Skip to main content
Log in

Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

The purpose of our study was to quantify the magnitude of principal and secondary pathways emanating from the middle suprasylvian (MS) region of visuoparietal cortex and terminating in area 18 of primary visual cortex. These pathways transmit feedback signals from visuoparietal cortex to primary visual cortex. (1) WGA-HRP was injected into area 18 to identify inputs from visual structures. In terms of numbers of neurons, feedback projections to area 18 from MS sulcal cortex (areas PMLS, AMLS and PLLS) comprise 26% of inputs from all visual structures. Of these neurons, between 21% and 34.9% are located in upper layers 2–4 and the dominant numbers are located in deep layers 5 and 6. Areas 17 (11.8%) and 19 (11.2%) provide more modest cortical inputs, and another eight areas provide a combined total of 4.3% of inputs. The sum of neurons in all subcompartments of the lateral geniculate nucleus (LGN) accounts for another 34.8% of the input to area 18, whereas inputs from the lateral division of the lateral-posterior nucleus (LPl) account for the final 11.9%. (2) Injection of tritiated-(3H)-amino acids into MS sulcal cortex revealed substantial direct projections from MS cortex that terminated in all layers of area 18, but with a markedly lower density in layer 4. Projections from MS cortex to both areas 17 and 19 are of similar density and characteristics, whereas those to other cortical targets have very low densities. Quantification also revealed minor-to-modest axon projections to all components of LGN and a massive projection throughout the LP-Pul complex. (3) Superposition of the labeled terminal and cell fields identified secondary, compound feedback pathways from MS cortex to area 18. The largest secondary pathway is massive and it includes the LPl nucleus. Much more modest secondary pathways include areas 17 and 19, and LGN. The relative magnitudes of the secondary pathways suggest that the one through LPl exerts a major influence on area 18, whereas the others exert more modest or minor influences. MS cortex in the contralateral hemisphere also innervates area 18 directly. These data are important for interpreting the impact of deactivating feedback projections from visuoparietal cortex on occipital cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11A, B.

Similar content being viewed by others

Abbreviations

A:

layer A of LGN

A1:

layer A1 of LGN

ALLS:

anterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978)

AMLS:

anteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978)

Aud:

auditory cortex of the middle ectosylvian gyrus

CC:

corpus callosum

Cg:

cingulate gyrus

Cm:

magnocellular layers of LGN

Cp:

parvocellular layers of LGN

LGN:

dorsal lateral geniculate nucleus

LP:

lateral posterior nucleus

LPl:

lateral division of the lateral posterior nucleus

LPm:

medial division of the lateral posterior nucleus (Graybiel and Berson 1980, Berson and Graybiel 1978; Raczkowski and Rosenquist 1983)

MIN:

medial interlaminar nucleus subdivision of LGN

MS:

cortex bounding the middle suprasylvian sulcus (areas AMLS, ALLS, PMLS, and PLLS)

OR:

optic radiation

PE:

posterior ectosylvian visual cortex

PLLS:

posterolateral visual area of the lateral suprasylvian sulcus (Palmer et al. 1978)

PMLS:

posteromedial visual area of the lateral suprasylvian sulcus (Palmer et al. 1978)

Pul:

pulvinar nucleus

SVA:

splenial visual area

V1:

primary visual cortex

V2:

secondary visual cortex

V3:

third visual area

V5/MT:

fifth visual area/middle temporal area

WGA-HRP:

wheat germ agglutinin conjugated to horseradish peroxidase

Wing:

wing of LGN

7:

area 7

17:

area 17

18:

area 18

19:

area 19

References

  • Abramson BP, Chalupa LM (1985) The laminar distribution of cortical connections with tecto- and cortico-recipient zones in the cat's lateral posterior nucleus. Neuroscience 15:81–95

    CAS  PubMed  Google Scholar 

  • Albus K, Beckmann R (1980) Second and third visual areas of the cat: interindividual variability in retinotopic arrangement and cortical location. J Physiol (Lond) 299:247–276

    Google Scholar 

  • Andrews EJ, Bennett BT, Clark JD, Houpt KA, Pascoe PJ, Robinson GW, Boyce JR (1993) Report of the American Medical Veterinary Association panel on euthanasia. J Am Vet Med Assoc 202:229–249

    PubMed  Google Scholar 

  • Bender DB (1983) Visual activation of neurons in the primate pulvinar depends on cortex but not colliculus. Brain Res 279:258–261

    Article  CAS  PubMed  Google Scholar 

  • Berson DM, Graybiel AM (1978) Parallel thalamic zones in the LP-pulvinar complex of the cat identified by their afferent and efferent connections. Brain Res 147:139–148

