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Abstract: We study the free probabilistic analog of optimal couplings for the
quadratic cost, where classical probability spaces are replaced by tracial von Neumann
algebras, and probability measures on R

m are replaced by non-commutative laws of
m-tuples. We prove an analog of the Monge–Kantorovich duality which characterizes
optimal couplings of non-commutative laws with respect to Biane and Voiculescu’s
non-commutative L2-Wasserstein distance using a new type of convex functions. As a
consequence, we show that if (X,Y ) is a pair of optimally coupled m-tuples of non-
commutative random variables in a tracial W∗-algebra A, then W∗((1 − t)X + tY ) =
W∗(X,Y ) for all t ∈ (0, 1). Finally, we illustrate the subtleties of non-commutative
optimal couplings through connections with results in quantum information theory and
operator algebras. For instance, two non-commutative laws that can be realized in finite-
dimensional algebras may still require an infinite-dimensional algebra to optimally cou-
ple. Moreover, the space of non-commutative laws of m-tuples is not separable with
respect to the Wasserstein distance for m > 1.

1. Introduction

1.1. Context and motivation. Tracial von Neumann algebras have long been viewed as a
non-commutative analog of probability spaces, where the elements of the von Neumann
algebra play the role of non-commuting random variables, but it was Voiculescu who
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pointed out that free products of operator algebras provide an analog of probabilistic
independence with its own central limit theorem [73,74], initiating the discipline of
free probability theory. Free probability has since had many applications both to random
matrix theory e.g. [75] and tovonNeumannalgebras e.g. [78].Manydevelopments in free
probability theory have been motivated by information geometry (here by “information
geometry” we mean the study of the space P(M) of probability measures on a manifold
M , both as a metric space with the Wasserstein distance and as a formal Riemannian
manifold, as well as the study of entropy and Fisher’s information as functions on
P(M); see [44,46,56,57]). For instance, Voiculescu introduced free entropy and Fisher
information [76,77,79] and Biane and Voiculescu [11] defined an analog of the L p

Wasserstein distance for non-commutative laws (the analog of probability distributions
form-tuples of non-commuting randomvariables),whichwas thenused in freeTalagrand
inequalities [11,22,36,37].

Information-geometric ideas have also been used in quantum information theory, an-
other non-commutative analog of probability theory that is distinct from free probability
theory, even though it uses similar concepts and terminology. For a survey of quantum
information theory, see [83,84]. To prevent any confusion, in free probability, operators
in a tracial von Neumann algebra are viewed as non-commutative random variables (and
there is no known analog of multivariable densities), while in quantum information the-
ory, a positive operator with trace 1 in a von Neumann algebra with a (not necessarily
bounded) trace is viewed as a density.1 Hence, for example, a randommatrix is typically
studied in free probability theory, while a matrix-valued density is typically studied in
quantum information theory. Our paper is focused on the free probabilistic framework;
however, in Sect. 5, we will draw a connection between free probabilistic optimal cou-
plings and certain aspects of quantum information theory, specifically quantum channels
or unital completely positive trace-preserving maps.

In classical information geometry, both the Wasserstein distance and the entropy
are intimately related to transport equations (differential equations describing functions
which push forward some given probability distribution to another given probability
distribution). In the free setting, there has been some success in constructing non-
commutative transport of measure for a special type of non-commutative law known
as a free Gibbs law from a convex potential V in [23,31,39–41]; these ideas have even
been generalized beyond the setting of tracial von Neumann algebras [53,54,66]. Un-
fortunately, the transport maps constructed in [23,39,40] were not optimal. The trans-
port in [31] was shown to be the gradient of a convex function, hence one would
expect it to be optimal in light of the classical Monge–Kantorovich duality, but it was
not clear yet how to prove this because there was no known non-commutative Monge–
Kantorovich duality. The optimality of these couplings was later verified in [41, Remark
9.11] by studying a Legendre transform for (sufficiently regular, uniformly convex) non-
commutative functions [41, Lemma 9.10]. This idea was one of the starting points for
our current investigation into non-commutative optimal couplings, Legendre transforms,
and Monge–Kantorovich duality with minimal regularity assumptions.

One of the challenges in even formulating a Monge–Kantorovich duality for the
free setting is to decide what type of convex functions to use. Operator algebras are
often thought of as non-commutative analogs of algebras of functions on a topological

1 More precisely, a positive operator ρ defines a non-tracial state on the von Neumann algebra, and ρ is
the density of this state with respect to the trace. However, von Neumann algebras with a semi-finite trace are
difficult to classify, and indeed even those with a finite trace are difficult to classify, which makes it difficult
to classify non-commutative laws in free probability.
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space or a measure space, but without a clear analog for points of the underlying space.
Our approach is to consider functions that can be evaluated on random variables rather
than on points, or more precisely, to study functions f : L2(A)msa → R where A is a
tracial von Neumann algebra, L2(A) is the non-commutative L2 space, and the subscript
sa indicates the real subspace of self-adjoint elements. The classical analog would be
a function L2(�, P;Rm) → R where (�, P) is a probability space, rather than a
function R

m → R. As we discuss in Sect. 1.4, such functions on the space of classical
random variables have already found applications to Hamilton–Jacobi equations on the
Wasserstein space [26,29] as well as the master equation on Rm ×P(Rm) in mean field
games [14,27,28].

As in [31] and [39], we remark that the complexity of classifying von Neumann
algebras presents serious obstructions to non-commutative transport theory that simply
do not exist in the classical setting. It is a widely used fact in classical probability
theory that any two standard Borel probability spaces with no atoms are measurably
isomorphic; hence one can always arrange that their random variables are on some
canonical probability space. By contrast,McDuff [48] showed that there are uncountably
many non-isomorphic tracial von Neumann algebras that are diffuse with trivial center
(that is, II1 factors). This provides a real obstruction to non-commutative transport of
measure, because if X = (X1, . . . , Xm) and Y = (Y1, . . . ,Ym) are m-tuples of self-
adjoint non-commutative random variables such that X is expressed as a “function” of
Y and vice versa (for some reasonable notion of non-commutative functions), then X
and Y generate the same von Neumann algebra. Hence, non-commutative laws which
produce non-isomorphic von Neumann algebras simply cannot be transported to each
other in an invertible way. Another result of Ozawa [58] (based on group-theoretic results
of Gromov [30] and Olshanskii [55]) shows there is no separable II1 factor that contains
an isomorphic copy of every separable II1-factor. Hence, we cannot even expect that
there is some non-commutative law μ such that all other non-commutative laws can be
expressed as push-forwards of μ.

These obstructions must inform how we go about defining the convex functions for
the Monge–Kantorovich duality, as well as the level of regularity that we expect from
an optimal coupling. In fact, in Sect. 5 we make a more explicit connection between
optimal couplings and this result of Gromov, Olshanshkii, and Ozawa as well as explor-
ing other pathological properties of the non-commutative Wasserstein distance through
connections with quantum information theory.

1.2. Main results. Before stating the non-commutativeMonge–Kantorovich duality, we
establish following notational conventions; see Sect. 2 for background. By tracial W∗-
algebrawemean a pairA = (A, τ )where A is a W∗-algebra (or von Neumann algebra)
and τ : A → C is a faithful normal tracial state. In analogy with classical probability,
we will denote the underlying algebra A by L∞(A) and the trace by τA when it is
convenient to avoid naming A and τ explicitly. We denote by L2(A) the Hilbert space
obtained from the GNS construction of A and τ .

We denote by L∞(A)msa the set of m-tuples of self-adjoint elements of L∞(A) and
for X = (X1, . . . , Xm) ∈ L∞(A)msa, we write ‖X‖L∞(A)msa

= max j=1,...,m‖X‖L∞(A). If
X ∈ L∞(A)msa, then W

∗(X) denotes the W∗-algebra generated by X equipped with the
appropriate trace.

For each X = (X1, . . . , Xm) ∈ L∞(A)msa, the non-commutative law λX is the lin-
ear map from the non-commutative polynomial algebra C〈x1, . . . , xm〉 to C given by
λX (p) = τA(p(X)). The space of non-commutative laws (of self-adjointm-tuples from
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any tracialW∗-algebra) is denoted�m . Furthermore,�m,R denotes the subspace of those
laws λX where ‖X‖L∞(A)msa

≤ R (where A is a tracial W∗-algebra and X ∈ L∞(A)msa).
The weak-∗ topology on �m,R refers to the topology of pointwise convergence on
C〈x1, . . . , xm〉.

Following [11], a coupling of μ, ν ∈ �m is a triple (A, X,Y ) where A is a tracial
W∗-algebra and X,Y ∈ L∞(A)msa such that λX = μ and λY = ν. The Wasserstein

distance d(2)
W (μ, ν) is the infimum of ‖X − Y‖L2(A)msa

over all couplings (A, X,Y ).
We denote by C(μ, ν) the supremum of 〈X,Y 〉L2(A)msa

over all couplings (A, X,Y ),
where 〈X,Y 〉L2(A)msa

= ∑m
j=1〈X j ,Y j 〉L2(A)sa

. We say that a coupling is optimal if it
achieves the infimum of ‖X − Y‖L2(A)msa

or equivalently if it achieves the supremum of
〈X,Y 〉L2(A)msa

. The existence of optimal couplings was observed in [11]. That paper also
showed that the non-commutative Wasserstein distance agrees with the classical one in
the situation that X1, …, Xm commute and Y1, …, Ym commute [11, Theorem 1.5].

Asmentionedbefore, the functions used in thenon-commutativeMonge–Kantorovich
duality are functions on L2(A)msa for tracial W

∗-algebraAwith separable predual. How-
ever, because of Ozawa’s result [58], it is not sufficient to fix a single such tracial
W∗-algebra, but rather we must consider functions that are defined on L2(A)msa for every
such A. We give more precise versions of the definitions in Sect. 3.

Definition 1.1. A tracial W∗-function with values in (−∞,∞] is a collection of func-
tions f A : L2(A)msa → (−∞,+∞], such that whenever ι : A → B is an inclusion map
of tracial W∗-algebras, f A = f B ◦ ι (here ι is extended to a map L2(A)msa → L2(B)msa).
If μ ∈ �m and f is a tracial W∗-function, then μ( f ) is defined as f A(X) whenever A
is a tracial W∗-algebra with separable predual and X ∈ L∞(A)msa with λX = μ; this is
well-defined because W∗(X) is determined up to isomorphism by λX = μ.

One example of a tracial W∗-function would be

f A(X) =
{

τA(p(X)), ‖X‖∞ ≤ R
∞, otherwise,

where p is a non-commutative polynomial. Tracial W∗-functions also include scalar-
valued tracial non-commutative smooth functions as in [40] and [41] in the following
sense. If φ is such a tracial non-commutative smooth function, then φA(X) is only a
priori defined when X ∈ L∞(A)msa; however, in many cases φ is Lipschitz with respect
to ‖·‖L2(A)msa

and hence can be extended to a function on L2(A)msa which will be a tracial
W∗-function. However, tracial W∗-functions are much more general because they are
not assumed to be continuous in any sense.

Definition 1.2. We say that f is E-convex if f A is convex and lower semi-continuous
on L2(A)msa for eachA, and if for every inclusion ι : A → B, letting E : B → A be the
corresponding trace-preserving conditional expectation, we have f A(E[X ]) ≤ f B(X)

for X ∈ L2(B)msa. Here we use the notation E[X ] = (E[X1], . . . , E[Xm]) when X =
(X1, . . . , Xm).

Motivation for the definition of E-convexity will be given in Lemmas 1.10 and 1.17.

Proposition 1.3. C(μ, ν) is equal to the infimum of μ( f ) + ν(g) over pairs ( f, g) of
E-convexW∗-functions that satisfy f A(X)+gA(Y ) ≥ 〈X,Y 〉L2(A) for every tracialW

∗-
algebra with separable predual and X, Y ∈ L2(A)msa. There exists an admissible pair of
E-convex functions that achieves the infimum. See Definition 3.22 and Propositions 3.23
and 3.24.
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Another consequence of the classification-related obstructions to non-commutative
transport is that we cannot expect too much regularity in general for the E-convex
functions associated to an optimal coupling. For instance, suppose two non-commutative
laws μ and ν generate tracial von Neumann algebras that cannot embed into each other.
This implies that if (X,Y ) is an optimal coupling of these two laws on a tracial W∗-
algebraA, then neither ofW∗(X) andW∗(Y ) is contained in the other. Thus, even though
the non-commutative laws may be diffuse, the situation is similar to when coupling the
classical measures (1/2)(δ−1 + δ1) and (1/3)(δ−1 + δ0 + δ1); in the optimal coupling,
neither random variable can be expressed as a function of the other. However, if a
pair of E-convex functions associated to an optimal coupling were differentiable, that
would imply that X is in the von Neumann algebra generated by Y and vice versa as a
consequence of Lemma 3.10.

It is natural to ask how close an arbitrary non-commutative optimal coupling is to a
coupling where X and Y generate the same von Neumann algebra. As a first application
of duality, we show that every optimal coupling can be decomposed into an optimal
coupling where the two variables generate the same W∗-algebra and some additional
orthogonal pieces.

Theorem 1.4. Suppose that (A, X,Y ) is an optimal coupling of μ, ν ∈ �m. Then there
exists a W∗-subalgebra B such that the following hold. Let EB : A → B be the trace-
preserving conditional expectation, and let X ′ = EB[X ] and Y ′ = EB[Y ].
(1) X ′ and Y ′ each generate B.
(2) (B, X ′,Y ′) is an optimal coupling of λX ′ and λY ′ .
(3) X ′ − Y ′, X − X ′, Y − Y ′ are mutually orthogonal.

See Theorem 3.25.

Our main results in Sect. 4 concern the displacement interpolation. If (A, X,Y ) is an
optimal coupling of μ and ν, then the displacement interpolation refers to the family of
random variables Xt = (1− t)X + tY for t ∈ [0, 1]. The associated laws μt = λXt form
a metric geodesic in�m with respect to theWasserstein distance (see Proposition A.22).
With the help of non-commutative Legendre transforms and Hopf-Lax semigroups,
we will see that the E-convex functions associated to the couplings (A, Xs, Xt ) for
s, t ∈ (0, 1) have more regularity than the E-convex functions associated to the original
coupling (A, X,Y ) (see Proposition 4.12). As a consequence, we obtain the following
non-commutative transport result.

Theorem 1.5. Let (A, X,Y ) be an optimal coupling ofμ, ν ∈ �m. ThenW∗((1− t)X +
tY ) = W∗(X,Y ) for all t ∈ (0, 1). For proof, see Sect. 4.3.

For instance, this theorem entails that for classical optimal couplings, the σ -algebra
generated by Xt is the same for all t ∈ (0, 1), which could be deduced directly from
classical optimal transport theory by a similar proof. The reader is encouraged to work
out the classical example of (1/2)(δ−1 + δ1) and (1/3)(δ−1 + δ0 + δ1) as motivation.

The results of Sect. 5 highlight additional ways in which non-commutative opti-
mal transport theory is significantly more complicated than its classical counterpart;
specifically, the negative solution of the Connes embedding problem [42] has a natural
interpretation in terms of optimal couplings.Weobserve that optimization over couplings
involved in the definition of the Wasserstein distance can be replaced by optimization
over what are called factorizable quantum channels in quantum information theory (see
Observation 5.5). The results of [32,42,52] imply that there exist quantum channels
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between finite-dimensional matrix algebras which are factorizable whose factorization
requires an infinite-dimensional non-Connes embeddable von Neumann algebra (see
Sect. 5.3) for definitions). We then show through Lemma 5.7 that channels with this
property must occur as optimizers in the definition of Wasserstein distance. From the
optimal transportation point of view, this means that the optimal distance between cer-
tain tuples of finite-dimensional matrices cannot be even approximately realized inside
a finite-dimensional coupling.

Proposition 1.6. Thanks to [32] and [42], for certain n ∈ N, there exist non-commutative
lawsμ and ν associated to n2-tuples in Mn(C) for which an optimal coupling requires a
non-Connes embeddable tracial W∗-algebra; see Corollary 5.14. Furthermore, thanks
to [52], for every n ≥ 11 and d ∈ N, there exist n2-tuples in Mn(C) such that if
(A, X,Y ) is a coupling that is optimal among couplings on Connes-embeddable tracial
W∗-algebras, then A must have dimension at least d; see Corollary 5.8 and Remark
5.15.

In contrast to classical probability theory, we show that the L2-Wasserstein metric
does not generate theweak-∗ topology on�m,R .We call the topology on�m,R generated
by the Wasserstein distance the Wasserstein topology. We characterize when the two
topologies agree at some μ in terms of the associated tracial W∗-algebra (Proposition
5.21) and hence obtain the following results (relying on the work of Connes [17]).

Proposition 1.7. The Wasserstein topology on �m,R is strictly stronger than the weak-∗
topology; see [11] and Corollary 5.17. Furthermore, let �fin

m,R denote the set of non-

commutative laws λX where X comes from L2(A)msa withA finite-dimensional. Let μ be
a non-commutative law and letA be a tracialW∗-algebra with a generating m-tuple X
such that λX = μ and ‖X‖L∞(A)msa

≤ R. Then μ is in the weak-∗ closure of �fin
m,R if and

only if A is Connes-embeddable; see Lemma 5.12. Moreover, in this case, the weak-∗
and Wasserstein topologies on �m,R agree at μ if and only if μ is in the Wasserstein
closure of �fin

m,R, which is equivalent to A being approximately finite-dimensional; see
Proposition 5.26.

Approximate finite-dimensionality (see Sect. 5.4 for definition) is the strongest way
that a W∗-algebra can be approximated by finite-dimensional algebras (besides being
finite-dimensional itself), and thus the latter condition is quite restrictive when m > 1.
For instance, there is up to isomorphism only one AFD II1 factor [70, Sect. XIV.2].
In Sect. 6.1, we explain how Propositions 1.6 and 1.7 pose challenges to studying the
large-N convergence of Wasserstein distance for random matrix models.

The results of Propositions 1.6 and 1.7 constrast strongly with the classical situation.
Some treatments of optimal transport (e.g. [72, p. 75]) take for granted the fact that finitely
supported probabilitymeasures areweak-∗ dense in the space of probabilitymeasures on
a compact set. Such approximation arguments do not work in the non-commutative case
for several reasons. Due to the negative resolution of the Connes embedding problem
[42], the non-commutative laws that can be realized in finite-dimensional algebras are
not weak-∗ dense. Furthermore, by Proposition 1.7, the weak-∗ closure of�fin

m,R is much
larger than its Wasserstein closure (assuming m > 1). Finally, by Proposition 1.6, even
if two laws μ and ν can be realized in finite-dimensional algebras, an optimal coupling
need not be weak-∗ approximable by couplings in finite-dimensional algebras.

Because the weak-∗ and Wasserstein topologies are different for m > 1, one can
deduce that�m,R with theWasserstein distance is not compact (Corollary 5.27). The fol-
lowing even more startling result is a consequence of Gromov, Olshanskii, and Ozawa’s
work [58, Theorem 1].
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Theorem 1.8. For m > 1 and R > 0, the space �m,R is not separable with respect to

d(2)
W .

1.3. Organization. The paper is organized as follows:

• In Sect. 1.4 and Sect. 1.5, we motivate the definition of E-convex functions and the
associated duality result in terms of two toy examples, classical probability spaces
and Mn(C).

• In Sect. 2, we recall standard background on tracial W∗-algebras and their inter-
pretation as non-commutative probability spaces for the sake of readers who are not
specialists in that topic.

• In Sect. 3, we describe the properties of E-convex functions and the associated Leg-
endre transform;we prove the non-commutativeMonge–Kantorovich duality (Propo-
sition 1.3) and the decomposition theorem for optimal couplings (Theorem 1.4).

• In Sect. 4, we study the non-commutative analog of inf-convolution and the regular-
ity properties of E-convex and semi-concave functions; we prove Theorem 1.5 and
give further detail about the functions associated to the displacement interpolation in
Proposition 4.12.

• In Sect. 5, we connect non-commutative optimal couplings with quantum infor-
mation theory and prove Proposition 1.6. Then we study the differences between
the weak-∗ and the Wasserstein topology using a certain stability property (Proposi-
tion 5.21) and hence prove Proposition 1.7. Finally, we show non-separability of the
Wasserstein space in Sect. 5.5.

• In Sect. 6.1, we explain how Sect. 5 illustrates the difficulty of studying random
matrix optimal transport in the large-N limit. Then Sect. 6.2 sketches a different but
analogous theory of non-commutative optimal couplings that uses bimodules and
UCPT-maps of tracial W∗-algebras.

• In the appendix Sect. A, we define non-commutative laws and optimal couplings
for elements of non-commutative L p spaces, and show the existence of L p optimal
couplings and Wasserstein geodesics.

1.4. Motivation from classical probability. First, we recall the classical Monge–
Kantorovich duality. Fix a standard Borel probability space (�, P) with no atoms. For
μ and ν compactly supported probability measures on R

m , a coupling of μ and ν is a
pair (X,Y ) of random variables on�with X ∼ μ and Y ∼ ν. The classical Wasserstein
distance is the infimum of ‖X − Y‖L2(�,P;Rm ) over all such couplings, and a coupling
is said to be optimal if it achieves this infimum.

Theorem 1.9. (See [72, Theorem 5.10, Particular Case 5.17]) Let (X,Y ) be a coupling
of two compactly supported measuresμ and ν onRm. Then (X,Y ) is optimal if and only
if there exists a pair of convex functions f, g : Rm → R satisfying f (x)+ g(y) ≥ 〈x, y〉
for x, y ∈ R

m and E[ f (X)]+E[g(Y )] = E〈X,Y 〉. Furthermore, E[ f (X)]+E[g(Y )] =
E〈X,Y 〉 implies that Y is almost surely in the subdifferential of f at X and X is almost
surely in the subdifferential of g at Y .

As explained above, E-convex functions will be an analog of functions on
L2(�,P;Rm) rather than R

m . Every convex function on R
m defines a convex func-

tion on L2(�, P;Rm) as follows.
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Lemma 1.10. Let f : R
m → (−∞,∞] be convex and lower semi-continuous. Let

(�, P) be a non-atomic standard Borel probability space with underlying σ -algebraF .
Define

f̃ : L2(�, P;Rm) → R, X �→ E[ f (X)],
which is well-defined in (−∞,∞] thanks to Jensen’s inequality. Then
(1) f̃ (X) only depends on the law (probability distribution) of X.
(2) f̃ is convex and lower semi-continuous.
(3) Suppose that f̃ (X) < ∞. Then Y is in the subdifferential of f̃ at X if and only if Y

is in the subdifferential of f at X almost surely.
(4) f̃ is monotone under conditional expectations: If G is a sub-σ -algebra of F , then

f̃ (E[X |G]) ≤ f̃ (X).

Sketch of proof. (1) This is immediate.
(2) Convexity of f̃ is immediate from convexity of f . To show lower semi-continuity

of f̃ , note that f (x)+|x |2/2 is bounded frombelow by some constantC and thus g(x) :=
f (x)+ |x |2/2−C is a nonnegative convex function. If Xn → X in L2(�, P;Rm), then
Xn → X in probability, and hence lim infn→∞ g(Xn) ≥ g(X) in probability. Thus,
by Fatou’s lemma for convergence in probability lim infn→∞ g̃(Xn) ≥ g̃(X), which
implies that f̃ is also lower semicontinuous.

(3) If Y is in the subdifferential of f at X almost surely and Z ∈ L2(�, P), then
f (Z) ≥ f (X) + 〈Z − X,Y 〉Rm almost surely, and thus by taking expectations f̃ (Z) ≥
f̃ (X) + 〈Z − X,Y 〉L2(�,P;Rm ). For the converse, let S = {x ∈ R

m : f (x) < ∞} and fix
a countable dense subset � of S. For each n > 0 and ξ ∈ �, let En,ξ be the event

En,ξ = { f (ξ) ≤ f (X) + 〈ξ − X,Y 〉Rm − 1/n}.
Because Y is in the subdifferential of f̃ at X , we have

f̃ (1Ec
n,ξ

X + 1En,ξ ξ ) ≥ f̃ (X) + 〈1En,ξ (ξ − X),Y 〉L2(�,P;Rm ).

On the other hand, by definition of En,ξ , we have

f̃ (1Ec
n,ξ

X + 1En,ξ ξ ) ≤ f̃ (X) + 〈1En,ξ (ξ − X),Y 〉L2(�,P;Rm ) +
1

n
P(En,ξ ).

Therefore, P(En,ξ ) = 0. Since this holds for all n ∈ N, we have f (ξ) ≥ f (X) + 〈ξ −
X,Y 〉Rm almost surely for each ξ . Since � is countable, we have this condition every
ξ ∈ � at once almost surely. On this event, if x ∈ R

m with f (x) < ∞, then f is
continuous at x , and therefore by taking sequence of ξ ∈ � that converges to x we
obtain f (x) ≥ f (X) + 〈x − X,Y 〉Rm .

(4) This follows from Jensen’s inequality and the existence of regular conditional
distributions for standard Borel probability spaces.

Remark 1.11. Similar reasoning shows that if g is the Legendre transform of f on R
m ,

then g̃ is the Legendre transform of f̃ on L2(�, P;Rm).

Let us call a function F : L2(�, P;Rm) → (−∞,∞] classically E-convex if

(1) F(X) depends only on the law of X .
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(2) F is convex and lower semi-continuous.
(3) Wehave F(E[X |G]) ≤ F(X) for every sub-σ -algebraG and every X ∈ L2(�, P;Rm).

Then we have the following version of Monge–Kantorovich duality using classically
E-convex functions on L2(�, P;Rm).

Corollary 1.12. Let (X,Y ) be a coupling on (�, P) of two compactly supported mea-
suresμ and ν onRm. Then (X,Y ) is optimal if and only if there exists a pair of classically
E-convex functions F, G : L2(�, P;Rm) → (−∞,∞] such that

F(X ′) + G(Y ′) ≥ 〈X ′,Y ′〉L2(�,P;Rm ) for all X
′,Y ′ ∈ L2(�, P;Rm),

and

F(X) + G(Y ) = 〈X,Y 〉L2(�,P;Rm ).

Proof. ( �⇒ ) By the classical Monge–Kantorovich duality, there are convex func-
tions f, g : Rm → (−∞,∞] with f (x) + g(y) ≥ 〈x, y〉Rm and E f (X) + E f (Y ) =
〈X,Y 〉L2(�,P;Rm ). Let F = f̃ and G = g̃. By Lemma 1.10, F and G are classical
E-convex and clearly F(X) + G(Y ) = 〈X,Y 〉L2(�,P;Rm ). Also, F(X ′) + G(Y ′) ≥
〈X ′,Y ′〉L2(�,P;Rm ) since f (x) + f (y) ≥ 〈x, y〉Rm .

(⇐) Suppose that (X ′,Y ′) is another coupling of μ and ν on (�, P). Then

〈X ′,Y ′〉L2(�,P;Rm ) ≤ F(X ′) + G(Y ′) = F(X) + G(Y ) = 〈X,Y 〉L2(�,P;Rm ),

where in the middle equality we have used that F(X) = F(X ′) and G(Y ) = G(Y ′)
since X ∼ X ′ and Y ∼ Y ′ in law. Therefore, the coupling (X,Y ) is optimal.

Corollary 1.12 is the statement thatwewill generalize to the non-commutative setting.
We remark that although classically E-convex functions are much less concrete than
convex functions onRm , Corollary 1.12 still has the power to prove the classical analogs
of Theorems 1.4 and 1.5 by exactly the same arguments that we will use in the non-
commutative case.

In fact, convex functions on a space of classical random variables have also been used
in the theory ofmean field games [28].Mean field games involves the study of themaster
equation [14,27], a differential equation for a function u(t, x, μ) depending on a time
variable t , a space variable x (representing the position of an individual agent), and a
measureμ (representing the distribution of the positions of a continuum of other agents).
We can define a function û on [0,∞)×R

m×L2(�, P;Rm) by û(t, x, X) = u(t, x, μX ),
where μX is the law of X . The first-order regularity conditions needed to solve the
master equation are more easily stated in terms of the function û on the Hilbert space
R
m × L2(�, P;Rm). Moreover, the proof of existence and uniqueness of solutions to

Hamilton–Jacobi equations on Wasserstein space P2(R
m) [26,29] relies on the theory

of viscosity solutions to Hamilton–Jacobi equations on Hilbert spaces [18,19,47,49].
The inf-convolution techniques that we use in Sect. 4 are an important special case

of this theory of Hamilton–Jacobi equations on Hilbert spaces. In fact, part of our mo-
tivation was to understand the non-commutative version of Hamilton–Jacobi equations
for functions of a random variable. Recent work has connected random matrix theory to
viscosity solutions of Hamilton–Jacobi equations [10] and mean field games [15]. How-
ever, these connections are restricted to the setting of a single random matrix because
they rely heavily on the description of self-adjoint random matrices in terms of their
eigenvalues. It would be of great interest to have a theory of viscosity solutions to partial
differential equations in several non-commuting variables as is suggested by the study
of heat equations in [23,38,41] and the Hamilton–Jacobi–Bellman equation in [21,38].
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1.5. Motivation from matrix tuples. In order to motivate some of the ideas of our paper,
we explain a toymodel of couplings between tuples of n×nmatrices. Let Mn(C) denote
the space of complex n × n matrices. Let trn = (1/n)Trn be the normalized trace on
Mn(C). We define an inner product on Mn(C) by

〈S, T 〉trn = trn(S
∗T ).

Let Mn(C)sa denote the real subspace of self-adjoint matrices. Then 〈X,Y 〉trn ∈ R for
all X,Y ∈ Mn(C)sa. Every element of Mn(C) can be uniquely written as S + iT with
S, T ∈ Mn(C)sa, and hence there is a natural identification of the complex inner product
space Mn(C) with the complexification of the real inner product space Mn(C)sa.

From a non-commutative probability viewpoint, we can view Mn(C) as an algebra
of “random variables” and the normalized trace trn : Mn(C) → C as the “expectation.”
To motivate this, suppose X ∈ Mn(C)sa. The empirical spectral distribution of X is
the measure μ = 1

n

∑n
j=1 δλ j where λ1, …, λn are the eigenvalues of X listed with

multiplicity. We then have for every polynomial p that

trn(p(X)) =
∫

p dμ.

Thus, μ is analogous to the distribution of a random variable.
If X = (X1, . . . , Xm) ∈ Mn(C)msa, the “joint distribution” of X1, …, Xm is not

described by a measure on R
m , since X1, …, Xm do not commute. Rather we consider

the non-commutative law λX , which is the linear functional on the algebra ofm-variable
non-commutative polynomials given by

p �→ trn(p(X1, . . . , Xm)).

It turns out that two tuples X and Y ∈ Mn(C)msa have the same non-commutative law if
and only if they are unitarily conjugate.

Lemma 1.13. Let X,Y ∈ Mn(C)msa. Then the following are equivalent

(1) trn(p(X)) = trn(p(Y ))whenever p is a non-commutative polynomial inm variables.
(2) There exists a unitary U in Mn(C) such that Y j = UX jU∗ for j = 1, …, m.

