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second-daily (n = 21). In a second experiment, we separately 
investigated the influence of reversed polarity upon these 
same measures, in response to acute stimulation (n = 23) 
and repeated stimulation (n = 11). We observed a systematic 
elevation of mood in both active conditions following single 
and repeated tDCS, the latter of which displayed a progres-
sive elevation of mood from baseline. No mood change was 
noted in response to either single or repeated stimulation 
in the sham condition. Frontocerebellar tDCS stimulation 
advantageously influences mood in healthy participants, 
with an accumulative and potentiated effect following suc-
cessive stimulations. The possibility that frontocerebellar 
stimulation may provide a novel therapeutic adjunctive or 
pre-emptive intervention in stress-related disorders and 
mood-related psychopathologies should be considered.

Keywords tDCS · dlPFC · Cerebellum · Mood · Healthy 
participants

Introduction

Prolonged levels of stress can precipitate the development of 
anxio-depressive symptomology (Charles et al. 2013). With 
depression currently affecting some 350 million individuals 
worldwide (WHO 2016), the estimated financial burden of 
these conditions up until 2030 is more than £100 billion 
(Chisholm et al. 2016). As such, there is a crucial need for 
developing cost-effective, stand-alone or adjunctive treat-
ments. Advances in the fields of brain stimulation herald 
new therapeutic avenues, with fundamental and clinical 
research providing some evidence as to the efficacy of two 
forms of non-invasive brain stimulation in the treatment of 
mood disorders: repetitive transcranial magnetic stimulation 
(rTMS) (Loo and Mitchell 2005; George et al. 2000) and 

Abstract Transcranial direct current stimulation (tDCS) is 
a non-invasive form of brain stimulation, which allows for 
selective inhibition or excitation of neural structures. It has 
demonstrated some efficacy in the treatment of mood disor-
ders. However, these studies have predominately focused on 
stimulation of the prefrontal cortex (PFC). The cerebellum 
has an increasingly recognized role in emotional control, 
affective state, and some psychopathologies. As such, tDCS 
research into mood modulation needs to expand beyond 
conventional PFC-focused paradigms. Using a contralateral 
stimulation electrode placement [anodal left dorsolateral(dl)
PFC, cathodal right cerebellum], and a single-blind, 
repeated-measures design, we initially assessed changes in 
the mood of healthy participants in response to acute stimu-
lation (n = 44) and three repeated stimulations delivered 
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transcranial direct current stimulation (Boggio et al. 2008; 
Brunoni et al. 2013; Kalu et al. 2012; Loo et al. 2012; Min-
ichino et al. 2014; Nitsche et al. 2009). However, as recent 
meta-analyses highlights (Lefaucheur et al. 2017) there 
is some contention regarding the efficacy of tDCS for the 
modulation of depressive symptomology. More specifically, 
receptiveness to conventional pharmacological intervention 
appears to be a prerequisite for improvements resulting from 
tDCS (Brunoni et al. 2016; Lefaucheur et al. 2017) (See 
online resources, Sect. 1 for a table of prior mood modula-
tion protocol).

One potential avenue would be to investigate mood 
modulation in healthy participants, in the hope that tDCS 
could provide a preemptive therapeutic intervention. To 
date, whether examining neuropsychiatric disorders such 
as depression, or healthy participants, research into the 
modulation of mood states has predominately focused on 
the role played by the PFC (e.g. Davidson 2002; Greicius 
et al. 2007a; Holzschneider and Mulert 2011; Mayberg et al. 
1997; Seminowicz et al. 2004; Telzer et al. 2008). The basis 
for neuromodulation with regard to depression is premised 
on observations of hypoactivity of the left dlPFC, as indi-
cated by reduced glucose metabolism or blood flow (Baxter 
et al. 1989; Blumberger et al. 2012; Brunoni et al. 2012a; 
Fitzgerald et al. 2006), and the theory that it is possible to 
ameliorate depressive symptoms by addressing this dys-
functional imbalance between the hemispheres via anodal 
stimulation of the left dlPFC.

As neuroimaging studies (NIRS) have demonstrated that 
tDCS can produce electrode dependent changes in surface 
BOLD response (Merzagora et al. 2010), and normalisation 
of left dlPFC hypoactivity has been observed following suc-
cessful antidepressant treatment (Baxter et al. 1989; Fales 
et al. 2008; Kennedy et al. 2001), this logic is not without 
merit. However, not unsurprisingly given the aetiology of 
MDD, observations regarding lateralised hypo-/hyper activ-
ity are inconstant and not confined to the dlPFC (for exam-
ple, Brooks et al. 2009; Drevets et al. 2002; Greicius et al. 
2007a).

When considering mood modulation in healthy partici-
pants, it is important to acknowledge the areas where pre-
vious studies into depression have documented success or 
failure in the modulation of neurologic activity with tDCS. 
However, given the differences observed between healthy 
controls and sufferers of depression, replication of results 
obtained in depression studies cannot necessarily be antici-
pated. Numerous studies highlight changes in functional 
connectivity and grey and white matter density, of cortical 
and subcortical structures (Amico et al. 2011; Chang et al. 
2011; Davis 2004; Lacerda et al. 2004; Martinot et al. 2011; 
Taylor et al. 2004), which would influence current density 
and flow through prefrontal structures (Shahid et al. 2013).

