Skip to main content
Log in

Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

General fluid intelligence (gF) is a major component of intellect in both adults and children. Whereas its neural substrates have been studied relatively thoroughly in adults, those are poorly understood in children, particularly preschoolers. Here, we hypothesized that gF and visuospatial working memory share a common neural system within the lateral prefrontal cortex (LPFC) during the preschool years (4–6 years). At the behavioral level, we found that gF positively and significantly correlated with abilities (especially accuracy) in visuospatial working memory. Optical topography revealed that the LPFC of preschoolers was activated and deactivated during the visuospatial working memory task and the gF task. We found that the spatio-temporal features of neural activity in the LPFC were similar for both the visuospatial working memory task and the gF task. Further, 2 months of training for the visuospatial working memory task significantly increased gF in the preschoolers. These findings suggest that a common neural system in the LPFC is recruited to improve the visuospatial working memory and gF in preschoolers. Efficient recruitment of this neural system may be important for good performance in these functions in preschoolers, and behavioral training using this system would help to increase gF at these ages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ackerman PL, Beier ME, Boyle MO (2005) Working memory and intelligence: the same or different constructs? Psychol Bull 131:30–60. doi:10.1037/0033-2909.131.1.30

    Article  PubMed  Google Scholar 

  • Baddeley A (1986) Working memory. Oxford University Press, Oxford

    Google Scholar 

  • Baddeley A (1992) Working memory. Science 255:556–559. doi:10.1126/science.1736359

    Article  CAS  PubMed  Google Scholar 

  • Cattell RB (1940) A culture free intelligence test: Ι. J Educ Psychol 31:161–180. doi:10.1037/h0059043

    Article  Google Scholar 

  • Cattell RB (1973) Measuring intelligence with the culture fair tests. Institute for Personality and Ability Testing, Champaign

    Google Scholar 

  • Cattell RB, Briston H (1933) Intelligence tests for mental ages of four to eight years. Brit J Educ Psychol 3:142–169

    Google Scholar 

  • Cattell RB, Feingold SN, Sarason SB (1941) A culture free intelligence test: ΙΙ. Evaluation of culture intelligences on test performance. J Educ Psychol 32:81–100. doi:10.1037/h0058456

    Article  Google Scholar 

  • Conway ARA, Cowan N, Bunting MF, Therriault DJ, Minkoff SRB (2002) A latent variable analysis of working memory capacity, short-term memory capacity, processing speed, and general fluid intelligence. Intelligence 30:163–183. doi:10.1016/S0160-2896(01)00096-4

    Article  Google Scholar 

  • Conway ARA, Kane MJ, Engle RW (2003) Working memory capacity and its relation to general intelligence. Trends Cogn Sci 7:547–552. doi:10.1016/j.tics.2003.10.005

    Article  PubMed  Google Scholar 

  • Coull JT, Frackowiak RS, Frith CD (1998) Monitoring for target objects: activation of right frontal and parietal cortices with increasing time on task. Neuropsychologia 36:1325–1334. doi:10.1016/S0028-3932(98)00035-9

    Article  CAS  PubMed  Google Scholar 

  • Cowan N, Elliott EM, Saults JS, Morey CC, Mattox S, Hismjatullina A, Conway ARA (2005) On the capacity of attention: its estimation and its role in working memory and cognitive aptitudes. Cogn Psychol 51:42–100. doi:10.1016/j.cogpsych.2004.12.001

    Article  PubMed  Google Scholar 

  • Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11:201–211. doi:10.1038/nrn2793

    CAS  PubMed  Google Scholar 

  • Duncan J, Seitz RJ, Kolodny J, Bor D, Herzog H, Ahmed A, Newell FN, Emslie HA (2000) Neural basis for general intelligence. Science 289:457–460. doi:10.1126/science.289.5478.457

    Article  CAS  PubMed  Google Scholar 

  • Engle RW, Tuholski AW, Laughlin JE, Conway ARA (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol 128:309–331. doi:10.1037/0096-3445.128.3.309

    CAS  Google Scholar 

  • Finkel D, McGue M (1997) Sex differences and nonadditivity in heritability of the multidimensional personality questionnaire scales. J Pers Soc Psychol 72:929–938. doi:10.1037/0022-3514.72.4.929

