006) Effects of lifestyle modification on metabolic parameters and carotid intima-media thickness in patients with type 2 diabetes mellitus. Metabolism 55:1053–1059

    Article  PubMed  CAS  Google Scholar 

  16. Joakimsen O, Bønaa KH, Stensland-Bugge E (1997) Reproducibility of ultrasound assessment of carotid plaque occurrence, thickness, and morphology. The Tromsø Study. Stroke 28:2201–2207

    PubMed  CAS  Google Scholar 

  17. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174

    Article  PubMed  CAS  Google Scholar 

  18. Bots ML, Hoe AW, Koudstaal PJ, Hofman A, Grobbee DE (1997) Common carotid intima-media thickness and risk of stroke and myocardial infarction; the Rotterdam Study. Circulation 96:1432–1437

    PubMed  CAS  Google Scholar 

  19. Gronholdt ML (1999) Ultrasound and lipoproteins as predictors of lipid-rich, rupture-prone plaques in the carotid artery. Arterioscler Thromb Vasc Biol 19:2–13

    PubMed  CAS  Google Scholar 

  20. Sabetai MM, Tegos TJ, Nicolaides AN, Dhanjil S, Pare GJ, Stevens JM (2000) Reproducibility of computer-quantified carotid plaque echogenicity; can we overcome the subjectivity? Stroke 31:2189–2196

    PubMed  CAS  Google Scholar 

  21. Bots ML, Breslau PJ, Briet E, de Bruyn AM, van Vliet HH, van den Ouweland FA, de Jong PT, Hofman A, Grobbee DE (1992) Cardiovascular determinants of carotid artery disease: the Rotterdam Elderly Study. Hypertension 19:717–720

    PubMed  CAS  Google Scholar 

  22. Nichols WW, Pepine CJ, O’Rourke MF (1999) Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke. N Engl J Med 340:1762–1763

    Article  PubMed  CAS  Google Scholar 

  23. Young W, Gofman J, Tandy R, Malamud N, Waters E (1960) The quantitation of atherosclerosis III. The extent of correlation of degrees of atherosclerosis with and between the coronary and cerebral vascular beds. Am J Cardiol 8:300–308

    Article  Google Scholar 

  24. Sakaguchi M, Kitagawa K, Nagai Y, Yamagami H, Kondo K, Matsushita K, Oku N, Hougaku H, Ohtsuki T, Masuyama T (2003) Equivalence of plaque score and intima-media thickness of carotid ultrasonography for predicting severe coronary artery lesion. Ultrasound Med Biol 29:357–371

    Article  Google Scholar 

  25. Giral P, Bruckert E, Dairou F, Boubrit K, Drobinski G, Chapman JM, Beucler I, Turpin G (1999) Usefulness in predicting coronary artery disease by ultrasonic evaluation of the carotid arteries in asymptomatic hypercholesterolemic patients with positive exercise stress tests. Am J Cardiol 84:14–17

    Article  PubMed  CAS  Google Scholar 

  26. Van der Meer I, Bost ML, Hofman A, del Sol AI, van der Kuip DA, Witteman JC (2004) Predictive value of noninvasive measures of atherosclerosis for incident myocardial infarction: the Rotterdam Study. Circulation 109:1089–1094

    Article  PubMed  Google Scholar 

  27. Stork S, van den Beld AW, von Schacky C, Angermann CE, Lamberts SW, Grobbee DE, Bots ML (2004) Carotid artery plaque burden, stiffness, and mortality risk in elderly men: a prospective, population-based cohort study. Circulation 110:344–348

    Article  PubMed  Google Scholar 

  28. Wattanaki K, Folsom AR, Chambless LE, Nieto FJ (2005) Risk factors for cardiovascular event recurrence in the Atherosclerosis Risk in Communities (ARIC) study. Am Heart J 149:606–612

    Article  Google Scholar 

  29. Honda O, Sugiyama S, Kugiyama K, Fukushima H, Nakamura S, Koide S, Kojima S, Hirai N, Kawano H, Soejima H, Sakamoto T, Yoshimura M, Ogawa H (2004) Echolucent carotid plaques predict future coronary events in patients with coronary artery disease. J Am Coll Cardiol 43:1177–1184

