Skip to main content
Log in

The psychophysics and physiology of comodulation masking release

  • Review
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The ability to detect auditory signals from background noise may be enhanced by the addition of energy in frequency regions well removed from the frequency of the signal. However, it is important that this energy is amplitude-modulated in a coherent way across frequencies, i.e. comodulated. This enhancement of signal detectability is known as comodulation masking release (CMR), and in this review we show that CMR is largest if: (1) the total masker's bandwidth is large, (2) the modulation frequency is low, (3) the modulation depth is high, (4) the envelope is regular and, (5) the masker's spectrum level is high. Possible physiological correlates of CMR have been found at different levels of the auditory pathway. Current hypotheses for the underlying physiological mechanisms, including wide-band inhibition or the disruption of masker modulation envelope response, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a, b.
Fig. 2.
Fig. 3A-D.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. In contrast, Bacon et al. (1997) have obtained a CMR (UM-CM) that is considerably larger (on average approximately 7 dB) for a 2-kHz than for a 0.5-kHz tone-signal when compared at the same bandwidth in ERB. The reason for the different result obtained by Bacon et al. (1997) may be related to the difference in the modulator type. Haggard et al. (1990) and Verhey et al. (1999) used a low-pass noise modulator, whereas the CM masker used by Bacon et al. (1997) was a sinusoidally amplitude-modulated (SAM) noise.

  2. Low-pass noise contains envelope frequencies in a range from zero to the cut-off frequency of the noise, with a mean rate approximately half the cut-off frequency. Multiplying the modulator with the carrier without direct-current shift effectively doubles the mean frequency. The mean modulation frequency for this low-pass modulator is approximately 1.12 times the cut-off frequency of low-pass noise (Verhey et al. 1999).

Abbreviations

ACM:

Across-channel masking

AF CMR :

Across-frequency comodulation masking release

BF:

Best frequency

CB:

Critical band

CD:

Codeviant

CM:

Comodulated

CMR:

Comodulation masking release

DCN:

Dorsal cochlear nucleus

DV:

Deviant

ERB:

Equivalent rectangular bandwidth

FB:

Flanking band

OFM:

On-frequency masker

RF:

Reference

SAM:

Sinusoidal amplitude modulation

UM:

Unmodulated

VCN:

Ventral cochlear nucleus

WBI:

Wide-band inhibition

References

  • Arnott RH, Wallace MN, Palmer AR (2001) Innervation of the ventral and dorsal cochlear nuclei by an onset cell in the anteroventral cochlear nucleus. Br J Audiol 35(2):121

    Google Scholar 

  • Bacon SP, Lee J (1997) The modulated-unmodulated difference: effects of signal frequency and masker modulation depth J Acoust Soc Am 101:3617–3624

    Google Scholar 

  • Bacon SP, Lee J, Peterson DN, Rainey D (1997) Masking by modulated and unmodulated noise: effects of bandwidth, modulation rate, signal frequency, and masker level. J Acoust Soc Am 101:1600–1610

    Article  CAS  PubMed  Google Scholar 

  • Berg BG (1996) On the relation between comodulation masking release and temporal modulation transfer function. J Acoust Soc Am 100:1013–1023

    CAS  PubMed  Google Scholar 

  • Blackburn CC, Sachs MB (1990) The representation of the steady-state vowel sound /e/ in the discharge patterns of cat anteroventral cochlear nucleus neurons. J Neurophysiol 63:1191–1212

    CAS  PubMed  Google Scholar 

  • Buus S (1985) Release from masking caused by envelope fluctuations. J Acoust Soc Am 78:1958–1965

    CAS  PubMed  Google Scholar 

  • Carlyon RP, Buus S, Florentine M (1989) Comodulation masking release for three types of modulator as a function of modulation rate. Hear Res 42:37–46

    Article  CAS  PubMed  Google Scholar 

  • Cohen MF (1991) Comodulation masking release over a three octave. J Acoust Soc Am 90:1381–1384