    Article  CAS  PubMed  Google Scholar 

  • Finkel D, Pedersen NL, McGue M, McClearn GE (1995) Heritability of cognitive abilities in adult twins: comparison of Minnesota and Swedish data. Behav Genet 25:421–431. doi:10.1007/BF02253371

    Article  CAS  PubMed  Google Scholar 

  • Freedman M, Oscar-Berman M (1986) Bilateral frontal lobe disease and selective delayed response deficits in humans. Behav Neurosci 100:337–342. doi:10.1037/0735-7044.100.3.337

    Article  CAS  PubMed  Google Scholar 

  • Frey MC, Detterman DK (2004) Scholastic assessment or g? The relationship between the scholastic assessment test and general cognitive ability. Psychol Sci 15:373–378. doi:10.1111/j.0956-7976.2004.00687.x

    Article  PubMed  Google Scholar 

  • Funahashi S, Bruce CJ, Goldman-Rakic PS (1993) Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic scotomas. J Neurosci 13:1479–1497

    CAS  PubMed  Google Scholar 

  • Gilbert AM, Fiez JA (2004) Integrating rewards and cognition in the frontal cortex. Cogn Affect Behav Neurosci 4:540–552. doi:10.3758/CABN.4.4.540

    Article  PubMed  Google Scholar 

  • Gottfredson LS (1998) The general intelligence factor. Sci Am Presents 9:24–29

    Google Scholar 

  • Gottfredson LS (2004) Intelligence: is it the epidemiologists’ elusive “fundamental cause” of social class inequalities in health? J Pers Soc Psychol 86:174–199. doi:10.1037/0022-3514.86.1.174

    Article  PubMed  Google Scholar 

  • Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–322. doi:10.1038/nn1014

    Article  CAS  PubMed  Google Scholar 

  • Hall DA, Fussell C, Summerfield AQ (2005) Reading fluent speech from talking faces: typical brain networks and individual differences. J Cogn Neurosci 17:939–953. doi:10.1162/0898929054021175

    Article  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehlm M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 105:6829–6833. doi:10.1073/pnas.0801268105

    Article  CAS  PubMed  Google Scholar 

  • Jensen AR (1998) The g factor. The science of mental ability (human evolution, behavior, and intelligence). Praeger Pub, London, pp 85–88

    Google Scholar 

  • Jöbsis FF (1977) Noninvasive infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198:1264–1267. doi:10.1126/science.929199

    Article  PubMed  Google Scholar 

  • Jonides J, Smith EE, Koeppe RA, Awh E, Minoshima S, Mintun MA (1993) Spatial working memory in humans as revealed by PET. Nature 363:623–625. doi:10.1038/363623a0

    Article  CAS  PubMed  Google Scholar 

  • Kane MJ, Engle RW (2002) The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: an individual-differences perspective. Psychonomic Bull Rev 9:637–671

    Google Scholar 

  • Kane MJ, Hambrick DZ, Tuholski SW, Wilhelm O, Payne TW, Engle RW (2004) The generality of working memory capacity: a latent-variable approach to verbal and visuospatial memory span and reasoning. J Exp Psychol Gen 133:189–217. doi:10.1037/0096-3445.133.2.189

    Article  PubMed  Google Scholar 

  • Kane MJ, Hambrick DZ, Conway AR (2005) Working memory capacity and fluid intelligence are strongly related constructs: comment on Ackerman, Beier, and Boyle. Psychol Bull 131:66–71. doi:10.1037/0033-2909.131.1.66

    Article  PubMed  Google Scholar 

  • Kennan RP, Kim D, Maki A, Koizumi H, Constable RT (2002) Non-invasive assessment of language lateralization by transcranial near infrared optical topography and functional MRI. Hum Brain Mapp 16:183–189. doi:10.1002/hbm.10039

    Article  PubMed  Google Scholar 

  • Khoa TQD, Nakagawa M (2008) Functional near infrared spectroscope for cognition brain tasks by wavelets analysis and neural networks. Int J Biol Med Sci 1:28–33

    Google Scholar 

  • Klingberg T, Fernell E, Olesen PJ, Johnson M, Gustafsson P, Dahlstrom K, Glliberg CG, Forssberg H, Westerberg H (2005) Computerized training of working memory in children with ADHD–a randomized, controlled trial. J Am Acad Child Adolesc Psychiat 44:177–186. doi:10.1097/00004583-200502000-00010