    Google Scholar 

  • Birnbacher D, Albus K (1987) Divergence of single axons in afferent projections to the cat's visual cortical areas 17, 18, and 19: a parametric study. J Comp Neurol 261:543–561

    CAS  PubMed  Google Scholar 

  • Budd JLM (1998) Extrastriate feedback to primary visual cortex in primates: a quantitative analysis of connectivity. Proc R Soc Lond Biol Sci 265:1037–1044

    Article  CAS  Google Scholar 

  • Bullier J (2001) Integrated model of visual processing. Brain Res Rev 36:96–107

    Article  CAS  PubMed  Google Scholar 

  • Bullier J, Kennedy H, Salinger W (1984a) Bifurcation of subcortical afferents to visual areas 17, 18, and 19 in the cat cortex. J Comp Neurol 228:309–328

    CAS  PubMed  Google Scholar 

  • Bullier J, Kennedy H, Salinger W (1984b) Branching and laminar origin of projections between visual cortical areas in the cat. J Comp Neurol 228:329–341

    CAS  PubMed  Google Scholar 

  • Casanova C, Michaud Y, Morin C, McKinley PA, Molotchnikoff S (1992) Visual responsiveness and direction selectivity in area 18 during local reversible inactivation of area 17 in cats. Vis Neurosci 9:581–593

    CAS  PubMed  Google Scholar 

  • Chabli A, Ruan DY, Molotchnikoff S (1998) Influences of area 17 on neuronal activity of simple and complex cells of area 18 in cats. Neuroscience 84:685–698

    Article  CAS  PubMed  Google Scholar 

  • Chalupa LM (1991) The visual functions of the pulvinar. In: Cronly-Dillon JR (series eds) The neural basis of visual function. Leventhal AG (ed) Vision and visual dysfunction, vol 4. CRC Press, Boca Raton, pp 140–159

  • Clare MH, Bishop GH (1954) Responses from an association area secondarily activated from optic cortex. J Neurophysiol 17:271–277

    Google Scholar 

  • Cowan WM, Gottleib DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37:21–51

    Article  CAS  PubMed  Google Scholar 

  • Diamond ME, Armstrong-James M, Budway MJ, Ebner FF (1992) Somatic sensory responses in the rostral sector of the posterior group POm and in the ventral posterior medial nucleus VPM of the rat thalamus: dependence on the barrel field cortex. J Comp Neurol 319:66–84

    Google Scholar 

  • Donaldson IML, Nash JRG (1975) The effect of chronic lesion in cortical area 17 on the visual responses of units in area 18 of the cat. J Physiol Lond 245:325–332

    CAS  PubMed  Google Scholar 

  • Douglas RJ, Martin KAC (1991) A functional microcircuit for cat visual cortex. J Physiol Lond 440:735–769

    CAS  PubMed  Google Scholar 

  • Dreher B, Cottee LJ (1975) Visual receptive-field properties of cells in area 18 of cat's cerebral cortex before and after acute lesions in area 17. J Neurophysiol 38:735–750

    CAS  PubMed  Google Scholar 

  • Einstein G (1996) Reciprocal projections of cat extrastriate cortex: I. Distribution and morphology of neurons projecting from posterior medial lateral suprasylvian sulcus to area 17. J Comp Neurol 376:518–529

    Article  CAS  PubMed  Google Scholar 

  • Famiglietti EV, Peters A (1972) The synaptic glomerulus and the intrinsic neuron in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 144:285–334

    PubMed  Google Scholar 

  • Feig S, Harting JK (1998) Corticocortical communication via the thalamus: ultrastructural studies of corticothalamic projections from area 17 to the lateral posterior nucleus of the cat and inferior pulvinar nucleus of the owl monkey. J Comp Neurol 395:281–295

    Article  CAS  PubMed  Google Scholar 

  • Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1:1–47

    CAS  PubMed  Google Scholar 

  • Galuske RAW, Schmidt KE, Goebel R, Lomber SG, Payne BR (2002) The role of feedback in shaping neural representations in cat visual cortex. Proc Nat Acad Sci U S A 99:17083–17088

    Article  CAS  Google Scholar 

  • Geisert EE (1980) Cortical projections of the lateral geniculate nucleus in the cat. J Comp Neurol 190:793–812

    PubMed  Google Scholar 

  • Geisert EE (1985) The projection of the lateral geniculate nucleus to area 18. J Comp Neurol 238:101–116

    CAS  PubMed  Google Scholar 

  • Geisert EE, Langsetmo A, Spear PD (1981) Influence of the cortico-geniculate pathway on response properties of cat lateral geniculate neurons. Brain Res 208:409–415