As a recent review highlights (Remue et  al. 2016), 
prefrontal tDCS does not appear to offer mood improve-
ments in healthy participants following single stimulation. 
Although some success has been achieved with repeti-
tive stimulation using the F3 anode/F4 cathode electrode 
placement (Austin et al. 2016), it is worth considering 
that prefrontal orientated electrode positioning, whilst 
relatively focal, may not produce the optimal montage 
for mood modulation. Given that inter-electrode distance 
influences the degree of shunting and the amount of cur-
rent which enters the brain (Bikson et al. 2010), it may 
even be considered somewhat restrictive in terms of the 
modulation of brain regions associated with limbic and 
affective process. Thus, whilst a number of tDCS para-
digms with clearly established safety protocols have been 
published (e.g. Palm et al. 2012; Ferrucci et al. 2009), an 
optimal stimulation paradigm remains to be defined. Con-
sequently, there is a need to expand beyond the established 
frontal-orientated montages.

One brain region with an increasingly commonly rec-
ognized role in cognition and emotion is the cerebellum 
(Adamaszek et al. 2017; Hone-Blanchet et al. 2015; Strata 
2015; Stoodley 2012; Stoodley and Schmahmann 2010). 
Animal studies historically implicate it as an important 
component in higher brain functions and affective behav-
iours (Berman et al. 1974; Berrnan 1997). Despite only 
comprising 10% of the brain’s volume, the cerebellum con-
tains approximately 80% of its neurones (Herculano-Houzel 
2009). It is, therefore, not surprising that investigations into 
the effects of modulation of cerebellar activity, via both 
tDCS (as highlighted by Ferrucci et al. 2016; Grimaldi et al. 
2016) and rTMS (e.g. Gironell et al. 2002; Popa et al. 2013; 
Schutter and van Honk 2009; Zunhammer et al. 2011) have 
gained momentum over the last decade or so. Moreover, 
it is increasingly recognized that differences in cerebellar 
morphology and activation (Peng et al. 2011; Daskalakis 
et al. 2008; Konarski et al. 2005) play an important role in 
the onset and maintenance of mood disorders (Perciavalle 
et al. 2013; Turner et al. 2007; Schutter and van Honk 2005; 
Schmahmann 2004; Schutter et al. 2003).

The cerebellum possesses hemispherical laterality and 
has demonstrated asymmetry in functional coupling between 
its two hemispheres and their contralateral cerebrum (Hu 
et al. 2008; Wang et al. 2013). When not externally stimu-
lated, the cerebellum exerts an overall inhibitory tone over 
the frontal cerebral cortex (cerebello-brain inhibition—CBI) 
via dentate-thalamo-cortical connections (Middleton and 
Strick 2001). It has been hypothesised that cerebellar tDCS 
produces behavioural and neurophysiological changes via 
excitation or suppression of its GABAergic Purkinje cell 
activity (Galea et al. 2009). A reduction of CBI, with sub-
sequent potentiated disinhibition of the cerebral cortex, has 
already been reported in response to cathodal stimulation 
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of the right cerebellum (Block and Celnik 2013; Pope and 
Miall 2012; Galea et al. 2009).

To date, a number of studies have examined frontocer-
ebellar tDCS for a variety of clinical applications, such 
as essential tremor control (Gironell et al. 2014), obses-
sive–compulsive disorder (Bation et al. 2016), bipolar dis-
order (Bersani et al. 2015; Minichino et al. 2014), and hand 
dystonia (Bradnam et al. 2015). However, we believe we 
are the first to investigate the influence of a contralateral 
frontocerebellar stimulation electrode placement upon state, 
self-evaluated mood of healthy participants in response to 
acute and repetitive stimulation.

Prior mood modulation research has predominantly 
focused on extended periods (≥ 20 min) of daily stimulation 
for approximately 2 weeks or (Bueno et al. 2011; Ferrucci 
et al. 2009; Palm et al. 2012) (See also online resources, 
Sect. 1). Recent work, however, has demonstrated the poten-
tial for shorter (12 min) bilateral stimulations of the dlPFC 
to positively modulate mood in healthy individuals (Austin 
et al. 2016), which was incorporated into our study design.

In the present study, we expand upon established prefron-
tal focused stimulation protocol situating the anode over the 
left dlPFC and the cathode over the right hemisphere of the 
cerebellum. We hypothesised that contralateral frontocer-
ebellar stimulation would produce a measurable change in 
mood. To examine the polarity-dependent effects of stimula-
tion upon mood we then conducted a second experiment in 
which the frontocerebellar montage was reversed, such that 
the left dlPFC received cathodal stimulation and the right 
cerebellum received anodal stimulation.

Materials and methods

Design

We employed a single-blind, repeated-measures design, 
in which participants were blind, and administrators of 
the stimulation utilised a set of codes to initiate a sham or 
active stimulation. Participants either signed up to complete 
a single stimulation or 3-stimulation experiment and were 
randomly allocated to the different conditions by use of a 
random sequence generator (random.org 2017). In both 
experiments, all participants completed session 1 (Fig. 1a), 
whilst only those who had previously signed up for the 
3-stimulation experiment proceeded to complete sessions 2 
and 3. The three sessions were delivered over a 5-day period, 
on days 1, 3 and 5 (Fig. 1b). Sessions 1 and 3 were run in 
the same manner with consistent timings between elements, 
with the exception that the BAI and BDI-II were only admin-
istered in session 1. Session 2 consisted of stimulation only.