    Article  Google Scholar 

  • Koch K, Wagner G, von Consbruch K, Nenadic I, Schultz C, Ehle C, Reichenbach J, Sauer H, Schlosser R (2006) Temporal changes in neural activation during practice of information retrieval from short-term memory: an fMRI study. Brain Res 1107:140–150. doi:10.1016/j.brainres.2006.06.003

    Article  CAS  PubMed  Google Scholar 

  • Koizumi H, Yamashita A, Maki A, Yamamoto T, Ito Y, Itagaki H, Kennan R (1999) Higher-order brain function analysis by transcranial dynamic near-infrared spectroscopy imaging. J Biomed Opt 94:403–413. doi:10.1117/1.429959

    Article  Google Scholar 

  • Koizumi H, Yamamoto T, Maki A, Yamashita Y, Sato H, Kawaguchi H, Ichikawa N (2003) Optical topography: practical problems and new application. Appl Phys 42:3054–3062. doi:10.1364/AO.42.003054

    Google Scholar 

  • Kono T, Matsuo K, Tsunashima K, Kasai K, Takizawa R, Rogers MA, Yamasue H, Yano T, Taketani Y, Kato N (2007) Multiple-time replicability of near-infrared spectroscopy recording during prefrontal activation task in healthy men. Neurosci Res 57:504–512. doi:10.1016/j.neures.2006.12.007

    Article  PubMed  Google Scholar 

  • Lee KH, Choi YY, Gray JR, Cho SH, Chae JH, Lee S, Kim K (2006) Neural correlates of superior intelligence: stronger recruitment of posterior parietal cortex. NeuroImage 29:578–586. doi:10.1016/j.neuroimage.2005.07.036

    Article  PubMed  Google Scholar 

  • Luo D, Thompson LA, Detterman DK (2003) Phenotypic and behavioral genetic covariation between elemental cognitive components and scholastic measures. Behav Genet 33:221–246. doi:10.1023/A:1023438323100

    Article  PubMed  Google Scholar 

  • Maki A, Yamashita Y, Ito Y, Watanabe E, Mayanagi Y, Koizumi H (1995) Spatial and temporal analysis of human motor activity using non-invasive NIR topography. Med Phys 22:1997–2005. doi:10.1118/1.597496

    Article  CAS  PubMed  Google Scholar 

  • Maki A, Yamashita Y, Watanabe E, Koizumi H (1996) Visualizing human motor activity by using non-invasive optical topography. Front Med Biol Eng 7:285–297

    CAS  PubMed  Google Scholar 

  • McCarthy G, Blamire AM, Puce A, Nobre AC, Bloch G, Hyder F, Goldman-Rakic P, Shulman RG (1994) Functional magnetic resonance imaging of human prefrontal cortex during a spatial working memory task. Proc Natl Acad Sci USA 91:8690–8694

    Article  CAS  PubMed  Google Scholar 

  • Miyai I, Tanabe HC, Sase I, Eda H, Oda I, Konishi I, Tsunazawa Y, Suzuki T, Yanagida T, Kubota K (2001) Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. NeuroImage 14:1186–1192. doi:10.1006/nimg.2001.0905

    Article  CAS  PubMed  Google Scholar 

  • Neubauer AC, Grabner RH, Freudenthaler HH, Beckmann JF, Guthke J (2004) Intelligence and individual differences in becoming neurally efficient. Acta Psychol (Amst) 116:55–74. doi:10.1016/j.actpsy.2003.11.005

    Article  Google Scholar 

  • Oberauer K, Schulze R, Wilhelm O, Suss HM (2005) Working memory and intelligence–their correlation and their relation: comment on Ackerman, Beier, and Boyle. Psychol Bull 131:61–65. doi:10.1037/0033-2909.131.1.61

    Article  PubMed  Google Scholar 

  • Okamoto M, Dan H, Sakamoto K, Takeo K, Shimizu K, Kohno S, Oda I, Isobe S, Suzuki T, Kohyama K, Dan I (2004) Three-dimensional probabilistic anatomical crano-cerebral correlation via the international 10–20 system oriented for transcranial functional brain mapping. NeuroImage 21:99–111. doi:10.1016/j.neuroimage.2003.08.026

    Article  PubMed  Google Scholar 

  • Olesen PJ, Westerberg H, Klingberg T (2004) Increased prefrontal and parietal activity after training of working memory. Nat Neurosci 7:75–79. doi:10.1038/nn1165