This lemma follows from the multivariate version of Specht’s theorem [67] observed
by Wiegmann [82] and verified in [43, Theorem 2.2]. This result is closely connected to
the invariant theory of matrices [62], and related results have been rediscovered many
times as the survey [65] explains. Moreover, many in the operator algebras community
are aware it can be deduced from Lemma 2.33 below, and the fact that any two trace-
preserving embeddings of a finite-dimensional tracial ∗-algebra intoMn(C) are unitarily
conjugate, which is a consequence of the Artin-Wedderburn-type classification of finite-
dimensional ∗-algebras and their representations (see e.g. [25, Sect. 2]).

We consider the toy problem of optimally coupling two matrix tuples inside Mn(C)

(beware that because of Proposition 1.6 an optimal coupling inside Mn(C) is not nec-
essarily optimal among all couplings in tracial W∗-algebras). Because of Lemma 1.13,
the toy problem reduces to the following: Given X,Y ∈ Mn(C)msa, find a unitary U so
that ‖UXU∗ − Y‖trn is as small as possible, whereUXU∗ = (UX1U∗, . . . ,UXmU∗),
and where ‖·‖trn is the normalized Hilbert-Schmidt norm

‖T ‖trn =
⎛

⎝
m∑

j=1

trn(T
∗
j Tj )

⎞

⎠

1/2

.
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This motivates the following definition: For X,Y ∈ Mn(C)msa, we say that (X,Y ) are an
optimal coupling in Mn(C) if ‖UXU∗ − Y‖trn ≥ ‖X − Y‖trn for every unitary U . The
next lemma guarantees existence of optimal couplings.

Lemma 1.14. Let X, Y ∈ Mn(C)msa. Then there exists an n×n unitary U that minimizes
‖UXU∗ − Y‖trn . Moreover, every such unitary must satisfy

m∑

j=1

[UX jU
∗,Y j ] = 0,

where [S, T ] = ST − T S is the commutator.

Proof. Existence of a minimizer follows from the fact that the unitary group is compact
and U �→ ‖UXU∗ − Y‖trn is continuous. Now suppose that U is a minimizer and let
Z = UXU∗. Let A be a self-adjoint matrix, and consider the unitary eit A for t ∈ R.
By minimality, we have ‖eit A Ze−i t A − Y‖2trn ≥ ‖Z − Y‖2trn . Since ‖eit A Ze−i t A‖2trn =
‖Z‖2trn , it follows that 〈eit A Ze−i t A,Y 〉trn is minimized at t = 0. Differentiating at t = 0
yields

m∑

j=1

trn((i AZ j − i Z j A)Y j ) =
m∑

j=1

trn(Ai(Z jY j − Y j Z j )) = trn

⎛

⎝A
m∑

j=1

i[Z j ,Y j ]
⎞

⎠ .

Since this holds for all A ∈ Mn(C)sa, it follows that
∑m

j=1[Z j ,Y j ] = 0 as desired.

Remark 1.15. In the case m = 1, this lemma actually provides an alternative proof the
spectral theorem as follows. Let X ∈ Mn(C)sa. Let Y be a fixed diagonal matrix with
distinct diagonal entries y1 ,…, yn . LetU be a unitaryminimizing ‖UXU∗−Y‖trn . Then[UXU∗,Y ] = 0. Any matrix A that commutes with Y must satisfy ai, j y j = yiai, j , and
hence A must be diagonal. Therefore, UXU∗ is diagonal.2

Next, we describe an analog of the Monge–Kantorovich duality for the setting of
matrix tuples.

Lemma 1.16. Let X,Y ∈ Mn(C)msa. Then (X,Y ) is an optimal coupling in Mn(C) if and
only if there exist functions f, g : Mn(C)msa → R satisfying the following properties:

(1) f and g are convex.
(2) f and g are unitarily invariant, that is, f (UX ′U∗) = f (X ′) and g(UY ′U∗) = g(Y ′)

for U unitary and X ′, Y ′ ∈ Mn(C)msa.
(3) f (X ′) + g(Y ′) ≥ 〈X ′,Y ′〉trn for all X ′, Y ′ ∈ Mn(C)msa.
(4) f (X) + g(Y ) = 〈X,Y 〉trn .
Proof. ( �⇒ ). Let U(Mn(C)) be the unitary group. Let

f (X ′) = sup
U∈U(Mn(C))

〈X ′,UYU∗〉trn .

2 One might object that the preceding lemma seems to assume the spectral theorem already because it uses
functional calculus to define eit A . However, this only requires analytic functional calculus, not continuous
functional calculus. One can use power series to define eit A , show that ei(s+t)A = eis Aeit A for s, t ∈ R,
show that (eit A)∗ = e−i t A∗

, and hence conclude that eit A is unitary when A is self-adjoint.
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Note that f is convex because it is the supremum of a family of affine functions. More-
over, f is unitarily invariant because we took the supremum over all unitaries U .

Let g be the Legendre transform of f , that is,

g(Y ′) = sup
X ′∈Mn(C)msa

(〈Y ′, X ′〉trn − f (X ′)
)
.

It is immediate that g is convex, g is unitarily invariant because f is unitarily invariant
and the inner product is unitarily invariant, and f (X ′) + g(Y ′) ≥ 〈X ′,Y ′〉trn for all X ′,
Y ′ ∈ Mn(C)msa. In particular, f (X) + g(Y ) ≥ 〈X,Y 〉trn .

On the other hand, note that the supremum defining f (X) is achieved when U = 1
because we assumed that (X,Y ) is optimal coupling, hence 〈X,UYU∗〉 is maximized
when U = 1. Hence, f (X) = 〈X,Y 〉. Moreover,

f (X ′) ≥ 〈X ′,Y 〉trn ,
hence

g(Y ) ≤ sup
X ′∈Mn(C)nsa

(〈X ′,Y 〉trn − 〈X ′,Y 〉trn
) = 0.

Thus, f (X) + g(Y ) ≤ 〈X,Y 〉trn . Hence, f (X) + g(Y ) = 〈X,Y 〉 as desired.
(⇐) Suppose that f and g satisfy (1)–(4). Let U be a unitary. Then

〈UXU∗,Y 〉trn ≤ f (UXU∗) + g(Y ) = f (X) + g(Y ) = 〈X,Y 〉trn .
Therefore, (X,Y ) is optimal.

Unitarily invariant convex functions onMn(C)msa satisfy amonotonicity propertywith
respect to the non-commutative conditional expectation fromMn(C) onto a ∗-subalgebra
A, which is one motivation for our notion of E-convexity in the tracial W∗-setting.

Lemma 1.17. Let A be a ∗-subalgebra of Mn(C), and let E : Mn(C) → A ⊆ Mn(C)

be the orthogonal projection with respect to the inner product 〈S, T 〉trn = trn(S∗T ).
Then E[ST ] = SE[T ] and E[T S] = E[T ]S and E[T ∗] = E[T ]∗ for T ∈ Mn(C)

and S ∈ A. Moreover, if f : Mn(C)msa → R is a convex function that is invariant under
unitary conjugation, then for X = (X1, . . . , Xm) ∈ Mn(C)msa, we have

f (E[X ]) ≤ f (X).

Here E[X ] = (E[X1], . . . , E[Xm]).
Proof. For a subalgebra A ⊆ Mn(C), we denote by U(A) the group of unitary matrices
that are contained in A. We define the commutant

A′ = {S ∈ Mn(C)|[S, T ] = 0 for all T ∈ A}.
We recall that A′′ = A by von Neumann’s bicommutant theorem [68, Theorem II.3.9].

Let μ be the Haar measure on U(A′), and define F : Mn(C) → Mn(C) by

F(X) =
∫

U(A′)
UXU∗ dμ(U ).

We claim that F(X) = E[X ]. First, to show that F(X) ∈ A, note that for V ∈ U(A′),
we have V F(X)V ∗ = F(X), hence [F(X), V ] = 0 by invariance of the Haar measure.
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Since A′ is a ∗-algebra, it is linearly spanned by its unitaries, and therefore, [F(X), S] =
0 for all S ∈ A′. So F(X) ∈ A′′ = A. Furthermore, for all T ∈ A, we have

trn(T
∗F(X)) =

∫

U(A′)
trn(T

∗UXU∗) dμ(U )

=
∫

U(A′)
trn(UT ∗XU∗) dμ(U ) = trn(T

∗X).

Thus, F(X) is the orthogonal projection of X onto A, or F(X) = E[X ], as desired.
Similar computations from definition of F show that F is an A-A-bimodule map and

F(X∗) = F(X)∗, and hence these properties also hold for E .
Since μ is a probability measure, Jensen’s inequality and the unitary invariance of f

imply that

f (E[X ]) ≤
∫

U(A′)
f (UXU∗) dμ(U ) = f (X).

2. Background on Tracial W∗-algebras

For the sake of readers who are less familiar tracial W∗-algebras, we explain the prereq-
uisites needed for the paper: the definition of a tracial W∗-algebra, its interpretation as a
non-commutative generalization of probability spaces, inclusions and trace-preserving
conditional expectations of tracial W∗-algebras, free products with amalgamation, and
non-commutative laws.

2.1. Tracial W∗-algebras. Historically, von Neumann algebras and W∗-algebras were
defined differently, but it turns out that these two definitions give the same objects thanks
to work of Sakai; see e.g. [64, Theorem 1.16.7]. Here we follow Sakai’s approach that
starts with the definition of W∗-algebras as C∗-algebras which are dual Banach spaces
[64]. Other background references on von Neumann algebras include [2,68–70].

Definition 2.1. A unital ∗-algebra is a (unital) algebra A over C together with a skew-
linear involution a �→ a∗ such that (ab)∗ = b∗a∗. If A and B are ∗-algebras, then a map
ρ : A → B is said to be a ∗-homomorphism if it is linear and respects multiplication
and the ∗-operation.
Definition 2.2. A unital C∗-algebra is a ∗-algebra A equipped with a norm ‖·‖ such that

• A is a Banach space with respect to ‖·‖;
• ‖ab‖ ≤ ‖a‖‖b‖ for a, b ∈ A;
• ‖a∗a‖ = ‖a‖2 for a ∈ A.

Definition 2.3. AW∗-algebra is a C∗-algebra A together with a topology T , such that
A as a Banach space is the dual of some Banach space A∗ andT is the weak-∗ topology
on A.

We remark that A∗ can be uniquely recovered from (A,T ) as the subspace of A∗∗
consisting of linear functionals that are continuous with respect to T . In fact, it turns
out that the predual of A∗ of a W∗-algebra A is uniquely determined by A alone without
reference to its weak-∗ topology [64, Corollary 1.13.3].
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Definition 2.4. If A is a W∗-algebra and A∗ is a predual of A, then a faithful normal
trace on A is an element τ ∈ A∗ satisfying the following properties:

• τ(1) = 1;
• τ(a∗a) ≥ 0 for a ∈ A;
• τ(a∗a) = 0 if and only if a = 0;
• τ(ab) = τ(ba) for a, b ∈ A.

We remark that in general von Neumann algebra theory, the word “trace” is often
used to refer to the semi-finite trace on a semi-finite von Neumann algebra, but in this
paper “trace” always means “tracial state.”

Definition 2.5. A tracial W∗-algebra is a pair A = (A, τ ), where A is a W∗-algebra
and τ is a faithful normal trace.

Example 2.6. Let (�, P) be a probability space. We take A = L∞(�, P), with the
pointwise addition and multiplication operations. The ∗-operation is pointwise complex
conjugation. The norm is the standard one for L∞(�, P), and note that ‖ f g‖ ≤ ‖ f ‖‖g‖
and ‖ f ∗ f ‖ = ‖ f ‖2. By the Riesz representation theorem, L∞(�, P) = L1(�, P)∗,
and therefore, we can take A∗ = L1(�, P), and then equip L∞(�, P) with the cor-
responding weak-∗ topology. We define τ using the element 1 ∈ L1(�, P), so that
τ( f ) = ∫

�
f d P . Since L∞(�, P) is commutative, it is immediate that τ( f g) = τ(g f ).

The other properties of τ are straightforward to check fromwell-known facts in measure
theory. Conversely, it turns out that every commutative tracial W∗-algebra is isomorphic
to L∞ of some probability space [64, Sect. 1.18], [68, Theorem 1.18].

Example 2.7. Let H be an infinite-dimensional Hilbert space, and let A = B(H) be the
algebra of bounded operators on H equippedwith the operator norm. Let A∗ be the space
of trace class operators. Then A can be canonically identified with the dual of A∗ by the
pairing (a, T ) = Tr(aT ) for a ∈ A and T ∈ A∗. The weak-∗ topology on B(H) is also
known as the σ -weak operator topology. Thus, B(H) is a W∗-algebra. However, it is
not a tracial W∗-algebra because Tr is not well-defined on all of B(H) and Tr(1) = ∞.
See for instance [64, Theorem 1.15.3].

Theorem 2.8. (GNS construction for tracial W∗-algebras) LetA = (A, τ ) be a tracial
W∗-algebra. Note that 〈a, b〉A := τ(a∗b) defines an inner product on A (which is non-
degenerate because τ is faithful). This can be completed to a Hilbert space, which we
denote by L2(A). Let us denote the map A → L2(A) by a �→ â. Then for each a ∈ A,
there is are unique operators π�(a), πr (a) ∈ B(L2(A)) such that π�(a)̂b = âb and
πr (a)̂b = b̂a for b ∈ A.Moreover,π� defines a∗-homomorphism A → B(L2(A))which
is continuous with respect to the weak-∗ topologies on A and B(L2(A)). Similarly, πr is
a ∗-anti-homomorphism (it preserves + and ∗ but reverses the order of multiplication)
that is weak-∗ continuous. Furthermore, since ‖a∗‖L2(A) = ‖a‖L2(A), there is a unique
skew-linear isometry J : L2(A) → L2(A) such that J (̂a) = â∗. See [51, Sect. IV] and
[2, Sect. 7].

Example 2.9. Let A = L∞(�, P) and let τ be integration against P . Then 〈 f, g〉L2(A) =
∫
�

f g d P . The completion L2(A) can be canonically identifiedwith L2(�, P). Themap
îs the standard inclusion L∞(�, P) → L2(�, P). The operator π( f ) ∈ B(L2(�, P))

is the operator of multiplication by f .

Remark 2.10. Our examples indicate that if A = (A, τ ) is a tracial W∗-algebra, then
A is an analog of L∞(�, P), A∗ is an analog of L1(�, P) and L2(A) is an analog of
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L2(�, P). In fact, there is even a non-commutative analog of measurable functions on
� that are finite almost everywhere; this is known as the algebra Aff(A) of operators
affiliated toA, certain closed unboundedoperators on theHilbert space L2(A). The space
L2(A) can be canonically identified with a subspace of the affiliated operators. Thus,
the left and right multiplication operators π�(a) and πr (a) for a ∈ A become instances
of multiplying affiliated operators. Moreover, there are subspaces L p(A) ⊆ Aff(A) for
p ∈ [1,∞) which share many properties of the classical L p spaces. There is also a
natural identification of A∗ with L1(A). See §A.1 and the references therein for details.

2.2. W∗-embeddings, trace-preserving conditional expectations, andW∗-isomorphisms.
Notation 2.11. IfA = (A, τ ) is a tracialW∗-algebra,wewill use the notation L∞(A) for
A and τA for τ when it is convenient to avoid naming A and τ explicitly. In particular, the
norm on A will be denoted ‖·‖L∞(A). Furthermore, we will treat L∞(A) as a subspace
of L2(A). We will also write ab rather than π�(a)̂b and ba rather than πr (a)̂b for
a ∈ L∞(A) and b ∈ L2(A). Finally, we write a∗ instead of J (a) for a ∈ L2(A). We
denote by L2(A)sa the real subspace of L2(A) consisting of those elements fixed by J .

Definition 2.12. Let A and B be tracial W∗-algebras. A linear map φ : L∞(A) →
L∞(B) is said to be trace-preserving if τA = τB ◦ φ.

Lemma 2.13. (See [12, Lemma 1.5.11] and [2, Sect. 9.1]) Let A and B be tracial W∗-
algebras. Let φ : L∞(A) → L∞(B) be a trace-preserving unital ∗-homomorphism.
Then

(1) φ extends to an isometry L2(A) → L2(B), and in particular φ is injective on A.
(2) φ is a contraction L∞(A) → L∞(B).
(3) The adjoint map E = φ∗ : L2(B) → L2(A) restricts to a map L∞(B) → L∞(A)

that is contractive with respect to the L∞ norm.
(4) We have E[b∗] = E[b]∗ for b ∈ L∞(B), and in fact also for b ∈ L2(B).
(5) E is a bimodule map over L∞(A), that is, for a ∈ L∞(A) and b ∈ L2(B), we have

E(φ(a)b) = aE(b) and E(bφ(a)) = E(b)a.
(6) E is unital (E(1) = 1) and trace-preserving (τA ◦ E = τB).

Definition 2.14. In the situation of the previous lemma, we call φ a (tracial W∗)-
embedding A → B and E the associated trace-preserving conditional expectation.
(Note that both maps are unital by definition and the previous proposition.)

Remark 2.15. It turns out that a trace-preserving ∗-homomorphism L∞(A) → L∞(B)

is automatically continuous with respect to the weak-∗ topology, essentially because the
weak-∗ topology can be recovered from the action of L∞(A) on L2(A) by Theorem 2.8;
see [24] or [2, Proposition 2.6.4]. For similar reasons, the trace-preserving conditional
expectation is also weak-∗ continuous.

Example 2.16. Suppose that B = L∞(�,F , P) for some probability space (�,F , P),
whereF is the σ -algebra associated to the measure. Let G be a σ -subalgebra ofF . Then
there is an expectation-preserving inclusion L∞(�,G, P) → L∞(�,F , P). This ex-
tends to amap on the L2 spaces, and the adjoint of this map is the conditional expectation
E : L2(�,F , P) → L2(�,G, P) sending X to E[X |G]. The properties in Lemma 2.13
then reduce to the well-known classical properties of conditional expectation. For in-
stance, (2) the conditional expectation is contractive on L∞, (3) The conditional expec-
tation respects complex conjugation, (4) ff X ∈ L2(�,F , P) and Y ∈ L∞(�,G, P),
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then E[XY |G] = E[X |G]Y , (5) the conditional expectation is expectation-preserving:
E[E[X |G]] = E[X ].
Notation 2.17. If A and B are tracial W∗-algebras, we say that A ⊆ B if L∞(A) ⊆
L∞(B), the addition, product, ∗-operation and weak-∗ topology for L∞(A) are the
restrictions of those from L∞(B), and τA = τB|L∞(A). In this case, we denote the
conditional expectation B → A by EA.

As the paperwill often dealwithm-tuples of self-adjoint elements of L2, we introduce
the following convention to simplify notation.

Notation 2.18. If A and B are tracial W∗-algebras and φ : L∞(A) → L∞(B) is a
tracial W∗-embedding or a trace-preserving conditional expectation, then we will use
the same letter φ to denote the extension of the map to the L2 spaces. Furthermore, if
X = (X1, . . . , Xm) ∈ L2(A)msa, then we will write φ(X) = (φ(X1), . . . , φ(Xm)).

Definition 2.19. A tracial W∗-embedding φ : A → B is said to be a tracial W∗-
isomorphism if it is bijective and the inverse map is also a tracial W∗-embedding.

For reasons of mathematical logic, the class of tracial W∗-algebras is not a set.
However, it will be convenient for us in Sect. 3.2 to have a set of isomorphism class
representatives of tracial W∗-algebras with separable predual.
Lemma 2.20. There exists a setW of tracial W∗-algebras, such that

(1) the elements of W are pairwise non-isomorphic,
(2) for every tracialW∗-algebrawith separable predual, there is a tracialW∗-isomorphism

to some element of W.

Proof (Sketch of proof). We saw earlier that if A = (A, τ ) is a tracial W∗-algebra with
separable predual, then there is aW∗-embedding A → B(HA) (here byW∗-embedding,
we mean an injective normal ∗-homomorphism in the theory of von Neumann algebras).
Also, it is well-known (see e.g. [64]) that if A has separable predual, then HA ∼= L2(A) is
separable and hence isomorphic as a Hilbert space to �2(N). Therefore, A is isomorphic
to some W∗-subalgebra of B(�2(N)). Let S1 be the set of W∗-subalgebras of B(�2(N))

(which is a subset of the power set of B(�2(N))). Let S2 be the set of pairs {(A, τ ) :
A ∈ S1, τ : A → C faithful normal trace}. If (A, τ ) ∈ S2, then the adjoint of the
inclusion map produces a map from the space B(�2(N))∗ of trace class operators to
A∗ ∼= L1(A, τ ), and hence A∗ is separable. Thus, S2 is a set of tracial W∗-algebras such
that every tracial W∗-algebra with separable predual is isomorphic to some element of
S2. Finally, observe that tracial W∗-isomorphism defines an equivalence relation on S2,
and let S3 be the set of equivalence classes.

2.3. Amalgamated free products. Next, we explain the definition of free independence
with amalgamation.This is an analogof conditional independence in classical probability
theory. For background see for instance [81] or [12, §4.7].

Definition 2.21. Let A = (A, τ ) be a tracial W∗-algebra. Let B, A1, …, AN be W∗-
subalgebras of Awith B ⊆ A j for every j . LetB = (B, τ |B) and let EB : A → B be the
trace-preserving conditional expectation. We say that A1, …, AN are freely independent
with amalgamation over B if the following condition holds: Whenever � ∈ N and i1,
…, i� ∈ {1, . . . , N } with i1 �= i2, i2 �= i3, …, i�−1 �= i� and a j ∈ Ai j with EB[a j ] = 0
for j = 1, …, �, then EB[a1 . . . a�] = 0.
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Proposition 2.22. Let B = (B, σ ) be a tracialW∗-algebra. For j = 1, …, N, letA j =
(A j , τ j ) be a tracialW∗-algebra and let ι j : B → A j be a tracialW∗-embedding. Then
there exists a tracial W∗-algebra A = (A, τ ) and tracial W∗-embeddings ι : B → A
and φ j : A j → A such that ι = φ j ◦ ι j for all j , and such that φ1(A1), …, φN (AN ) are
freely independent inA with amalgamation over ι(B). Moreover, (A, τ, ι, φ1, . . . , φN )

are unique up to a canonical isomorphism; in other words, if (Ã, τ̃ , ι̃, φ̃1, . . . , φ̃N ) is
another such tuple, then there is a unique tracialW∗-isomorphismπ : A → Ã satisfying
π ◦ ι = ι̃ and π ◦ φ j = φ̃ j for all j .

Definition 2.23. If B, A1, …, AN , and A are as above (with the specified maps ι, φ1,
…, φN ), then we say that A is a free product of A1, …, AN with amalgamation over
ι1(B), …, ιN (B).

In the case where B = C, we refer to these concepts simply as free independence
and free products.

2.4. Non-commutative laws and generators. Next, we describe the space of non-
commutative laws. A non-commutative law is the analog of a linear functional
C[x1, . . . , xm] → R given by f �→ ∫ f dμ for some compactly supported measure
on R

m . Instead of C[x1, . . . , xm], we use the non-commutative polynomial algebra in
m variables.

Definition 2.24. (Non-commutative polynomial algebra) We denote by C〈x1, . . . , xm〉
the universal unital algebra generated by variables x1, …, xm . As a vector space,
C〈x1, . . . , xm〉 has a basis consisting of all products xi1 . . . xi� for � ≥ 0 and i1, …,
i� ∈ {1, . . . ,m}.We equipC〈x1, . . . , xm〉with the unique∗-operation such that x∗

j = x j ;
more explicitly, the ∗-operation is defined on monomials by (xi1 . . . xi� )

∗ = x∗
i�

. . . x∗
i1
.

Definition 2.25. (Non-commutative law) A linear functional λ : C〈x1, . . . , xm〉 is said
to be exponentially bounded if there exists R > 0 such that |λ(xi1 . . . xi� )| ≤ R� for all
� ∈ N0 and i1, …, i� ∈ {1, . . . ,m}, and in this case we say R is an exponential bound
for λ. A non-commutative law is a unital, positive, tracial, exponentially bounded linear
functional λ : C〈x1, . . . , xm〉 → C. We denote the space of non-commutative laws
by �m , and we equip it with the weak-∗ topology (that is, the topology of pointwise
convergence on C〈x1, . . . , xm〉). We denote by �m,R the subset of �m comprised of
non-commutative laws with exponential bound R.

Observation 2.26. The space �m,R is convex, compact, and metrizable.

Observation 2.27. Let A be a ∗-algebra and X = (X1, . . . , Xm) ∈ Am
sa. Then there is a

unique ∗-homomorphism πX : C〈x1, . . . , xm〉 → A such that πX (x j ) = X j for j = 1,
…, m.

Definition 2.28. (Non-commutative law of an m-tuple) Let A be a tracial W∗-algebra.
Let X = (X1, . . . , Xm) ∈ L∞(A)msa. Then we define λX : C〈x1, . . . , xm〉 → C by
λX = τ ◦ πX , where πX is the map defined in the previous observation.

Notation 2.29. If A is a tracial W∗-algebra and X ∈ L∞(A)m , we write

‖X‖L∞(A)m := max(‖X j‖L∞(A) : j = 1, . . . ,m).
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Observation 2.30. If A and X are as above, then λX is a non-commutative law with
exponential bound ‖X‖∞. Conversely, if R is an exponential bound for λX , then

‖X‖L∞(A)msa
= max

j
lim
n→∞ τ(X2n

j )1/2n ≤ R.

Hence, ‖X‖∞ is the smallest exponential bound for λX and in particular it is uniquely
determined by λX .

In the case of a single operator X , we can apply the spectral theorem to show that
there is a unique probability measure μX on R satisfying

∫

R

f dμX = τ( f (X)) for f ∈ C0(R).

Since X is bounded, μX is compactly supported and thus makes sense to evaluate on
polynomials. If p is a polynomial, then λX [p] = ∫

R
p dμX . Thus, λX is simply the

linear functional on polynomials corresponding to the spectral distribution.
We use the notation λX in particular when A = Mn(C). We denote by trn the

normalized trace (1/n)Tr on Mn(C); recall that this is the unique (unital) trace on
Mn(C). Thus, for any X ∈ Mn(C)msa, a non-commutative law λX is unambiguously
specified by the previous definition. In the m = 1 case, the non-commutative law is
given by the empirical spectral distribution. Note that when X is a random m-tuple of
matrices,wewill use the notationλX bydefault to refer to the empirical non-commutative
law, that is, the (random) non-commutative law of X with respect to trn .

The next proposition shows that any non-commutative law can be realized by a self-
adjoint m-tuple in some tracial W∗-algebra. This is a version of the Gelfand-Naimark-
Segal construction (or GNS construction). A proof can be found in [3, Proposition
5.2.14(d)].

Proposition 2.31. (GNS construction for non-commutative laws) Let λ ∈ �m,R. Then
we may define a semi-inner product on C〈x1, . . . , xm〉 by

〈p, q〉λ = λ(p∗q).

Let Hλ be the separation-completion ofC〈x1, . . . , xm〉with respect to this inner product,
that is, the completion of C〈x1, . . . , xm〉/{p : λ(p∗ p) = 0}, and let [p] denote the
equivalence class of a polynomial p in Hλ.

There is a unique unital ∗-homomorphism π : C〈x1, . . . , xm〉 → B(Hλ) satisfying
π(p)[q] = [pq] for p, q ∈ C〈x1, . . . , xm〉. Moreover, ‖π(x j )‖ ≤ R.

Let X j = π(x j ), let X = (X1, . . . , Xm) and let A be the W∗-subalgebra of B(Hλ)

generated by X1, …, Xm. Define τ : A → C by τ(Y ) = 〈[1],Y [1]〉λ. Then τ is a faithful
normal trace on A, and hence A = (A, τ ) is a tracial W∗-algebra.

Definition 2.32. In the situation of the previous proposition, we call (A, X) the GNS
realization of λ.

The tracial W∗-algebra associated to λ is canonical in the sense that any other con-
struction would yield an isomorphic tracial W∗-algebra. The following lemma can be
deduced from the well-known properties of the GNS representation associated to a
faithful trace τ on a W∗-algebraA (which gives the so-called standard form of a tracial
W∗-algebra).
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Lemma 2.33. LetAandB be tracialW∗-algebras. Let X ∈ L∞(A)msa andY ∈ L∞(B)msa
such that λX = λY . Let W∗(X) and W∗(Y ) be the W∗-subalgebras of L∞(A) and
L∞(B) generated by X and Y respectively, equipped with the traces τA|W∗(X) and
τB|W∗(Y ). Then there is a unique tracial W∗-isomorphism ρ : W∗(X) → W∗(Y ) such
that ρ(X j ) = Y j .

Here is a related lemma about generating sets for a tracial W∗-algebra, which relies
on the Kaplansky density theorem [68, Theorem II.4.8].

Lemma 2.34. Let A be a tracial W∗-algebra. Let S ⊆ L∞(A). Let W∗(S) be the
smallest W∗-subalgebra of A containing S, which is equal to the weak-∗ closure of
the unital ∗-algebra generated by S. Then every Z ∈ W∗(S) can be approximated
in the L2(A) norm by a sequence Zn in the unital ∗-algebra generated by S such that
‖Zn‖L∞(A) ≤ ‖Z‖L∞(A). Furthermore, if φ : A → B is aW∗-embedding, then φ|W∗(S)

is uniquely determined by φ|S.
In fact, the notion of generators for a W∗-algebra extends to elements of L2(A). For

instance, for a self-adjoint tuple X ∈ L2(A)msa, using the theory of affiliated operators
sketched in Sect. A.1, it is valid to apply a bounded Borel function f to X j through
functional calculus, and f (X j ) will be an element ofA. Thus, we may defineW∗(X) as
(for instance) the W∗-subalgebra generated by arctan(X1), …, arctan(Xm), and then, as
one would hope, X turns out to be in L2(W∗(X))msa. See also [12, pp. 482–483]. We can
state a characterization of W∗(X) without reference to affiliated operators as follows.

Lemma 2.35. Let A be a tracial W∗-algebra and X ∈ L2(A)msa. Then there exists a
unique smallest W∗-subalgebra B ⊆ L∞(A) such that X ∈ Bm

sa . We use the notation
W∗(X) for B and for (B, τA|B) as needed.

3. Duality for L2 Optimal Couplings

Ourgoal is to prove aversionof theMonge–Kantorovichduality for the non-commutative
version of the L2 Wasserstein distance defined by Biane and Voiculescu [11]. In Sect.
3.1 we recall the definitions of optimal couplings that were stated more succinctly in
the introduction. We define E-convex functions in Sect. 3.2 and the corresponding Leg-
endre transform in Sect. 3.3. Then we prove the non-commutative Monge–Kantorovich
duality in Sect. 3.4, and as an application we prove a decomposition result for optimal
couplings in Sect. 3.5.