Procedure and materials

Session 1 consisted of the completion of questionnaires 
related to demographic information. This was followed 
by completion of the BAI and BDI-II. Participants then 
undertook a Flanker Task test of focused attention and 
response inhibition (further detail relating to the procedure 
and parameters of the Flanker Task are included in online 
resources, Sect. 6). They were then asked to complete a 
visual analogue scale based on the dimensions of the bi-
polar Profile of Mood. This was followed by application of 
a set of 5 cm × 5 cm rubber/graphite electrodes, closely 
fitted in specially designed saline-soaked (0.9% w/v NaCl) 
sponge pockets, and administration of either Active or Sham 

Fig. 1  Schematic of the study 
timeline. a Sessions 1 timeline: 
BAI Beck Anxiety Inven-
tory, BDI-II Beck Depression 
Inventory-II, POMS VAS profile 
of mood states—visual ana-
logue scale, tDCS transcranial 
direct current stimulation. b 
Schematic of the study timeline 
for tDCS sessions 1–3, experi-
ments 1 and 2. Data collection 
occurred on days 1 and 5 only, 
tDCS stimulation occurred on 
days 1, 3, and 5
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stimulation generated by a neuroConn tDCS stimulator (neu-
roConn GmBH, Germany).

Following completion of the stimulation, participants 
had a rest period of approximately 16 min (Merzagora et al. 
2010). This was followed by a repetition of the Flanker 
Task and completion of the POMS-VAS. To prevent move-
ment and disengagement during the experiment, between 
tasks, participants were requested to watch one of 4 nature 
documentaries (counterbalanced throughout the course of 
the trial; online resources, Sect. 7). At the end of the final 
session, participants received a verbal and written debrief.

tDCS electrode placement

Prior studies have utilised cerebellar stimulation paradigms 
involving either bilateral or right cerebellum hemisphere 
stimulation with the reference electrode situated on either the 
ipsilateral buccinator or shoulder (e.g. Ferrucci et al. 2012, 
2013; Jayaram et al. 2012; Galea et al. 2009). In the present 
research, however, we make use of a stimulation montage 
in which one electrode is positioned over the left dlPFC (F3 
position according to the 10–20 electrode system), whilst 
the opposing electrode is positioned over the contralateral 
lobe of the cerebellum. Placement for lateral stimulation of 
the cerebellum is determined as 1 cm down from the inion 
and approximately 3–3.5 cm away from the midline of the 
skull (Ferrucci et al. 2015; Hashimoto et al. 1995), such that 
the centre of the electrode is situated approximately over 
CRUS II and Lobule VII B portions of the cerebellum. We 
tailored the stimulation montage to target our brain regions 
of interest by generating theoretical models of current flow 
(Fig. 2) using the HD-Explore software (Soterix Medical, 
NY, USA), which uses a finite-element-method modeling 

approach to quantify electric field intensity throughout the 
brain (Datta et al. 2009).

In line with prior mood modulation work (Austin et al. 
2016), stimulation was performed for a duration of 12 min. 
In keeping with prior cerebellar stimulation studies (e.g. 
Block and Celnik 2013; Ferrucci et al. 2013; Shah et al. 
2013), an intensity of 2 mA was used for active stimulation 
with a maximum output of 0.08 mA cm2, a 15 s ramp-up 
period at the start, and a 15 s ramp-down period at the end. 
Sham stimulation delivered a total electrical load, of 5% of 
that given to the active condition. This consisted of a ramp-
up period of 15 s (at 0.13 mA  s−1) to realistically simulate 
an active stimulation by inducing the tingling sensation often 
felt during the start of the tDCS stimulation (Brunoni et al. 
2012b; Kessler et al. 2012), a plateau period of 6 s, and a 
ramp-down period of 15 s. The attachment of the wires to 
the electrodes were positioned such that they were verti-
cally oriented and directing the wire downwards. Electrode 
impedance of less than 5 kΩ was ensured before stimulation 
began. The tDCS device included a feature to automatically 
cease stimulation if impedance became too high; this did not 
occur during any stimulations.

Mood assessment

The profile of mood states (POMS) (McNair et al. 1971) 
questionnaire provides a rapid method of assessing tran-
sient, fluctuating active mood states. It is an instrument 
particularly well suited to the present research because of 
its sensitivity to change in affective states. Six visual ana-
logue scales (VAS) were derived from dimensional analy-
sis of the 72-question, bipolar POMS questionnaire (Lorr 
et al. 1982; McNair et al. 1971; O’Connell et al. 2012; 

Fig. 2  Modelling of the electric field intensity. Modelling uses a standard brain, for the pad electrode placement targeting the left dlPFC (anode) 
and right cerebellum (cathode)
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O’Halloran et al. 2004) (subsequently referred to as POMS-
VAS). Using a VAS to evaluate current mood has been 
repeatedly demonstrated to be valid and reliable (e.g. de 
Boer et al. 2004; Terry et al. 2003; Shacham 1983; Lee et al. 
1991; Aitken 1969). Participants were asked to mark one 
vertical line across each of the six horizontal bipolar axes: 
agreeable–hostile; clearheaded–confused; composed–anx-
ious; elated–depressed; confident–unsure; energetic–tired. 
Each VAS axis was 100 mm in length and scores (in mm) 
were calculated from the right hand of the axis, such that 
an increased score indicated an elevation in positive mood 
attributes.

Statistics

All results were analysed using SPSS statistical analyses 
software for Windows (Version 22.0. Armonk, NY: IBM 
Corp.). Pearson’s X2 was used to assess distributions of gen-
der and handedness, and a one-way ANOVA was employed 
in the assessment of the distribution of age, BMI, BDI-II 
scores, and BAI scores between conditions. Prior to analy-
sis of the mood modulation data, composite scores from 
all dimensions of the POMS were calculated and averaged 
(subsequently referred to as POMS-VAS unless otherwise 
stated). Outliers were identified using the interquartile range 
with a multiplication factor of 2.2 (Hoaglin et al. 1986; 
Tukey 1977). Pearson’s r was used to investigate associa-
tions between baseline scores for BDI-II and BAI, which 
were examined against changes in POMS-VAS scores, and 
the corresponding individual dimensions of the POMS-VAS 
scale (i.e. elated–depressed, composed–anxious). Before 
analysing data from the Flanker attention task, averaged 
scores were calculated for separate response times of cor-
rectly answered congruent and incongruent trials. Addition-
ally, the number of errors in response to congruent stimuli 
was calculated, as was the number of errors in response to 
incongruent stimuli and the total error rate across all valid 
trials.