    Article  CAS  PubMed  Google Scholar 

  • Plomin R, Pedersen NL, Lichtenstein P, McClearn GE (1994) Variability and stability in cognitive abilities are largely genetic later in life. Behav Genet 24:207–215. doi:10.1007/BF01067188

    Article  CAS  PubMed  Google Scholar 

  • Pochon JB, Levy R, Fossati P, Lehericy S, Poline JB, Pillon B, Le Bihan D, Dubois B (2002) The neural system that bridges reward and cognition in humans: an fMRI study. Proc Natl Acad Sci USA 99:5669–5674. doi:10.1073/pnas.082111099

    Article  CAS  PubMed  Google Scholar 

  • Prabhakaran V, Smith JAL, Desmond JE, Glover GH, Gabrieli DE (1997) Neural substrates of fluid reasoning: an fMRI study of neocortical activation during performance of the Raven’s progressive matrices test. Cognit Psychol 33:43–63. doi:10.1006/cogp.1997.0659

    Article  CAS  PubMed  Google Scholar 

  • Rickham PP (1964) Human experimentation. Code of Ethics of the World Medical Association. Declaration of Helsinki. Br Med J 2:177

    Article  CAS  PubMed  Google Scholar 

  • Sakatani K, Yamashita D, Yamanaka T, Oda M, Yamashita Y, Hoshino T, Fujiwara N, Murata Y, Katayama Y (2006) Changes of cerebral blood oxygenation and optical pathlength during activation and deactivation in the prefrontal cortex measured by time-resolved near infrared spectroscopy. Life Sci 78:2734–2741. doi:10.1016/j.lfs.2005.10.045

    Article  CAS  PubMed  Google Scholar 

  • Sato H, Takeuchi T, Sakai KL (1999) Temporal cortex activation during speech recognition: an optical topography study. Cognition 73:B55–B66. doi:10.1016/S0010-0277(99)00060-8

    Article  CAS  PubMed  Google Scholar 

  • Sawaguchi T, Iba M (2001) Prefrontal cortical representation of visuospatial working memory in monkeys examined by local inactivation with muscimol. J Neurophysiol 86:2041–2053

    CAS  PubMed  Google Scholar 

  • Sawaguchi T, Yamane I (1999) Properties of delay-period neuronal activity in the monkey dorsolateral prefrontal cortex during a spatial delayed matching-to-sample task. J Neurophysiol 82:2070–2080

    CAS  PubMed  Google Scholar 

  • Tsujimoto (2008) The prefrontal cortex: functional neural development during early childhood. Neuroscientist 14:345–358. doi:10.1177/1073858408316002

    Article  PubMed  Google Scholar 

  • Tsujimoto S, Yamamoto T, Kawaguchi H, Koizumi H, Sawaguchi T (2004) Prefrontal cortical activation associated with working memory in adults and preschool children: an event-related optical topography study. Cereb Cortex 14:703–712. doi:10.1093/cercor/bhh030

    Article  PubMed  Google Scholar 

  • Watanabe E, Maki A, Kawaguchi K, Takashiro Y, Yamashita H, Koizumi H (1998) Non-invasive assessment of language dominance with near-infrared spectroscopic mapping. Neurosci Lett 256:49–52. doi:10.1016/S0304-3940(98)00754-X

    Article  CAS  PubMed  Google Scholar 

  • Weissman DH, Roberts KC, Visscher KM, Woldorff MG (2006) The neural bases of momentary lapses in attention. Nat Neurosci 9:971–978. doi:10.1038/nn1727

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Research Institute of Science and Technology for Society (RISTEX), part of the Japan Science and Technology Agency (JST), Japan. The authors thank J. Tsunada, S. Tsujimoto, and K. Wajima for their valuable comments on this study. We are grateful to G. Hirano, T. Tanase, K. Kaneko, and H. Yanaka for their technical assistance and encouragement throughout this study. We thank Y. Endo and other Kannami-Sakura Nursery School teachers, as well as M. Shigematsu, T. Uchiyama, and other Sapporo International School teachers. We also thank M. Watanabe for his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Sawaguchi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuwajima, M., Sawaguchi, T. Similar prefrontal cortical activities between general fluid intelligence and visuospatial working memory tasks in preschool children as revealed by optical topography. Exp Brain Res 206, 381–397 (2010). https://doi.org/10.1007/s00221-010-2415-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2415-z

Keywords

Navigation