3.1. Wasserstein distance and optimal couplings.

Definition 3.1. (Biane-Voiculescu [11, Sect. 1.1]) Let μ, ν ∈ �m be non-commutative
laws. A coupling of μ and ν is a triple (A, X,Y ) where A is a tracial W∗-algebra and
X , Y ∈ L∞(A)msa such that λX = μ and λY = ν. For μ, ν ∈ �m , the (non-commutative
L2)Wasserstein distance d(2)

W (μ, ν) is the infimum of ‖X −Y‖L2(A)msa
over all couplings

(A, X,Y ) for A ∈ W.

It is shown in [11, Theorem 1.3] that d(2)
W is a metric on the set �m , and for each

R > 0, �m,R is complete in this metric. However, as shown in Sect. 5.4, the topology
generated by d(2)

W is strictly stronger than the weak-∗ topology on �m . The notion of
optimal couplings corresponding to the Wasserstein distance is as follows.
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Definition 3.2. A coupling (A, X,Y ) of two non-commutative laws μ and ν is optimal
if ‖X − Y‖L2(A)msa

= d(2)
W (μ, ν).

Remark 3.3. As remarked in [11], for every μ, ν ∈ �m , some optimal coupling exists.
To see this, suppose R > 0 is an exponential bound for μ and ν. Note that that if
(A, X,Y ) is a coupling and γ is the joint law of (X,Y ), then ‖X − Y‖L2(A)msa

=
(∑m

j=1 γ ((x j − xm+ j )
2)
)1/2

. The space of joint laws γ ∈ �2m,R with marginals μ

and ν is closed in�2m,R and therefore compact, and γ �→
(∑m

j=1 γ ((x j − xm+ j )
2)
)1/2

is continuous. Thus, it achieves a minimum at some γ ∗, and we obtain an optimal
coupling (A, X,Y ) from the GNS construction with γ ∗ (Proposition 2.31).

Just as in classical optimal transport theory, it is convenient to frame L2 optimal
couplings in terms of inner products rather than L2 norms in order to relate them with
Legendre transforms. If (A, X,Y ) is a coupling of μ and ν, then

‖X − Y‖2L2(A)msa
= ‖X‖2L2(A)msa

− 2〈X,Y 〉L2(A)msa
+ ‖Y‖2L2(A)msa

.

Since ‖X‖2
L2(A)msa

and ‖Y‖2
L2(A)msa

are uniquely determined by μ and ν, a coupling min-

imizes ‖X −Y‖L2(A)msa
if and only if it maximizes the inner product 〈X,Y 〉L2(A)msa

. This
motivates the following definition.

Definition 3.4. Forμ, ν ∈ �m ,wedenote byC(μ, ν) themaximal value of 〈X,Y 〉L2(A)msa
over all couplings (A, X,Y ) of μ and ν.

The preceding paragraph shows that

d(2)
W (μ, ν)2 =

m∑

j=1

μ(x2j ) +
m∑

j=1

ν(x2j ) − 2C(μ, ν).

The goal of the section is to establish a duality result that C(μ, ν) is the infimum of
μ( f ) + ν(g) over certain pairs ( f, g) of E-convex functions.

3.2. E-convex functions. Fix a set W of isomorphism class representatives for tracial
W∗-algebras with separable predual, as was given by Lemma 2.20. (Although we are
only considering a set of isomorphism class representatives, we make no identifications
between different tracial W∗-embeddings from a given A ∈ W to a given B ∈ W.)

Definition 3.5. Let S be a set. A tracial W∗-function with values in S is tuple f =
( f A)A∈W, where f A : L2(A)msa → S if whenever ι : A → B is a tracial W∗-
embedding, we have f A = f B ◦ ι. (Here the inclusion ι is understood to extend to a
map L2(A)msa → L2(B)msa per Notation 2.18.)

Thus, roughly speaking, being aW∗-function means that the evaluation of f on some
X ∈ L2(A)msa is independent of the ambient algebra. Hence, in particular, for bounded
operators, f A(X) only depends on the non-commutative law of X .

Although the definition of f only specifies f A when A is in the set W, it will
sometimes be convenient to use the notation f A for a general tracial W∗-algebraAwith
separable predual. Indeed, by our choice ofW, there exists an isomorphism φ fromA to
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some B ∈ W. We can then set f A = f B ◦ φ. This is well-defined, that is, independent
of the particular choice of φ, because f B ◦ ψ = f B for every automorphism ψ of B;
this in turn follows from the definition of W∗-functions since an automorphism ψ is in
particular an inclusion from B into B.
Definition 3.6. A tracial W∗-function f = ( f A)A∈W with values in [−∞,+∞] is said
to be E-convex if either it is identically equal to −∞ or the following conditions hold:

(1) For each A, f A is a convex and lower semi-continuous function L2(A)msa → (−∞,

+∞].
(2) If ι : A → B is a trace-preserving embedding, and if E = ι∗ : B → A is the

corresponding trace-preserving conditional expectation, then

f A(E[X ]) ≤ f B(X)

for X ∈ Bm
sa. (Here E is understood to extend to a map L2(B)msa → L2(A)msa per

Notation 2.18.)

Example 3.7. For t ∈ (0,∞), let qAt (X) = (1/2t)‖X‖2
L2(A)msa

. Then qt is E-convex.

Indeed, it is convex because of the Cauchy-Schwarz and arithmetic-geometric mean
inequalities. It is clearly continuous. Finally, it satisfies monotonicity under conditional
expectation because conditional expectations are contractive in ‖·‖L2(A)msa

.

We next explain an equivalent characterization of E-convexity using subgradient
vectors.

Definition 3.8. If H is a real Hilbert space and f : H → (−∞,∞] is a function, we
say that y ∈ H is a subgradient for f at x if

f (x ′) ≥ f (x) + 〈y, x ′ − x〉 for all x ′ ∈ H.

We define the subdifferential ð f (x) as the set of subgradient vectors at x .

The following facts are well-known in convex analysis.

Lemma 3.9. Let H be a Hilbert space. If f : H → [−∞,∞] is convex and lower semi-
continuous and f (x) is finite, then ð f (x) is nonempty, closed, and convex. Conversely,
f : H → (−∞,∞) and ð f is nonempty for every x, then f is convex.

Analogously, we will show that E-convex W∗-functions are characterized by the
existence of a subgradient vector Y to f A at X such that Y ∈ L2(W∗(X))msa (where
W∗(X) is given by Lemma 2.35). In addition, we handle the case where f can take the
value +∞.

Lemma 3.10. Let f be a W∗-function taking values in (−∞,∞). Then f is E-convex
if and only if for each A ∈ W and X ∈ L2(A)msa, there exists Y ∈ L2(W∗(X))msa which
is a subgradient vector to f A at X. HereW∗(X) is given by Lemma 2.35.

Proof. First, suppose that f is E-convex. Fix X ∈ L2(A)msa. By Lemma 3.9, there exists
some subgradient vector Z to f A(X). Let B = W∗(X), let E : A → B be the trace-
preserving conditional expectation, and let Y = E[Z ]. Then for X ′ ∈ L2(A)msa, we
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have

f A(X ′) ≥ f B(E[X ′]) = f A(E[X ′])
≥ f A(X) + 〈Z , E[X ′] − X〉L2(A)msa

= f A(X) + 〈Z , E[X ′ − X ]〉L2(A)msa

= f A(X) + 〈Y, X ′ − X〉L2(A)msa
.

Thus, the desired subgradient condition holds.
Conversely, suppose this subgradient condition holds. Lower semi-continuity of f A

follows from the existence of subgradient vectors. For X0, X1 ∈ L2(A)msa and t ∈ (0, 1),
we have

f A((1 − t)X0 + t X1) ≤ (1 − t) f A(X0) + t f A(X1).

because of the existence of a subgradient vector at (1 − t)X0 + t X1. To check the
monotonicity under conditional expectation, consider an embedding ι : A → B and
let E : B → A be the corresponding conditional expectation. Let X ∈ L2(B)msa and
let X ′ = E[X ]. By (1), there is a subgradient vector Y to f B at the point X ′ that is in
L2(W∗(X ′))msa, and in particular Y ∈ L2(A)msa. But then

f B(X) ≥ f B(X ′) + 〈Y, X − X ′〉L2(B)msa

= f B(E[X ]) + 〈Y, X − E[X ]〉L2(B)msa

= f B(E[X ]).

Remark 3.11. The same argument shows that for a W∗-function taking values in
(−∞,+∞], E-convexity is equivalent to the combination of the following three condi-
tions:

(1) For each A ∈ W and X ∈ L2(A)msa, if f A(X) < ∞, then there exists Y ∈
L2(W∗(X)) which is a subgradient vector to f A at X .

(2) For each A, the set ( f A)−1((−∞, M]) is closed and convex in L2(A)msa.
(3) If ι : A → B is a tracial W∗-embedding and E = ι∗ : B → A is the corresponding

conditional expectation, then f B(X) < +∞ implies f A(E[X ]) < +∞.

Remark 3.12. If f is a tracialW∗-function, then f A(UXU∗) = f A(X) for every unitary
U in L∞(A) and X ∈ L2(A)msa; this is because conjugation by U defines an automor-
phism ofA (hence in particular a tracial W∗-embeddingA → A), and f respects tracial
W∗-embeddings.

If f is E-convex, then this unitary invariance gives rise to a “sum of commutators”
condition on subgradient vectors related to Lemma 1.14. More precisely, suppose f is
E-convex, Y ∈ ð f A(X) and U is a unitary in L∞(A). Then

f A(X) = f A(UXU∗) ≥ f A(X) + 〈UXU∗ − X,Y 〉L2(A)msa
.

As in Lemma 1.14, by taking U = eit A for A ∈ L∞(A)sa and differentiating at t = 0,
we obtain

∑m
j=1[X j ,Y j ] = 0.
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The next lemma describes how the subdifferential interacts with conditional expec-
tations.

Lemma 3.13. Let f be an E-convexW∗-function. LetA ∈ W and X ∈ L2(A)msa. Let B
be a tracial W∗-subalgebra of A.

(1) If f B(EB[X ]) = f A(X), then

ð f B(EB[X ]) = L2(B)msa ∩ ð f A(X).

(2) If Y ∈ ð f A(X), then EW∗(X)[Y ] ∈ ð f A(X).

Proof. (1) First,we show thatð f B(EB[X ]) ⊆ L2(B)msa∩ð f A(X). IfY ∈ ð f B(EB[X ]),
then clearly Y ∈ L2(B)msa. Moreover, for all Z ∈ L2(A), we have

f A(Z) ≥ f B(EB[Z ])
≥ f B(EB[X ]) + 〈Y, EB[Z ] − EB[X ]〉L2(B)msa

= f A(X) + 〈Y, Z − X〉L2(A)msa
,

wherewehave used the fact that EB is self-adjoint and EB[Y ] = Y . Hence,Y ∈ ð f A(X)

as desired.
Conversely, to show that L2(B)msa ∩ ð f A(X) ⊆ ð f B(EB[X ]), suppose that Y ∈

L2(B)msa ∩ ð f A(X). Then for Z ∈ L2(B)msa,

f B(Z) = f A(Z)

≥ f A(X) + 〈Y, Z − X〉L2(A)msa

= f B(EB[X ]) + 〈Y, Z − EB[X ]〉L2(B)msa
,

because EB is a self-adjoint operator on L2(A) and Y ∈ L2(B)msa.
(2) Let B = W∗(X) (where the trace is given by the restriction of τA). Let Z ∈

L2(B)msa. Then

f B(Z) = f A(Z)

≥ f A(X) + 〈Y, Z − X〉L2(A)msa

= f B(X) + 〈EB[Y ], Z − X〉L2(B)msa
.

Thus, EB[Y ] ∈ ð f B(X), and so by (1), EB[Y ] ∈ ð f A(X).

Lemma 3.14. Let f be an E-convex W∗-function. Let A ∈ W and X ∈ L2(A)msa.

(1) There exists a unique Y ∈ ð f A(X) of minimal L2-norm.
(2) The Y from (1) satisfies Y ∈ L2(W∗(X))msa.
(3) LetB = W∗(Y )asdescribed inLemma2.35,whereY is as in (1). Then f B(EB[X ]) =

f A(X) and B = W∗(EB[X ]).
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Proof. (1) Because ð f A(X) is a closed convex set, it has a unique element of minimal
L2-norm.

(2) Let C = W∗(X). Let Y ′ = EC[Y ]. We claim that Y ′ ∈ ð f C(X). Let Z ∈ L2(C)msa.
Then

f C(Z) = f A(Z)

≥ f A(X) + 〈Y, Z − X〉L2(A)msa

= f C(X) + 〈Y ′, Z − X〉L2(C)msa
.

Thus, Y ′ ∈ ð f C(X). By the previous lemma, Y ′ ∈ ð f A(X). But because Y has minimal
norm, we have ‖EC[Y ]‖L2(A)msa

= ‖Y‖L2(A)msa
, hence EC[Y ] = Y , so Y ∈ L2(C)msa.

(3) First, we show that f B(EB[X ]) = f A(X). By E-convexity, f B(EB[X ]) ≤
f A(X). Conversely,

f B(EB[X ]) = f A(EB[X ]) ≥ f A(X) + 〈Y, EB[X ] − X〉L2(A)msa
= f A(X).

Thus, by Lemma 3.13 (1), Y ∈ ð f B(EB[X ]). Now letting D = W∗(EB[X ]) with the
trace τ |D, Lemma 3.13 (2) implies that ED[Y ] ∈ ð f B(EB[X ]), hence also ED[Y ] ∈
ð f A(X) by Lemma 3.13 (1). Because Y was chosen to have minimal norm, we have
ED[Y ] = Y , and thus, D ⊇ W∗(Y ) = B by the characterization of W∗(Y ) given in
Lemma 2.35. Hence, B = D = W∗(EB[X ]).

3.3. Legendre transforms.

Definition 3.15. Wedefine the Legendre transform as the tupleL f = (L f A)A∈W given
by

L f A(X) = sup{〈ι(X),Y 〉 − f B(Y ) : B ∈ W, ι : A → B a tracialW∗-embedding,

Y ∈ L2(B)msa}
for X ∈ L2(A)msa.

Example 3.16. Consider again qAt (X) = (1/2t)‖X‖2
L2(A)msa

. A standard computation

with norms and inner products shows that Lqt = q1/t .

Proposition 3.17. Let f be a tracial W∗-function.
(1) The Legendre transform L f is an E-convex tracial W∗-function.
(2) If f ≤ g, then L f ≥ Lg.
(3) We have L2 f ≤ f with equality if and only if f is E-convex.
(4) L2 f is the maximal E-convex function that is less than or equal to f .

Proof. (1) If f is identically equal to −∞ or +∞, L f will be +∞ or −∞ respectively
and there is nothing to prove. Hence, assume that f attains some finite value at some
Y ∈ L2(B)msa for some B ∈ W.

For anyA ∈ W, the free productA∗B is isomorphic to some C ∈ W. Let ι1 : A → C
and ι2 : B → C be the corresponding tracial W∗-embeddings. Then

L f A(X) ≥ 〈ι1(X), ι2(Y )〉L2(C)msa
− f C(ι2(Y )) > −∞,
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since f C(ι2(Y )) = f B(Y ) < +∞. Hence, L f is never equal to −∞.
For each A, the function L f A is a supremum of affine functions, and therefore it is

convex and lower semi-continuous.
Let ι : A → B be a tracial W∗-embedding and let E : B → A be the corresponding

trace-preserving conditional expectation. Let X ∈ L2(B)msa. Let ι̃ : A → B̃ be another
inclusion. LetM ∈ W be isomorphic to the amalgamated free product of B and B̃ over
the subalgebra A (or more precisely, over the images of ι(A) ⊆ B and ι̃(A) ⊆ B̃) as
in Proposition 2.22. Let ρ : B → M and ρ̃ : B̃ → M be the inclusions. Then for
Y ∈ L2(B̃),

L f B(X) ≥ 〈ρ(X), ρ̃(Y )〉L2(M)msa
− fM(ρ̃(Y ))

= 〈ι̃ ◦ E(X),Y 〉L2(B̃)msa
− f B̃(Y ),

where we have used free independence with amalgamation to compute the inner product,
and we have used the fact that f is a tracial W∗-function. Because ι̃ : A → B̃ and Y
were arbitrary, we have

L f B(X) ≥ L f A(E(X)),

which establishes condition (2) in the definition of E-convexity.
It only remains to show that L f is a tracial W∗-function. Suppose ι : A → B is a

tracial W∗-inclusion. If ι′ : B → C is a tracial W∗-inclusion, then so is ι′ ◦ ι, which
implies that

L f A(X) ≥ sup
ι′:B→C

Y∈L2(C)msa

〈ι′ ◦ ι(X),Y 〉L2(C)msa
− f C(Y ) = L f B(ι(X)).

If E : B → A is the conditional expectation corresponding to ι, then by the preceding
argument

L f A(X) = L f A(E ◦ ι(X)) ≤ L f B(ι(X)).

Thus, L f A = L f B ◦ ι, so L f is a tracial W∗-function.
(2) This is immediate from the definition and the properties of suprema and infima.
(3) By definition of L f , for every A ∈ W and X , Y ∈ L2(A)msa, we have

L f A(X) ≥ 〈X,Y 〉L2(A)msa
− f A(Y ),

hence

L f A(X) + f A(Y ) ≥ 〈X,Y 〉L2(A)msa
.

Hence, given an inclusion ι of A into B and Y ∈ L2(A)msa and X ∈ L2(B)msa, we have

f A(Y ) = f B(ι(Y )) ≥ 〈ι(Y ), X〉L2(B)msa
− L f B(X).

Taking the supremum on the right-hand side, f A(Y ) ≥ L2 f A(Y ). Thus, f ≥ L2 f .
Now suppose that f is E-convex, and wemust show that f = L2 f . If f is identically

−∞ or +∞, there is nothing to prove. Otherwise, fix A. Because f A is convex and
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lower semi-continuous, classical results about convex functions tell us that f A can be
expressed as the supremum of a family of affine functions (gα)α∈I , where

gα(X) = 〈X, Zα〉L2(A)msa
+ cα

with Zα ∈ L2(A)msa and cα ∈ R. Let ι : A → B be an inclusion and let E : B → A
be the corresponding conditional expectation. If Y ∈ L2(B)msa, then by the E-convexity
property

〈ι(Zα),Y 〉L2(B)msa
− f B(Y ) ≤ 〈ι(Zα),Y 〉L2(B)msa

− f A(E(Y ))

≤ 〈Zα, E(Y )〉L2(A)msa
− 〈Zα, E(Y )〉L2(A)msa

− cα = −cα.

Therefore, L f A(Zα) ≤ −cα , which implies that

L2 f A(X) ≥ 〈X, Zα〉L2(A)msa
− L f A(Zα) ≥ 〈X, Zα〉L2(A)msa

+ cα = gα(X).

Therefore,

L2 f A(X) ≥ sup
α∈I

gα(X) = f A(X).

So L2 f = f as desired. Conversely, if f = L2 f , then f is E-convex because it is the
Legendre transform of some function.

(4) We already showed that L2 f is E-convex and L2 f ≤ f . Moreover, suppose g
is E-convex and g ≤ f . Then Lg ≥ L f and hence L2g ≤ L2 f by (2). Meanwhile,
g = L2g by (3), and therefore g = L2g ≤ L2 f .

Remark 3.18. It follows from E-convexity that for every ι : A → B and X ∈ L2(A)msa
and Y ∈ L2(B)msa, we have

〈ι(X),Y 〉L2(B)msa
− f B(Y ) ≤ 〈X, E[Y ]〉L2(A)msa

− f A(E[Y ]),
where E : B → A is the conditional expectation corresponding to ι. Therefore,

L f A(X) = sup
Y∈L2(A)msa

(
〈X,Y 〉L2(A)msa

− f A(Y )
)

.

Hence, if f is E-convex, there is noneed to consider a largerW∗-algebrawhen computing
theLegendre transform, andmoreoverL f A agreeswith the classical Legendre transform
of f A as a function on the real Hilbert space L2(A)msa.

Remark 3.19. In fact, the argument of Proposition 3.17 can be used to prove slightly
stronger statements:

• If ( f A)A∈W is any collection of functions, then L f is convex, and for any tracial
W∗-embedding ι : A → B, it satisfies L f A ≥ L f B ◦ ι.
• If ( f A)A∈W satisfies f A ≥ f B ◦ ι for every embeddings ι : A → B, then L f is
E-convex.

• In particular, if ( f A)A∈W is any collection of functions, then L2 f is E-convex.

The next lemma states the relationship between Legendre transforms and subgradi-
ents, which is exactly analogous to the behavior of classical Legendre transforms. We
will use this lemma many times.
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Lemma 3.20. Let f be an E-convex W∗-function, let A ∈ W and X,Y ∈ L2(A)msa.
Then the following are equivalent:

(1) f A(X) + L f A(Y ) = 〈X,Y 〉L2(A)msa
.

(2) Y ∈ ð f A(X).
(3) X ∈ ðL f A(Y ).

Proof. (1) �⇒ (2). Suppose that f A(X)+L f A(Y ) = 〈X,Y 〉L2(A)msa
. By definition of

L f , we have for all X ′ ∈ L2(A)msa that

〈X ′,Y 〉L2(A)msa
− f A(X ′) ≤ L f A(Y ) = 〈X,Y 〉L2(A)msa

− f A(X),

hence, f A(X ′) ≥ f A(X) + 〈X ′ − X,Y 〉L2(A)msa
, so Y ∈ ð f A(X).

(2) �⇒ (1). Suppose Y ∈ ð f A(X). Let ι : A → B be a tracial W∗-inclusion
and E : B → A the corresponding conditional expectation. Since E[ι(X)] = X ,
Lemma 3.13 (1) tells us that

ι(ð f A(X)) = ð f ι(A)(ι(X)) = L2(A)msa ∩ ð f B(ι(X)),

so in particular, ι(Y ) ∈ ð f B(ι(X)). Hence, for any Z ∈ L2(B)msa, we have

〈Z , ι(Y )〉L2(B)msa
− f B(Z) ≤ 〈ι(X), ι(Y )〉L2(B)msa

− f B(ι(X))

= 〈X,Y 〉L2(A)msa
− f A(X).

Since ι, B, and Z were arbitrary, the supremum defining L f A(Y ) is attained at the point
X , so that f A(X) + L f A(Y ) = 〈X,Y 〉L2(A)msa

.
Therefore, we have proved that (1) ⇐⇒ (2). Because f is E-convex, we have

L(L f ) = f . Therefore, (1) ⇐⇒ (3) follows from (1) ⇐⇒ (2) by switching the roles
of f and L f and the roles of X and Y .

3.4. A non-commutative Monge–Kantorovich duality.

Definition 3.21. If f is a tracial W∗-function and μ ∈ �m , then we define μ( f ) =
f A(X), where A ∈ W is (isomorphic to) the GNS representation of μ and X is the
canonical generating m-tuple.

If f is a tracial W∗-function, for every A and every X ∈ Am
sa with λX = μ, we have

μ( f ) = f A(X). This follows by the definition of tracial W∗-function and the fact that
W∗(X) is isomorphic to the GNS representation of μ.

Definition 3.22. Let us call a pair ( f, g) of tracial W∗-functions admissible if they take
values in (−∞,∞] and for every A ∈ W,

f A(X) + gA(Y ) ≥ 〈X,Y 〉L2(A)msa
for all X,Y ∈ L2(A)msa.

Proposition 3.23. Let μ, ν ∈ �m. The following quantities are equal:

(1) C(μ, ν).
(2) inf{μ( f ) + ν(g) : ( f, g) admissible}.
(3) inf{μ( f ) + ν(L f ) : f a tracial W∗-function not identically ∞}.
(4) inf{μ( f ) + ν(g) : ( f, g) admissible and E-convex}.
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(5) inf{μ( f ) + ν(L f ) : f E-convex not identically ∞}.
Here all the functions under consideration take values in (−∞,∞].
Proof. (1) ≤ (2) Let (A, X,Y ) be a coupling of μ and ν, and let ( f, g) be an admissible
pair. Then

〈X,Y 〉L2(A)msa
≤ f A(X) + gA(Y ) = μ( f ) + ν(g).

Taking the supremum over couplings on the left-hand side and the infimum over admis-
sible pairs ( f, g) on the right-hand side, we have (1) ≤ (2).

(2)≤ (3). It is clear from the definition ofL f that f A(X)+L f A(Y ) ≥ 〈X,Y 〉L2(A)msa
.

Therefore, ( f,L f ) is always an admissible pair, and hence (3) is the infimum over a
smaller set than (2).

(3) ≤ (1). Define

f A(X) =
{
0, if X ∈ L∞(A)msa and λX = μ,

+∞, otherwise.

Note that f is a tracial W∗-function. Let A be the GNS-representation of ν with the
canonical generators Y . Then L f A(Y ) is the supremum of 〈ι(Y ), X〉L2(B)msa

where ι :
A → B is an inclusion and X ∈ L∞(B)msa satisfies λX = μ. In particular for a non-
commutative law ν, letting (A,Y ) be the GNS realization of ν, we have ν(L f ) =
L f A(Y ) = C(μ, ν). Moreover, μ( f ) = 0 and hence C(μ, ν) = μ( f ) + ν(L f ).

(2) ≤ (4). This is immediate since (4) is the infimum over a smaller set.
(4) ≤ (5). Suppose that f is E-convex. Then ( f,L f ) is admissible as noted above.

Also, L f is always E-convex, so (5) is the infimum over a smaller set than (4).
(5) ≤ (3). Let f be a tracial W∗-function. Then L2 f ≤ f and (L2 f,L f ) is an

E-convex admissible pair. Therefore,

μ( f ) + ν(L f ) ≥ μ(L2 f ) + ν(L f ).

Of course, since L(L2 f ) = L2(L f ) = L f , the term on the right-hand side participates
in the infimum (5). Since the f on the left-hand side was chosen arbitrarily, (3) ≥ (5).

Proposition 3.24. Let (A, X,Y ) be a coupling of μ, ν ∈ �m. The following are equiv-
alent:

(1) The coupling is optimal.
(2) There exists an admissible pair ( f, g) such that 〈X,Y 〉L2(A)msa

= f A(X) + gA(Y ).

(3) There exists a tracial W∗-function f such that 〈X,Y 〉L2(A)msa
= f A(X) + L f A(Y ).

(4) There exists an admissible, E-convex pair ( f, g) such that 〈X,Y 〉L2(A)msa
= f A(X)+

gA(Y ).
(5) There exists an E-convex tracialW∗-function f such that 〈X,Y 〉L2(A)msa

= f A(X)+

L f A(Y ).
(6) There exists an E-convex tracialW∗-function f such that Y is a subgradient vector

to f A at the point X.
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Proof. It is immediate from the previous proposition that each of the conditions (2) –
(5) implies (1).

For the converse implication, assume the coupling is optimal. Let

f B(Z) =
{
0, if Z ∈ L∞(B)msa and λZ = μ,

+∞, otherwise.

As in the proof of the previous proposition, we have μ( f ) + ν(L f ) = C(μ, ν), or
equivalently 〈X,Y 〉L2(A)msa

= f A(X) + L f A(Y ). We also have C(μ, ν) = μ(L2 f ) +

ν(L f ) ≤ μ( f ) + ν(L f ) = C(μ, ν). Thus, the pair (L2 f,L f ) fulfills all of the criteria
of (2) – (5).

The equivalence of (5) and (6) follows from Lemma 3.20.

3.5. A decomposition result for optimal couplings. As an initial application of duality,
we present the following result that expresses an optimal coupling (X,Y ) in terms of
another optimal coupling (X ′,Y ′) with B = W∗(X ′) = W∗(Y ′).

Theorem 3.25. Let μ, ν ∈ �m,R, and let (A, X,Y ) be an optimal coupling of μ and
ν. Then there exists a W∗-subalgebra B ⊆ A with the following properties, letting
X ′ = EB[X ] and Y ′ = EB[Y ]:
(1) B = W∗(X ′) = W∗(Y ′).
(2) X − X ′, X ′ − Y ′, and Y ′ − Y are orthogonal.
(3) (A, X ′,Y ′) is anoptimal couplingofλX ′ andλY ′ . Similarly, (A, X,Y ′)and (A, X ′,Y )

are optimal couplings of the respective laws.

We may choose B to be contained in W∗(X) (or symmetrically, we may choose it to be
contained inW∗(Y )).

Furthermore, there exists some optimal coupling (A, X,Y ) and a B satisfying (1) –
(3)with respect to this coupling such thatW∗(X,B)andW∗(Y,B)are freely independent
with amalgamation over B.
Proof. Let

B = {W∗-subalgebras B ⊆ A : 〈EB[X ], EB[Y ]〉L2(A)msa
= 〈X,Y 〉L2(A)msa

},
which is partially ordered by inclusion. We claim thatB has a minimal element, and we
will prove this by a transfinite reverse martingale argument. By Zorn’s lemma, it suffices
to show that every chain in B has a lower bound. Consider a chain C ⊆ B, and let
C =⋂B∈C B. We claim that limB∈C EB[X ] = EC[X ] in L2(A)msa. Let

δ = inf
B∈C

‖EB[X ]‖2L2(A)msa
.

Given ε > 0, there exists B0 ∈ C such that ‖EB0 [X ]‖2
L2(A)msa

< δ2 + ε2. Then for all

B ∈ C with B ⊆ B0, we have

‖EB[X ] − EB0 [X ]‖2L2(A)msa
= ‖EB0 [X ]‖2L2(A)msa

− ‖EB[X ]‖2L2(A)msa

≤ δ2 + ε2 − δ2 = ε2.
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This implies that Z = limB∈C EB[X ] exists in L2(A)msa. Moreover, ‖Z j‖L∞(A) ≤
‖X j‖L∞(A). Clearly Z j ∈ ⋂B∈C B = C, and 〈Z ,W 〉L2(A)msa

= 〈X,W 〉L2(A)msa
for

all W ∈ L2(C)msa. Thus, limB∈C EB[X ] = EC[X ] in L2(A)msa. By the same token
limB∈C EB[Y ] = EC[Y ] in L2(A)msa. Therefore,

〈EC[X ], EC[Y ]〉L2(A)msa
= lim

B∈C
〈EB[X ], EB[Y ]〉L2(A)msa

= 〈X,Y 〉L2(A)msa
.

Therefore, C ∈ B as desired.
So by Zorn’s lemma,B has some minimal element, which we will call B. Let X ′ =

EB[X ] and Y ′ = EB[Y ]. Now W∗(X ′) ⊆ B and we have

〈X ′, EW∗(X ′)[Y ′]〉L2(A)msa
= 〈X ′,Y ′〉L2(A)msa

.

By minimality of B, we have B = W∗(X ′), and similarly, B = W∗(Y ′). Hence, (1)
holds.

To show that B can be chosen inside W∗(X), note that

〈EW∗(X)[X ], EW∗(X)[Y ]〉L2(A)msa
= 〈X, EW∗(X)[Y ]〉L2(A)msa

= 〈X,Y 〉L2(A)msa
.