    Article  CAS  PubMed  Google Scholar 

  • Grant S, Shipp S (1991) Visuotopic organization of the lateral suprasylvian area and of an adjacent area of the ectosylvian gyrus of cat cortex: a physiological and connectional study. Vis Neurosci 6:315–338

    CAS  PubMed  Google Scholar 

  • Graybiel AM, Berson DM (1980) Histochemical identification and afferent connections of subdivsions in the lateralis posterior-pulvinar complex and related thalamic nuclei in the cat. Neuroscience 5:1175–1238

    CAS  PubMed  Google Scholar 

  • Guillery RW (1966) A study of Golgi preparations from the dorsal lateral geniculate nucleus of the adult cat. J Comp Neurol 128:21–50

    CAS  PubMed  Google Scholar 

  • Guillery RW (1969) The organization of synaptic interconnections in the laminae of the dorsal lateral geniculate nucleus of the cat. Z Zellforsch Mikrosk Anat 96:1–38

    CAS  PubMed  Google Scholar 

  • Guillery RW, Geisert EE, Polley EH, Mason CA (1980) An analysis of the retinal afferents to the cat's medial interlaminar nucleus and its rostral thalamic extension, the "geniculate wing". J Comp Neurol 194:117–142

    Google Scholar 

  • Guillery RW, Feig S, Van Lieshout DP (2001) Connections of higher order visual relays in the thalamus: a study of corticothalamic pathways in cats. J Comp Neurol 438:66–85

    Article  CAS  PubMed  Google Scholar 

  • Holländer H, Vanegas H (1977) The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish peroxidase. J Comp Neurol 173:519–536

    PubMed  Google Scholar 

  • Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427:302–331

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154

    Google Scholar 

  • Hubel DH, Wiesel TN (1969) Visual area of the lateral suprasylvian gyrus (Clare-Bishop area) of the cat. J Physiol (Lond) 202:251–260

    Google Scholar 

  • Hupé J-M, James AC, Payne BR, Lomber SG, Girard P, Bullier J (1998) Cortical feedback improves discrimination between figure and background by V1, V2 and V3 neurons. Nature 394:784–787

    Google Scholar 

  • Hupé J-M, James AC, Girard P, Lomber SG, Payne BR, Bullier J (2001) Feedback connections act on the early part of the responses in monkey visual cortex. J Neurophysiol 85:134–145

    PubMed  Google Scholar 

  • Lomber SG, Payne BR (2001) Task-specific reversal of visual hemineglect during reversible deactivation of posterior parietal cortex: a comparison with deactivation of the superior colliculus. Vis Neurosci 18:487–499

    Article  CAS  PubMed  Google Scholar 

  • Lomber SG, MacNeil MA, Payne BR (1995) Amplification of thalamic projections to middle suprasylvian cortex following ablation of immature primary visual cortex in the cat. Cereb Cortex 5:166–191

    CAS  PubMed  Google Scholar 

  • Lomber SG, Payne BR, Cornwell P, Long KD (1996) Perceptual and cognitive visual functions of parietal and temporal cortices in the cat. Cereb Cortex 6:673–695

    CAS  PubMed  Google Scholar 

  • MacNeil MA, Lomber SG, Payne BR (1996) Rewiring of transcortical projections to middle suprasylvian cortex following early removal of cat areas 17 and 18. Cereb Cortex 6:362–376

    CAS  PubMed  Google Scholar 

  • MacNeil MA, Lomber SG, Payne BR (1997) Thalamic and cortical projections to middle suprasylvian cortex of cats: constancy and variation. Exp Brain Res 114:24–32

    CAS  PubMed  Google Scholar 

  • Marrocco RT, McClurkin JW (1985) Evidence for spatial structure in the cortical input to the monkey lateral geniculate nucleus. Exp Brain Res 59:50–56

    CAS  PubMed  Google Scholar 

  • McClurkin JW, Marrocco RT (1984) Visual cortical input alters spatial tuning in monkey lateral geniculate nucleus cells. J Physiol Lond 348:135–152

    CAS  PubMed  Google Scholar 

  • McClurkin JW, Optican LM, Richmond BJ (1994) Cortical feedback increases visual information transmitted by monkey parvocellular lateral geniculate nucleus neurons. Vis Neurosci 11:601–617

    CAS  PubMed  Google Scholar 

  • Merabet L, Desautels A, Minville K, Casanova C (1998) Motion integration in a thalamic visual nucleus. Nature 396:265–268

