Skip to main content

Advertisement

Log in

Degree and Distribution of Mineralization in the Human Mandibular Condyle

  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

The degree of mineralization of bone (DMB) in the mandibular condyle reflects the age and remodeling rate of the bone tissue. Quantification of DMB facilitates a better understanding of possible effects of adaptive remodeling on mineralization of the condyle and its possible consequences for its mechanical quality. We hypothesized differences in the degree and distribution of mineralization between trabecular and cortical bone and between various cortical regions. Microcomputed tomography was used to measure mineralization in 10 human mandibular condyles. Mean DMB was higher in cortical (1,045 mg hydroxyapatite/cm3) than in trabecular bone (857 mg/cm3) and differed significantly between cortical regions (anterior 987 mg/cm3, posterior 1,028 mg/cm3, subchondral 1,120 mg/cm3). The variation of DMB distribution was significantly larger in the anterior cortex than in the posterior and subchondral cortex, indicating a larger amount of heterogeneity of mineralization anteriorly. Within the cortical bone, DMB increased with the distance from the cortical canals to the periphery. Similarly, the DMB of trabecular bone increased with the distance from the surface of the trabeculae to their cores. It was concluded that the rate of remodeling differs between condylar trabecular and cortical bone and between cortical regions and that DMB is not randomly distributed across the bone. The difference in DMB between condylar cortical and trabecular bone suggests a large difference in Young’s modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Currey JD (1988) The effect of porosity and mineral content on Young’s modulus of elasticity of compact bone. J Biomech 21:131–139

    Article  PubMed  CAS  Google Scholar 

  2. Meunier PJ, Boivin G (1997) Bone mineral density reflects bone mass but also the degree of mineralization of bone: therapeutic implications. Bone 21:373–377

    Article  PubMed  CAS  Google Scholar 

  3. Reid SA, Boyde A (1987) Changes in the mineral density distribution in human bone with age: image analysis using backscattered electrons in the SEM. J Bone Miner Res 2:13–22

    Article  PubMed  CAS  Google Scholar 

  4. Grynpas M (1993) Age and disease-related changes in the mineral of bone. Calcif Tissue Int 53(suppl 1):S57–S64

    Article  PubMed  Google Scholar 

  5. Gong JK, Arnold JS, Cohn SH (1964) Composition of trabecular and cortical bone. Anat Rec 149:325–332

    Article  PubMed  CAS  Google Scholar 

  6. Hodgskinson R, Currey JD, Evans GP (1989) Hardness, an indicator of the mechanical competence of cancellous bone. J Orthop Res 7:754–758

    Article  PubMed  CAS  Google Scholar 

  7. Mulder L, Koolstra JH, De Jonge HW, Van Eijden TMGJ (2006) Architecture and mineralization of developing cortical and trabecular bone of the mandible. Anat Embryol 211:71–78

    Article  PubMed  Google Scholar 

  8. Loveridge N, Power J, Reeve J, Boyde A (2004) Bone mineralization density and femoral neck fragility. Bone 35:929–941

    Article  PubMed  Google Scholar 

  9. Riggs CM, Vaughan LC, Evans GP, Lanyon LE, Boyde A (1993) Mechanical implications of collagen fibre orientation in cortical bone of the equine radius. Anat Embryol 187:239–748

    PubMed  CAS  Google Scholar 

  10. Skedros JG, Bloebaum RD, Mason MW, Bramble DM (1994) Analysis of a tension/compression skeletal system: possible strain-specific differences in the hierarchical organization of bone. Anat Rec 139:396–404

    Article  Google Scholar 

  11. Mulder L, Koolstra JH, Weijs WA, Van Eijden TMGJ (2005) Architecture and mineralization of developing trabecular bone in the pig mandibular condyle. Anat Rec A Discov Mol Cell Evol Biol 285A:659–667

    Article  Google Scholar 

  12. Paschalis EP, Betts F, DiCarlo E, Mendelsohn R, Boskey AL (1997) FTIR microspectroscopic analysis of normal human cortical and trabecular bone. Calcif Tissue Int 61:480–486

    Article  PubMed  CAS  Google Scholar 

  13. Ciarelli TE, Fyhrie DP, Parfitt AM (2003) Effects of vertebral bone fragility and bone formation rate on the mineralization levels of cancellous bone from white females. Bone 32:311–315

    Article  PubMed  CAS  Google Scholar 

  14. Paschalis EP, DiCarlo E, Betts F, Sherman P, Mendelsohn R, Boskey AL (1996) FTIR microspectroscopic analysis of human osteonal bone. Calcif Tissue Int 59:480–487

    PubMed  CAS  Google Scholar 

  15. Nuzzo S, Peyrin F, Cloetens P, Baruchel J, Boivin G (2002) Quantification of the degree of mineralization of bone in three dimensions using synchrotron radiation microtomography. Med Phys 29:2676–2681

    Article  Google Scholar 

  16. Mulder L, Koolstra JH, Van Eijden TMGJ (2004) Accuracy of microCT in the quantitative determination of the degree and distribution of mineralization in developing bone. Acta Radiol 45:769–777