Thus, we can apply the same argument withB replaced by the elements ofB contained
inside W∗(X).

To prove (2), since X − X ′ = X − EB[X ] is orthogonal to B, it is immediate that
X − X ′ and X ′ − Y ′ are orthogonal. Similarly, Y ′ − Y and X ′ − Y ′ are orthogonal.
Finally, to show that X − X ′ and Y ′ − Y are orthogonal, note that

〈X − X ′, Y ′ − Y 〉L2(A)msa
= 〈X,Y ′〉L2(A)msa

+ 〈X ′,Y 〉L2(A)msa

−〈X,Y 〉L2(A)msa
− 〈X ′,Y ′〉L2(A)msa

. (3.1)

Observe that

〈X,Y ′〉L2(A)msa
= 〈X, EB[Y ]〉L2(A)msa

= 〈EB[X ], EB[Y ]〉L2(A)msa
= 〈X ′,Y ′〉L2(A)msa

.

Similarly, 〈X ′,Y 〉L2(A)msa
= 〈X ′,Y ′〉L2(A)msa

. Moreover, 〈X,Y 〉L2(A)msa
= 〈X ′,Y ′〉L2(A)msa

by our choice of B. Thus, all the terms in (3.1) cancel, and X − X ′ and Y ′ − Y are
orthogonal.

To prove (3), by Proposition 3.24, there exists an admissible pair of E-convex W∗-
functions f and g such that f A(X)+ gA(Y ) = 〈X,Y 〉L2(A)msa

. By construction of B and
by E-convexity,

f A(X ′) + gA(Y ′) ≥ 〈X ′,Y ′〉L2(A)msa

= 〈X,Y 〉L2(A)msa

= f A(X) + gA(Y )

≥ f A(X ′) + gA(Y ′).

This implies that (X ′,Y ′) is anoptimal coupling.By similar reasoning, since 〈X,Y ′〉L2(A)msa

= 〈X ′,Y ′〉L2(A)msa
and f A(X ′) ≤ f A(X), we see that (X ′,Y ) is an optimal coupling,

and symmetrically (X,Y ′) is an optimal coupling.
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LetA1 be a copy of W∗(X,B) and letA2 be a copy of W∗(Y,B). Let Ã = A1 ∗BA2

be the amalgamated free product (with its canonical trace τ̃ ). Let X̃ , X̃ ′, Ỹ , and Ỹ ′ be
the images of the original variables in Ã. Then using free independence
∥
∥
∥X̃ − Ỹ

∥
∥
∥
2

L2(Ã)msa

=
∥
∥
∥X̃ − X̃ ′

∥
∥
∥
2

L2(Ã)msa

+
∥
∥
∥X̃ ′ − Ỹ ′

∥
∥
∥
2

L2(Ã)msa

+
∥
∥
∥Ỹ ′ − Ỹ

∥
∥
∥
2

L2(Ã)msa

= ∥∥X − X ′∥∥2
L2(A)msa

+
∥
∥X ′ − Y ′∥∥2

L2(A)msa
+
∥
∥Y ′ − Y

∥
∥2
L2(A)msa

= ‖X − Y‖2L2(A)msa
.

Therefore, (X̃ , Ỹ ) is also an optimal coupling of μ and ν. The W∗-subalgebra B ⊆ Ã
also satisfies

〈EB[X̃ ], EB[Ỹ ]〉τ̃ = 〈X̃ , Ỹ 〉τ̃ ,
and satisfies (1). Thus, the same arguments as above show that B in Ã satisfies (2) and
(3).

4. The Displacement Interpolation

If (A, X,Y ) is an L2-optimal coupling of μ, ν ∈ �m , then one can consider the dis-
placement interpolation Xt = (1 − t)X + tY for t ∈ [0, 1]. As shown in Proposition
A.22 the corresponding family of laws defines a geodesic in (�m, d(2)

W ). In this section,
we study how the displacement interpolation interacts with non-commutative Monge–
Kantorovich duality and use this to prove Theorem 1.5.

Motivated by analogous arguments in classical optimal transport theory, we approach
the proof as follows (see §4.3 for more detail). By Proposition 3.24, there exists an
E-convex function f such that 〈X,Y 〉L2(A)msa

= f A(X) + L f A(Y ), or equivalently

Y ∈ ð f A(X). Letting qt be the W∗-function qAt (X) = (1/2t)‖X‖2
L2(A)msa

, we observe

that Xt ∈ ð f At (X) where ft = (1 − t)q1 + t f . Hence, X ∈ ð(L ft )A(Xt ). In order to
show that X ∈ L2(W∗(Xt ))

m
sa, we want to understand the regularity properties of L ft .

It is well-known that for a convex function f on a Hilbert space H , the Legendre
transform of f (x) + (t/2)‖x‖2 is given by the inf-convolution gt = inf y∈H [ f ∗(y) +
(1/2t)‖x − y‖2], where f ∗ is the Legendre transform of f . Furthermore, gt has a
Lipschitz gradient for every t > 0, and it satisfies the Hamilton–Jacobi equation

d

dt
gt = −1

2
‖∇gt‖2.

This can be checked by hand, or deduced for instance from [6, Sect. 2, Theorem 1]; also
relevant to Hamilton–Jacobi equations on Hilbert space are [7,8,18,19,47,49].

In this section, we adapt the theory of inf-convolutions to the setting tracial W∗-
functions. In Sect. 4.1, we define inf-convolutions ofW∗-functions and prove their basic
properties. In Sect. 4.2, we describe how inf-convolutions interact with E-convexity and
semi-concavity. In Sect. 4.3, we conclude the proof of Theorem 1.5.

We emphasize that the novelty in our work is not in the form of the Hamilton–Jacobi
equation but rather in the fact that we study variables from infinite-dimensional non-
commutative algebras and want the function to be defined consistently with respect
to inclusions of these algebras (that is, to be a tracial W∗-function). This means for
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instance that if f and g are tracial W∗-functions and f �g is their inf-convolution as
defined below, then ( f �g)A need not agree with the inf-convolution of f A and gA as
functions on the Hilbert space L2(A)msa (Remark 4.5); however, they do agree if f and
g are E-convex (Lemma 4.6). Hence, a notion of viscosity solutions compatible with
our theory of inf-convolutions will thus have to take into account the inclusions of one
tracial W∗-algebra into another.

4.1. Inf-convolutions. We begin with the definition and basic properties of the inf-
convolution.

Definition 4.1. Let f, g be two W∗-functions with values in [−∞,∞]. We define the
inf-convolution f �g by

( f �g)A(X) = inf
{
f B(ι(X) − Y ) + gB(Y )|ι : A → B embedding, Y ∈ L2(B)msa

}
.

Lemma 4.2. The object f �g is aW∗-function.

Proof. Let ι : A → B be an inclusion, and we first show that

( f �g)A(X) ≤ ( f �g)B(ι(X)). (4.1)

If ι′ : B → C is another inclusion and Y ∈ L2(B)msa as in the definition of ( f �g)B, then
of course ι′ ◦ ι is an inclusion and which can be used in the definition of ( f �g)A. This
shows (4.1).

Conversely, suppose that ι′ : A → C is an inclusion and Y ∈ L2(C)msa as in the
definition of ( f �g)A. Then let C̃ be the free product of B and C with amalgamation
over the images of A in the respective algebras. Then the image of Y in C̃ participates
in the infimum defining ( f �g)B(ι(X)) and hence ( f �g)B(ι(X)) ≤ ( f �g)A(X).

Lemma 4.3. The inf-convolution is commutative and associative, that is, if f , g, h are
W∗-functions, then f �g = g� f and ( f �g)�h = f �(g�h).

Proof. We have

( f �g)A(X) = inf
ι:A→B

inf
Y∈L2(B)msa

[ f B(ι(X) − Y ) + gB(Y )].

We substitute Z = ι(X) − Y and thus obtain

inf
ι:A→B

inf
Y∈L2(B)msa

[ f B(Z) + gB(ι(X) − Z)] = (g� f )A(X).

For associativity,

(( f �g)�h)A(X) = inf
ι1:A→B
Y∈L2(B)msa

(
( f �g)B(ι1(X) − Y ) + hB(Y )

)

= inf
ι1:A→B
Y∈L2(B)msa

inf
ι2:B→C

Z∈L2(B)msa

(
f C(ι2(ι1(X))

−ι2(Y ) − Z) + gC(Z) + hC(ι2(Y ))
)

. (4.2)
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We claim that is equal to

inf
ι:A→B

Y,Z∈L2(B)msa

(
f C(ι(X) − Y − Z) + gB(Z) + hB(Y )

)
, (4.3)

or in other words, in our earlier expression we can without loss of generality impose the
condition that C = B and ι2 = id. The reason is that if we allowed Z to come only from
the smaller algebra C, then the infimum could only increase, hence by shrinking C to
B, (4.3) ≥ (4.2). On the other hand, if in (4.2), we allowed Y to come from the larger
algebra C instead of B, then the infimum could only decrease, and hence by enlarging
B to C, we see that (4.2) ≤ (4.3). Now the expression (4.3) is symmetric in g and h, and
hence

( f �g)�h = ( f �h)�g.

This relation, together with commutativity, implies the associativity relation since

( f �g)�h = (g� f )�h = (g�h)� f = f �(g�h).

The relationship between inf-convolution and Legendre transform is exactly what
one would expect based on the classical case.

Lemma 4.4. Let f and g beW∗-functions. Then

L( f �g) = L f + Lg.
Proof. Observe that

L( f �g)A(X) = sup
ι1:A→B
Y∈L2(B)msa

(
〈ι1(X),Y 〉L2(B)msa

− ( f �g)B(Y )
)

= sup
ι1:A→B
Y∈L2(B)msa

⎛

⎜
⎝〈ι1(X),Y 〉L2(B)msa

− inf
ι2:B→C
Z∈L2(C)msa

(
f C(ι2(Y ) − Z) + gC(Z)

)
⎞

⎟
⎠ ,

where we take the supremum over B and C ∈ W and inclusions ι1 : A → B and
ι2 : B → C and Y ∈ L2(B)msa and Z ∈ L2(C)msa. This can be rewritten as

sup
ι1:A→B
Y∈L2(B)msa

sup
ι2:B→C
Z∈L2(C)msa

(
〈ι2(ι1(X)), ι2(Y )〉L2(C)msa

− f C(ι2(Y ) − Z) − gC(Z)
)

.

We can assume without loss generality that B = C and ι2 = id. Indeed, allowing Y
to range over the larger space L2(C)msa rather than L2(B)msa would only increase the
supremum, but on the other hand, restricting Z to the smaller space L2(B)msa instead of
L2(C)msa would only decrease the supremum. Thus, taking B = C and renaming ι1 to ι,
we obtain

sup
ι:A→B

sup
Y,Z∈L2(B)msa

(
〈ι(X),Y 〉L2(B)msa

− f B(Y − Z) − gB(Z)
)

.
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Substituting Z ′ = Y − Z , we have

sup
ι:A→B

sup
Z ,Z ′∈L2(B)msa

(
〈ι(X), Z + Z ′〉L2(B)msa

− f B(Z ′) − gB(Z)
)

= sup
ι:A→B

sup
Z ,Z ′∈L2(B)msa

(
〈ι(X), Z ′〉L2(B)msa

− f B(Z ′)

+〈ι(X), Z〉L2(B)msa
− gB(Z)

)
. (4.4)

We want to show that this is equal to

L f A(X) + LgA(X) = sup
ι1:A→B1

sup
Z ′∈L2(B1)msa

(
〈ι(X), Z ′〉L2(B1)msa

− f B1(Z ′)
)

+ sup
ι2:A→B2

sup
Z∈L2(B2)msa

(
〈ι(X), Z〉L2(B2)msa

− gB2(Z)
)

. (4.5)

The only difference between the two expressions is that the latter allows ι1 : A → B1
and ι2 : A → B2 to be different, but the former takes them to be the same, and thus
a priori (4.4) ≤ (4.5). However, in (4.5), for any given B1, B2, ι1 and ι2, let B be
the free product of B1 and B2 with amalgamation over the subalgebras ι1(A) in the
first factor and ι2(A) in the second factor. Allowing Z ′ and Z to range over L2(B)msa
rather than L2(B1)

m
sa and L2(B2)

m
sa respectively only increases the suprema over Z and

Z ′, and hence (4.5) remains unchanged when we restrict to the case ι1 = ι2, so it
equals (4.4).

Remark 4.5. Suppose f and g are tracial W∗-functions. Let f A�gA denote the clas-
sical inf-convolution of f A and gA as functions on the Hilbert space L2(A)msa. Then
( f �g)A ≤ f A�gA. However, the following example shows that two functions do
not necessarily agree. Take m = 2, and f A(X1, X2) = (1/2)‖(X1, X2)‖2L2(A)2

and

gA(X1, X2) = τA([X1, X2]2). The formula for g is to be understood in the sense of
affiliated operators (see Sect. A); since i[X1, X2] is a self-adjoint affiliated operator,
−[X1, X2]2 is positive and hence τA([X1, X2]2) is well-defined in [−∞, 0]; see Theo-
rem A.3 (4). Then gC = 0 because C is commutative, and hence also f C�gC = 0. On
the other hand, let ι : C → M2(C) be the canonical inclusion, and let

Y1 =
(
0 1
1 0

)

, Y2 =
(
0 i
−i 0

)

, [Y1,Y2] =
(−2i 0

0 2i

)

.

Then for x1, x2, t ∈ R,

( f �g)C(x1, x2) ≤ 1

2
‖ι(x1) − tY1‖2L2(M2(C))

+
1

2
‖ι(x2)

− tY2‖2L2(M2(C))
+ t4τM2(C)([Y1,Y2]2)

= 1

2
‖ι(x1) − tY1‖2L2(M2(C))

+
1

2
‖ι(x2) − tY2‖2L2(M2(C))

− 4t4.

The first two terms are quadratic in t , and thus, taking the infimum over t ∈ R, we see
that ( f �g)C = −∞ < f C�gC.
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4.2. Inf-convolutions and regularity of E-convex functions.

Lemma 4.6. If f and g are E-convex tracial W∗-functions with f < ∞, then f �g is
E-convex. Moreover, for any E-convex f and g, we have

( f �g)A(X) = inf
Y∈L2(A)msa

(
f A(X − Y ) + gA(Y )

)
. (4.6)

Proof. We prove the second claim first. Clearly,

( f �g)A(X) ≤ inf
Y∈L2(A)msa

(
f A(X − Y ) + gA(Y )

)
.

For the opposite inequality, suppose that ι : A → B is an embedding and Y ∈ L2(B)msa.
Let E : B → A be the conditional expectation. Then by E-convexity of f and g,

f A(X − E[Y ]) + gA(E[Y ]) ≤ f B(ι(X) − Y ) + gB(Y ),

and hence

inf
Y∈L2(A)msa

(
f A(X − Y ) + gA(Y )

)
≤ ( f �g)A(X).

Now let us show that f �g is E-convex when f < ∞. If g is identically ∞, then
f �g is identically ∞, so there is nothing to prove. Suppose gB(Y ) is finite for some
B and Y ∈ L2(B)msa. Then ( f �g)A(X) < ∞ everywhere because, letting C be the free
product of A and B and letting ι1 : A → C and ι2 : B → C be the corresponding
inclusions,

( f �g)A(X) ≤ f C(ι1(X) − ι2(Y )) + gC(ι2(Y )) < ∞.

To prove convexity of ( f �g)A, let X0, X1 ∈ L2(A)msa, and let Xt = (1 − t)X0 + t X1

for t ∈ (0, 1). If Y0, Y1 ∈ L2(A)msa and if Yt = (1 − t)Y0 + tY1, then

( f �g)A(Xt ) ≤ f A(Xt − Yt ) + gA(Yt )

≤ (1 − t) f A(X0 − Y0) + t f A(X1 − X1) + (1 − t)gA(Y0) + tgA(Y1).

Since Y0 and Y1 were arbitrary, we can take the infimum over Y0 and Y1 and apply (4.6)
to conclude that

( f �g)A(Xt ) ≤ (1 − t)( f �g)A(X0) + t ( f �g)A(X1).

This shows that ( f �g)A is convex. Furthermore, since f �g < ∞, this relation implies
that if ( f �g)A is −∞ at one point in L2(A)msa, then it is −∞ everywhere. Moreover, if
( f �g)B is −∞, then so ( f �g)A, as we can see by considering the free product of A
and B.

It is automatic from these facts that ( f �g)A is lower semi-continuous, since con-
vexity automatically implies lower semi-continuity at points where ( f �g)A < ∞.

Finally, we must show the monotonicity of ( f �g) under conditional expectation.
Let ι : A → B be an embedding and let E : B → A be the corresponding conditional
expectation. If X,Y ∈ L2(A)msa, then

( f �g)A(E[X ]) ≤ f A(E[X ] − E[Y ]) + gA(E[Y ]) ≤ f B(X − Y ) + gB(Y ).

Since Y on right-hand side was arbitrary, we conclude by (4.6) that ( f �g)A(E[X ]) ≤
( f �g)B(X) as desired.
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Observation 4.7. For t ∈ (0,∞), let qAt (X) = (1/2t)‖X‖2
L2(A)msa

. For s, t ∈ (0,∞),

because qs and qt are E-convex and take finite values, we have

qs�qt = L2(qs�qt ) = L(Lqs + Lqt ) = L(q1/s + q1/t ) = L(q1/(s+t)) = qs+t .

Then by associativity of inf-convolution, for any tracial W∗-function f , we have

qs�(qt� f ) = (qs�qt )� f = qs+t� f.

Thus, (qt�(·))t>0 defines a semigroup acting on tracialW∗-functions. This is the tracial
W∗-analog of the Hopf-Lax semigroup.

Definition 4.8. If f is a tracial W∗-function, we say that f is convex if f A is convex
for every A ∈ W. We say that f is semi-concave if qt − f is convex for some t > 0.

Lemma 4.9. Suppose f and g are tracial W∗-functions and qt − f is convex. Then
qt − f �g is convex.

Proof. Note that

(qt − f �g)A(X) = sup
ι:A→B

Y∈L2(B)msa

(
qBt (ι(X)) − f B(ι(X) − Y ) − gB(Y )

)

= sup
ι:A→B

Y∈L2(B)msa

(

qBt (ι(X) − Y )− f B(ι(X) − Y )+
1

t
〈ι(X),Y 〉L2(B)msa

−qBt (Y )−!gB(Y )

)

.

The right-hand side is the supremum of a family convex functions of X and therefore is
convex.

As a consequence of Lemmas 4.6 and 4.9, if f is E-convex, then qt� f is an E-convex
and semi-concave function. The next results give a characterization of such functions as
well as some of their regularity properties. These results are quite close to the standard
results about convex functions on a Hilbert space, so we do not claim any originality,
but nonetheless we include the proofs for the sake of completeness.

Proposition 4.10. Let f be an E-convexW∗-function that is not identically ∞ or −∞.
Then the following are equivalent:

(1) f = qt�g for some E-convex function g.
(2) qt − f is convex.
(3) qt − f is E-convex.
(4) L f − q1/t is convex and lower semi-continuous.
(5) L f − q1/t is E-convex.

Moreover, in this case, f < ∞ everywhere.

Proof. (1) �⇒ (2) follow from Lemma 4.9.
(2) �⇒ (3). Because qt − f takes finite values everywhere, by Lemma 3.10, it

suffices to show that for every X ∈ L2(A), there exists a some Z ∈ ð(qt − f )A(X) ∩
L2(W∗(X))msa. Because qt − f is convex, it has a subgradient vector Z at X , so that

qAt (X ′) − f A(X ′) − qAt (X) + f A(X) ≥ 〈X ′ − X, Z〉L2(A)msa
,
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which implies that

f A(X ′) − f A(X) ≤ 〈X − X ′, Z〉 + 1
2t (‖X ′‖2

L2(A)msa
− ‖X‖2

L2(A)msa
) (4.7)

= 〈X ′ − X, Z + (1/t)X〉L2(A)msa
+ 1

2t ‖X ′ − X‖2
L2(A)msa

. (4.8)

Because f is E-convex, there exists some Y ∈ ð f A(X) ∩ L2(W∗(X))msa. Of course,

f A(X ′) − f A(X) ≥ 〈X ′ − X,Y 〉L2(A)msa
. (4.9)

This implies that

〈X ′ − X, Z + (1/t)X − Y 〉L2(A)msa
≥ − 1

2t
‖X ′ − X‖2L2(A)msa

for all X ′. Now take X ′ = −t Z + tY and obtain

−t‖Z + (1/t)X − Y‖2L2(A)msa
= 〈X ′ − X, Z + (1/t)X − Y 〉L2(A)msa

≥ − 1

2t
‖X ′ − X‖2L2(A)msa

≥ − t

2
‖Z + (1/t)X − Y‖2L2(A)msa

,

which implies that Z + (1/t)X − Y = 0, hence Z = Y − (1/t)X ∈ L2(W∗(X))msa.
(3) �⇒ (4). Note that

L f A(X) − qA1/t (X)

= sup
ι:A→B

Y∈L2(B)msa

(

〈ι(X),Y 〉L2(B)msa
− t

2
‖ι(X)‖2L2(B)msa

− f B(Y )

)

= sup
ι:A→B

Z∈L2(B)msa

(

〈ι(X), Z + t ι(X)〉L2(B)msa
− t

2
‖ι(X)‖2L2(B)msa

− f B(Z + t ι(X))

)

= sup
ι:A→B

Z∈L2(B)msa

(

− 1

2t
‖Z‖2L2(B)msa

+
1

2t
‖Z + t ι(X)‖2L2(B)msa

− f B(Z + t ι(X))

)

.

Becauseqt− f is convex and lower semi-continuous, the right-hand side is the supremum
of convex lower semi-continuous functions of X , and therefore is convex and lower semi-
continuous.

(4) �⇒ (5). Let h = L f . Since f is not identically −∞ or ∞, the same is true of
h. We assumed in (3) that h − q1/t is convex and lower semi-continuous. Moreover, if
E : B → A is a conditional expectation, then hB(X) < ∞ implies (h−q1/t )B(X) < ∞
implies (h − q1/t )A(E[X ]) < ∞ implies hA(E[X ]) < ∞. Thus, it remains to show
that hA(E[X ]) ≤ hB(X) whenever hA(E[X ]) is finite. As in Lemma 3.10, it suffices
to show that for every A and X ∈ L2(A)msa with hA(X) < ∞, there exists some
subgradient vector Y ∈ L2(W∗(X), τ |W∗(X))

m
sa. By E-convexity of h, there exists some



940 W. Gangbo et al.

Z ∈ ðhA(X)∩ L2(W∗(X))msa. Then we claim that Z − t X ∈ ð(h−q1/t )A(X). To prove
this, observe that by convexity of h − q1/t , for s ∈ (0, 1), and X ′ ∈ L2(A)msa,

s(h − q1/t )
A(X ′) ≥ (h − q1/t )

A((1 − s)X + sX ′) − (1 − s)(h − q1/t )
A(X)

≥ hA(X) + 〈(1 − s)X + sX ′ − X, Z〉L2(A)msa

− qA1/t ((1 − s)X + sX ′) − hA(X)

+ qA1/t (X) + s(h − q1/t )
A(X)

= s(h − q1/t )
A(X) + s〈X ′ − X, Z〉L2(A)msa

+ qA1/t (X) − qA1/t ((1 − s)X + sX ′)

= s(h − q1/t )
A(X) + s〈X ′ − X, Z〉L2(A)msa

+
t

2
‖X‖2L2(A)msa

− t

2
‖X + s(X ′ − X)‖2L2(A)msa

= s(h − q1/t )
A(X) + s〈X ′ − X, Z − t X〉L2(A)msa

− ts2

2
‖X ′ − X‖2L2(A)msa

.

Dividing by s and sending s → 0+, we obtain

(h − q1/t )
A(X ′) ≥ (h − q1/t )

A(X) + 〈X ′ − X, Z − t X〉L2(A)msa
.

Hence, Z−t X ∈ ð(h−q1/t )A(X). Since Z−t X ∈ L2(W∗(X))msa, the proof is complete.
(5) �⇒ (1). Since L f − q1/t is E-convex, we have L f − q1/t = Lg for some

E-convex function g by Proposition 3.17. Thus, since g and q1/t are both E-convex, we
have

f = L2 f = L(Lg + q1/t ) = LL(g�qt ) = g�qt ,

where the last line follows because g�qt is E-convex by Lemma 4.6.
Finally, (1) implies that f < ∞ everywhere. Indeed, if X ∈ L2(A)msa, and if Y

is some point where gB(Y ) < ∞, then let C be the free product of A and B and let
ι1 : A → C and ι2 : B → C be the corresponding inclusions. Then (g�qt )A(X) ≤
1
2t ‖ι1(X) − ι2(Y )‖2

L2(C)msa
+ gC(ι2(Y )) < ∞.

Proposition 4.11. Let f be an E-convex W∗-function taking values in R. Then the
following are equivalent:

(1) qt − f is convex.
(2) IfA ∈ W and Y ∈ ð f A(X) and Y ′ ∈ ð f A(X ′), then ‖Y −Y ′‖L2(A)msa

≤ (1/t)‖X −
X ′‖L2(A)msa

.

(3) If A ∈ W, then ð f A(X) consists of a single point ∇ f A(X) ∈ L2(W∗(X))msa, and
∇ f A defines a (1/t)-Lipschitz function L2(A)msa → L2(A)msa.

(4) For each A and X ∈ L2(A)msa and Y ∈ ð f A(X), we have

〈X ′ − X, Y 〉L2(A)msa
≤ f A(X ′) − f A(X)

≤ 〈X ′ − X,Y 〉L2(A)msa
+

1

2t
‖X ′ − X‖2L2(A)msa

(4.10)

for all X ′ ∈ L2(A)msa.
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Proof. (1) �⇒ (2). By the previous Proposition 4.10, L f − q1/t is E-convex. Let
Y ∈ ð f A(X) and Y ′ ∈ ð f A(X ′). Then by Lemma 3.20, we have X ∈ ðL f A(Y ) and
X ′ ∈ ðL f A(Y ′). By the same argument as (4) �⇒ (5) in the proof of Proposition 4.10,
we have Z := X − tY ∈ ð(L f − q1/t )(Y ) and Z ′ := X ′ − tY ′ ∈ ð(L f − q1/t )(Y ′). It
follows that

〈Z ′,Y − Y ′〉L2(A)msa
≤ L f A(Y ) − L f A(Y ′) ≤ 〈Z ,Y − Y ′〉L2(A)msa

,

hence

0 ≤ 〈Z ′ − Z ,Y ′ − Y 〉L2(A)msa

= 〈X ′ − X − t (Y ′ − Y ),Y ′ − Y 〉L2(A)msa

= 〈X ′ − X,Y ′ − Y 〉L2(A)msa
− t‖Y ′ − Y‖2L2(A)msa

≤ ‖X ′ − X‖L2(A)msa
‖Y ′ − Y‖L2(A)msa

− t‖Y ′ − Y‖2L2(A)msa
.

Therefore, ‖Y ′ − Y‖L2(A)msa
≤ (1/t)‖X − X ′‖L2(A)msa

as desired.

(2) �⇒ (3). By taking X = X ′ in (2), we see that there is a unique Y ∈ ð f A(X)

and that X �→ Y is a (1/t)-Lipschitz function. By Lemma 3.10, we know that ð f A(X)

contains some point in L2(W∗(X))msa, and this point must equal Y .
(3) �⇒ (4). LetA and X be given. By our assumption of (3), there is a unique point

Y = ∇ f A(X) in ð f A(X). Let X ′ ∈ L2(A)msa. The lower bound 〈X ′ − X,Y 〉L2(A)msa
≤

f A(X ′) − f A(X) follows immediately from convexity. For the upper bound, let Xt =
(1 − t)X ′ + t X and let Yt = ∇ f A(Xt ).

For n ∈ N, observe that

f A(X ′) − f A(X) =
n∑

j=1

(
f A(X j/n) − f A(X( j−1)/n)

)

≤
n∑

j=1

〈X j/n − X( j−1)/n,Y j/n〉L2(A)msa

≤
n∑

j=1

〈X j/n − X( j−1)/n,Y 〉L2(A)msa

+
n∑

j=1

‖X j/n − X( j−1)/n‖L2(A)msa
‖Y j/n − Y‖L2(A)msa

≤ 〈X ′ − X,Y 〉L2(A)msa

+
n∑

j=1

1

n
‖X ′ − X‖L2(A)msa

1

t
‖X j/n − X‖L2(A)msa

≤ 〈X ′ − X,Y 〉L2(A)msa
+
1

t
‖X ′ − X‖2L2(A)msa

n∑

j=1

j

n2

= 〈X ′ − X,Y 〉L2(A)msa
+
1

t
‖X ′ − X‖2L2(A)msa

n(n + 1)

2n2
.
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Taking n → ∞ shows that f A(X ′) − f A(X) ≤ 〈X ′ − X,Y 〉L2(A)msa
+ (1/2t)‖X ′ −

X‖2
L2(A)msa

as desired.

(4) �⇒ (1). Let A ∈ W. We show that (qt − f )A is convex by exhibiting a
subgradient vector for every X ∈ L2(A)msa. Let Y ∈ ð f A(X) and let X ′ ∈ L2(A)msa. By
(4),

(qt − f )A(X ′) − (qt − f )A(X) ≥ 1

2t
‖X ′‖2L2(A)msa

− 1

2t
‖X‖2L2(A)msa

− 〈X ′ − X,Y 〉2L2(A)msa
− 1

2t
‖X ′ − X‖2L2(A)msa

= 〈X ′ − X,−Y + (1/t)X〉L2(A)msa
.

Hence, −Y + (1/t)X is a subgradient vector for qt − f at X as desired.

4.3. Main results on the displacement interpolation. We start out by proving Theo-
rem 1.5 which states that if (A, X,Y ) is an L2 optimal coupling and Xt = (1− t)X + tY ,
then W∗(Xt ) = W∗(X,Y ) for all t ∈ (0, 1).

Proof of Theorem 1.5. By Proposition 3.24, there exists an E-convex function f such
that Y ∈ ∂ f A(X). Let ft = (1 − t)q1 + t f , where qA1 (X) = (1/2)‖X‖2

L2(A)msa
. Since

(1 − t)X is a subgradient to (1 − t)q1 at X and tY is a subgradient to f A at X , we
have Xt ∈ ð f At (X). By Lemma 3.20, we have X ∈ ðL f At (Xt ). Since ft − q1/(1−t) =
ft − (1 − t)q1 = t f is E-convex, q1−t − L ft is E-convex by Proposition 4.10. Hence,
by Proposition 4.11, ðL f At (Xt ) consists of a single point which is in L2(W∗(Xt ))

m
sa.

But we already know that X ∈ ðL f At (Xt ), and therefore X ∈ L2(W∗(Xt ))
m
sa.