Pre-stimulation on session 1 formed the baseline meas-
urement for all subsequent measures (Austin et al. 2016). To 
measure the acute effects of stimulation on mood, and behav-
ioural response to the Flanker Task, 2 × 2 mixed ANOVAs 
[Time (pre-stimulation/post-stimulation) × Condition (sham/
active)] were performed on all primary outcome measures, 
with time as within-subjects and condition as between-sub-
jects factors. Follow-up t tests were then used to investigate 
the effects of the within- and between-subjects factors on 
POMS-VAS and the individual dimensions of the POMS 
VAS. In Experiment 1, the effects of repeated stimulation 
upon mood were investigated with a 4 × 2 ANOVA [Time 
(pre-stimulation1/post-stimulation1/pre-stimulation3/post-
stimulation3) × Condition (sham/active)] mixed ANOVA. 
Again, follow-up t tests were employed to compare baseline 

measurements against subsequent time point, and for analysis 
of within-subjects effects of repeated stimulations. In Experi-
ment 2, the effects of repeated stimulation upon mood were 
investigated with repeated-measures ANOVA of the 4-time 
points, and follow-up t tests. Bonferroni corrections were 
applied where appropriate.

Participants

Seventy-nine healthy adults, aged between 18 and 40, partici-
pated in the experiment for either financial remuneration in the 
form of a £10 voucher or course credits. Fifty-three partici-
pants were randomly allocated into either Active; F3:Anode/
Cerebellum:cathode [F3+/Cb− (n = 28) or Sham (n = 24) 
conditions of Experiment 1 by use of a random number gener-
ator (random.org 2017). The remaining participants formed the 
Active condition; F3:Cathode/Cerebellum:anode (F3−Cb+) 
(n = 26) of Experiment 2 (See Table 1 for demographic clari-
fication of participants included in inferential analyses].

Participants were naïve to the purpose of the study but 
were informed that it involved neuromodulation via tDCS 
and the completion of questionnaires and computer-based 
tasks. All participants signed written informed consent 
forms and completed a series of screening questionnaires 
to ensure they were neurologically and psychologically 
healthy, with no contraindications to tDCS. Exclusion cri-
teria included experience of head trauma, seizures, psy-
chological and/or neurological disorders, previous adverse 
experience with any form of neuromodulation, or the pos-
session of an implant (for example, cochlea or a pacemaker). 
Side effects questionnaires were completed at the beginning 
of sessions 2 and 3. Follow-up side effect questionnaires 
were emailed out 1 week after cessation of participation. 
A tingling sensation was reported by all conditions (F3+/
Cb− = 3, Sham = 2, F3−/Cb+ = 5), as was sleepiness (F3+/
Cb− = 5, Sham = 5, F3−/Cb+ = 5), and redness (F3+/
Cb− = 1, Sham = 1, F3−/Cb+ = 4). Trouble concentrating 
(F3+/Cb− = 3, Sham = 2) and headaches (F3+/Cb− = 3, 
Sham = 4) were only reported in Experiment 1, and acute 
mood change was reported in both active conditions (F3+/
Cb− = 2, F3−/Cb+ = 1), but not the Sham condition. All 
participants were given details of the University’s Wellbeing 
services, as well as local branches of MIND, and the Samari-
tans. The departmental Research Ethics Committee of Swan-
sea University approved all experimental procedures.

Experiment 1

Participants for single stimulation

Forty-four participants were included in the final analy-
ses (Table 1). Of the 53 participants who completed the 
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experiment, one was excluded from the Sham condition 
for exceeding the imposed limitations of BAI and/or 
BDI-II scores for mild anxiety (BAI ≤ 16, Creamer et al. 
1995) and mild depression (BDI-II ≤ 19, Beck et al.1996) 
and seven were excluded from the F3+/Cb− condition: 
two were excluded due to a malfunction that resulted in 
excess heat within the laboratory during their data collec-
tion, one after being identified as an extreme outlier, and 
four for exceeding the imposed limitations of BAI and/
or BDI-II scores (see “Shortcomings and future direc-
tions”). Both gender (X2 = .195, p = .659) and handed-
ness (X2 = .135, p = .713) were closely matched between 
the two conditions. There were no significant differences 
of age [F(1,42) = 3.388, p =  .073], BMI distribution 
[F(1,42) = .007, p = .934], BAI scores [F(1,42) = 1.608, 
p = .212], or BDI-II scores [F(1,42) = .220 p = .642] 
between the two conditions.

Participants for repeated stimulation

Twenty-one participants completed the three stimula-
tion trial (Table  1). There were no significant differ-
ences of gender (Fischer exact test p = .670), handed-
ness (Fischer exact test p = 1.0), age [F(1,19) = 1.276, 
p = .273], BMI distribution [F(1,19) = .037, p = .849], 
BAI [F(1,19)  =  2.630, p  =  .121], or BDI-II scores 
[F(1,19) = .188, p = .670] between the two conditions 
of Experiment 1.