    CAS  PubMed  Google Scholar 

  • Meyer G, Albus K (1981) Spiny stellates as cells of origin of association fibres from area 17 to area 18 in the cat's neocortex. Brain Res 210:353–341

    Article  Google Scholar 

  • Mitzdorf U, Singer W (1978) Prominent excitatory pathways in the cat visual cortex A17 and A18: a current source density analysis of electrically evoked potentials. Exp Brain Res 33:371–394

    CAS  PubMed  Google Scholar 

  • Movshon JA, Newsome WT (1996) Visual response properties of striate cortical neurons projecting to area MT in macaque monkeys. J Neurosci 16:7733–7741

    CAS  PubMed  Google Scholar 

  • Movshon JA, Thompson ID, Tolhurst DJ (1978) Spatial and temporal contrast sensitivity of neurones in areas 17 and 18 of the cat's visual cortex. J Physiol Lond 283:101–120

    CAS  PubMed  Google Scholar 

  • Nowak LG, Bullier J (1997) The timing of information transfer in the visual system. In: Rockland K, Kaas J, Peters A (eds) Primate extrastriate cortex, cerebral cortex, vol 12. Plenum, New York, pp 205–241

  • Olucha F, Martinex-Garcia F, Lopez-Garcia C (1985) A new stabilizing agent for the tetramethylbenzidene TMB reaction product in the histochemical detection of horseradish peroxidase HRP. J Neurosci Methods 13:131–138

    Article  CAS  PubMed  Google Scholar 

  • Palmer LA, Rosenquist AC, Tusa RJ (1978) The retinotopic organization of lateral suprasylvian visual areas in the cat. J Comp Neurol 177:237–256

    CAS  PubMed  Google Scholar 

  • Payne BR (1993) Evidence for visual cortical area homologues in cat and macaque monkey. Cereb Cortex 3:1–25

    CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG (1998) Neuroplasticity in the cat's visual system: origin, termination, expansion and increased coupling in the retino-geniculo-middle suprasylvian visual pathway following early lesions of areas 17 and 18. Exp Brain Res 121:334–349

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Lomber SG (1999) A method to assess the functional impact of cerebral connections on target populations of neurons. J Neurosci Methods 86:195–208

    Article  CAS  PubMed  Google Scholar 

  • Payne BR, Peters A (2002) The concept of cat primary visual cortex. In: Payne BR, Peters A (eds) Cat primary visual cortex. Academic, New York, pp 1–130

  • Payne BR, Lomber SG, Geeraerts S, van der Gucht E, Vandenbussche E (1996) Reversible visual hemineglect. Proc Natl Acad Sci U S A 93:290–294

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Palay SL (1966) The morphology of laminae A and A1 of the dorsal nucleus of the lateral geniculate body of the cat. J Anat 100:451–486

    CAS  PubMed  Google Scholar 

  • Przybyszewski AW, Gaska JP, Foote W, Pollen DA (2000) Striate cortex increases contrast gain of macaque LGN neurons. Vis Neurosci 17:485–494

    Article  CAS  PubMed  Google Scholar 

  • Raczkowski D, Rosenquist AC (1983) Connections of the multiple visual cortical areas with the lateral posterior-pulvinar complex and adjacent thalamic nuclei in the cat. J Neurosci 3:1912–1942

    CAS  PubMed  Google Scholar 

  • Rapisardi SC, Miles TP (1984) Synaptology of retinal terminals in the dorsal lateral geniculate nucleus of the cat. J Comp Neurol 223:515–534

    CAS  PubMed  Google Scholar 

  • Rockland KS, Knutson T (2000) Feedback projections from area MT of the squirrel monkey to areas V1 and V2. J Comp Neurol 425:345–368

    Article  CAS  PubMed  Google Scholar 

  • Rockland KS, Pandya DN (1979) Laminar origins and terminations of cortical connections of the occipital lobe in the rhesus monkey. Brain Res 179:3–20

    CAS  PubMed  Google Scholar 

  • Rosenquist AC (1985) Connections of visual cortical areas in the cat. In: Peters A, Jones EG (eds) Cerebral cortex, vol 3, visual cortex. Plenum, New York, pp 81–117

  • Ruan DY, Chabli A, Molotchnikoff S (1997) Spatial frequency properties in area 18 during inactivation of area 17 in cats. Exp Brain Res 113:431–442

    CAS  PubMed  Google Scholar 

  • Rudolph KK, Pasternak T (1996) Lesions in cat lateral suprasylvian cortex affect the perception of complex motion. Cereb Cortex 6:814–822