    CAS  PubMed  Google Scholar 

  • Cohen MF, Schubert ED (1987) Influence of place synchrony on the detection of a sinusoid. J Acoust Soc Am 81:452–458

    CAS  PubMed  Google Scholar 

  • Delahaye R (1999) Across-channel effects on masked signal thresholds. PhD thesis, University of Essex, UK

  • Doucet JR, Ross AT, Gillespie MB, Ryugo DK (1999) Glycine immunoreactivity of multipolar neurons in the ventral cochlear nucleus which project to the dorsal cochlear nucleus. J Comp Neurol 408:515–531

    Article  CAS  PubMed  Google Scholar 

  • Durlach NI (1963) Equalization and cancellation theory of binaural masking-level differences. J Acoust Soc Am 35:1206–1218

    Google Scholar 

  • Eddins D (2001a) Monaural masking release in random-phase and low-noise noise. J Acoust Soc Am 109:1538–1549

    Article  CAS  PubMed  Google Scholar 

  • Eddins DA (2001b) Measurement of auditory temporal processing using modified masking period patterns. J Acoust Soc Am 109:1550–1558

    Article  CAS  PubMed  Google Scholar 

  • Eddins DA, Wright BA (1994) Comodulation masking release for single and multiple rates of envelope fluctuation. J Acoust Soc Am 96:3432–3442

    CAS  PubMed  Google Scholar 

  • Evans EF (2001) Latest comparisons between physiological and behavioural frequency selectivity. In: Houtsma et al. (eds) Physiological and psychophysical bases of auditory function. Shaker, Maastricht, Netherlands, pp 337–341

  • Fantini DP, Moore BCJM (1994) A comparison of the effectiveness of across-channel cues available in comodulation masking release and profile analysis. J Acoust Soc Am 96:3451–3462

    CAS  PubMed  Google Scholar 

  • Ferragamo MJ, Golding NL, Oertel D (1998) Synaptic inputs to stellate cells in the ventral cochlear nucleus. J Neurophysiol 79:51–63

    CAS  PubMed  Google Scholar 

  • Fletcher H (1940) Auditory patterns. Rev Mod Phys 12:47–61

    Article  Google Scholar 

  • Greenwood DD (1961) Auditory masking and the critical band. J Acoust Soc Am 33:484–502

    Google Scholar 

  • Grose JH, Hall JW (1989) Comodulation masking release using SAM tonal complex maskers: effects of modulation depth and signal position. J Acoust Soc Am 85:1276–1284

    CAS  PubMed  Google Scholar 

  • Haggard MP, Hall JW, Grose JH (1990) Comodulation masking release as a function of bandwidth and test frequency. J Acoust Soc Am 88:113–118

    CAS  PubMed  Google Scholar 

  • Hall JW (1986) The effect of across-frequency differences in masking level on spectro-temporal pattern analysis. J Acoust Soc Am 79:781–787

    CAS  PubMed  Google Scholar 

  • Hall JW, Haggard MP, Fernandes MA (1984) Detection in noise by spectro-temporal pattern analysis J. Acoust Soc Am 76:50–56

    CAS  Google Scholar 

  • Hall JW, Grose JH, Haggard MP (1988) Comodulation masking release for multi component signals. J Acoust Soc Am 83:677–686

    PubMed  Google Scholar 

  • Hall JW, Grose JH, Haggard MP (1990) Effects of flanking band proximity, number and modulation pattern on comodulation masking release. J Acoust Soc Am 87:269–283

    PubMed  Google Scholar 

  • Hall JW, Grose JH, Hatch DR (1996) Effects of masker gating for signal detection in unmodulated and modulated band-limited noise. J Acoust Soc Am 100:2365–2372

    PubMed  Google Scholar 

  • Hatch DR, Arne BC, Hall JW (1995) Comodulation masking release (CMR): effects of gating as a function of number of flanking bands and masker bandwidth. J Acoust Soc Am 97:3768–3774