Experiment 2

Participants for single stimulation

Twenty-Three participants were included in inferential anal-
ysis (Table 1) one being excluded due identification as an 
extreme outlier, and two for failing to sufficiently engage 
with the Flanker Task. No differences in gender (X2 = .210, 
p = .900), handedness (X2 = 3.021, p = .221) or BMI dis-
tribution [F(2,64) = .344, p = .710] were observed among 
all 3 conditions of both experiments. There was, how-
ever, a significant difference of age between all conditions 
[F(2,64) = 3.852, p = .026] namely, however, this was only 
between the F3−/Cb+ condition and the Sham condition 
[F(1,44) = 5.443, p = .024], but not between the F3 +/
Cb− condition and the F3−/Cb+ condition [F(1,42) = .568, 
p = .455]. Additionally, age was not associated with the pri-
mary outcome measures for the F3−/Cb+ condition (POMS-
VAS score change: n = 23, r = .22, p = .31), suggesting that 
age exerted no influence over the observed effects.

There was no significant difference of BDI-II scores 
between all three conditions [F(2,64) = 2.546, p = .086], 
although a significant difference between BAI scores was 
observed [F(2,64) = 3.502, p = .036]. Further investiga-
tion revealed that this was between the F3+/Cb− condition 
and the F3−/Cb+ condition [F(1,42) = 5.632, p = .022], 
but not the F3−/Cb+ condition and the Sham condition 
[F(1,44) = 2.368, p = .131]. However, BAI scores were 
not associated with the primary outcome measure for the 

Table 1  Distribution of participants across conditions and experiments

Group Measure Experiment 1 Experiment 2

F3+/Cb− condition Sham condition F3−/Cb+ condition

n M SD n M SD n M SD

Single stimulation: Participants 21 23 23
Female 15 15 16
Right hand dominant 29 20 23
Age 20.61 2.52 23.09 5.65 20.00 2.89
BMI 23.41 3.66 23.57 3.53 22.73 3.69
BDI-II 5.33 4.42 5.87 3.11 7.87 4.28
BAI 3.67 2.92 4.70 2.46 6.21 4.06

Repeated stimulation: mood Participants 10 11 11
Female 6 5 8
Right hand dominant 9 9 11
Age 20.4 2.95 22.73 5.87 20.27 4.00
BMI 24.11 3.63 23.80 3.82 22.54 4.36
BDI-II 6.4 4.55 7.18 3.71 9.36 4.70
BAI 3.6 3.09 5.64 2.66 6.72 5.0
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F3−/Cb+ condition (POMS-VAS score change: n = 23, 
r = .30, p = .17).

Participants for repeated stimulation

Eleven participants (Table  1) were analysed on self-
reported measures of mood with the POMS-VAS. Gender 
(X2 = 1.698, p = .428) and handedness (X2 = 2.147, p = .342) 
showed no significant difference in distribution between the 
F3−/Cb+ condition of Experiment 2 and the two groups 
of Experiment 1. Again, no significant difference of age 
distribution [F(2,29) = 1.031, p = .369], BMI distribution 
[F(2,29) = .477, p = .625], BAI scores [F(2,29) = 1.865, 
p = .173], or BDI-II scores [F(2,29) = 1.339, p = .278] were 
observed between all groups across both experiments.

Results

BAI scores correlated significantly with baseline POMS-
VAS scores (n = 67, r = −.31, p = .01) as well as with 
baseline scores of the individual POMS-VAS dimension of 
composed–anxious (n = 67, r = −.26, p = .032). BDI-II 
scores also correlated significantly with baseline POMS-
VAS scores (n = 67, r = −.36, p = .003), and with baseline 
measurements of the individual POMS-VAS dimension of 
Elated–Depressed (n = 67, r = −.44, p < .001). However, 
for the active conditions F3+/Cb− and F3−/Cb+, there was 
no association between baseline BAI scores and change of 
POMS-VAS scores (n = 21, r = −.27, p = .23) and (n = 23, 
r = −.30, p = .17), respectively, or baseline BDI-II scores 
and change of POMS-VAS scores (n = 21, r = −.08, p = .73) 
and (n = 23, r = −.02, p = .94), respectively.

Influence of Single Stimulation Over POMS‑VAS 
Scores

Experiment 1: To examine the acute effects of tDCS stimu-
lation upon mood we initially conducted a 2 × 2 ANOVA 
on POMS-VAS scores. A main effect of Time was observed 
[F(1,42) = 6.742, p = .01, observed power = .718], but no 
main effect of Condition was present [F(1,42) = 2.678, 
p = .11, observed power = .359]. However, we did observe 
a significant Time × Condition interaction [F(1,42) = 6.170, 
p = .02, observed power = .680]. In addition, we observed 
a significant increase in POMS-VAS scores from pre- 
to post-stimulation for the Active F3+/Cb− condition 
[t(20) = 4.481, p = < .001, Cohen’s d = .62], but not for the 
Sham condition [t(22) < 1]. We observed no statistical dif-
ference between POMS-VAS scores for the two conditions at 
pre-stimulation [t(42) < 1], but we did observe a difference 
at post-stimulation [t(42) = 2.230, p = .03] (Fig. 3).

Experiment 2: For the acute effects of the reversed polar-
ity tDCS electrode placement upon mood, we observed a 
significant increase in POMS-VAS scores between pre- and 
post-stimulation for the F3−/Cb+ condition [t(22) = 3.820, 
p = .001, Cohen’s d = .56] (Fig. 3). See online resources, 
Sect. 2 for table of mean ± standard deviation, and Sect. 3 
for examination of the POM-VAS dimensions.

Experiment 1, results of paired and independent t tests for 
F3+/Cb− (n = 21) and Sham conditions (n = 23). Experi-
ment 2, results of paired t test: F3−/Cb+ condition (n = 23), 
pre- and post-stimulation.