A symmetrical argument shows that Y ∈ L2(W∗(Xt ))
m
sa. Therefore, W

∗(X,Y ) ⊆
W∗(Xt ). The reverse inclusion W∗(Xt ) ⊆ W∗(X,Y ) is obvious since Xt = (1− t)X +
tY .

It follows from the triangle inequality that (A, Xs, Xt ) is an optimal coupling of the
lawsof Xs and Xt (seePropositionA.22).Anotherway to show that is, given an E-convex
function f such that Y ∈ ð f A(X), to derive E-convex functions ft,s for s, t ∈ [0, 1]
such that Xt ∈ ð f At,s(Xs). The next proposition gives an explicit construction of ft,s
from f , and gives the properties of ft,s . The specific cases relevant to the displacement
interpolation are then summarized in Corollary 4.13. All of these results are completely
analogous to the classical statements.

Proposition 4.12. Let f be an E-convex function. For s, t ∈ [0, 1], define ft,s as follows:
For s = 0, set

ft,0 = (1 − t)q1 + t f ; f0,t = L ft,0;
if s > 0 and s ≤ t , set

f At,s(X) = inf
Y∈L2(A)msa

(
t

2s
‖X‖2L2(A)msa

− t − s

s
〈X,Y 〉L2(A)msa

+
(t − s)(1 − s)

2s
‖Y‖2L2(A)msa

+ (t − s) f A(Y )

)

;
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if s > 0 and s ≥ t , set

f At,s(X) = sup
Y∈L2(A)msa

(
t

2s
‖X‖2L2(A)msa

− t − s

s
〈X,Y 〉L2(A)msa

+
(t − s)(1 − s)

2s
‖Y‖2L2(A)msa

+ (t − s) f A(Y )

)

.

(In particular, ft,t = q1 for all t ∈ [0, 1].) Then we have the following:

(1) ft,s is E-convex and fs,t = L ft,s .
(2) If s ≤ t , then ft,s − 1−t

1−s q1 is E-convex for s < 1 and t
s q1 − ft,s is E-convex for

s > 0.
(3) If t ≤ s, then ft,s − t

s q1 is E-convex for s > 0 and 1−t
1−s q1 − ft,s is E-convex for

s < 1.
(4) In particular, if s ∈ (0, 1) and X ∈ L2(A)msa, then ð f At,s(X) consists of a unique point

∇ f At,s(X) and ∇ f At,s is Lipschitz.
(5) Suppose 0 ≤ s < t ≤ 1. If u ∈ (s, t), then

fu,s = t − u

t − s
q1 +

u − s

t − s
ft,s

and

ft,u =
(
t − s

u − s
q1

)

�
(
t − u

t − s
ft,s

(
t − s

t − u
(·)
))

.

(6) Suppose 0 ≤ s < t ≤ 1 and X,Y ∈ L2(A)msa with Y ∈ ð f At,s(X). For u ∈ [s, t], let
Xu = t − u

t − s
X +

u − s

t − s
Y.

Then Xu ∈ ð f Au,s(X) and Y ∈ ð f At,u(Xu).
(7) For s, t, u ∈ (0, 1), we have ∇ fu,t ◦ ∇ ft,s = ∇ fu,s .

The next corollary describes the most relevant cases of the proposition for optimal
transport; the claims are special cases of (4) and (6) of the proposition.

Corollary 4.13. Let (A, X,Y ) be an optimal coupling of μ, ν ∈ �m. Let f be an E-
convex function such that Y ∈ ð f (X). Let ft,s be as in Proposition 4.12. Let Xt =
(1 − t)X + tY for t ∈ [0, 1]. Then Xt ∈ ð ft,s(Xs) for all s, t ∈ [0, 1]. In particular, if
s ∈ (0, 1), then ft,s has a Lipschitz gradient and we have Xt = ∇ ft,s(Xs).

In order to proveProposition 4.12,weneed the following scaling relation forLegendre
transform.

Lemma 4.14. Let f be a tracial W∗-function and let c > 0. Then L(c f )A(X) =
cL f A(c−1X).

Proof. Observe that

L(c f )A(X) = sup
ι:A→B

Y∈L2(B)msa

(
〈ι(X),Y 〉L2(B)msa

− c f B(Y )
)

= sup
ι:A→B

Y∈L2(B)msa

(
c〈ι(c−1X),Y 〉L2(B)msa

− c f B(Y )
)

= cL f A(c−1X).
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The bulk of the proof of the proposition is the following lemma which explains how
fs,t were obtained through addition of and inf-convolution with quadratic functions,
using the same idea as in the proof of Theorem 1.5.

Lemma 4.15. Consider the setup of Proposition 4.12. If 0 < s < t ≤ 1, then

ft,s = 1 − t

1 − s
q1 +

t − s

1 − s

[(
1

s
q1

)

�
(

(1 − s) f

(
1

1 − s
(·)
))]

(4.11)

L ft,s =
(
1 − s

1 − t
q1

)

�
[
t − s

1 − s
[sq1 + (1 − s)L f ]

(
1 − s

t − s
(·)
)]

(4.12)

and

ft,s = t

s
q1�
[
t − s

t
[(1 − t)q1 + t f ]

(
t

t − s
(·)
)]

(4.13)

L ft,s = s

t
q1 +

t − s

t

[(
1

1 − t
q1

)

�tL f

(
1

t
(·)
)]

. (4.14)

Proof. FixA ∈ W and X ∈ L2(A)msa, and evaluate the right-hand side of (4.11) at X to
obtain

1 − t

1 − s
q1(X) +

t − s

1 − s

[(
1

s
q1

)

�
(

(1 − s) f

(
1

1 − s
(·)
))]

(X)

= 1 − t

2(1 − s)
‖X‖2L2(A)msa

+
t − s

1 − s

inf
Y∈L2(A)msa

[
1

2s
‖X − Y‖2L2(A)msa

+ (1 − s) f A
(

1

1 − s
Y

)]

,

where we have used the result from Lemma 4.6 that it suffices to take the infimum over
Y ∈ L2(A)msa rather than Y in L2(B)msa for some larger tracial W∗-algebra B. Next, we
substitute (1 − s)Y instead of Y to obtain

1 − t

2(1 − s)
‖X‖2L2(A)msa

+
t − s

1 − s
inf

Y∈L2(A)msa

[
1

2s
‖X − (1 − s)Y‖2L2(A)msa

+ (1 − s) f A(Y )

]

= inf
Y∈L2(A)msa

[
1 − t

2(1 − s)
‖X‖2L2(A)msa

+
t − s

2s(1 − s)
‖X‖2L2(A)msa

− t − s

s
〈X,Y 〉L2(A)msa

+
(t − s)(1 − s)

2s
‖Y‖2L2(A)msa

+ (t − s) f A(Y )

]

.

Combining the two coefficients in front of ‖X‖2
L2(A)msa

, we arrive at the formula for

f At,s(X).
The equation (4.12) is obtained from (4.11) by applying the Legendre transform,

using the fact that L(cq1) = c−1q1 for c > 0, the relation between Legendre transform
and inf-convolution in Lemma 4.4, and the scaling relation Lemma 4.14.

The proof of (4.13) is similar to the proof of (4.11), and then (4.14) is obtained by
taking the Legendre transform.
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Proof of Proposition 4.12. (1) It is immediate that ft,0 and f0,t are E-convex and are
Legendre transforms of each other. Also, in the case of s = t , we have ft,s = q1, so
there is nothing to prove. For 0 < s < t ≤ 1, it follows from Lemma 4.15 that ft,s is
E-convex for because it is expressed by applying scaling, addition of quadratics, and
inf-convolution with quadratics to f .

Next, we show that for 0 < s < t , we have L ft,s = fs,t . We evaluate L ft,s starting
from (4.13) as

L ft,s = s

t
q1 + L

[
t − s

t
[(1 − t)q1 + t f ]

(
t

t − s
(·)
)]

Now we evaluate the second term at some X ∈ L2(A)msa, where A ∈ W. Using Re-
mark 3.18, we may compute the Legendre transform of an E-convex function by taking
the Hilbert-space Legendre transform for each A (without considering a larger W∗-
algebra B). This yields

sup
Y∈L2(A)msa

[

〈X,Y 〉 − t − s

t
[(1 − t)q1 + t f ]A

(
t

t − s
Y

)]

.

We substitute t−s
t Y for Y to obtain

sup
Y∈L2(A)msa

[
t − s

t
〈X,Y 〉L2(A)msa

− (t − s)(1 − t)

2t
‖Y‖2L2(A)msa

− (t − s) f (Y )

]

.

Adding back the term s
t q

A
1 (X), we obtain

sup
Y∈L2(A)msa

[
s

2t
‖X‖2L2(A)msa

− s − t

t
〈X,Y 〉L2(A)msa

+
(s − t)(1 − t)

2t
‖Y‖2L2(A)msa

+ (s − t) f (Y )

]

,

which is precisely fs,t .
Therefore, for s > t > 0, we have ft,s = L fs,t , hence ft,s is E-convex and L ft,s =

fs,t . This is the last remaining case.
(2) Let 0 ≤ s ≤ t ≤ 1. If s = 0, then ft,s = (1 − t)q1 + t f , so ft,s − 1−t

1−s q1 = t f is

E-convex. If s ∈ (0, 1), then by (4.11), ft,s is 1−t
1−s q1 plus an E-convex function, hence

ft,s − 1−t
1−s q1 is E-convex. If s ∈ (0, 1], then by (4.13), ft,s is the inf-convolution of t

s q1
with an E-convex function and therefore t

s q1 − ft,s is E-convex by Proposition 4.10.
(3) Let s ≥ t . Then ft,s = L fs,t . Thus, can we argue symmetrically to (2) using

(4.12) and (4.14).
(4) This follows from (2) and (3) together with Proposition 4.11.
(5) Consider the first relation fu,s = t−u

t−s q1 +
u−s
t−s ft,s . If s = 0, this follows from

direct computation from the definition of fu,0 and ft,0. In the case s > 0, we apply
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(4.11) to get

t − u

t − s
q1 +

u − s

t − s
ft,s = t − u

t − s
q1 +

u − s

t − s

1 − t

1 − s
q1

+
u − s

1 − s

[(
1

s
q1

)

�
(

(1 − s) f

(
1

1 − s
(·)
))]

= 1 − u

1 − s
q1 +

u − s

1 − s

[(
1

s
q1

)

�
(

(1 − s) f

(
1

1 − s
(·)
))]

= fu,s .

Analogously, using (4.14), we obtain for s ∈ (0, 1) that

L ft,u = u − s

t − s
q1 +

t − u

t − s
L ft,s;

in fact, this relation also holds when s = 0 by evaluating L ft,u on the left-hand
side with (4.14) and evaluating L ft,0 on the right-hand side L[(1 − t)q1 + t f ] =
( 1
1−t q1)�tL f ( 1t (·)). Taking Legendre transforms of the previous equation implies that

ft,u =
(
t − s

u − s
q1

)

�
(
t − u

t − s
ft,s

(
t − s

t − u
(·)
))

.

(6) Since X ∈ ðqA1 (X) and Y ∈ ð f At,s(X), we have

Xu = t − u

t − s
X +

u − s

t − s
Y ∈ ð

[
t − u

t − s
q1 +

u − s

t − s
ft,s

]A
(X) = ð f Au,s(X).

Since Y ∈ ð f At,s(X), we have X ∈ ð(L ft,s)A(Y ). Hence, using the same relation as in
the proof (5),

Xu = u − s

t − s
Y +

t − u

t − s
X ∈ ð

[
u − s

t − s
q1 +

t − u

t − s
L ft,s

]A
(Y ) = ð(L ft,u)

A(Y ).

So Xu ∈ ð(L ft,u)A(Y ), so that Y ∈ ð f At,u(Xu).
(7) In light of (4), for s, t ∈ (0, 1), the functions fs,t and ft,s have Lipschitz gradients.

They are Legendre transforms of each other, which implies that X ∈ ð fs,t (Y ) if and
only if Y ∈ ð ft,s(X). Hence, ∇ fs,t = (∇ ft,s)−1.

Suppose that s < u < t . Let Y = ∇ ft,s(X), and let Xu = u−s
t−s X + t−u

t−s Y . Then
by (6), Xu = ∇ fu,s(X) and Y = ∇ ft,u(Xu), hence ∇ ft,s(X) = Y = ∇ ft,u(Xu) =
∇ ft,u ◦ ∇ fu,s(X).

So ∇ ft,s = ∇ ft,u ◦ ∇ fu,s . By applying ∇ fs,u = (∇ fu,s)
−1 on the right, we obtain

∇ ft,s ◦ ∇ fs,u = ∇ ft,u . By taking inverses, ∇ fu,s ◦ ∇ fs,t = ∇ fu,t . In fact, using
composition and inverses in this way, we can achieve all permutations of u, s, and t .
The only remaining case is when some of s, t, u are equal to each other, but this follows
from the relations ∇ ft,t = id and ∇ fs,t = (∇ ft,s)−1.
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5. Optimal Couplings, Quantum Information Theory, and Operator Algebras

In this section, we give several indications of why non-commutative optimal couplings
are significantly more complicated than the commutative case by making connections
to other results in operator algebras and quantum information theory. Specifically, using
results from [52], we show that there exist n × n matrix tuples for which an optimal
coupling requires a tracial W∗-algebra of arbitrarily large dimension. Next, based on
[33] and [42], we conclude that there exist matrix tuples for which the optimal coupling
requires a non-Connes-embeddable tracialW∗-algebra (that is, it cannot even be approx-
imated by couplings in finite-dimensional algebras). Next, we show that the topology
induced by the Wasserstein distance is strictly stronger than the weak-∗ topology on
�m,R , and we characterize the points at which the two topologies agree. Finally, we
show that �m,R with the Wasserstein distance is not separable based on [58, Theorem
1].

5.1. Completely positive and factorizable maps. We recall some standard definitions
in operator algebras; see e.g. [60]. If A is a tracial W∗-algebra, we denote by Mn(A)

the algebra Mn(L∞(A)) ∼= Mn(C) ⊗ L∞(A) equipped with the trace trn ⊗τA and the
weak-∗ topology given by the entrywise weak-∗ topology on L∞(A); it is a standard
fact that Mn(A) is indeed a tracial W∗-algebra. If � : A → B is a linear map between
tracial W∗-algebras, then we define �(n) : Mn(A) → Mn(B) as the map obtained from
entrywise application of �. If A is a tracial W∗-algebra and a ∈ L∞(A), then we say
that a ≥ 0 if a = x∗x for some x ∈ L∞(A); this is equivalent to a defining a positive
operator on L2(A) by left multiplication.3

Definition 5.1. We say that � is completely positive if for every n ∈ N, if a ∈ Mn(A)

with a ≥ 0, then�(n)(a) ≥ 0. For tracialW∗-algebrasA andB, we denote by CP(A,B)

the space of completely positive maps A → B. We denote by UCPT(A,B) the space
of unital completely positive trace-preserving maps. These maps are known in quantum
information theory as quantum channels from A to B.
Definition 5.2. (Anantharaman-Delaroche [1]) Let A and B be tracial W∗-algebras. A
linear map � : A → B is said to be factorizable if there exist tracial W∗-inclusions
ι1 : A → C and ι2 : B → C such that � = ι∗2 ◦ ι1, where ι∗2 : C → B is the conditional
expectation adjoint to ι2. We also say that � factorizes through C if there exist ι1 and ι2
as above.

We denote the space of factorizable maps by FM(A,B). We denote by FMfin(A,B)

the set of maps that factorize through a finite-dimensional algebra C.
Proposition 5.3. Let A, B, and C be tracial W∗-algebras.

(1) We have FM(A,B) ⊆ UCPT(A,B).
(2) UCPT(A,B), FM(A,B), and FMfin(A,B) are convex sets.
(3) UCPT(A,B) and FM(A,B) are closed in the pointwise weak-∗ topology.
(4) If � ∈ UCPT(A,B) and � ∈ UCPT(B, C), then � ◦ � ∈ UCPT(A, C). The same

holds with UCPT replaced by FM.

This proposition is well-known in operator algebras. For the sake of exposition, let
us recall why FM(A,B) ⊆ UCPT(A,B). Let � ∈ FM(A,B), and take a factorization

3 Of course, definitions make sense more generally for C∗-algebras.
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� = ι∗2ι1 where ι1 : A → C and ι2 : B → C are tracial W∗-inclusions. Since ι1 and
ι2 are ∗-homomorphisms, they are completely positive and unital. Now observe that
〈ι∗2(c), b〉L2(B)msa

= 〈c, ι2(b)〉L2(C)msa
≥ 0 for c ∈ Mn(C)+ and b ∈ Mn(B)+; it follows

that ι∗2(c) ≥ 0 in Mn(B) for every c ∈ Mn(C)+. Since ι2 is unital, ι∗2 is trace-preserving,
and since ι2 is trace-preserving, ι∗2 is unital. Finally, one verifies directly that UCPT is
closed under composition, hence, ι∗2ι1 ∈ UCPT(A,B).

To show that factorizable maps are closed under composition in (4), one uses amal-
gamated free products. For convexity of FM(A,B), see e.g. [12, Lemma 2.3.6].

The next lemma summarizes somewell-known facts about completely positivemaps.

Lemma 5.4. Let A and B be tracial W∗-algebras, and let � ∈ UCPT(A,B).

(1) �(X∗) = �(X)∗ for all X ∈ L∞(A).
(2) � extends to a contractive map L2(A) → L2(B).
(3) There exists a unique�∗ ∈UCPT(B,A) such that 〈X,�∗(Y )〉L2(A) =〈�(X),Y 〉L2(B)

for X ∈ L2(A) and Y ∈ L2(B).

The connection between factorizable maps and non-commutative optimal couplings
is as follows.

Observation 5.5. Let A and B be tracial W∗-algebras and let X ∈ L∞(A)msa and
Y ∈ L∞(B)msa. Then

C(λX , λY ) = sup
�∈FM(A,B)

〈�(X),Y 〉L2(B)msa
.

Proof. In fact, we will show that the two sets {〈X ′,Y ′〉L2(C)msa
: (C, X ′,Y ′) a coupling}

and {〈�(X),Y 〉L2(B)msa
: � ∈ FM(A,B)} are equal. Suppose that (C, X ′,Y ′) is a cou-

pling of λX and λY . Since λX ′ = λX , there is a tracial W∗ embedding ι1 : W∗(X) → C
sending X to X ′. Similarly, there is a tracial W∗-embedding ι2 : W∗(Y ) → C sending
Y to Y ′. Let φ1 : W∗(X) → A and φ2 : W∗(Y ) → B be the canonical inclusion maps,
and let � = φ2ι

∗
2ι1φ

∗
1 : A → B, which is factorizable by Proposition 5.3 (4) because it

is a composition of factorizable maps. Moreover,

〈�(X),Y 〉L2(B)msa
= 〈ι1φ∗

1 (X), ι2φ
∗
2 (Y )〉L2(C)msa

= 〈ι1(X), ι2(Y )〉L2(C)msa
.

Conversely, given� ∈ FM(A,B), wemay factorize it as ι∗2ι1 for tracialW∗-embeddings
ι1 : A → C and ι2 : B → C, and let X ′ = ι1(X) and Y ′ = ι2(Y ) to obtain a coupling
(C, X ′,Y ′) of λX and λY .

5.2. Matrix tuples with optimal couplings of large dimension. This connection allows
us to address a natural question: Suppose that μ and ν are non-commutative laws that
can be realized by self-adjoint tuples X and Y in a finite-dimensional algebra; then is
there a non-commutative optimal coupling (A, X ′,Y ′) of μ and ν such that A is finite-
dimensional? And do we have some control over the dimension? The classical analog
of this question certainly has a positive answer. Indeed, if μ and ν are finitely supported
measures on R

m , with supports S and T respectively, then a classical optimal coupling
is given by a measure π on the product space S×T . Hence, there exist random variables
X and Y ∈ L2(S × T, π;Rm) such that (A, X,Y ) is an optimal coupling of μ and ν,
whereA is the finite-dimensional algebra L∞(S×T, π) equipped with the trace coming
from π .
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Our first negative result in the non-commutative setting shows that, even in situations
when an optimal coupling can occur in a finite dimensional algebra, there can be no
control over its dimension. This is a consequence of the following result of Musat and
Rørdam [52].

Theorem 5.6. [Musat-Rørdam[52,Theorem4.1]] If n ≥ 11, thenFMfin(Mn(C), Mn(C))

is not closed, hence there exist factorizable maps Mn(C) → Mn(C) that do not factor
through any finite-dimensional algebra.

In order to translate this result into a statement about non-commutative optimal cou-
plings, we use the following lemma, which is an application of the hyperplane separation
theorem, vector space duality, and adjointness of tensor and hom functors.

Lemma 5.7. Let LR(Mn(C)sa, Mm(C)sa) denote the space of real linear transforma-
tions Mn(C) → Mm(C). Let K ⊆ LR(Mn(C)sa, Mm(C)sa) be a closed convex set, and
let � �∈ K. Then there exists k ≤ min(n2,m2) and X ∈ Mn(C)ksa and Y ∈ Mn(C)ksa
such that

〈�(X),Y 〉L2(Mm (C))ksa
> sup

�∈K
〈�(X),Y 〉L2(Mm (C))ksa

.

Proof. Recall that there is a linear isomorphism

T : LR(Mn(C)sa, Mm(C)sa)→ LR(Mn(C)sa ⊗ Mm(C)sa,R)=(Mn(R)sa ⊗ Mm(R)sa)
∗

that sends � ∈ LR(Mn(C)sa, Mm(C)sa) to the map

ψ : Mn(C)sa ⊗ Mm(C)sa → R : A ⊗ B �→ 〈�(A), B〉L2(Mm (C))sa
.

Of course,Mn(C)sa⊗Mm(C)sa is finite-dimensional, so the double dual is isomorphic to
the original space. Applying the hyperplane separation theorem on the real inner-product
spaceMn(C)sa⊗Mm(C)sa, we conclude that there exists some v ∈ Mn(C)sa⊗Mm(C)sa
such that

T (�)(v) > sup
�∈K

T (�)(v).

Let us decompose v into a sum of simple tensors v =∑k
j=1 X j ⊗ Y j . The smallest

k for which this is possible is called the tensor rank of v. We claim that the tensor
rank is at most min(n2,m2). The reason is that for real vector spaces V and W , we can
identify V ⊗ W with LR(V,W ) and then apply the singular value decomposition of
the matrix in LR(V,W ) corresponding to a given tensor v. Since a matrix in LR(V,W )

has rank at most min(dim V, dimW ), it follows that the tensor rank of v is at most
min(dim V, dimW ). In particular, taking V = Mn(C)sa and W = Mm(C)sa, we see
that our vector v ∈ Mn(C) ⊗ Mm(C) has tensor rank at most min(n2,m2).

Let X = (X1, . . . , Xk) andY = (Y1, . . . ,Yk). Then for� ∈ LR(Mn(C)sa, Mm(C)sa),
we have

T (�)(v) =
k∑

j=1

〈�(X j ),Y j 〉L2(Mm (C))sa
= 〈�(X),Y 〉L2(Mm (C))ksa

Thus, by our choice of v, the tuples X and Y satisfy the desired properties.
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Corollary 5.8. If n ≥ 11 and d ∈ N, then there exist X,Y ∈ Mn(C)n
2

sa such that for
every optimal coupling (A, X ′,Y ′) of λX and λY , A must have dimension at least d. In
particular, if d is sufficiently large, then

C(λX , λY ) > sup
U∈U(Mn(C))

〈UXU∗,Y 〉L2(Mn(C))msa
.

Proof. Let FMd(Mn(C), Mn(C)) denote the set of UCPT maps Mn(C) → Mn(C)

that factorize through a tracial W ∗-algebra A = (A, τ ) of dimension at most d. As a
consequence of the Artin-Wedderburn theorem, every such ∗-algebra A is a direct sum
of at most d matrix algebras of size at most d1/2; see e.g. [25]. Moreover, the trace τA is
a convex combination of the traces on each component. From these facts, it is not hard
to see that FMd(Mn(C), Mn(C)) is compact.

ByTheorem5.6, there exists� ∈ FMfin(Mn(C), Mn(C)) that does not factor through
a finite-dimensional algebra, and hence � ∈ FMfin(Mn(C), Mn(C)) \ FMd(Mn(C),

Mn(C)).
Also, we also remark that a completely positive map � : Mn(C) → Mn(C) satisfies

�(A∗) = �(A)∗, and therefore it restricts to a real-linear transformation Mn(C)sa →
Mn(C)sa, and � is uniquely determined by its restriction to self-adjoint elements. Thus,
we can Lemma 5.7 to conclude that there exists k ≤ n2 and X,Y ∈ Mn(C)ksa such that

〈�(X),Y 〉L2(Mn(C))ksa
> sup

�∈FMd (Mn(C),Mn(C))

〈�(X),Y 〉L2(Mn(C))ksa
.

We can without loss of generality take k = n2 because we can always add additional
zero entries to our tuples without changing the value of the inner product of�(X) and Y .
Hence, by the proof of Observation 5.5 any � ∈ FMd(Mn(C), Mn(C)) cannot produce
an optimal coupling.

5.3. Optimal couplings and the Connes embedding problem. The situation is even more
wild than this. Based on the work of [42] on Tsirelson’s problem and the Connes em-
bedding problem, as well as work of [33], we can conclude that for some n, there exist
X , Y ∈ Mn(C)n

2

sa , such that a non-commutative optimal coupling of λX and λY cannot
even be approximated by couplings in finite-dimensional tracial ∗-algebras. We begin
with some background on the Connes embedding problem, which includes first the def-
inition of ultraproducts of tracial W∗-algebras, a tool to turn approximate embeddings
into literal embeddings: [12, Appendix A], [13, Sect. 2], [2, Sect. 5.4].

LetβN denote the Stone-Čech compactification of the natural numbers; it is a compact
space containing N as an open subset,4 and satisfies the universal property that every
function from N into a compact topological space K extends uniquely to a continuous
function βN → K . In particular, if (xn)n∈N is a bounded sequence of real or complex
numbers, then limn→U xn exists for every U ∈ βN. The Stone–Čech compactification
βN is characterized up to a canonical homeomorphism by its universal property. One
construction of βN is by way of ultrafilters, which is why we have used the letter U for
elements of βN. In this framework, the elements of βN \N are known as non-principal
ultrafilters and the limit limn→U xn is also called an ultralimit.

4 Here N is equipped with the discrete topology. To simplify notation, we view N as a subset of βN rather
than considering an inclusion map η : N → βN.
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Ultraproducts of tracial von Neumann algebras are defined as follows. For n ∈ N,
let An = (An, τn) be a sequence of tracial W∗-algebras. Let

∏
n∈N An be the set of

sequences (an)n∈N such that supn‖an‖L∞(An) < ∞, which is a ∗-algebra. Let

IU =
{

(an)n∈N ∈
∏

n∈N
An : lim

n→U
‖an‖L2(An)

= 0

}

.

Using the non-commutative Hölder’s inequality for L2 and L∞, one can show that
IU is a *-ideal in

∏
n∈N An , and therefore,

∏
n∈N An/IU is a ∗-algebra. We denote by

[an]n∈N the equivalence class in
∏

n∈N An/IU of a sequence (an)n∈N ∈∏n∈N An . Fur-
thermore, we define a trace on

∏
n∈N An/IU as follows. if (an)n∈N ∈ ∏n∈N An , then

(τn(an))n∈N is a bounded sequence in C and therefore limn→U τn(an) exists. Since
|τn(an)| ≤ ‖an‖L2(An)

, we have limn→U τn(an) = 0 whenever (an)n∈N ∈ IU . There-
fore, there is a well-defined map

τU :
∏

n∈N
An/IU → C

given by τU ([an]n∈N) = limn→U τn(an). It turns out the pair (
∏

n∈N An/IU , τU ) is
already a tracial W∗-algebra; see [2, Proposition 5.4.1]. The proof is based on the fact
that a tracial C∗-algebra is a W∗-algebra if and only if the operator-norm unit ball is
complete in the L2 norm [2, Proposition 2.6.4]. See also [12, Appendix A].

We call the tracial W∗-algebra (
∏

n∈N An/IU , τU ) the ultraproduct of (An)n∈N with
respect to U and we denote it by

∏

n→U
An :=

(
∏

n∈N
An/IU , τU

)

.

The inspiration for this notation is that ultraproduct is defined using a combination of
Cartesian product and ultralimits (of the L2-norm and the trace); in contrast to Cartesian
products, the ultraproduct only cares about the asymptotic behavior of a sequence as
n → U .
Definition 5.9. A tracial W∗-algebra A is Connes-embeddable if there exist finite-
dimensional tracial ∗-algebras An for n ∈ N, an ultrafilter U ∈ βN \ N, and a tracial
W∗-embedding φ : A → ∏n→U An . The Connes embedding problem is the question
of whether every tracial W∗-algebra with separable predual is Connes-embeddable.

Embeddings into ultraproducts are closely related to convergenceof non-commutative
laws in �m,R .

Lemma 5.10. Let (An)n∈N be a sequence of tracialW∗-algebras and let A be another
tracial W∗-algebra. Let X ∈ L∞(A)msa with ‖X‖L∞(A)msa

≤ R and suppose that X
generates A as a W∗-algebra. Let Xn ∈ L∞(An)

m
sa with ‖Xn‖L∞(An)msa

≤ R. Then the
following are equivalent:

(1) limn→U λXn = λX with respect to the weak-∗ topology on �m,R.
(2) There exists a tracial W∗-embedding φ : A → ∏

n→U An such that φ(X) =
[Xn]n∈N.
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Proof. (1) �⇒ (2). Let Y = [Xn]n∈N ∈ L∞(
∏

n→U An)
m
sa. Let τU be the trace on the

ultraproduct. Then for every p ∈ C〈x1, . . . , xd〉, we have
λY (p) = τU (p(Y )) = lim

n→U
τn(p(Xn)) = lim

n→U
λXn (p) = λX (p).

Because λY = λX , Lemma 2.33 implies that there is a W∗-embedding A = W∗(X) →
W∗(Y ) ↪→∏n→U An .

(2) �⇒ (1). Let φ : A → ∏n→U An as above be a tracial W∗-embedding with
φ(X) = [Xn]n∈N. Using the fact that φ preserves addition and multiplication as well as
the definition of the trace τU on the ultraproduct,

λX (p) = τ(p(X)) = τU (φ(p(X))) = τU (p(φ(X))) = lim
n→U

τn(p(Xn)) = lim
n→U

λXn (p).

Therefore, limn→U λXn = λX in the weak-∗ topology, as desired.

Definition 5.11. Let �fin
m,R be the set of non-commutative laws μ in �m,R such that

μ = λX for some X ∈ L∞(A)msa where A is a finite-dimensional tracial ∗-algebra.
The following statement is almost a corollary of Lemma 5.10.

Lemma 5.12. LetAbea tracialW∗-algebrageneratedby X ∈ L∞(A)msa with‖X‖L∞(A)m

≤ R. Then A is Connes-embeddable if and only if λX is in the weak-∗ closure of �fin
m,R

in �m,R.