    CAS  PubMed  Google Scholar 

  • Hicks ML, Bacon SP (1995) Some factors influencing comodulation masking release and across-channel masking. J Acoust Soc Am 98:2504–2514

    CAS  PubMed  Google Scholar 

  • Jiang D, Palmer AR, Winter IM (1996) The frequency extent of two tone facilitation in onset units in the ventral cochlear nucleus. J Neurophysiol 75:380–396

    CAS  PubMed  Google Scholar 

  • Joris PX, Smith PH (1998) Temporal and binaural properties in dorsal cochlear nucleus and its output tract. J Neurosci 18:10157–10170

    CAS  PubMed  Google Scholar 

  • Langemann U, Klump GM (2001) Signal detection in amplitude-modulated maskers. I. Behavioural auditory thresholds in a songbird. Eur J Neurosci 13:1025–1032

    Article  CAS  PubMed  Google Scholar 

  • McFadden D (1986) Comodulation masking release: effects of varying the level, duration and time delay of the cueband. J Acoust Soc Am 80:1658–1667

    CAS  PubMed  Google Scholar 

  • McFadden D, Wright BA (1987) Comodulation masking release in a forward-masking paradigm. J Acoust Soc Am 82:1615–1620

    CAS  PubMed  Google Scholar 

  • Meddis R, Delahaye R, O'Mard L et al. (2002) A model of signal processing in the cochlear nucleus: comodulation masking release. Acta Acust/Acustica 88:387–398

    Google Scholar 

  • Moore BCJM, Glasberg BR (1983) Suggested formulae for calculating auditory filter bandwidth and excitation patterns. J Acoust Soc Am 74:750–753

    CAS  PubMed  Google Scholar 

  • Moore BCJM, Jorasz U (1992) Detection of changes in modulation depth of a target sound in the presence of other modulated sounds. J Acoust Soc Am 91:1051–1061

    Google Scholar 

  • Moore BCJM, Schooneveldt GP (1990) Comodulation masking release as a function of bandwidth and time delay between on-frequency and flanking band maskers. J Acoust Soc Am 88:725–731

    CAS  PubMed  Google Scholar 

  • Moore BCJM, Shailer MJ (1991) Comodulation masking release as a function of level. J Acoust Soc Am 90:829–835

    CAS  PubMed  Google Scholar 

  • Moore BCJM, Alcantara JI, Dau T (1998) Masking patterns for sinusoidal and narrow-band noise maskers. J Acoust Soc Am 104:1023–1038

    Article  CAS  PubMed  Google Scholar 

  • Moore BCJ, Glasberg BR, Schooneveldt GP (1990a) Across-channel masking and comodulation masking release. J Acoust Soc Am 87:1683–1694

    CAS  PubMed  Google Scholar 

  • Moore BCJM, Hall JW, Grose JH, Schooneveldt GP (1990b) Some factors affecting the magnitude of comodulation masking release. J Acoust Soc Am 88:1051–1061

    Google Scholar 

  • Mott JB, McDonald LP, Sinex DG (1990) Neural correlates of psychophysical release from masking. J Acoust Soc Am 88:2682–2691

    CAS  PubMed  Google Scholar 

  • Nelken I, Rotman Y, Yosef OB (1999) Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397:154–157

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Jacobson J, Ahdut L, Ulanovsky N (2001) Neural correlates of comodulation masking release in auditory cortex of cats. In: Breebart DJ, Houtsma A, Kohlrausch A, Prijs VF, Schoonhoven R (eds) Physiological and psychophysical bases of auditory function. Shaker, Maastricht, Netherlands, pp 282–289

  • Nieder A, Klump GM (2001) Signal detection in amplitude-modulated maskers. II. Processing in the songbird's auditory forebrain. Eur J Neurosci 13:1033–1044

    Article  CAS  PubMed  Google Scholar 

  • Par S van de, Kohlrausch A (1998) Analytical expressions for the envelope correlation of narrow-band stimuli used in CMD and BMLD research. J Acoust Soc Am 103:3605–3620