    Article  PubMed  CAS  Google Scholar 

  17. Boivin G, Meunier PJ (2002) The degree of mineralization of bone tissue measured by computerized quantitative contact microradiography. Calcif Tissue Int 70:503–511

    Article  PubMed  CAS  Google Scholar 

  18. Van Ruijven LJ, Giesen EBW, Farella M, Van Eijden TMGJ (2003) Prediction of mechanical properties of the cancellous bone of the mandibular condyle. J Dent Res 82:819–823

    Article  PubMed  Google Scholar 

  19. Van Ruijven LJ, Mulder L, Van Eijden TMGJ (2006) Variations in mineralization affect the stress and strain distributions in cortical and trabecular bone. J Biomech (In press)

  20. Van Ruijven LJ, Giesen EBW, Mulder L, Farella M, Van Eijden TMGJ (2005) The effect of bone loss on rod-like and plate-like trabeculae in the cancellous bone of the mandibular condyle. Bone 36:1078–1085

    Article  PubMed  Google Scholar 

  21. Van Eijden TMGJ, Van Ruijven LJ, Giesen EBW (2004) Bone tissue stiffness in the mandibular condyle is dependent on the direction and density of the cancellous structure. Calcif Tissue Int 75:502–508

    Article  PubMed  CAS  Google Scholar 

  22. Van Eijden TMGJ, Van der Helm PN, Van Ruijven LJ, Mulder L (2006) Structural and mechanical properties of mandibular condylar bone. J Dent Res 85:33–37

    PubMed  Google Scholar 

  23. Yamauchi M, Sugimoto T, Chihara K (2004) Determinants of vertebral fragility: the participation of cortical bone factors. J Bone Miner Metab 22:79–85

    Article  PubMed  Google Scholar 

  24. Bord S, Ireland DC, Beavan SR, Compston JE (2003) The effects of estrogen on osteoprotegerin, RANKL, and estrogen receptor expression in human osteoblasts. Bone 32:136–141

    Article  PubMed  CAS  Google Scholar 

  25. Follet H, Boivin G, Rumelhart C, Meunier PJ (2004) The degree of mineralization is a determinant of bone strength: a study of human calcanei. Bone 34:783–789

    Article  PubMed  CAS  Google Scholar 

  26. Kingsmill VJ, Boyde A (1999) Mineralization density and apparent density of bone in cranial and postcranial sites in the aging human. Osteoporos Int 9:260–268

    Article  PubMed  CAS  Google Scholar 

  27. Roschger P, Fratzl P, Eschberger J, Klaushofer K (1998) Validation of quantitative backscattered electron imaging for the measurement of mineral density distribution in human bone biopsies. Bone 23:319–326

    Article  PubMed  CAS  Google Scholar 

  28. Rho JY, Tsui TY, Pharr GM (1997) Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation. Biomaterials 18:1325–3130

    Article  PubMed  CAS  Google Scholar 

  29. Zysset PK, Guo XE, Hoffler CE, Moore KE, Goldstein SA (1999) Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur. J Biomech 32:1005–1012

    Article  PubMed  CAS  Google Scholar 

  30. Boskey AL, Cohen ML, Bullough PG (1982) Hard tissue biochemistry: a comparison of fresh-frozen and formalin-fixed tissue samples. Calcif Tissue Int 34:328–331

    Article  PubMed  CAS  Google Scholar 

  31. Crofts RD, Boyce TM, Bloebaum RD (1994) Aging changes in osteon mineralization in the human femoral neck. Bone 15:147–152

    Article  PubMed  CAS  Google Scholar 

  32. Sissons HA, Jowsey J, Stewart L (1960) The microradiographic appearance of normal bone tissue at various ages. In: Engstrom A, Cosslett V, Pattee H (eds) X-Ray Microscopy and X-Ray Microanalysis. Elsevier, Amsterdam, pp 199–205

    Google Scholar 

  33. Rho JY, Zioupus P, Currey JD, Pharr GM (1999) Variations in the individual thick lamellar properties within osteons by nanoindentation. Bone 25:295–300

    Article  PubMed  CAS  Google Scholar 

  34. Hoffler CE, Moore KE, Kozloff K, Zysset PK, Brown MB, Goldstein SA (2000) Heterogeneity of bone lamellar-level elastic moduli. Bone 26:603–609

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Irene Aartman for statistical advice, Peter Brugman for technical assistance, and Jan Harm Koolstra and Geerling Langenbach for their comments on the manuscript. This research was supported by the Inter-University Research School of Dentistry through the Academic Centre for Dentistry Amsterdam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. M. G. J. van Eijden.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renders, G.A.P., Mulder, L., van Ruijven, L.J. et al. Degree and Distribution of Mineralization in the Human Mandibular Condyle. Calcif Tissue Int 79, 190–196 (2006). https://doi.org/10.1007/s00223-006-0015-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-006-0015-5

Keywords

Navigation