Proof. If λX is in the closure of �fin
m,R , then Lemma 5.10 implies that A is Connes-

embeddable. Conversely, suppose thatA is Connes-embeddable and ι : A →∏n→U An
is an embedding into some ultraproduct of finite-dimensional tracial ∗-algebras. Let
Xn = (X (1)

n , . . . , X (m)
n ) ∈ L∞(An)

m such that [Xn]n∈N = ι(X), and let us also write
X = (X (1), . . . , X (m)). By replacing X ( j)

n with (X ( j)
n + (X ( j)

n )∗)/2, we can assume with-
out loss of generality that X ( j)

n is self-adjoint.ByassumptionM := supn∈N‖Xn‖L∞(A)msa
<

∞.
Although M may be larger than R, we can fix this issue through a standard ar-

gument with functional calculus. Let f : [−M, M] → [−R, R] be given by f (t) =
sgn(t)min(|t |, R). By theWeierstrass approximation theorem, there exists a sequence of
polynomials ( fk)k∈N converging uniformly to f on [−M, M]. Note that fk(ι(X ( j))) =
[ fk(X ( j)

n )]n→N. By the spectral mapping theorem, for each j , k, and n,

‖ fk(X
( j)
n ) − f (X ( j)

n )‖L∞(An) ≤ sup
t∈[−M,M]

| fk(t) − f (t)|,

and the same estimate holds for fk(ι(X ( j))) − f (ι(X ( j))). Taking k → ∞, we obtain
f (ι(X ( j))) = [ f (X ( j)

n )]n∈N for each j . Since ‖X ( j)‖L∞(A) ≤ R, we have f (ι(X ( j))) =
ι(X ( j)). Let Yn = ( f (X (1)

n ), . . . , f (X (m)
n )). Then ‖Yn‖L∞(An)m ≤ R and ι(X) =

[Yn]n∈N, hence λX is in the closure of �fin
m,R by Lemma 5.10.

Decades of work found many equivalent problems in operator algebras and quantum
information theory; for a survey, see e.g. [13,59]. In particular, building on the estab-
lished connections with quantum information theory, Haagerup and Musat showed the
following result.
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Theorem 5.13. (Haagerup-Musat [33, Theorem 3.6, 3.7]) A factorizable map � :
Mn(C) → Mn(C) admits a factorization through a Connes-embeddable algebra if and
only if it is in the closure of FMfin(Mn(C), Mn(C)). Moreover, the Connes embedding
problem has a positive answer if and only if

FM(Mn(C), Mn(C)) = FMfin(Mn(C), Mn(C)) for all n ∈ N.

A negative answer to the Connes embedding problem was announced in [42]. This
implies the following corollary.

Corollary 5.14. There exist n ∈ N and X,Y ∈ Mn(C)n
2

sa such that

C(λX , λY ) = sup
�∈FM(Mn(C),Mn(C))

〈�(X),Y 〉
L2(Mn(C))n

2
sa

> sup
�∈FMfin(Mn(C),Mn(C))

〈�(X),Y 〉
L2(Mn(C))n

2
sa

.

Moreover, a non-commutative optimal coupling of λX and λY does not exist in any
Connes-embeddable tracial W∗-algebra.
Proof. Let K = FMfin(Mn(C), Mn(C)), which is compact and convex. Because the
Connes embedding problem has a negative answer [42], there exists � ∈ FM(Mn(C),

Mn(C)) \ K . By Lemma 5.7, there exist X , Y ∈ Mn(C)n
2

sa such that

〈�(X),Y 〉
L2(Mn(C))n

2
sa

> sup
�∈K

〈�(X),Y 〉
L2(Mn(C))n

2
sa

.

Hence, by Theorem 5.13, if � factors through a Connes-embeddable algebra, then
〈�(X),Y 〉

L2(Mn(C))n
2

sa
cannot be optimal. Thus, by the proof of Observation 5.5, a cou-

pling of λX and λY in a Connes-embeddable algebra cannot be optimal.

Remark 5.15. Although Corollary 5.14 is much stronger than Corollary 5.8 as stated,
they are based on different types of phenomena. Corollary 5.14 relies on the existence
of factorizable maps Mn(C) → Mn(C) that cannot be approximated by elements of
FMfin(Mn(C), Mn(C)) (of which there are not yet explicit examples known). Mean-
while, Corollary 5.8 relies on the existence of factorizable maps that are approximated
by elements of FMfin(Mn(C), Mn(C)) but are not in FMfin(Mn(C), Mn(C)) (of which
[52] gave explicit examples). Thus, the proof of Corollary 5.8 shows that for n ≥ 11
and d ∈ N, there exist tuples X and Y from Mn(C)n

2

sa such that

sup
�∈FMfin(Mn(C),Mn(C))

〈�(X),Y 〉
L2(Mn(C))n

2
sa

> sup
�∈FMd (Mn(C),Mn(C))

〈�(X),Y 〉
L2(Mn(C))n

2
sa

.

Hence, a coupling on an algebraA of dimension at most d cannot even be optimal among
couplings in Connes-embeddable algebras.

5.4. The Wasserstein and weak-∗ topologies. At the beginning, we equipped�m,R with
the weak-∗ topology as a subset of the algebraic dual of C〈x1, . . . , xm〉. Meanwhile,
because d(2)

W defines a metric on �m,R , it induces another topology, which we will call
theWassertein topology. We will show that the Wasserstein topology is strictly stronger
than theweak-∗ topology. This is to be contrastedwith classical probability theorywhere
the weak-∗ topology on the space of probability measures on [−R, R]m is metrized by
the L2-Wasserstein distance.

Our first step is to prove an ultraproduct characterization of Wasserstein convergence
analogous to Lemma 5.10.
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Lemma 5.16. Let (An)n∈N be a sequence of tracial W∗-algebras and let A be another
tracial W∗-algebra. Let X ∈ L∞(A)msa with ‖X‖L∞(A)msa

≤ R and suppose that X
generates A. Let Xn ∈ L∞(An)

m
sa with ‖Xn‖L∞(An)msa

≤ R. Then the following are
equivalent:

(1) limn→U λXn = λX with respect to Wasserstein distance.
(2) There exists a tracial W∗-embedding φ : A → ∏n→U An and a factorizable map

�n ∈ FM(A,An) (for each n ∈ N) such that

φ(X) = [Xn]n∈N, φ(Z) = [�n(Z)]n∈N for all Z ∈ L∞(A).

Proof. (1) �⇒ (2). The limit limn→U λXn = λX in Wasserstein distance means that
there exists tracial W∗ algebras Bn and tracial W∗-embeddings πn : W∗(Xn) → Bn
and ρn : A → Bn such that ‖πn(Xn) − ρn(X)‖L2(Bn)msa

→ 0 as n → U . Let Cn be the
free product of An and Bn with amalgamation over W∗(Xn), and let π̃n : An → Cn
and ρ̃n : A → Cn be the corresponding tracial W∗-embeddings. It is straightforward to
check that these induce tracial W∗-embeddings

π̃ :
∏

n→U
An →

∏

n→U
Cn, ρ̃ : A →

∏

n→U
Cn

such that π̃ (φ(X)) = π̃([Xn]n∈N) = ρ(X). Since π̃◦φ and ρ̃ are tracialW∗-embeddings,
we have π̃(φ(Z)) = ρ̃(Z) for all Z ∈ L∞(A) (because for instance every element of
L∞(A) can be approximated in L2(A) by non-commutative polynomials of X ).

Let π̃∗
n and π̃∗ be the trace-preserving conditional expectations adjoint to π̃n and π̃ .

We claim that for Y = [Yn]n∈N ∈∏n→U Cn , we have

π̃∗(Y ) = [π̃∗
n (Yn)]n∈N.

Let Ã =∏n→U An and C̃ =∏n→U Cn . Note that [π̃∗
n (Yn)]n∈N is in the W∗-subalgebra

Ã =∏n→U An . Moreover, for every Z = [Zn] ∈∏n→U An , we have

〈Y, π̃(Z)〉L2(C̃)
= lim

n→U
〈Yn, π̃n(Zn)〉L2(Cn) = lim

n→U
〈π̃∗

n (Yn), Zn〉L2(An)

= 〈[π̃∗
n (Yn)]n∈N, Z〉L2(Ã)

.

Thus, π̃∗(Y ) = [π̃∗
n (Yn)]n∈N, as desired. As noted above, for every Z ∈ A, we have

π̃(φ(Z)) = ρ̃(Z) and hence φ(Z) = π̃∗π̃φ(Z) = π̃∗ρ̃(Z). This implies that

[π̃∗
n ρ̃n(Z)]n∈N = π̃∗ρ̃(Z) = φ(Z).

Therefore, �n := π̃∗
n ρ̃n is a factorizable map fulfilling condition (2).

(2) �⇒ (1). Let φ and �n be as in (2). Then [Xn]n∈N = φ(X) = [�n(X)]n∈N
belongs to

∏
n→U An . Letting En be the trace-preserving conditional expectationAn →

W∗(Xn), the map En ◦ �n : W∗(X) → W∗(Xn) is factorizable by Proposition 5.3 (4),
hence by Observation 5.5,

C(λXn , X) ≥ 〈En ◦ �n(X), Xn〉L2(W∗(Xn))msa
= 〈�n(X), Xn〉L2(An)msa

.
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Therefore,

lim
n→U

d(2)
W (λXn , λX )2 = lim

n→U

(
‖Xn‖2L2(An)msa

+ ‖X‖2L2(A)msa
− 2C(λXn , λX )

)

≤ lim
n→U

(
‖X‖2L2(A)msa

+ ‖Xn‖2L2(An)msa
− 2〈�n(X), Xn〉L2(An)msa

)

= ‖φ(X)‖2L2(
∏

n→U An)msa
+ ‖φ(X)‖2L2(

∏
n→U An)msa

− 2〈φ(X), φ(X)〉2L2(
∏

n→U An)msa

= 0.

Hence, limn→U λXn = λX in Wasserstein distance.

The next corollary was observed in [11, Proposition 1.4(b)], and can be proved in
several ways (see for instance [35, Lemma 2.10, Corollary 2.11] for another method),
but we will deduce it as a consequence of the ultraproduct characterizations for weak-∗
and Wasserstein convergence.

Corollary 5.17. The Wasserstein topology on �m,R refines the weak-∗ topology.

Proof. FixU ∈ βN\N. Using theUrysohn subsequence principle, it suffices to show that
ifμn, μ ∈ �m,R and limn→U μn = μ in theWasserstein distance, then limn→U μn → μ

in the weak-∗ topology. Letting (An, Xn) and (A, X) be the GNS realizations of μn and
μ, Lemma 5.16 implies that there is a tracial W∗-embedding A → ∏n→U An with
φ(X) = [Xn]n∈N. By Lemma 5.10, this implies that limn→U μn = μ in the weak-∗
topology.

The next observation is closely related.

Lemma 5.18. The metric d(2)
W is weak-∗ lower semi-continuous on �m,R × �m,R.

Proof. Fix U ∈ βN \ N. Again using the Urysohn subsequence principle, it suf-
fices to show that for every pair of sequences (μn)n∈N and (νn)n∈N in �m,R , letting
μ = limn→U μn and ν = limn→U νn , we have d(2)

W (μ, ν) ≤ limn→U d(2)
W (μn, νn).

Let (An, Xn,Yn) be an optimal couplings of μn and νn . Let (B, X) and (C,Y ) be
the GNS realizations of μ and ν. By Lemma 5.10, there exist tracial W∗-embeddings
φ : B → ∏

n→U An and ψ : C → ∏
n→U An such that φ(X) = [Xn]n∈N and

ψ(Y ) = [Yn]n∈N. Then

d(2)
W (μ, ν) ≤ ‖φ(X) − ψ(Y )‖L2(

∏
n→U An)msa

= lim
n→U

‖Xn − Yn‖L2(An)
= lim

n→U
d(2)
W (μn, νn).

We will use Lemmas 5.10 and 5.12 to characterize when the Wasserstein and weak-
∗ topologies agree at a point in �m,R in terms of a certain stability property. To fix
terminology, if S is a set and T1 and T2 are two topologies on S, we say that T1 and
T2 agree at x ∈ S if every T1-neighborhood of x is contained in a T2-neighborhood
of x and vice versa. If the topologies are metrizable, this is equivalent to saying that
a sequence xn converges to x with respect to T1 if and only if it converges to x with
respect T2. Furthermore, if U is a given non-principal ultrafilter on N, then agreement
of the two topologies at x is equivalent to the claim that limn→U xn = x with respect to
T1 if and only if limn→U xn = x with respect to T2.
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Definition 5.19. (FM-lifting) Let A be a tracial W∗-algebra with separable predual,
and let U be a free ultrafilter on N. If An is a sequence of tracial W∗-algebras and
φ : A → ∏n→U An is a tracial W∗-embedding, then an FM-lifing of φ is a sequence
(�n)n∈N, where �n ∈ FM(A,An), such that φ(Z) = [�n(Z)]n∈N for all Z ∈ L∞(A).

Note that the sequence �n in Lemma 5.16 (2) is an FM-lifting of φ. In other words,
Lemma 5.16 describes convergence in Wasserstein distance in terms of ultraproduct
embeddings that have FM-liftings.

Definition 5.20. (FM-stability)Wesay thatA is FM-stable if every tracialW∗-embedding
φ : A → ∏n→U An into the ultraproduct of any sequence of tracial W∗-algebras An
has an FM-lifting.

Our notion of FM-stability is analogous and closely related to the notions of tracial
stability and UCP-stability studied in [5,34]. Analogously to [5, Remark 2.2], the defi-
nition of FM-stability can be restated as an approximation property without reference to
ultraproducts. This implies in particular that the definition is independent of the choice of
non-principal ultrafilterU (hence it amounts to the same thing whether require the lifting
condition for a particular non-principal ultrafilter or for all non-principal ultrafilters).

Proposition 5.21. Let μ ∈ �m,R and let (A, X) be the GNS realization of μ as in
Proposition 2.31. Then the following are equivalent:

(1) The weak-∗ and Wasserstein topologies on �m,R agree at μ.
(2) A is FM-stable.

Proof. (1) �⇒ (2). Let U ∈ βN \ N. Assume that the weak-∗ and Wasserstein
topologies agree atμ. Let (An)n∈N be a sequence of tracialW∗-algebras, and letφ : A →∏

n→U An be a tracialW∗-embedding. Express φ(X) as [Xn]n∈N where Xn ∈ L2(An)
m
sa

and supn‖Xn‖L∞(An)msa
< ∞. Arguing with functional calculus as in Lemma 5.12, we

can arrange that ‖Xn‖L∞(An)msa
≤ R. By Lemma 5.10, we have λXn → λX in the weak-

∗ topology on �m,R . Hence, by hypothesis λXn → λX in the Wasserstein distance as
n → U . By Lemma 5.16, this implies that φ has an FM-lifting.

(2) �⇒ (1). Conversely, suppose thatA is FM-stable. To show that the weak-∗ and
Wasserstein topologies on �m,R agree at μ, using the Urysohn subsequence principle,
it suffices to show that if (μn)n∈N is a sequence such that μn → μ weak-∗ as n → U ,
then d(2)

W (μn, μ) → 0 as n → U . Let (An, Xn) be the GNS-realization of μn . By
Lemma 5.10, the tuple [Xn]n∈N in

∏
n→U An has the same law as X , and therefore,

there exists a tracial W∗-embedding φ : A → ∏n→U An with φ(X) = [Xn]n∈N. By
FM-stability ofA, there exist factorizable completely positive maps�n : A → An such
that φ(Z) = [�n(Z)]n∈N for all Z ∈ L∞(A). Hence, by Lemma 5.16, limn→U μn = μ

in Wasserstein distance.

Next, we will show using the work of Connes [17] that if the weak-∗ and Wasser-
stein topologies agree at μ and the corresponding tracial W∗-algebra A is Connes-
embeddable, then in factA is approximately finite-dimensional. We recall the following
theorem of Connes [17] that shows that approximate finite-dimensionality is equivalent
to semi-discreteness for tracial W∗-algebras (and these are also equivalent, famously, to
the two other conditions of injectivity and amenability); related proofs can also be found
in [61], [70, Sect. XIV], [12, Sect. 6.2, 6.3, 9.3], [2, Sect. 11].

Theorem 5.22. (Connes [17]) Let A = (A, τ ) be a tracial W∗-algebra with separable
predual. The following are equivalent:
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(1) A is approximately finite-dimensional (AFD), that is, there exists a sequence (Ak)k∈N
of finite-dimensional subalgebras with Ak ⊆ Ak+1 such that

⋃
k∈N Ak is dense in A

with respect to ‖·‖L2(A).
(2) A is semi-discrete, that is, there exists nets (�α)α∈I and (�α)α∈I of completely

positive maps �α : A → Mn(α)(C) and �α : Mn(α)(C) → A such that �α ◦
�α(Z) → Z in the weak-∗ topology for every Z ∈ L∞(A).

We recall a few more results about AFD algebras, which are well-known in operator
algebras. We recall that a II1-factor is an infinite-dimensional tracial von Neumann
algebra with trivial center.

Lemma 5.23.

(1) LetA be an AFD tracialW∗-algebra, let (Bn)n∈N be II1-factors, and let U be a free
ultrafilter onN. If φ andψ are two embeddings ofA into

∏
n→U Bn, then there exists

a unitary U ∈∏n→U Bn such that Uφ(Z)U∗ = ψ(Z) for Z ∈ L∞(A). See [5,45].
(2) If (Bn)n∈N are II1-factors and U is a unitary in

∏
n→U Bn, then there exist unitaries

Un ∈ L∞(Bn) such that U = [Un]n∈N.5

Corollary 5.24. Let A be an AFD tracial W∗-algebra. Then A is FM-stable.

Proof. IfA = C, then the conclusion is immediate, so assume thatA �= C. Let φ : A →∏
n→U An be a tracialW∗-embedding. LetB be the tracial free productA∗An∗L∞[0, 1]

(where L∞[0, 1] has the trace coming from Lebesgue measure). Then B is a II1 factor
by [71, Theorem 3.7] sinceA �= C and L∞[0, 1] is diffuse. For each, n, there is a tracial
W∗-embedding ιn : An → Bn . Let ι be the induced map

ι :
∏

n→U
An →

∏

n→U
Bn .

By construct, there also exists a tracial W∗-embedding ψn : A → Bn . This sequence
produces a tracial W∗-embedding ψ : A → ∏n→U Bn . By Lemma 5.23, there exists a
unitary Un ∈ L∞(Bn) such that, letting U = [Un]n∈N, we have U ι ◦ φ(Z)U∗ = ψ(Z)

for Z ∈ L∞(A).
Let �n : A → An be given by �n(Z) = ι∗n[U∗

nψn(Z)Un]. As observed in the
proof of Proposition 5.21, ultraproducts respect conditional expectations and therefore
for Z ∈ A, we have

[�n(Z)]n∈N = [ι∗n[U∗
nψn(Z)Un]]n∈N = ι∗[U∗

nψn(Z)Un]n∈N
= ι∗(U∗ψ(Z)U ) = ι∗ιφ(Z) = φ(Z).

Thus, �n is the desired lifting of φ to a sequence of factorizable maps.

Remark 5.25. In fact, [5, Theorem 2.6] implies the converse of Corollary 5.24: If A is
Connes-embeddable and FM-stable, then A is AFD. The same statement is implied by
the next proposition provided that A is finitely generated.

Proposition 5.26. Let μ be in the weak-∗ closure of �fin
m,R, and let (A, X) be the GNS

realization of μ. The following are equivalent:

5 Every unitary u in a tracial W∗-algebra can be expressed as eix for some self-adjoint x using Borel
functional calculus (Theorem A.3 (3)). Suppose U = ei X is unitary in

∏
n→U . Arguing as in the proof of

Lemma 5.12, X can be expressed as [Xn ]n∈N where Xn ∈ L∞(Bn)sa, and we have [ei Xn ]n∈N = U .
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(1) A is approximately finite-dimensional.
(2) A is FM-stable.
(3) The weak-∗ and Wasserstein topologies agree at μ.
(4) μ is in the Wasserstein closure of �fin

m,R.

Proof. (1) �⇒ (2) by Corollary 5.24.
(2) �⇒ (3) by Proposition 5.21.
(3) �⇒ (4) Since two topologies agree at μ, and μ is in the weak-∗ closure of

�fin
m,R , it follows that μ is in the Wasserstein closure of �fin

m,R .
(4) �⇒ (1). Assume that (4) holds and we will show thatA is semi-discrete, hence

approximately finite-dimensional by Connes’ theorem. Fix a free ultrafilter U on N. Let
μn be a sequence in �fin

n,R such that limn→U d(2)
W (μn, μ) = 0. Let (An, Xn,Yn) be an

optimal coupling of μ and μn . Since W∗(Xn) ∼= W∗(X) = A, we can assume without
loss of generality that A ⊆ An and Xn = X . Let �n : A = W∗(X) → W∗(Yn) be the
associated factorizable map. Since W∗(Yn) is finite-dimensional, if we can show that
�∗

n�n(Z) → Z in L2(A)msa as n → U for every Z ∈ A, thatwill imply semi-discreteness
of A and finish the argument.

The convergence of �∗
n�n(Z) follows by a similar argument to Proposition 5.21.

Let Bn be the free product of two copies of An with amalgamation over W∗(Yn) and
let πn and ρn be the two inclusions of A into the first and second copies of An . Then
�∗

n�n = π∗
n ρn . Now πn and ρn induce maps

π, ρ : A →
∏

n→U
Bn .

Moreover, ‖πn(X)−ρn(X)‖L2(Bn)msa
≤ 2‖X−Yn‖L2(An)msa

→ 0, and therefore, π(X) =
ρ(X), so π = ρ on all of L∞(A). This implies that π∗ρ(Z) = Z for Z ∈ L∞(A),
hence limn→U‖π∗

n ρn(Z) − Z‖L2(A) = 0.

Corollary 5.27. For m > 1 and R > 0, �m,R is not compact with respect to the
Wasserstein topology.

Proof. The identity map from �m,R with the Wasserstein topology to �m,R with the
weak-∗ topology is a continuous bijection. If the domain were compact, then it would
be a homeomorphism. The previous proposition would then imply that every μ ∈ �m,R
that generates a Connes-embeddable tracial W∗-algebra would in fact generate an AFD
tracialW∗-algebra. However, there are many finitely generated and Connes-embeddable
tracial W∗-algebras that are not AFD.

Another consequence of Proposition 5.26 is the following: Let �
app
m,R be the weak-

∗ closure of �fin
m,R ; then the laws that generate AFD tracial W∗-algebras are weak-∗

generic in �
app
m,R , in the sense of the Baire category theorem. This may seem surprising

at first because there are many Connes-embedddable tracial W∗-algebras that are not
AFD. However, a closely related model-theoretic statement has already been proved in
[85, Theorem 5.1], namely thatR is the enforceable model of its universal theory.

Corollary 5.28. The set of laws μ that generate an AFD tracialW∗-algebra is a dense
Gδ set in �

app
m,R with respect to the weak-∗ topology.
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Proof. Let S be the set of such laws. By definition S is weak-∗ dense in �
app
m,R . We

showed above S is closed with respect to the Wasserstein distance. It follows that

S =
⋂

k∈N
Vk, where Vk :=

{

μ ∈ �
app
m,R : d(2)

W (μ, ν) <
1

k
for some ν ∈ S

}

.

For each k and each ν ∈ S, because the weak-∗ and Wasserstein topologies agree at ν,
there exists a weak-∗ open set Uk,ν ⊆ �

app
m,R such that ν ∈ Uk,ν ⊆ Vk . Let

Uk =
⋃

ν∈S
Uk,ν .

Then S ⊆ Uk ⊆ Vk and Uk is weak-∗ open. It follows that S = ⋂k∈N Uk is a Gδ set in
�

app
m,R .

5.5. Non-separability of the Wasserstein space. We just showed that �m,R with the
Wasserstein distance is not compact for m > 1, but in fact we will show that it is not
separable using the results of Gromov [30], Olshanskii [55], and Ozawa [58]. We first
recall some terminology about groups and their associated W∗-algebras.

Let � be a group and let �2(�) be the Hilbert space of square-summable functions
on �. Let u : � → B(�2(�)) be the left regular representation given by u(g)δh = δgh ,
where δg ∈ �2(�) is the function which is 1 at g and zero elsewhere. TheW∗-subalgebra
of B(�2(�)) generated by the unitary operators u(g) for g ∈ � is called the group von
Neumann algebra of �. The map τ : L(�) → C given by T �→ 〈δe, T δe〉 is a faithful
normal trace on L(�), so that it is a tracial W∗-algebra.
Definition 5.29. A discrete group � is said to have property (T) if there exist generators
g1,…, gm and an increasing function f : [0,∞) → [0,∞) with limε→0+ f (ε) = 0
with the following property: For every unitary representation π of � on a Hilbert space
H and every unit vector ξ ∈ H , if max j∈[m]‖π(g j )ξ − ξ‖ < ε, then there exists η ∈ H
such that π(g)η = η for all g ∈ � and ‖η − ξ‖ < f (ε).

Theorem 5.30. (Gromov [30], Olshanskii [55], and Ozawa [58, Theorem 1]) There
exists a group � with property (T) that admits uncountable family {�α}α∈I of quotient
groups that are simple and pairwise non-isomorphic. (In fact, such a family of quotient
groups exists for every group � that is hyperbolic, torsion-free, and non-cyclic.)

The next lemma will allow us to translate this result into a statement about the space
of non-commutative laws. While the space of non-commutative laws is defined in terms
of self-adjoint generators, it is natural in the group setting to consider unitary rather than
self-adjoint generators of a tracial W∗-algebra. However, this issue is easily resolved by
taking real and imaginary parts of operators.More precisely, if a is an operator in a tracial
W∗-algebraA, let Re(a) = (a+a∗)/2 and Im(a) = (a−a∗)/2i . Then Re(a) and Im(a)

are self-adjoint and a = Re(a)+i Im(a) and ‖a‖2
L2(A)

= ‖Re(a)‖2
L2(A)

+‖Im(a)‖2
L2(A)

.

Lemma 5.31. Let � be a group with property (T), and let g1, …, gm ∈ � and f :
[0,∞) → [0,∞) be as in Definition 5.29. Let q1 : � → �1 and q2 : � → �2 be
quotient group homomorphisms. For j = 1, 2, let π j : � → L(� j ) be the quotient map
q j composed with the left regular representation of � j and let

X j = (Re(π j (g1)), Im(π j (g1)), . . . ,Re(π j (gm)), Im(π j (g))
) ∈ L(� j )

2m
sa .

If f (d(2)
W (λX1 , λX2)) < 1/2, then ker(q1) = ker(q2) and hence �1 = �2.
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Proof. LetA be a tracialW∗-algebra and let ι j : L(� j ) → A be tracialW∗-embeddings

such that ‖ι1(X1) − ι2(X2)‖L2(A)2msa
= d(2)

W (λX1, λX2). Note that for j = 1, …, m,

‖ι1(π1(g j )) − ι2(π2(g j ))‖2L2(A)
= ‖ι1(Re(π1(g j ))) − ι2(Re(π2(g j )))‖2L2(A)

+ ‖ι1(Im(π1(g j ))) − ι2(Im(π2(g j )))‖2L2(A)

≤ ‖ι1(X1) − ι2(X2)‖2L2(A)2msa
.

Let π : � → B(L2(A)) be the map given by π(g)ξ = ι1(π1(g))ξ ι2(π2(g−1)) for
ξ ∈ L2(A); note that this is a unitary representation. The vector 1̂ in L2(A) satisfies

‖∗‖π(g j )̂1 − 1̂L2(A)
= ‖∗‖ι1(π1(g j ))̂1 − 1̂ι2(π2(g2))L2(A)

= ‖ι1(π1(g j )) − ι2(π2(g2))‖L2(A)

≤ d(2)
W (λX1 , λX2).

Hence, by property (T), there exists some η ∈ L2(A) such that ‖̂1 − η‖L2(A) ≤
f (d(2)

W (λX1 , λX2)) and π(g)η = η for all g ∈ �. The latter condition implies that
ι1(π1(g))η = ηι2(π2(g)) for all g ∈ �. Therefore, using the triangle inequality and the
fact that ι j (π j (g)) is unitary,

‖∗‖ι1(π1(g))̂1 − 1̂ι2(π2(g))L2(A) ≤ 2‖∗‖̂1 − ηL2(A) ≤ 2 f (d(2)
W (λX1 , λX2)) < 1.

Hence,

|τA(ι1(π1(g))) − τA(ι2(π2(g)))| ≤ ‖∗‖ι1(π1(g)) − ι2(π2(g))L2(A) < 1.

Now observe that

τA(ι j (π j (g))) = τL(� j )(π j (g)) = δπ j (g)=1 = δg∈ker(q j ).

Since δg∈ker(q j ) is either zero or one and |δg∈ker(q1) − δg∈ker(q2)| < 1, we have ker(q1) =
ker(q2).

We can now prove Theorem 1.8 that shows that for sufficiently large m, �m,1 is not
separable with respect to d(2)

W . The method is similar to [58, Proof of Theorem 2].

Proof (Proof of Theorem 1.8). First, we show that �2m,1 is not separable for some m.
Let � be a property (T) group with an uncountable family (�α)α∈I of non-isomorphic
quotients. Let πα : � → L(�α) be the quotient map composed with the left regular
representation. Let g1, …, gm and f : [0,∞) → [0,∞) witness property (T). Let ε be
sufficiently small that f (ε) < 1/2. Let

Xα = (Re(πα(g1)), Im(πα(g1)), . . . ,Re(πα(gm)), Im(πα(gm))).

For α �= β in I , since�α and�β are not isomorphic, the lemma implies that f (d(2)
W (λXα ,

λXβ )) ≥ 1/2, and therefore d(2)
W (λXα , λXβ ) ≥ ε. Hence, {λXα }α∈I is an uncountable

ε-separated set in �2m,1 with respect to the Wasserstein distance.
To prove that �m,R is not separable for general m > 1 and R > 0, we first observe

that there is a bijection between�m,R and�m,R′ given by rescaling the non-commutative
random variables. Hence, for each m, if we prove non-separability for one value of R,
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then it holds for all values of R. Furthermore, we can define a map �m,R → �m+1,R
sending the law of (X1, . . . , Xm) to the law of (X1, . . . , Xm, 0). It is straightforward
to show that this map is isometric with respect to the Wasserstein distance. Hence, if
�m,R is not separable, then �m′,R is not separable for m′ ≥ m. Therefore, to prove the
theorem, it suffices to show that for some value of R, �2,R is not separable.