    Article  Google Scholar 

  • Peters RW, Hall JW (1994) Comodulation masking release for elderly listeners with relatively normal hearing. J Acoust Soc Am 96:2674–2682

    CAS  PubMed  Google Scholar 

  • Pumplin J (1985) Low-noise noise. J Acoust Soc Am 78:100–104

    Google Scholar 

  • Pressnitzer D, Meddis R, Delahaye R, Winter IM (2001) Physiological correlates of comodulation masking release in the mammalian ventral cochlear nucleus. J Neurosci 21 6377–6386

    Google Scholar 

  • Rhode WS, Greenberg S (1994) Lateral suppression and inhibition in the cochlear nucleus of the cat. J Neurophysiol 71:493–514

    CAS  PubMed  Google Scholar 

  • Rhode WS, Smith PH (1986) Encoding timing and intensity in the ventral cochlear nucleus of the cat. J Neurophysiol 56:261–286

    CAS  PubMed  Google Scholar 

  • Richards V (1987) Monaural envelope correlation perception. J Acoust Soc Am 82:1621–1630

    CAS  PubMed  Google Scholar 

  • Richards VM, Buss E, Tian L (1998) The effect of different envelope patterns and uncertainty for the detection of a tone added to SAM complex tonal maskers. J Acoust Soc Am 103:1058–1066

    Article  CAS  PubMed  Google Scholar 

  • Schooneveldt GP, Moore BCJ (1987) Comodulation masking release (CMR): effect of signal frequency, flanking band frequency, masker bandwidth, flanking-band level, and monotic versus dichotic presentation of the flanking band. J Acoust Soc Am 82:1944–1956

    CAS  PubMed  Google Scholar 

  • Schooneveldt GP, Moore BCJ (1989a) Comodulation masking release for various monaural and binaural combinations of the signal, on-frequency, and flanking bands. J Acoust Soc Am 85:262–272

    CAS  PubMed  Google Scholar 

  • Schooneveldt GP, Moore BCJ (1989b) Comodulation masking release (CMR) as a function of masker bandwidth, modulator bandwidth, and signal duration. J Acoust Soc Am 85:273–281

    CAS  PubMed  Google Scholar 

  • Shore SE (1995) Recovery of forward-masked responses in ventral cochlear nucleus neurons. Hear Res 82:31–43

    Article  CAS  PubMed  Google Scholar 

  • Shore SE (1998) Influence of centrifugal pathways on forward masking of ventral cochlear nucleus neurons. J Acoust Soc Am 104:378–398

    Article  CAS  PubMed  Google Scholar 

  • Smith PH, Rhode WS (1989) Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J Comp Neurol 282:595–616

    CAS  PubMed  Google Scholar 

  • Verhey JL (2002) Modeling the influence of inherent envelope fluctuations in simultaneous masking experiments. J Acoust Soc Am 111:1018–1025

    Article  PubMed  Google Scholar 

  • Verhey JL, Dau T, Kollmeier B (1999) Within-channel cues in comodulation masking release (CMR): experiments and model predictions using a modulation filter bank model. J Acoust Soc Am 106:2733–2745

    Article  CAS  PubMed  Google Scholar 

  • Winter IM, Palmer AR (1990) Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear Res 44:161–178

    Article  PubMed  Google Scholar 

  • Winter IM, Palmer AR (1995) Level dependence of cochlear nucleus onset unit responses and facilitation by second tones or broadband noise. J Neurophysiol 73:141–159

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Supported by the Wellcome Trust. The second author is currently supported by the Centre National de la Recherche Scientifique. We thank Ray Meddis for many helpful discussions on the physiological mechanisms of CMR and the selection of appropriate stimuli.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian M. Winter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verhey, J.L., Pressnitzer, D. & Winter, I.M. The psychophysics and physiology of comodulation masking release. Exp Brain Res 153, 405–417 (2003). https://doi.org/10.1007/s00221-003-1607-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1607-1

Keywords

Navigation