Influence of Repeat Stimulation Over POMS‑VAS 
Scores

Experiment 1: Over successive stimulations, we observed 
a progressive increase in mean F3+/Cb− POMS-VAS 
scores that was not present in the sham condition. To 
examine the effect of repeated stimulation upon mood, a 
4x2ANOVA [Time (Pre-stimulation1/Post-stimulation1/
Pre-stimulation3/Post-stimulation3) × Condition (Sham/
Active)] was employed. A main effect of Time was present 
F(3,57) = 3.719, p = .009, observed power = .836], but there 
was no main effect of Condition F(1,19) = 3.295, p = .085, 
observed power = .407]. However, we did observe a sig-
nificant Time × Condition interaction [F(3,57) = 3.719, 
p  =  .016, observed power  =  .780]. Independent t 

Fig. 3  Single stimulation POMS-VAS analysis for Experiments 1 
and 2 (*p ≤ .05; **p ≤ .01; ***p ≤ .001)
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tests revealed no significant difference between F3  +/
Cb− and Sham conditions for POMS-VAS scores at base-
line [t(19) < 10], post-stimulation1 [t(19) = 1.612, p = .61], 
or pre-stimulation3 [t(19) = 1.851, p = .78]. We did, how-
ever, observe a significant difference between conditions 
for post-stimulation3 [t(19) = 2.459, p =  .024, Cohen’s 
d = 1.09]. Additionally, follow-up t tests revealed signifi-
cant differences for POMS-VAS measurements in the F3 +/
Cb- condition between baseline and post-stimulation1 
[t(9) = 3.254, p = .010, Cohen’s d = .36]; pre-stimulation3 
[t(9) = 3.652, p = .005, Cohen’s d = .61]; and post-stimu-
lation3 [t(9) = 4.368, p = .002, Cohen’s d = .74] (Fig. 4). 
All comparisons to baseline survived post hoc analyses 
with Bonferroni correction (p < .016). We found no sig-
nificant change between baseline and further measurements 
in the sham condition (Fig. 4). No significant change was 
observed between pre-stimulation3 and post-stimulation3 for 
either the F3+/Cb− [t(9) = 1.667, p = .130], or the Sham 
[t(10) = 1.170, p = .269] condition.

Experiment 2: Over successive stimulations, we observed 
a progressive increase in mean F3−/Cb+ POMS-VAS scores 
[F(3,30) = 4.172 p = .014, observed power = .803]. Paired t 
tests revealed significant differences for POMS-VAS meas-
urements in the F3−/Cb+ condition between baseline and 
post-stimulation1 [t(10) = 3.38, p = .008, Cohen’s d = .76]; 
pre-stimulation3 [t(10) = 2.552, p = .029, Cohen’s d = .57]; 
and post-stimulation3 [t(10) = 2.877, p = .016, Cohen’s 

d = .67] (Fig. 4). Only comparisons of post-stimulation1 
and post-stimulation3 to baseline survived post hoc analy-
sis with Bonferroni correction (p < .016). No significant 
change was present between pre-stimulation3 and post-stim-
ulation3 [t(10) = 2.048, p = .068]. See online resources, 
Sect. 4 for table of mean ± standard deviation, t, p, and d 
values, and Sect. 5 for examination of individual POMS-
VAS dimensions.

Experiment 1, results of paired and independent t tests for 
F3+/Cb− (n = 10) and Sham (n = 11) conditions. Experi-
ment 2, results of paired t test: F3−/Cb+ condition (n = 11).

Flanker task

No significant interactions were observed either single or 
repeat stimulation experiments. See online resources, Sect. 6 
for table of mean ± standard deviation, and results.

Discussion

The present research demonstrates that single or repeated 
sessions of frontocerebellar tDCS constitute an effective 
strategy to positively modulate mood. Following a single 
stimulation session, a mood improvement of approximately 
5% was observed in both the F3+/Cb− condition of Exper-
iment 1 and again in the F3−/Cb+ of Experiment 2. No 
significant change was noted in the Sham condition. Addi-
tionally, we demonstrated a successive elevation of mood 
from baseline in both experiments following three stimu-
lations delivered second-daily over the course of 5 days, 
with a total increase of mood from baseline of > 6% for the 
F3+/Cb− condition and > 8% for the F3−/Cb+ condition. 
A significant mood increase was again observed between 
pre-/post-stimulation1 for both active conditions of repeti-
tive stimulation analysis. A non-significant increase was 
observed between pre- and post-stimulation 3. As we used 
healthy participants, it is possible this lack of significance 
may reflect an approach to a ceiling with regard to mood 
measures.

A significant difference between BAI scores was observed 
between the active conditions F3+/Cb− and F3−/Cb+. 
However, whilst BAI and BDI-II scores both correlated 
significantly with baseline measures of POMS-VAS, there 
was no correlation between these scores and the degree of 
mood change, making it unlikely that the observed changes 
in Experiment 2 were driven by baseline levels of anxiety.

It must be considered that the differences in baseline lev-
els between Experiment 1 and Experiment 2 may be driving 
the effect observed in the F3−/Cb+ reverse polarity mon-
tage. It is not possible for us to directly compare the results 
from these two experiments, however, it should be noted that 
data collection occurred at different times of the year. As 

Fig. 4  Repeat stimulation POMS-VAS analysis for Experiments 1 
and 2 (*p ≤ .05; **p ≤ .01; ***p ≤ .001)
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season variation has been shown to impact upon a number 
of endocrine functions which influence mood and level of 
psychological arousal (Hansen et al. 2008, 2001; Lam and 
Levitan 2000; Persson et al. 2008), it is possible that had 
data collection occurred during the same seasonal period we 
would still have observed an equivalent POMS-VAS base-
line in the F3−/Cb+ condition of Experiment 2, and still 
observed the same degree of mood increase.