We already know that for some m, �m,1 is not separable. Hence, for some ε > 0,
there is an uncountable family (μα)α∈I of laws in �m,1 that is ε-separated with respect
to the Wasserstein distance. Let (Aα, Xα) be the GNS realization of μα , where Xα =
(Xα,1, . . . , Xα,m). Consider the tracial W∗-algebra Mm(Aα) with the trace τα ⊗ trm ,
and let Yα ∈ Mm(Aα)sa be the diagonal matrix with entries Xα,1 + 4, Xα,2 + 8, …,
Xα,m + 4m. Let Uα ∈ Mm(C) ⊆ Mm(Aα) be the matrix of an m-cycle permutation. By
functional calculus, Uα can be expressed as ei Zα for some self-adjoint Zα ∈ Mm(C) ⊆
Mm(Aα) with ‖Zα‖L∞(Mm (C)) ≤ π/2. Since Uα is the inclusion into Mm(Aα) of an
element of Mm(C) that is independent of α, there is in fact a polynomial p such that
Uα = p(Zα), and Zα and p are independent of α. We claim that d(2)

W (λYα,Zα , λYβ ,Zβ ) ≥
(1/K )d(2)

W (μα, μβ) for some K > 0, which will imply that�2,4m+1 is not separable and
thus prove the theorem.

To accomplish this, we will express Xα, j ⊗ Im in Mm(Aα) as a function of Yα and
Zα (in an explicit way which allows us to estimate Wasserstein distances), using a well-
known matrix amplification trick. We first recall a foundational result that the weak-∗
topology of a W∗-algebra can be recovered from any faithful representation on a Hilbert
space; see e.g. [64, Corollary 1.13.3, Proposition 1.16.2, Theorem 1.16.7]. In particular,
Aα can be faithfully represented on H = L2(A) and Mm(Aα) = Aα ⊗ Mm(C) can
be faithfully represented on the Hilbert space H ⊗ C

m = H⊕m . Moreover, all the facts
about spectral theory and functional calculus on B(H) and B(H⊕m) can be applied to
the operators from Aα and Mn(Aα). In particular,

Spec(Yα) =
m⋃

j=1

(Spec(Xα, j ) + 4 j) ⊆
m⋃

j=1

[4 j − 1, 4 j + 1].

Let γ j be the rectangular contour inC bounding the rectangle [4 j −2, 4 j +2]×[−1, 1],
so that γ j is separated from Spec(Yα) by a distance of 1. Using the Cauchy integral
formula and functional calculus,

∫

γ j

(z − 4 j)(z − Xα,k)
−1 dz = δ j,k Xα,k .

Hence,
∫

γ j

(z − 4 j)(z − Yα)−1 dz = Xα, j ⊗ e j, j ,

where e j, j is the j th diagonal matrix unit inMm(C). In particular, Xα, j ⊗e j, j ∈ W∗(Yα)

and thus Xα, j ⊗ ek,� = Uk− j
α (Xα, j ⊗ e j, j )U

j−�
α ∈ W∗(Yα, Zα) for every k, � = 1, …,

m; this implies that Yα and Zα generate Mm(Aα). Moreover,

Xα, j ⊗ Im =
m∑

k=1

∫

γ j

Uk
α(z − 4 j)(z − Yα)−1U−k

α dz

=
m∑

k=1

∫

γ j

p(Zα)k(z − 4 j)(z − Yα)−1 p(Zα)k dz. (5.1)
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Let α �= β. Then an optimal coupling of λYα,Zα and λYβ ,Zβ on the tracial W∗-algebra
B produces two tracial W∗-embeddings ια : Mm(Aα) → B and ιβ : Mm(Aβ) → B.
Because the Cauchy integral representation (5.1) can be expressed as a Riemann integral,
we have

ια(Xα, j ⊗ Im) =
m∑

k=1

∫

γ j

p(ια(Zα))k(z − 4 j)(z − ια(Yα))−1 p(ια(Zα))k dz,

and the same holds for β. Using the resolvent identity and non-commutative Hölder’s
inequality,

‖(z − ια(Yα))−1 − (z − ιβ(Yβ))−1‖L2(B)

≤ ‖(z − ια(Yα))−1‖L∞(B)‖Yα − Yβ‖L2(B)‖(z − ιβ(Yβ))−1‖L∞(B)

≤ ‖Yα − Yβ‖L2(B).

Furthermore, one checks easily that ‖p(ια(Zα)) − p(ιβ(Zβ))‖L2(B) ≤ Cp‖ια(Zα) −
ιβ(Zβ)‖L2(B) for some constantCp (since ‖Zα‖L∞(Mm (Aα)) is bounded by univeral con-
stant).Byestimating thedifferencebetween p(ια(Zα))k(z−4 j)(z−ια(Yα))−1 p(ια(Zα))k

and p(ιβ(Zβ))k(z − 4 j)(z − ιβ(Yβ))−1 p(ιβ(Zβ))k and applying the triangle inequality
for integrals, we obtain for some constant C ′

p that

‖ια(Xα, j ⊗ Im) − ιβ(Xβ, j ⊗ Im)‖L2(B)

≤ C ′
p

(
‖ια(Yα) − ιβ(Yβ)‖2

L2(B)
+ ‖ια(Zα) − ιβ(Zβ)‖2

L2(B)

)1/2
.

Since (Xα,1⊗ Im, . . . , Xα,m ⊗ Im) has the same non-commutative law as Xα , we obtain

ε ≤ d(2)
W (λXα , λXβ ) ≤ m1/2C ′

pd
(2)
W (λ(Yα,Zα), λ(Yβ ,Zβ)).

Hence, {λ(Yα,Zα)}α∈I is ε/(m1/2C ′
p)-separated in �2,4m+1, as desired.

We remark that a similar non-separability result in the context of model theory for
operator algebras was shown in [4, Proposition 4.2.9]. In the model theoretic context,
one often encounters triples (�,T , d) where (�,T ) is a topological space and d
is a metric on � that is lower semi-continuous with respect to T and generates a
topology that is at least as strong as T ; such a triple (�,T , d) is called a topometric
space [9]. In particular, �m,R with the weak-∗ topology and Wasserstein distance is a
topometric space by Corollary 5.17 and Lemma 5.18. It was shown in [9, Proposition
3.20] that if (�,T , d) is a topometric space and (�,T ) is second countable and
locally compact, then the density character of (�, d) is either countable or greater than
or equal to the continuum. Hence, as a corollary of Theorem 1.8, the density character
of (�m,R, d(2)

W ) is the continuum (of course since �m,R with the weak-∗ topology is
compact and metrizable, it is in particular second countable and locally compact).

6. Further Remarks

6.1. Non-commutative optimal couplings and random matrix theory. One of the moti-
vations for our paper was the following question.
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Question 6.1. Suppose that X (N ), Y (N ) are random m-tuple of self-adjoint N × N
matrices with probability distributions μ(N ) and ν(N ) respectively. Let μ, ν ∈ �n,R.
Suppose that almost surely

lim sup
N→∞

‖X (N )‖L∞(MN (C))msa
< R, lim sup

N→∞
‖Y (N )‖L∞(MN (C))msa

< R,

lim
N→∞ λX (N ) = μ, lim

N→∞ λY (N ) = ν.

Does the classical L2-Wasserstein distance of μ(N ) and ν(N ) (as probability measures
on MN (C)msa) converge to the non-commutative L2-Wasserstein distance of μ and ν?

The results of [23,31] combined with [41] give a positive answer when μ(N ) is a
random matrix model with density proportional to e−N2V (N )

where V (N ) : MN (C)msa →
R is a sufficiently regular convex function such as the trace of a non-commutative

polynomial, and where ν(N ) has density proportional to e
−N2‖X‖2

L2(MN (C))msa
/2
(Gaussian).

The convexity of V (N ) is crucial for all these arguments. By contrast, the present work
shows that Question 6.1 can have a negative answer due to the obstruction of Connes-
embeddability.

Proposition 6.2. Let X,Y ∈ Mn(C)msa be matrix tuples such that an optimal coupling of
λX and λY requires a non-Connes-embeddable tracialW∗-algebra as in Corollary 5.14.
Suppose X (N ) and Y (N ) are random (or even deterministic) elements of MN (C)msa that
converge in non-commutative law to X and Y . Then the classical Wasserstein distance of
the probability distributions of X (N ) and Y (N ) on MN (C)msa (with the L

2 norm associated

to the normalized trace trN ) does not converge to d
(2)
W (λX , λY ).

Before proving the proposition, we make some preliminary observations. Let �
app
m,R

denote the space of Connes-embeddable non-commutative laws in �m,R . Let d
(2)
W,app

be the non-commutative Wasserstein distance on �
app
m,R defined using only couplings in

Connes-embeddable tracialW∗-algebras. Since�
app
m,R is theweak-∗ closure of�fin

m,R , it is
weak-∗ compact, which implies the existence of optimal Connes-embeddable couplings.
Moreover, the same reasoning as in Lemma 5.18 shows that d(2)

W,app is weak-∗ lower semi-

continuous. Of course, Corollary 5.14 shows that d(2)
W,app can be strictly greater than d

(2)
W

(however, we do not know whether these two metrics generate the same topology on
�

app
m,R).

Proof. Suppose that X (N ) andY (N ) are randomvariables on the diffuse probability space
(�, P). Let μ(N ) and ν(N ) be the classical probability distributions of X (N ) and Y (N ) as
random variables with values in the vector space MN (C)msa equipped with inner product
associated to trN . Let μ̂(N ) and ν̂(N ) be the non-commutative laws of X (N ) and Y (N ) as
elements of the tracialW∗-algebra L∞(�, P; MN (C))with the trace given byE◦trN . A
classical coupling of the probability distributionsμ(N ) and ν(N ) on the probability space
(�, P) can be interpreted as a non-commutative coupling on the tracial W∗-algebra
(L∞(�, P; MN (C)),E ◦ trN ), which is Connes-embeddable. Therefore,

lim inf
N→∞ dW (μ(N ), ν(N )) ≥ lim inf

N→∞ d(2)
W,app(μ̂

(N ), ν̂(N )) ≥ d(2)
W,app(λX , λY ) > d(2)

W (λX , λY ).
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This problem cannot be removed using free probabilistic regularity conditions (con-
ditions such as finite free entropy, finite free Fisher information and so forth; see the
introduction of [16] for context).

Proposition 6.3. Again, let X,Y ∈ Mn(C)msa be as in Corollary 5.14. Let S be a free
semicircular m-tuple freely independent of X and Y . Then X + t1/2S and Y + t1/2S have
finite free microstate entropy (defined in [77]) and finite free Fisher information (defined
in [79]). However, d(2)

W,app(λX+t1/2S, λY+t1/2) > d(2)
W (λX+t1/2S, λY+t1/2) for sufficiently

small t > 0. Hence, as in Proposition 6.2, there do not exist random matrix approx-
imations for λX+t1/2S and λX+t1/2S whose classical Wasserstein distance converges to

d(2)
W (λX+t1/2S, λY+t1/2).

Proof. By [80, Theorem 3.9], X + t1/2S and Y + t1/2S have finite free microstate entropy,
and by [79, Corollary 6.14], they have finite free Fisher information. The free product
of MN (C) and W∗(S) is Connes-embeddable by [80, Proposition 3.3]. Hence,

d(2)
W (λX , λX+t1/2S) ≤ d(2)

W,app(λX , λX+t1/2S) ≤ (mt)1/2,

and the sameholdswith X replacedbyY . Thus, using the triangle inequality,d(2)
W (λX+t1/2S,

λY+t1/2S) < d(2)
W,app(λX+t1/2S, λY+t1/2S) for sufficiently small t > 0, since this holds

at t = 0. The same argument as in Proposition 6.2 rules out the possibility of the
classical Wasserstein distance for random matrix models converging to d(2)

W (λX+t1/2S,

λY+t1/2S).

Thus, at the very least, Question 6.1 needs to be reformulated using the Connes-
embeddable version of the non-commutative Wasserstein distance. Even with such a
modification, our results illustrate why this question is so difficult.6 Indeed, in light of
§5.4, randommatrixmodels cannot converge inWasserstein distance to the limiting non-
commutative law unless that limiting law produces an approximately finite-dimensional
tracial W∗-algebra. However, “good behavior” in random matrix theory and free prob-
ability often entails generating a tracial W∗-algebra that is “similar to” a free group
von Neumann algebra, which is far from being approximately finite-dimensional (see
e.g. [70, §XIV.3]). The random matrix question suggests a more general question in the
framework of non-commutative optimal couplings.

Question 6.4. Suppose that μn, νn ∈ �m,R and μn → μ and νn → ν weak-∗. Under
what conditions does d(2)

W (μn, νn) → d(2)
W (μ, ν)?

Monge–Kantorovich duality provides one avenue to attack this question. Indeed,
suppose that ( fn, gn) are admissible pairs of E-convex functions minimizing μn( fn) +
νn(gn). Suppose that ( f, g) is an admissible pair minimizing μ( f ) + ν(g). To give a
positive answer to Question 6.4, it suffices to show thatμn( fn)+νn(gn) → μ( f )+ν(g).
Suppose that we somehow show that fn → f and gn → g uniformly on each operator
norm ball, so that μn( fn) − μn( f ) → 0 and ν(gn) − ν(g) → 0.

Then it remains to show thatμn( f ) → μ( f ) and νn(g) → ν(g). If f and g take finite
values everywhere, then for each A ∈ W, f A and gA will define continuous functions
on L2(A)msa, and in particular, λ �→ λ( f ) and λ �→ λ(g) are continuous with respect to

6 Questions of large-N convergence in mean field games are also extremely subtle and require regularity
of the putative model for the large-N limit.
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Wasserstein distance. However, we only assumed weak-∗ convergence of μn → μ and
νn → ν. Thus, in order to obtain the convergence of the Wasserstein distance, we would
want the stronger condition that f and g are continuous with respect to convergence in
law, that is, λ �→ λ( f ) and λ �→ λ(g) are weak-∗ continuous on �m,R for each R > 0.

The examples of Monge–Kantorovich duality in [41, Lemma 9.10, Remark 9.11] use
functions that are continuous with respect to the weak-∗ topology on �m,R . However,
we doubt that the optimizers ( f, g) in the Monge–Kantorovich duality can always be
chosen to be weak-∗ continuous. Nonetheless, it is worth investigating in future research
how E-convex functions and Legendre transforms behave with respect to convergence
in law.

6.2. Bimodule couplings andUCPT-convex functions. Another operator-algebraic ana-
log of the idea of coupling arises from bimodules over von Neumann algebras, which
have been very important in many areas of von Neumann algebras. For further back-
ground, see [12, Appendix F] and [2, §13].

Definition 6.5. If A and B are W∗-algebras, then a Hilbert A-B-bimodule is a Hilbert
space H with an A-B-bimodule structure, such that the associated maps A → B(H)

and B → B(H) are weak-∗ continuous. Given tracial W∗-algebras A = (A, τ ) and
B = (B, σ ) and a A-B-bimodule H , we say that a vector ξ ∈ H is bitracial if 〈ξ, aξ 〉 =
τ(a) for a ∈ A and 〈ξ, ξb〉 = σ(b) for b ∈ B.

For example, suppose that there are tracialW∗-embeddings ι1 : A → C and ι2 : B →
C. Then L2(C) is a Hilbert L∞(A)-L∞(B)-bimodule and ξ = 1̂ ∈ L2(C) is a bitracial
vector. Thus, bimodules with bitracial vectors are a generalization of pair of tracial
W∗-embeddings. In the case of a pair of embeddings ι1 and ι2, there is an associated
factorizable map ι∗2ι1 : A → B. In a similar way, general L∞(A)-L∞(B)-bimodules
with bitracial vectors correspond to general UCPT-maps.

Lemma 6.6. (See [2, Sect. 13.1.2]) Let A, B be tracial W∗-algebras. If H is a Hilbert
L∞(A)-L∞(B)-bimodule and ξ ∈ H is a bitracial vectors, then there exists a unique
� ∈ UCPT(A,B) such that 〈ξ, aξb〉 = τB(�(a)b) for all a ∈ L∞(A) and b ∈ L∞(B).
Conversely, � ∈ UCPT(A,B), there exists a Hilbert L∞(A)-L∞(B)-bimodule H and
a bitracial vector ξ satisfying 〈ξ, aξb〉 = τB(�(a)b). If we further demand that H is
generated by ξ as a Hilbert L∞(A)-L∞(B)-bimodule, then the pair (H, ξ) is unique
up to isomorphism.

The bimodules and their associated UCPT-maps lead to an alternative notion of
couplings for non-commutative random variables.

Definition 6.7. Let μ and ν ∈ �m be non-commutative laws, and let (A, X) and (B,Y )

be the GNS realizations of μ and ν respectively. A bimodule coupling of μ and ν is
a Hilbert A-B-bimodule H together with a bitracial vector ξ . We define Cbim(μ, ν)

to be the supremum of
∑m

j=1〈ξ, X jξY j 〉 over all bimodule couplings of μ and ν, or
equivalently,

Cbim(μ, ν) = sup
�∈UCPT(A,B)

〈�(X),Y 〉L2(B)msa
.

We then define dbim(μ, ν) by

dbim(μ, ν)2 =
m∑

j=1

μ(x2j ) +
m∑

j=1

ν(x2j ) − 2Cbim(μ, ν).
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We remark that dbim(μ, ν) is the infimum of ‖Xξ −ξY‖ in Hm over Hilbert L∞(A)-
L∞(B)-bimodules with bitracial vectors (this follows from (6.2) below). Moreover,
the existence of optimal bimodule couplings can be deduced from the compactness of
UCPT(A,B) in the pointwise weak-∗ topology. The properties of Cbim and dbim are
quite similar to those of C and d(2)

W only with factorizable maps replaced by general
UCPT maps, but we will see in Corollary 6.12 that they do not agree in general. But
first, for completeness, we give proofs of some of the basic properties with the aid of
the following lemma.

Lemma 6.8. Let A and B be tracial W∗-functions and � ∈ UCPT(A,B). Let X ∈
L∞(A)msa and Y ∈ L∞(B)msa with ‖X‖L∞(A)msa

≤ R and ‖Y‖L∞(A)msa
≤ R. Then for i1,

…, i� ∈ {1, . . . ,m}, we have
‖�(Xi1 . . . Xi� ) − Yi1 . . . Yi�‖L2(B)

≤ �R�−1
(
‖X‖2L2(A)msa

− 2〈�(X),Y 〉L2(B)msa
+ ‖Y‖L2(B)msa

)1/2
. (6.1)

Proof. Let H be an L∞(A)-L∞(B) bimodule with a bitracial vector ξ such that
〈�(Z),W 〉L2(B) = 〈ξ, ZξW 〉L2(B) for all Z ∈ L∞(A) and W ∈ L∞(B). Direct com-
putation shows that

‖�(Z) − W‖2L2(B)
= ‖�(Z)‖2L2(B)

− 2Re〈�(Z),W 〉L2(B) + ‖W‖2L2(B)

≤ ‖Z‖2L2(B)
− 2Re〈�(Z),W 〉L2(B) + ‖W‖2L2(B)

= ‖Zξ − ξW‖2. (6.2)

This implies that

‖�(Xi1 . . . Xi� ) − Yi1 . . . Yi�‖L2(B)

≤ ‖Xi1 . . . Xi�ξ − ξYi1 . . . Yi�‖

≤
�∑

k=1

‖Xi1 . . . Xik ξYik+1 . . . Yi� − Xi1 . . . Xik−1ξYik . . . Yi�‖

≤
�∑

k=1

‖Xi1 . . . Xik−1‖L∞(A)‖Xik ξ − ξYik‖‖Yik+1 . . . Yi�‖L∞(B)

≤ �R�−1‖Xξ − ξY‖
= �R�−1

(
‖X‖2L2(A)msa

− 2〈�(X),Y 〉L2(B)msa
+ ‖Y‖L2(B)msa

)1/2
.

Proposition 6.9. (�m,R, dbim) is a complete metric space. If λ, μ ∈ �m,R, then

|λ(xi1 . . . xi� ) − μ(xi1 . . . xi� )| ≤ �R�−1dbim(λ, μ) ≤ �R�−1d(2)
W (λ, μ), (6.3)

and in particular, the topology generated by dbim refines the weak-∗ topology, and the
topology generated by d(2)

W refines the topology generated by dbim. Moreover, dbim is
lower semi-continuous on �m,R × �m,R with respect to the weak-∗ topology.
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Proof. In the following, let λ, μ, and ν ∈ �m,R , and let (A, X), (B,Y ), and (C, Z) be
their respective GNS realizations.

First, we prove (6.3). If � ∈ UCPT(A,B), then using (6.1),

|λ(xi1 . . . xi� ) − μ(xi1 . . . xi� )|
= |τB(�(Xi1 . . . Xi� ) − Yi1 . . . Yi� )|
≤ �R�−1

(
‖X‖2L2(A)msa

− 2〈�(X),Y 〉L2(B)msa
+ ‖Y‖L2(B)msa

)1/2
.

Taking the infimum over�, we obtain the first inequality of (6.3). The second inequality
follows because dbim(λ, μ) ≤ d(2)

W (λ, μ) since FM(A,B) ⊆ UCPT(A,B).
Next, we show that dbim is a metric on �m,R (postponing the proof of completeness

to the end). Clearly, dbim(λ, μ) ≥ 0. If dbim(λ, μ) = 0, then by (6.3), we have λ = μ.
Because every UCPT map has a UCPT adjoint, we have

Cbim(λ, μ) = sup
�∈UCPT(A,B)

〈�(X),Y 〉L2(B)msa

= sup
�∈UCPT(A,B)

〈X,�∗(Y )〉L2(A)msa
= Cbim(μ, λ),

and hence dbim(λ, μ) = dbim(μ, λ). To prove the triangle inequality, we use the fact
that UCPT maps are closed under composition.7 Let � ∈ UCPT(A,B) and � ∈
UCPT(B, C) be UCPT maps corresponding to optimal bimodule couplings between
λ and μ and between μ and ν respectively, so that

dbim(λ, μ)2 = ‖X‖2L2(A)msa
− 2〈�(X),Y 〉L2(B)msa

+ ‖Y‖L2(B)msa

=
(
‖X‖2L2(A)msa

− ‖�(X)‖2L2(B)msa

)
+ ‖�(X) − Y‖2L2(B)msa

≥ ‖�(X) − Y‖2L2(B)msa

and

dbim(ν, μ)2 = ‖Z‖2L2(C)msa
− 2〈�∗(Z),Y 〉L2(B)msa

+ ‖Y‖L2(B)msa

=
(
‖Z‖2L2(C)msa

− ‖�∗(Z)‖2L2(B)msa

)
+ ‖�∗(Z) − Y‖2L2(B)msa

≥ ‖�∗(Z) − Y‖2L2(B)msa
.

7 The corresponding notion for bimodules is the Connes fusion, and the proof of the triangle inequality is
quite natural from this viewpoint; however, we will use a more elementary argument.
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Then

dbim(λ, ν)2 ≤ ‖X‖2L2(A)msa
− 2〈� ◦ �(X), Z〉L2(C)msa

+ ‖Z‖2L2(C)msa

=
(
‖X‖2L2(A)msa

− ‖�(X)‖2L2(B)msa

)
+ ‖�(X) − �∗(Z)‖2L2(B)msa

+
(
‖Z‖2L2(C)msa

− ‖�∗(Z)‖2L2(B)msa

)

≤
(
‖X‖2L2(A)msa

− ‖�(X)‖2L2(B)msa

)
+ ‖�(X) − Y‖2L2(B)msa

+ 2‖�(X) − Y‖L2(B)msa
‖�∗(Z) − Y‖L2(B)msa

+ ‖�∗(Z) − Y‖2L2(B)msa
+
(
‖Z‖2L2(C)msa

− ‖�∗(Z)‖2L2(B)msa

)

≤ dbim(λ, μ)2 + 2dbim(λ, μ)dbim(μ, ν) + dbim(μ, ν)2.

It follows from (6.3) that the dbim-topology refines the weak-∗ topology, and the
Wasserstein topology refines the dbim-topology.

Next, we show that dbim is lower semi-continuous with respect to the weak-∗ topol-
ogy. Fix a non-principal ultrafilter U on N, and suppose that (λn)n∈N and (μn)n∈N are
sequences in �m,R and (An, Xn) and (Bn,Yn) are their respective GNS realizations.
Let λ = limn→U λn and μ = limn→U μn . Let A = ∏n→U An and B = ∏n→U Bn .
Let X = [Xn]n∈N ∈ L2(A)msa and Y = [Yn]n∈N ∈ L2(B)msa. By Lemma 5.10, X and
Y have non-commutative laws λ and μ respectively. Let �n ∈ UCPT(An,Bn) such
that Cbim(λn, μn) = 〈�n(Xn),Yn〉L2(Bn)msa

. If (Zn)n∈N and (Z ′
n)n∈N are sequences in

∏
n∈NAn and if limn→U‖Zn−Z ′

n‖L2(An)
= 0, then limn→U‖�n(Zn)−�n(Z ′

n)‖L2(Bn)
=

0 because each �n is a contraction with respect to the L2 norms onA and B. Therefore,
the equivalence class [�n(Zn)]n∈N in B only depends on the equivalence class [Zn]n∈N
inA, so that the sequence�n produces a well-defined map� : A → B. It is straightfor-
ward to check that� ∈ UCPT(A,B). Let�′ : W∗(X) → W∗(Y ) be the composition of
the inclusion W∗(X) → A, the map � : A → B, and the trace-preserving conditional
expectation B → W∗(Y ). Then

Cbim(λ, μ) ≥ 〈�′(X),Y 〉L2(W∗(Y ))msa
= 〈�(X),Y 〉L2(B)msa

= lim
n→U

〈�n(Xn),Yn〉L2(Bn)
= lim

n→U
Cbim(λn, μn).

This implies that dbim(λ, μ) ≤ limn→U dbim(λn, μn), so dbim is weak-∗ lower semi-
continuous as desired.

Finally, we show that (�m,R, dbim) is complete. Let (λn)n∈N be a Cauchy sequence
with respect todbim.Using (6.3), for each i1,…, i� ∈ {1, . . . ,m}, the sequence (λn(xi1 . . .

xi� ))n∈N is Cauchy and hence converges in C to some limit λ(xi1 . . . xi� ). Extend λ

linearly to a map on C〈x1, . . . , xm〉 → C, and then it is straightforward to check that
λ ∈ �m,R using Definition 2.25. Then because dbim is weak-∗ lower semi-continuous,

dbim(λn, λ) ≤ lim inf
k→∞ dbim(λn, λk) ≤ sup

k≥n
dbim(λn, λk).

The right-hand side goes to zero as n → ∞ because (λn)n∈N was assumed to be Cauchy
in dbim. This shows that λn → λ in dbim as desired.

We saw in the preceding argument that Cbim(μ, ν) ≥ C(μ, ν). In the commutative
setting, we have equality by a similar argument as in [11, Theorem 1.5]. (For further
discussion of bimodules over commutative tracialW∗-algebras, see [2, Example 13.1.2].)
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Lemma 6.10. Let μ and ν ∈ �m,R be non-commutative laws that can be realized by
elements of commutative tracial W∗-algebras. Then Cbim(μ, ν) = C(μ, ν), and there
exists an optimal coupling in a commutative tracial W∗-algebra.

Proof. Let (A, X) and (B,Y ) be the GNS realizations of μ and ν. Consider an optimal
bimodule coupling given by a Hilbert A-B-bimodule H and a bitracial vector ξ ∈ H .
Let X ′

j ∈ B(H) be the operator of left multiplication by X j , and let Y j ∈ B(H) be the
operator of right multiplication by Y j . Let M be the W∗-subalgebra of B(H) generated
by X ′ = (X ′

1, . . . , X
′
m) and Y ′ = (Y ′

1, . . . ,Y
′
m). Since X ′

i and Y ′
j commute and X ′

i
and X ′

j commute and Y ′
i and Y ′

j commute, M is commutative. Let τ : M → C be
the map T �→ 〈ξ, T ξ 〉. Since M is commutative, τ is a trace (it is a state and satisfies
τ(ab) = τ(ab)). We have not shown that it is normal or faithful, but nonetheless, the
map γ = λ(X ′,Y ′) : C〈x1, . . . , x2m〉 → C given by p �→ τ(p(X,Y )) is still an element
of �2m,R according to Definition 2.25. Moreover, since ξ was a bitracial vector for A
and B, we have τ(p(X ′)) = τA(p(X)) = μ(p) and τ(p(Y ′)) = τB(p(Y )) = ν(p).
Therefore, γ has themarginalsμ and ν. If (C, (X̂ , Ŷ )) is the GNS realization of γ , then C
is commutative because for any non-commutative polynomials p and q in 2m variables,

‖(pq − qp)(X̂ , Ŷ )‖2L2(C)
= γ [(pq − qp)∗(pq − qp)]
= τ((pq − qp)∗(pq − qp)(X ′,Y ′)) = 0,

and non-commutative polynomials of X and Y are dense in L2(C) (by Lemma 2.34).
Moreover,

〈∗〉X̂ , Ŷ L2(C)msa
=

m∑

j=1

γ (x j xm+ j ) =
m∑

j=1

τ(X ′
j Y

′
j ) =

m∑

j=1

〈ξ, X jξY j 〉.

Hence, (C, X̂ , Ŷ ) is a coupling in a commutative tracial W∗-algebra which is also an
optimal bimodule coupling of μ and ν.

For general non-commutative laws, the inequality C(μ, ν) ≤ Cbim(μ, ν) can be
strict, even for non-commutative laws of matrix tuples. We can deduce this from another
result of Haagerup andMusat that FM(Mn(C), Mn(C)) is in general strictly smaller than
UCPT(Mn(C), Mn(C)), and in particular there is an explicit non-factorizableUCPTmap
on M3(C).

Theorem 6.11. (Haagerup-Musat [32, Example 3.1], [33, Theorems 5.2 and 5.6])
For n > 1, let W−

n : Mn(C) → Mn(C) be the Holevo-Werner channel W−
n (x) =

1
n−1 (Trn(x)1− xt ). Then W−

n is aUCPT map, and it is factorizable if and only if n �= 3.

Combining non-factorizability of W−
3 with Lemma 5.7 similarly to the proof of

Corollary 5.14, we deduce the following corollary.

Corollary 6.12. There exist X,Y ∈ M3(C)9sa such that Cbim(λX , λY ) > C(λX , λY ).

This shows that the metrics dbim and d(2)
W are distinct. It is unclear to us whether dbim

and d(2)
W generate the same topology. However, the results of §5.4 about the Wasserstein

distance adapt to the UCPT setting without much difficulty. For instance, we have the
following analog of Lemma 5.16.
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Lemma 6.13. Let (μn)n∈N and μ be non-commutative laws. Let (A, X) be the GNS
realization of μ. Let An be a tracialW∗-algebra and Xn ∈ L∞(An)

m
sa such that λXn =

μn. Then the following are equivalent:

(1) limn→U dbim(μn, μ) = 0.
(2) There exists a tracial W∗-embedding φ : A → ∏n→U An and there exists �n ∈

UCPT(A,An) such that

φ(X) = [Xn]n∈N, φ(Z) = [�n(Z)]n∈N for all Z ∈ L∞(A).