    Article  PubMed  Google Scholar 

  30. Jorgensen L, Joakimsen O, Mathiesen EB, Ahmed L, Bernsten GKR, Fonnebo V, Joakimsen R, Njolstad I, Schirmer H, Jacobsen BK (2006) Carotid plaque echogenicity and risk of nonvertebral fractures in women: a longitudinal population-based study. Calcif Tissue Int 79:207–213

    Article  PubMed  CAS  Google Scholar 

  31. Ettinger B, Black DM, Nevitt MC, Rundle AC, Cauley JA, Cummings SR, Genant HK (1992) Contribution of vertebral deformities to chronic back pain and disability. The Study of Osteoporotic Fractures Research Group. J Bone Miner Res 7:449–456

    Article  PubMed  CAS  Google Scholar 

  32. Black DM, Arden NK, Palermo L, Pearson J, Cummings SR (1999) Prevalent vertebral deformities predict hip fractures and new vertebral deformities but not wrist fractures. J Bone Miner Res 14:821–828

    Article  PubMed  CAS  Google Scholar 

  33. Cooper C (1997) The crippling consequences of fractures and their impact on quality of life. Am J Med 103:12S–19S

    Article  PubMed  CAS  Google Scholar 

  34. Demer LL, Tintut Y (2003) Mineral exploration; search for the mechanism of vascular calcification and beyond. The 2003 Jeffrey M. Hoeg Award lecture. Arterioscler Thromb Vasc Biol 23:1739–1743

    Article  PubMed  CAS  Google Scholar 

  35. Abedin M, Tintut Y, Demer LL (2004) Vascular calcification: mechanisms and clinical ramifications. Arterioscler Thromb Vasc Biol 24:1161–1170

    Article  PubMed  CAS  Google Scholar 

  36. Golledge J, McCann M, Mangan S, Lam A, Karan M (2004) Osteoprotegerin and osteopontin are expressed at high concentration within symptomatic carotid artherosclerosis. Stroke 35:1636–1641

    Article  PubMed  CAS  Google Scholar 

  37. Jono S, Ikari Y, Shioi A, Mori K, Miki T, Hara K, Nishizawa Y (2002) Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106:1192–1194

    Article  PubMed  CAS  Google Scholar 

  38. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M, Mayr A, Santer P, Smolen J, Poewe W, Willeit J (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:2175–2180

    Article  PubMed  CAS  Google Scholar 

  39. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J, Capparelli C, Scully S, Tan HL, Xu W, Lacey DL, Boyle WJ, Simonet WS (1998) Osteoprotegerin deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  PubMed  CAS  Google Scholar 

  40. Mantovani A, Sozzani S, Introna M (1997) Endothelial activation by cytokines. Ann N Y Acad Sci 832:93–116

    Article  PubMed  CAS  Google Scholar 

  41. Pepys MB, Baltz ML (1983) Acute phase proteins with special reference to C-reactive protein and related proteins (pentaxins) and serum amyloid A protein. Adv Immunol 34:141–212

    Article  PubMed  CAS  Google Scholar 

  42. Demer LL (2002) Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int J Epidemiol 31:737–741

    Article  PubMed  Google Scholar 

  43. Falcone C, Emanuele E, D’Angelo A, Buzzi MP, Belvito C, Cuccia M, Geroldi D (2005) Plasma levels of soluble receptor for advanced glycation end products and coronary artery disease in nondiabetic men. Arterioscler Thromb Vasc Biol 25:1032–1037

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Kil Lim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, S.H., Kim, Y.M., Cho, M.A. et al. Echogenic Carotid Artery Plaques are Associated with Vertebral Fractures in Postmenopausal Women with Low Bone Mass. Calcif Tissue Int 82, 411–417 (2008). https://doi.org/10.1007/s00223-008-9141-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-008-9141-6

Keywords

Navigation