Whilst not conclusive, there is some evidence to suggest 
an absence of polarity specific effects for mood modula-
tion which warrant further investigation. Baseline levels 
of mood for the F3−/Cb+ condition of Experiment 2 are 
approximately 7% lower than those of either condition of 
Experiment 1. Following single stimulation the observed 
increase of mood for the F3−/Cb+ condition only slightly 
exceeds both pre and post-stimulation scores of the Sham 
condition. However, following repeated stimulation there is 
an elevation from baseline at all points of data collection for 
the F3−/Cb+ condition of Experiment 2 which is equivalent 
too or exceeds the greatest POMS-VAS score for the Sham 
condition. Additionally, comparison of the POMS-VAS 
dimensions exhibits an almost paralleled change across all 
dimensions for both Active conditions, but not for the Sham 
conditions. This is most is obvious following single stimu-
lation (See online resources, Sect. 3) but is also present, 
albeit to a lesser degree, in dimensional analyses for repeated 
stimulation (See online resources, Sect. 3).

Whilst it may be intuitive to expect that polarity would 
influence the effects of the montage, as some evidence sup-
ports the classical notion of the influence of polarity upon 
neuronal excitability (e.g. Datta et al. 2009), this is perhaps 
somewhat over-simplistic. Orientation of somatodendritic 
axis and the distance of the axon to the locally applied direct 
current has resulting cellular influences (Holsheimer et al. 
2007; Bikson et al. 2004; Gluckman et al. 1996) and can 
determine whether the applied field has an excitatory or 
inhibitory influence (Kabakov et al. 2012). Additionally, the 
physiological effects of the stimulation extend beyond the 
influence of electrode polarity and neuronal orientation and 
are also determined by whether the predominant influence of 
the affected network is excitatory or inhibitory (Lefaucheur 
et al. 2017).

Other considerations when examining polarity induced 
effects include stimulation intensity and current density at 
the electrode (Faria et al. 2011; Miranda et al. 2009, 2006). 
Increases in the amplitude of cathodal stimulation, from 1 
to 2 mA, have been shown to induce (motor) cortical excit-
ability enhancement, reflective of anodal stimulation (Bat-
sikadze et al. 2013). Additionally, cortical folding produces 
polarity inversions of current flow and gyri and sulci pro-
duce the potential for current clustering (Datta et al. 2009; 
Sadleir et al. 2010). The cerebellum possesses both a dis-
proportionally high density of neurons (Herculano-Houzel 

2009), many of which are GABAergic (Galea et al. 2009; 
Pope and Miall 2012), and a large degree of cortical folding 
(Herculano-Houzel 2009). Therefore, whilst certain limita-
tions of the study prevent us from drawing definitive con-
clusions, it is perhaps not surprising that at 2 mA polarity 
appears to have little, if any, influence over the degree to 
which mood was modulated.

To the best of our knowledge, the present study is the 
first to successfully demonstrate mood modulation in healthy 
subjects, in response to both single, and repeated, adminis-
tration of tDCS. This may be partly attributable to methodo-
logical differences. In this research we used a VAS derived 
from the bipolar POMS questionnaire, whereas other studies 
[e.g. (Bennabi et al. 2015; Brunoni et al. 2013; Loo et al. 
2010)] have used methods such as the Montgomery Asberg 
Depression Rating Scale, or the Hamilton Depression Rat-
ing Scale. Whilst reliable when assessing individuals with 
depression, the latter measures are perhaps not sensitive 
enough to detect transient fluctuations in mood of healthy 
individuals.

Another consideration is the time at which we assessed 
mood: It seems common practice to administer the meas-
ures immediately before (baseline) and following stimu-
lation (e.g. Nitsche et al. 2012; Peña-Gómez et al. 2011; 
Plazier et al. 2012; Vanderhasselt et al. 2013), although 
Fregni et al. (2008) completed the final evaluation approxi-
mately 10 min after stimulation cessation, while Tadini et al. 
(2011) completed the final assessment approximately post 
20 min. We administered the post-stimulation POMS-VAS 
at approximately 25 min post stimulation-cessation. Motor 
cortex studies have demonstrated peak MEP amplitudes 
occurring approximately 90 min after stimulation (e.g. Bat-
sikadze et al. 2013). It is possible that the convention timing 
of re-assessment following tDCS does not allow for a suf-
ficient period to detect tDCS-induced modulations of mood. 
Duration of stimulation may also contribute to differences 
in findings.

In our previous research (Austin et al. 2016) as in the cur-
rent one, we used a stimulation duration of 12 min. Many 
prior studies, however (e.g. Bennabi et al. 2015; Brunoni 
et al. 2013; Fregni et al. 2008; Motohashi et al. 2013) used 
stimulation durations of 20 min or more. However, modu-
latory effects lasting approximately 1 h have been demon-
strated for tDCS stimulation durations of 10 min (Fricke 
et al. 2011; Furubayashi et al. 2008; Nitsche and Paulus 
2001) and a nonlinear influence has been demonstrated 
between stimulation duration and potentiated effect (Monte-
Silva et al. 2013).