Proof. (1) �⇒ (2). By Lemma 5.10, there is a tracial W∗-embedding φ : A →∏
n→U An withφ(X) = [Xn]n∈N. Let�n ∈ UCPT(A,An) such that 〈�n(X), Xn〉L2(An)msa= Cbim(μn, μ). As in the previous lemma, there exists � ∈ UCPT(A,

∏
n→U An) such

that

�(Z) = [�n(Z)]n∈N for all Z ∈ L∞(A).

It remains to show that � = φ. Let Xn = (X (1)
n , . . . , X (m)

n ) and X = (X (1), . . . , X (m)).
Using (6.1), for every i1, …, i� ∈ {1, . . . ,m}, we have

‖�n(X
(i1), . . . , X (i�)) − X (i1)

n , . . . , X (i�)
n ‖L2(An)

≤ �R�−1
(
‖X‖2L2(A)msa

− 2〈�n(X), Xn〉 + ‖Xn‖2L2(A)msa

)1/2

= �R�−1dbim(μn, μ).

Taking n → U , we obtain

‖�(X (i1), . . . , X (i�))−φ(X (i1), . . . , X (i�))‖L2(
∏

n→U An)
≤ lim

n→U
�R�−1dbim(μn, μ)=0.

Hence, �(p(X)) = φ(p(X)) for every non-commutative polynomial p. Since non-
commutative polynomials are in X are dense in L2(A) and� and φ are both contractions
with respect to the L2 norm, we have � = φ.

(2) �⇒ (1). The proof is the same as in Lemma 5.16, so we leave the details to the
reader.

In a completely analogous way to Proposition 5.21, one can deduce that the weak-
∗ and dbim topologies agree at some point μ ∈ �m,R if and only if the corresponding
tracialW∗-algebraA obtained from the GNS construction is UCPT-stable, meaning that
every tracialW∗-algebra embedding fromA into some ultraproduct

∏
n→U An of tracial

W∗-algebras lifts to a sequence (�n)n∈N where �n ∈ UCPT(A,An). Furthermore,
if A is Connes-embeddable, then these two conditions are also equivalent to A being
approximately finite-dimensional; the proof is essentially the same as that of [5, Theorem
2.6] or that of Proposition 5.26. However, it is unknown how FM-stability and UCPT-
stability are related in the non-Connes-embeddable setting.

To circle back to Monge–Kantorovich duality, given the relationship of optimal cou-
plings with factorizable maps on the one hand and E-convex functions on the other
hand, one might wonder whether there is an alternative version of the theory of convex
functions and Legendre transforms that is based on UCPT maps rather than factorizable
maps. Indeed, this is possible, and we will sketch here some of the basic properties and
the parts of the proof that are different from the E-convex case.
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Definition 6.14. AW∗-function with values in [−∞,∞] is UCPT-convex if either f is
identically−∞, or else for everyA, f A is a convex and lower semi-continuous function
with values in (−∞,∞], and we have f A(X) ≤ f B(�(X)) for every A, B ∈ W and
� ∈ UCPT(A,B) and X ∈ L2(A)msa.

Definition 6.15. The UCPT-Legendre transform of a tracialW∗-function f is the tracial
W∗-function K f given by

(K f )A(X) = sup
B∈W

�∈UCPT(A,B)

Y∈L2(B)msa

〈�(X),Y 〉L2(B)msa
− f B(Y ).

We have the following analog of Proposition 3.17.

Proposition 6.16. If f , g be a tracialW∗-functions.
(1) K f is UCPT-convex.
(2) If f ≤ g, then K f ≥ Kg.
(3) We have K2 f ≤ f with equality if and only if f is UCPT-convex.
(4) K2 f is the maximal UCPT-convex function that is less than or equal to f .

The proof is essentially the same as that of Proposition 3.17, modulo the necessary
changes to work with UCPT maps rather than tracial W∗-embeddings and conditional
expectations. For instance, to showmonotonicity ofK f under UCPTmaps, suppose that
� ∈ UCPT(A,B) and X ∈ L2(A)msa. If � ∈ UCPT(B, C), then � ◦ � ∈ UCPT(A, C).
Therefore,

K f A(X) ≥ sup
C∈W

�∈UCPT(B,C)

Y∈L2(C)msa

(
〈� ◦ �(X),Y 〉 − f C(Y )

)
= K f B(�(X)).

The relationship between the UCPT Legendre transform and the E-convex Legendre
transform is as follows (compare the relationship between the E-convex Legendre trans-
form and the Hilbert-space Legendre tranform).

Corollary 6.17. Let f be a tracial W∗-function.
(1) If f is UCPT-convex, then f is E-convex.
(2) K f ≥ L f .
(3) K2 f ≤ L2 f .
(4) If f is UCPT-convex, then K f = L f .

Proof. (1) and (2) are immediate from the definitions of L and K since every tracial
W∗-embedding is a UCPT map.

(3) Observe thatK2 f is E-convex by (1) andK2 f ≤ f . Therefore, Proposition 3.17
(4) implies that K2 f ≤ L2 f .

(4) We already know that L f ≤ K f . For the reverse inequality, the idea is already
contained in the proof of Proposition 6.16 (3). Note that for A,B ∈ W and � ∈
UCPT(A,B) and X ∈ L2(A)msa and Y ∈ L2(B)msa, we have

〈�(X),Y 〉L2(B)msa
− f B(Y ) ≤ 〈X,�∗(Y )〉L2(A)msa

− f A(�∗(Y )) ≤ L f A(X).

Taking the supremum over B, �, and Y , we obtain K f ≤ L f .
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The UCPT-analog of Monge–Kantorovich duality is as follows.

Definition 6.18. A pair of tracial W∗-functions ( f, g) with values in (−∞,∞] is said
to be UCPT-admissible if for every A, B ∈ W and X ∈ L2(A)msa and Y ∈ L2(B)msa and
� ∈ UCPT(A,B), we have

f A(X) + gB(Y ) ≥ 〈�(X),Y 〉L2(B)msa
.

Proposition 6.19. Cbim(μ, ν) is equal to the infimum of μ( f ) + ν(g) over all UCPT-
admissible pairs of tracialW∗-functions, as well as the infimum of μ( f ) + ν(g) over all
UCPT-admissible pairs of UCPT-convex functions.

The proof is the same as that of Proposition 3.23; similarly, there is an UCPT ana-
log of Proposition 3.24. However, although there is an analog of Monge–Kantorovich
duality, there are many questions about bimodule couplings for which the answer is not
immediately clear:

• Is there a bimodule analog of the displacement interpolation?
• Is there a bimodule analog of the L p Wasserstein distance for p �= 2?
• Is there a useful subgradient characterization of UCPT-convexity analogous to
Lemma 3.10?

• Do dbim and d(2)
W generate the same topology on �m,R?
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Appendix A: Non-commutative Laws and Couplings for L p Variables

Although we have focused in this paper on the non-commutative L2-Wasserstein dis-
tance, Biane and Voiculescu [11] also defined L p Wasserstein distance for p ∈ [1,∞).
Although they only defined the Wasserstein distance for tuples of bounded operators,
it is natural to extend the theory to non-commutative L p spaces. In this section, after

http://creativecommons.org/licenses/by/4.0/
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reviewing the properties of affiliated operators to a tracial W∗-algebra, we define laws,
couplings, and L p Wasserstein distance for m-tuples of self-adjoint operators in non-
commutative L p space, and show the existence of optimal couplings and Wasserstein
geodesics.

A.1 Affiliated operators, L p spaces. For background on unbounded operators, refer for
instance to [63, §VIII].We recall that if H is a Hilbert space and T : H ⊇ dom(T ) → H
is a closed densely defined unbounded operator, then T has a polar decomposition as
U |T | where |T | is a positive self-adjoint operator with dom(|T |) = dom(T ) and U is a
partial isometry [63, §VIII.9].
We quote without proof the basic definitions and results about affiliated operators and
non-commutative L p spaces. Affiliated operators were first studied by Murray and von
Neumann in [50, §XVI], and the non-commutative L p spaces were studied in [24]. For
a modern exposition of affiliated operators and L p spaces in English, see [20] as well
as [2, §7.2].
Let A = (A, τ ) be a tracial W∗-algebra. To avoid ambiguity, we use the notation HA
rather than L2(A) for the completion of A with respect to the inner product (a, b) �→
τ(a∗b). We still use the notation â for the element of HA corresponding to a ∈ A.

Definition A.1. Let A = (A, τ ) be a tracial W∗-algebra, and let us view A as a subset
of B(HA) as in Theorem 2.8. A closed densely defined operator T : dom(T ) → HA
with polar decomposition U |T | is affiliated to A if U ∈ A and the spectral projection
1S(|T |) ∈ A for every Borel set S ⊆ [0,∞). We denote the set of affiliated operators
by Aff(A).

Example A.2. Let (�, P) be a probability space and letA be L∞(�, P) equipped with
the trace given by integration against P . Then Aff(A) can be canonically identified
with measurable functions on� that are finite almost everywhere, viewed as unbounded
multiplication operators on L2(�, P).

Theorem A.3. Let A = (A, τ ) be a tracial W∗-algebra.
(1) Aff(A) satisfies the following properties:

• If T ∈ Aff(A), then T ∗ ∈ Aff(A).
• If T1, T2 ∈ Aff(A), then T1|dom(T1)∩dom(T2) + T2|dom(T1)+dom(T2) is closeable, and

its closure is in Aff(A).
• If T1, T2 ∈ Aff(A), then T1T2|T−1

2 (dom(T1))
is closeable and its closure is inAff(A).

In this way, Aff(A) can be equipped with the structure of a ∗-algebra.
(2) The canonical inclusion A → Aff(A) is a ∗-homomorphism. Moreover, if T ∈

Aff(A) is a bounded operator, then T ∈ A.
(3) If T ∈ Aff(A) is a normal operator, and f is a Borel function on its spectrum, then

f (T ) ∈ Aff(A). If f is bounded, then f (T ) ∈ A. There is a unique probability
measure μT on C such that τ( f (T )) = ∫ f dμT for all bounded Borel functions f .
The spectrum of T is exactly the closed support of μT .

(4) Let Aff(A)+ be the set of positive operators affiliated toA = (A, τ ). Then τ extends
to a map Aff(A)+ → [0,∞] satisfying

τ(T ) = lim
n→∞ τ( fn(T )),

whenever fn is any sequence of nonnegative Borel functions increasing to the identity
function on [0,∞).
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Definition A.4. For a tracial W∗-algebra A = (A, τ ) and p ∈ [1,∞), we define

L p(A) = {T ∈ Aff(A) : τ(|T |p) < ∞},
and we write

‖T ‖L p(A) = τ(|T |p)1/p.
As stated above, L∞(A) = A and ‖T ‖L∞(A) is the norm on A.

Theorem A.5. Let A = (A, τ ) as above.

(1) For p ∈ [1,∞], ‖·‖p defines a norm on L p(A), and L p(A) is a complete with respect
to this norm, hence it is a Banach space.

(2) A is a dense subspace of L p(A) for p ∈ [1,∞).
(3) Let p, p1, p2 ∈ [1,∞] with 1/p = 1/p1 + 1/p2. If T1 ∈ L p1(A) and T2 ∈ L p2(A),

then T1T2 ∈ L p(A) and ‖T1T2‖p ≤ ‖T1‖p1‖T2‖p2 .
(4) For p ∈ [1,∞], if T ∈ L p(A), then T ∗ ∈ L p(A) with ‖T ‖p = ‖T ∗‖p.
(5) τ extends uniquely to a bounded map L1(A) → C (still denoted by τ or τA) that

satisfies τ(a∗) = τ(a)

(6) Let p ∈ [1,∞) and let 1/p + 1/q = 1. Then Lq(A) may be canonically identified
with the dual of L p(A) through the pairing (T1, T2) �→ τ(T1T2). In particular, this
yields an identification between L1(A) and A∗.

(7) If A∗ is separable, then L p(A) is separable for p ∈ [1,∞).

Theorem A.6. Let A = (A, τ ), and T ∈ Aff(A). Then T ∈ L2(A) if and only if
1̂ ∈ dom(T ). There is unitary isomorphism of Hilbert spaces φ : L2(A) → HA given
by T �→ T 1̂. Furthermore, for T ∈ L2(A) and a ∈ A, we have φ(aT ) = aφ(T ).

The next lemma can be deduced from well-known facts about C∗-algebras as well as
the properties of affiliated operators and L p spaces described above.

Lemma A.7. Let ι : A → B be a tracial W∗-embedding. Then ‖ι(a)‖ = ‖a‖ for
a ∈ A. Moreover, for a ∈ A and p ∈ [1,∞), we have ι((a∗a)p/2) = (ι(a)∗ι(a))p/2.
Hence, ‖ι(a)‖L p(B) = ‖a‖L p(A) for a ∈ A, and therefore, ι extends to an isometric
linear map L p(A) → L p(B) for every p ∈ [1,∞). In fact, ι extends to an injective
∗-homomorphism Aff(A) → Aff(B).

Notation A.8. If ι : A → B is a tracial W∗-embedding, we will denote the extended
map Aff(A) → Aff(B) also by ι.

Proposition A.9. Let ι : A = (A, τ ) → B = (B, σ ) be a tracial W∗-embedding. Let
E : L2(B) → L2(A) be the adjoint of the map ι : L2(A) → L2(B).

(1) For p ∈ [1,∞], E extends to a unique bounded linear map L p(B) → L p(A), and
(denoting the extended map still by E) we have ‖E(b)‖L p(A) ≤ ‖b‖L p(B).

(2) For all b ∈ L1(B), we have τ(E(b)) = σ(b); in other words, E is trace-preserving.
(3) For all b ∈ L1(B), we have E(b∗) = E(b)∗.
(4) If b ∈ L p(B) and a ∈ Lq(A) with 1/p + 1/q = 1, then E[ι(a)b] = aE[b] and

E[bι(a)] = E[b]a.
Sketch of proof. (1) Fix p, q ∈ [1,∞] with 1/p + 1/q = 1. If a ∈ L∞(A) and b ∈
L∞(B), we have

|〈a, E[b]〉A| = |〈ι(a), b〉B| ≤ ‖ι(a)‖Lq (B)‖b‖L p(B) = ‖a‖Lq (A)‖b‖L p(B).
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By density of L∞(A) in Lq(A) and the duality of Lq(A) and L p(A), we obtain
‖E[b]‖L p(A) ≤ ‖b‖L p(B), and the extension follows from this.
(2) Since ι(1) = 1 and E = ι∗, we obtain τ(E(b)) = σ(b) for b ∈ L2(B) and this
extends to L1(B) by density.
(3) (4) The claims are first checked for b ∈ L∞(B) and a ∈ L∞(A) using the properties
of the trace and the fact that E is the adjoint of ι, by similar reasoning as in Lemma 1.17.
Then we use density of L∞ in L p to conclude.

Notation A.10. Let A = (A, τ ) be a tracial W∗-algebra. Let X = (X1, . . . , Xm) ∈
Aff(A)m . We denote by W∗(X) the smallest W∗-subalgebra of A to which X1, …, Xm
are affiliated operators. Equivalently, letting X j = Uj |X j | be a polar decomposition
of X j , W∗(X) is the weak-∗ closure of the ∗-algebra generated by Uj and f (|X j |) for
bounded Borel functions f : R → C and j = 1, …, m. We view W∗(X) as a tracial
W∗-algebra, where the trace is the simply the restriction of τ .

Notation A.11. LetA = (A, τ ) andB = (B, σ )be tracialW∗-algebras. For p ∈ [1,∞],
we equip L p(A)m with the norm

‖(X1, . . . , Xm)‖L p(A)m =
⎧
⎨

⎩

(∑m
j=1 τ((X∗

j X j )
p/2)
)1/p

, p < ∞,

max j=1,...,m‖X j‖A, p = ∞
Note that L p(A)msa is a real subspace of L p(A)m . For X = (X1, . . . , Xm) and Y =
(Y1, . . . ,Ym) in L2(A)m , we define

〈X,Y 〉L2(A)m =
m∑

j=1

τ(X∗
j Y j ) =

m∑

j=1

〈X j ,Y j 〉A.

Given a tracialW∗-embedding ι : A → B and the corresponding conditional expectation
E : B → A, if X ∈ L1(A)m and Y ∈ L1(B)m , we write

ι(X) := (ι(X1), . . . , ι(Xm)), E[Y ] := (E[Y1], . . . , E[Ym]).
Note that ι and E both preserve the real subspaces of self-adjoint tuples.

.1. Laws and the Wasserstein distance for L p variables. To extend the notion of non-
commutative laws and couplings to L p variables, we use a fairly standard trick in opera-
tor algebras, namely transforming an unbounded operator into a bounded operator using
functional calculus. If (X1, . . . , Xm) ∈ L p(A)msa, then arctan(X) := (arctan(X1), . . . ,

arctan(Xm)), where arctan(X j ) is defined by functional calculus, is an m-tuple of
bounded self-adjoint operators with has a non-commutative law λarctan(X) ∈ �m,π/2.
Rather than defining λX directly, we will work with λarctan(X) instead. The analogous
procedure in classical probability theory would be to study a probability distribution μ

onRm through the compactly supported probabilitity distribution arctan∗ μ obtained by
pushing forward μ by the function (x1, . . . , xd) �→ (arctan(x1), . . . , arctan(xd)).
Given a law λ ∈ �m,π/2, the following criterion decides whether λ = λarctan(X) for some
m-tuple X in a non-commutative L p-space:

Lemma A.12. Let λ ∈ �m,π/2. For each j there is a measure λ j on [−π/2, π/2] with∫
f (x) dλ j (x) = λ( f (x j )) for all non-commutative polynomials f . The following are

equivalent:
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(1) tan ∈ L p(λ j ) for every j .
(2) There exists a tracial W∗-algebra A and X ∈ L p(A)msa such that λ = λarctan(X).

Proof. (1) �⇒ (2). Let (A,Y ) be the GNS realization of λ given by Proposition 2.31.
Then λ j is the spectral distribution of Y j with respect to τ . Because tan ∈ L p(λ j ) for
each j , we know that λ j has no mass at ±π/2 and therefore X j = tan(Y j ) is a well-
defined self-adjoint operator affiliated toA. Using Theorem A.3 (3), we have μtan(Y j ) =
tan∗ μY j = tan∗ λ j . Hence, τ(|X j |p) = ∫ |t |p dμX j (t) = ∫ | tan t |p dλ j (t) < ∞.
Therefore, X j ∈ L p(A)sa and λarctan(X j ) = λ.
(2) �⇒ (1). If X is as in (2), then let Y j = arctan(X j ). The spectral distribution of Y j
with respect to τ is thus μY j = λ.

Definition A.13. We define �
(p)
m as the set of non-commutative laws λ in �m,π/2 such

that tan ∈ L2(λ j ) for every j . We define the weak-∗ topology on �
(p)
m as the restriction

of the weak-∗ topology on �m,π/2.

Next, we define couplings of laws in �
(p)
m . It will be useful to have two different points

of view on couplings, one more measure-theoretic, and the other more probabilistic.

Definition A.14. Given μ, ν ∈ �
(p)
m , a measure-theoretic coupling of μ and ν is a law

γ ∈ �
(p)
2m such thatγ ( f (x1, . . . , xm)) = μ( f (x1, . . . , xm)) andγ ( f (xm+1, . . . , x2m)) =

ν( f (x1, . . . , xm)) for all f ∈ C〈x1, . . . , xm〉.We denote by�(p)(μ, ν) ⊆ �
(p)
2m the space

of measure-theoretic couplings.

Definition A.15. A probabilistic coupling of μ and ν is a tuple (A, X,Y ), whereA is a
tracial W∗-algebra and X,Y ∈ L p(A)msa with λarctan(X) = μ and λarctan(Y ) = ν.

Of course, if (A, μ, ν) is a probabilistic coupling, then γ = λarctan(X),arctan(Y ) is a
measure-theoretic coupling. Conversely, if γ is a measure-theoretic coupling, then a
probabilistic coupling can be obtained from the GNS construction of γ .

Definition A.16. (Wasserstein distance) For a given μ, ν ∈ �
(p)
m , we define d(p)

W (μ, ν)

to be the infimum‖X−Y‖L p(A)msa
over all probabilistic couplings (A, X,Y )withA ∈ W.

Proposition A.17. The Wasserstein distance d(p)
W defines a metric on the set �(p)

m which
makes it into a complete metric space.

The argument to show that d(p)
W is a metric on �

(p)
m is exactly the same as in [11]. The

hardest axiom to verify is the triangle inequality, but this follows because a coupling
of μ1 and μ2 and a coupling of μ2 and μ3 can be joined by taking the amalgamated
free product of the tracial W∗-algebras corresponding to the two couplings over the
subalgebra generated by the variables corresponding to μ2. Hence, �

(p)
m is a metric

space.

A.3 Optimal couplings and Wasserstein geodesics.

Definition A.18. A probabilistic coupling (A, X,Y ) of μ and ν ∈ �
(p)
m is said to be

optimal if ‖X −Y‖L p(A)msa
= d(p)

W (μ, ν); in this case we also say that the corresponding
measure-theoretic coupling is optimal.We denote the space of optimalmeasure-theoretic
couplings by �

(p)
opt (μ, ν).
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To show the existence of optimal couplings, we use a certain type of continuity and
compactness.

Lemma A.19. Let p ∈ [1,∞). Then �(p)(μ, ν) is compact in the weak-∗ topology. For
γ ∈ �(p)(μ, ν), the quantity

N (γ, p) := ‖X − Y‖L p(A)msa
where γ = λarctan(X),arctan(Y ),

where (X,Y ) ∈ L2(A)msa is a 2m-tuple with λarctan(X),arctan(X), only depends on γ , and
moreover γ �→ N (γ, p) is continuous.

Proof. First, �(p)(μ, ν) is compact because it is a closed subset of �2m,π/2, which is
compact. To show well-definedness and continuity γ �→ N (γ, p), first note that for any
polynomial φ, the map

λZ ,Z ′ �→ ‖φ(Z) − φ(Z ′)‖L p(A)msa

is well-defined and continuous on �2m,π/2. Indeed, let M be an upper bound on |φ|
and let gk be a sequence of polynomials that converge uniformly on [−2M, 2M] to the
function |·|p/2. Then gk((φ(Z)−φ(Z ′))∗(φ(Z)−φ(Z ′))) converges to |φ(Z)−φ(Z ′)|p
and the rate of convergence is uniform for all A and all (Z , Z ′) with ‖(Z , Z ′)‖∞ ≤ π

because of the spectral mapping theorem. The continuity of

λZ ,Z ′ �→
m∑

j=1

gk(φ(Z) − φ(Z ′)) = λZ ,Z ′(gk(φ(x j ) − φ(xm+ j )))

is immediate by definition of the weak-∗ topology. Thus, the continuity of λZ ,Z ′ �→
‖φ(Z) − φ(Z ′)‖p follows from uniform convergence. Similarly, using uniform conver-
gence, we can generalize φ from a polynomial to an arbitrary continuous real-valued
function on [−π/2, π/2].
Now let φk ∈ C([−π/2, π/2];R) be a sequence such that |φk | ≤ | tan | and φk → tan
pointwise. Suppose that γ ∈ �(p)(μ, ν) and γ = λ(Z ,Z ′). Then (tan(Z), τ (Z ′)) ∈
L p(A)msa. Also,

∣
∣‖tan(Z) − tan(Z ′)‖L p(A)msa

− ‖φk(Z) − φk(Z
′)‖L p(A)msa

∣
∣

≤
m∑

j=1

‖tan(Z j ) − φk(Z j )‖L p(A) +
m∑

j=1

‖tan(Z ′
j ) − φk(Z

′
j )‖L p(A)

=
m∑

j=1

(∫

| tan−φk |p dμ j

)1/p
+

m∑

j=1

(∫

| tan−φk |p dν j

)1/p
,

where μ j and ν j are the measures on [−π/2, π/2] representing the j th marginals of
μ and ν respectively. The bound on the right-hand side only depends on μ and ν and
thus is a uniform bound for all γ ∈ �(p)(μ, ν). Furthermore, by the dominated conver-
gence theorem | tan−φk | → 0 in L p(μ j ) and L p(ν j ). Therefore, the map sending γ to
‖tan(Z) − tan(Z ′)‖L p(A)msa

is continuous as the uniform limit of continuous maps.

Corollary A.20. For eachμ, ν ∈ �
(p)
m , the space of optimal couplings�

(p)
opt is nonempty

and compact.
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Given the existence of L2 optimal couplings, all the theorems from Sects. 3 and 4 can
be generalized to �

(2)
m with the appropriate changes to notation. Almost no change is

needed for the proofs since E-convex functions were defined for L2 non-commutative
random variables to begin with.
Just as in the case of classical probability theory, the existence of optimal couplings and
the ability to take convex combinations of non-commutative random variables immedi-
ately leads to the existence of geodesics between any two points in �

(p)
m .

Definition A.21. Let (�, d) be a metric space. A geodesic in (�, d) is a continuous map
g : I → �, where I ⊆ R is an interval (of positive length), such that for all t1 < t2 < t3
in I , we have

d(g(t1), g(t3)) = d(g(t1), g(t2)) + d(g(t2), g(t3)).

The geodesic is said to be constant speed if d(g(t1), g(t2))/(t2 − t1) is constant for all
t1 < t2.

Proposition A.22. Let p ∈ [1,∞). Letμ, ν ∈ �
(p)
d , and let (A, X,Y ) be a probabilistic

optimal coupling. For t ∈ [0, 1], let Xt = (1− t)X + tY . Let μt = λarctan(Xt ). Then t �→
μt is a constant speed geodesic in (�

(p)
m , d(p)

W ). Moreover, for s, t ∈ [0, 1], (A, Xs, Xt )

is an optimal coupling of μs and μt .

Proof. Of course,

d(p)
W (μs, μt ) ≤ ‖Xs − Xt‖L p(A)msa

= |s − t |‖X − Y‖L p(A)msa
.

Thus, for s < t ,

‖X − Y‖L p(A)msa
= d(p)

W (X,Y )

≤ d(p)
W (X, Xs) + d(p)

W (Xs, Xt ) + d(p)
W (Xt ,Y )

≤ ‖X − Xs‖L p(A)msa
+ ‖Xs − Xt‖L p(A)msa

+ ‖Xt − Y‖L p(A)msa

= ‖X − Y‖L p(A)msa
.

Thus, all the inequalities are forced to be equalities. Hence, d(p)
W (μs, μt ) = (t −

s)d(p)
W (μ, ν). Therefore, t �→ μt is a constant speed geodesic. Also, d(p)

W (μs, μt ) =
‖Xs − Yt‖L p(A)msa

, so that (A, Xs, Xt ) is an optimal coupling.

References

1. Anantharaman-Delaroche, C.: On ergodic theorems for free group actions on noncommutative spaces.
Probab. Theory Rel. Fields 135, 520–546 (2006)

2. Anantharaman-Delaroche, C., Popa, S.: An introduction to II1 factors (2021)
3. Anderson, G.W., Guionnet, A., Zeitouni, O.: An Introduction to Random Matrices. Cambridge Studies

in Advanced Mathematics. Cambridge University Press, Cambridge (2009)
4. Atkinson, S., Goldbring, I., Kunnawalkam Elayavalli, S.: Factorial relative commutants and the general-

ized Jung property for II1 factors. To appear in Adv. Math. 396, 108107 (2022). https://doi.org/10.1016/
j.aim.2021.108107

5. Atkinson, S., Kunnawalkam Ellayavalli, S.: On ultraproduct embeddings and amenability for tracial von
Neumann algebras. Int. Math. Res. Not. 2021(4), 2882–2918 (2021)

6. Barbu, V., da Prato, G.: Global existence for the Hamilton-Jacobi equations in Hilbert space. Annali della
Scuola Normale Superiore di Pisa Classe di Scienze 4e série 8(2), 257–284 (1981)

https://doi.org/10.1016/j.aim.2021.108107
https://doi.org/10.1016/j.aim.2021.108107


Duality for Optimal Couplings in Free Probability 979

7. Barbu, V., da Prato, G.: Hamilton–Jacobi equations inHilbert spaces; variational and semigroup approach.
Annali di Matematica 142, 303–349 (1985)

8. Barbu, V., da Prato, G.: A note on a Hamilton–Jacobi equation in Hilbert space. Nonlinear Anal.: Theory
Methods Appl. 9(12), 1337–1345 (1985)

9. Yaacov, I.B.: Topometric spaces and perturbations of metric structures. Log. Anal. 1, 235–272 (2008)
10. Bertucci, C., Debbah, M., Lasry, J.-M., Lions, P.-L.: A spectral dominance approach to random matrices.

Preprint arXiv:2105.08983 (2021)
11. Biane, P., Voiculescu, D.-V.: A free probability analogue of the Wasserstein metric on the trace-state

space. Geom. Funct. Anal. 11, 1125–1138 (2001)
12. Brown,N.P., Ozawa,N.: C∗-algebras and Finite-DimensionalApproximations.Graduate Studies inMath-

ematics, vol. 88. American Mathematical Society, Providence (2008)
13. Capraro, V.: A survey on Connes’ embedding conjecture. arXiv preprint at arXiv:1003.2076 (2010)
14. Cardaliaguet, P.,Delarue, F., Lasry, J.-M., Lions, P.-L.: TheMaster Equation and theConvergenceProblem

in Mean Field Games, volume 2 of Annals of Mathematics Studies. Princeton University Press (2019)
15. Carmona, R., Cerenzia, M., Palmer, A.Z.: The Dyson and Coulomb games. Ann. Henri Poincaré 21,

2897–2949 (2020)
16. Charlesworth, I., Nelson, B.: Free Stein irregularity and dimension. arXiv:1902.02379 (2019)
17. Connes, A.: Classification of injective factors. Cases I I1, I I∞, I I Iλ, λ �= 1. Ann. Math. (2) 104(1),

73–115 (1976)
18. Crandall, M.G., Pierre-Louis, L.: Hamilton-Jacobi equations in infinite dimensions I uniqueness of vis-

cosity solutions. J. Funct. Anal. 62, 379–396 (1985)
19. Crandall, M.G., Lions, P.-L.: Hamilton-Jacobi equations in infinite dimensions II. existence of viscosity

solutions. J. Funct. Anal. 65, 368–405 (1986)
20. da Silva, R.C.: Lecture notes on non-commutative L p-spaces. arXiv:1803.02390 (2018)
21. Dabrowksi, Y.: A Laplace principle for Hermitian Brownian motion and free entropy I: the convex

functional case. arXiv:1604.06420 (2017)
22. Dabrowski,Y.:Anon-commutative path space approach to stationary free stochastic differential equations.

arxiv:1006.4351 (2010)
23. Dabrowski, Y., Guionnet, A., Shlyakhtenko, D.: Free transport for convex potentials. arXiv:1701.00132

(2016)
24. Dixmier, J.: Formes linéaires sur un anneau d’opérateurs. Bull. Soc. Math. France 81, 9–39 (1953)
25. Effros, E.G.: Dimensions and C∗-algebras. CBMS Regional Conference Series in Mathematics, vol. 46.

American Mathematical Society, Providence (1981)
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