    CAS  PubMed  Google Scholar 

  • Salin P-A, Bullier J (1995) Cortico-cortical connections in the visual system: structure and function. Physiol Rev 75:107–154

    CAS  PubMed  Google Scholar 

  • Scannell JW, Young MP (2002) Primary visual cortex within the cortico-cortico-thalamic network. In: Payne BR, Peters A (eds) Cat primary visual cortex. Academic, New York, pp 609–654

  • Scannell JW, Grant S, Payne BR, Baddeley R (2000) On variability in the density of corticocortical and thalamocortical connections. Philos Trans R Soc Lond B Biol Sci 355:21–35

    Article  CAS  PubMed  Google Scholar 

  • Schmielau F, Singer W (1977) The role of visual cortex for binocular interactions in the cat lateral geniculate nucleus. Brain Res 120:354–361

    Article  CAS  PubMed  Google Scholar 

  • Sherk H (1978) Area 18 cell responses in cat during reversible inactivation of area 17. J Neurophysiol 41:204–215

    CAS  PubMed  Google Scholar 

  • Sherk H (1986) Location and connections of visual cortical areas in the cat's suprasylvian sulcus. J Comp Neurol 247:1–31

    CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (1998) On the actions that one nerve cell can have on another: distinguishing "drivers" from "modulators". Proc Natl Acad Sci U S A 95:7121–7126

    Article  CAS  PubMed  Google Scholar 

  • Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Phil Trans R Soc Lond B Biol Sci 357:1695–1708

    Article  Google Scholar 

  • Sillito AM, Cudeiro J, Murphy PC (1993) Orientation sensitive elements in the corticofugal influence on centre-surround interactions in the dorsal lateral geniculate nucleus. Exp Brain Res 93:6–16

    CAS  PubMed  Google Scholar 

  • Singer W (1977) Control of thalamic transmission by corticofugal and ascending reticular pathways in the visual system. Physiol Rev 57:386–420

    CAS  PubMed  Google Scholar 

  • Symonds LL, Rosenquist AC (1984a) Corticocortical connections among visual areas in the cat. J Comp Neurol 229:1–38

    CAS  PubMed  Google Scholar 

  • Symonds LL, Rosenquist AC (1984b) Laminar origins of visual corticocortical connections in the cat. J Comp Neurol 229:39–47

    CAS  PubMed  Google Scholar 

  • Symonds LL, Rosenquist AC, Edwards SB, Palmer LA (1981) Projections of the pulvinar-lateral posterior complex to visual cortical areas in the cat. Neuroscience 6:1995–2020

    Article  CAS  PubMed  Google Scholar 

  • Tusa RJ, Rosenquist AC, Palmer LA (1979) Retinotopic organization of areas 18 and 19 in the cat. J Comp Neurol 185:657–678

    CAS  PubMed  Google Scholar 

  • Updyke BV (1981) Projections from visual areas of the middle suprasylvian sulcus onto the lateral posterior complex and adjacent thalamic nuclei in cat. J Comp Neurol 201:477–506

    Google Scholar 

  • Vanduffel W, Payne BR, Lomber SG, Orban GA (1997) Functional impact of cerebral connections. Proc Nat Acad Sci U S A 94:7617–7620

    Article  CAS  Google Scholar 

  • Van Horn SC, Erisir A, Sherman SM (2000) Relative distribution of synapses in the A-laminae of the lateral geniculate nucleus of the cat. J Comp Neurol 416:509–520

    Article  PubMed  Google Scholar 

  • Vidyasagar TR, Urbas JV (1982) Orientation sensitivity of cat LGN neurones with and without inputs from visual cortical areas 17 and 18. Exp Brain Res 46:157–169

    CAS  PubMed  Google Scholar 

  • Wang S, Eisenback MA, Bickford ME (2002) Relative distribution of synapses in the pulvinar nucleus of the cat: implications regarding the "driver/modulator" theory of thalamic function. J Comp Neurol 454:482–494

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank the National Institute of Neurological Diseases and Stroke for financial support and Jarrett Rushmore, Ralf Galuske, Kerstin Schmidt, Julian Budd and an anonymous reviewer for their comments. We also thank Dr. Wolf Singer for hosting BRP at the Max-Planck Institute for Brain Research, Frankfurt, Germany, for the preparation of much of the manuscript. Financial support of DAAD for travel to Frankfurt is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bertram R. Payne.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Payne, B.R., Lomber, S.G. Quantitative analyses of principal and secondary compound parieto-occipital feedback pathways in cat. Exp Brain Res 152, 420–433 (2003). https://doi.org/10.1007/s00221-003-1554-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-003-1554-x

Keywords

Navigation