Frontocerebellar stimulation has previously been investi-
gated in conjunction with a number of pathologies, however, 
differences such as electrode size and position exist between 
the montages previously used and the one utilised within 
the present research. For example, in the case of Ho et al. 
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(2014), a 5 cm × 7 cm electrode was positioned over the left 
supraorbital region, while a large 5 cm x 10 cm cathode was 
situated centrally over the cerebellum. Here, we used the 
same 5 × 5 cm (25 cm2) electrode size as Minichino et al. 
(2014). However, whilst identification of the site of cerebel-
lar stimulation was comparable, we identified the dlPFC as 
situated under the position of F3 of the 10-coordinate sys-
tem, whereas Minichino et al. (2014) used the less conven-
tional position of Fp1. Since tDCS relies on the presence of 
both polarity electrodes, current must always enter and exit 
the cortex via intermediary brain regions. Even small vari-
ations of electrode placement and size can influence tDCS 
field distribution (Saturnino et al. 2015; Faria et al. 2011; 
Miranda et al. 2009).

Without supporting physiological and/or neuroimaging 
data, it is only possible to speculate about the mechanism 
which might be responsible for this mood modulation. Previ-
ous mood modulation investigation has restricted the flow 
of current to the prefrontal cortices. Increased distance 
between electrodes reduces the degree of shunting across 
the scalp, increasing the amount of current which enters the 
brain (Bikson et al. 2010). In support of this, the compu-
tational model (Fig. 2) indicated particularly high current 
density in one area of the limbic system: the anterior cingu-
late cortex (ACC). Levels of ACC activity have been cor-
related with severity of depressive symptoms and treatment 
outcomes (Downey et al. 2016; Mayberg et al. 1997; Osuch 
et al. 2000), and deep brain stimulation of the ACC has 
demonstrated amelioration from treatment resistant depres-
sion (Anderson et al. 2012; Holtzheimer and Mayberg 2012; 
Mayberg 2009).

By directing the current contralaterally from the pos-
terior to the anterior of the brain (or visa-versa), there is 
perhaps a greater chance of modulating neural activity in 
structures associated with affective processes and arousal. 
For example, the cerebellum has demonstrated reciprocal 
connections with brainstem regions linked to limbic and par-
alimbic regions (Snider and Maiti 1976), the hypothalamus 
(Aas and Brodal 1988; Haines et al. 1984), as well as brain-
stem regions that participate in the modulation of autonomic 
function (Almeida et al. 2002; Golanov et al. 2000; Andrezik 
et al. 1984; Miura and Reis 1969).

Shortcomings and future directions

Aside from the fact that data for all three conditions were 
not collected within the one experiment, the current research 
presents several limitations. Firstly, blinding may have been 
inadequately assessed. Whilst some studies have assessed 
the sham protocol as a suitable blind for tDCS studies using 
1 mA (Gandiga et al. 2006), the experience of sensory side 
effects such as itching have been shown to be more prevalent 
in the active than the sham condition at 1.5 mA (Kessler 

et al. 2012). Additionally, it has been suggested that sham 
stimulation at 2 mA is an inadequate blinding procedure 
(O’Connell et al. 2012; Wallace et al. 2016). However, it 
should be noted that both studies utilised a within-subjects 
design, but despite this aspect a bias towards selection of the 
Active condition (85%) was demonstrated in the latter (Wal-
lace et al. 2016), and correct identification following both 
sham and active stimulation conditions did not exceed 65% 
(O’Connell et al. 2012). As recorded side effects between 
the conditions of our experiment were comparable, we feel 
confident that our between-subjects research was suitably 
blinded. However, as we did not technically assess the reli-
ability of our blinding procedure, it would be remiss to not 
at least acknowledge the possibility that the observed effects 
may, in part, be attributable to insufficient blinding.

Second, sample size also presented some limitations. Our 
decision to retrospectively exclude participants based on 
BAI and BDI-II scores reduced an already relatively small 
sample size. We made a priori assumptions regarding our 
sample and anticipated conducting an intention to treat anal-
ysis of psychologically healthy individuals. However, across 
both experiments, a greater number of participants (4 from 
the active condition of Experiment 1 and one from the sham 
condition) exceeded the scores for mild anxiety (BAI ≤ 16 
REF) and depression (BDI-II ≤ 19 REF). Despite the fact 
that each of these participants who received an active stimu-
lation reported an increase in mood, we considered that they 
should be removed from the sample for analyses to keep 
the focus of this research on individuals with sub-clinical 
levels of depression and/or anxiety, which may have been 
seen as driving the results observed in the active condition 
of Experiment 1.

Finally, we opted to replicate a previous second-daily 
design, of 3 repeat stimulations, which had demonstrated 
significant mood improvements for the F3 anode/F4 cathode 
electrode placement (Austin et al. 2016). Whilst direct com-
parisons cannot be made between the current research and 
prior studies conducted on a sample of depressed individu-
als, it is worth bearing in mind that daily stimulation is the 
norm for the latter (see Dedoncker et al. 2016). Additionally, 
it has been demonstrated that daily tDCS results in a greater 
increase in MEP amplitude than second-daily (Alonzo et al. 
2012). Perhaps we would have observed a greater increase 
of mood improvement if we had opted for consecutive days.

Conclusion

We have presented evidence of mood modulation using 
a short duration frontocerebellar stimulation montage in 
response to single and repeated administration. Further 
investigations are needed, both to confirm the presence or 
absence of polarity specificity, and to establish specificity 
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regarding the mechanisms by which frontocerebellar stimu-
lation exerts influence over mood. Future experiments might 
consider refining the application of frontocerebellar tDCS 
by incorporating neuroimaging techniques. In general, tDCS 
displays promise as a therapeutic intervention. However, 
there is a need for further clinical exploration, technical 
development, and replication of earlier findings (as high-
lighted by Tortella et al. 2015) to further elucidate the poten-
tial applications of various tDCS stimulation paradigms as 
stand-alone or adjunctive treatments for mood, affective and 
psychopathological disorders.
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