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Abstract: We study complex Dirac structures, that is, Dirac structures in the com-
plexified generalized tangent bundle. These include presymplectic foliations, transverse
holomorphic structures, CR-related geometries and generalized complex structures. We
introduce two invariants, the order and the (normalized) type.We show that, togetherwith
the real index, they allow us to obtain a pointwise classification of complex Dirac struc-
tures. For constant order, we prove the existence of an underlying real Dirac structure,
which generalizes the Poisson structure associated to a generalized complex structure.
For constant real index and order, we prove a splitting theorem, which gives a local
description in terms of a presymplectic leaf and a small transversal.

1. Introduction

A Poisson bivector does not necessarily restrict on a submanifold to a Poisson bivec-
tor, but to a Dirac structure [Cou90]. Analogously, generalized complex structures
[Hit03,Gua11], encompassing complex and symplectic structures, fail to restrict on
a submanifold as a generalized complex structure. For instance, a codimension-one sub-
manifold of a complex manifold does not inherit a generalized complex structure, but a
CR structure; whereas a codimension-one submanifold of a symplectic manifold inher-
its a presymplectic structure that is necessarily degenerate, and hence not generalized
complex. However, both structures define complexDirac structures on the submanifolds.
Thus, just as Dirac structures arise when studying submanifolds of Poisson manifolds,
complex Dirac structures naturally appear on submanifolds of generalized complex
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manifolds. As generalized complex geometry has been proved to be useful in the under-
standing of supersymmetry [LMTZ05,HL20], sigma models [Cal06,KL07], and field
theory and the AKSZ formalism [CQZ10], we expect complex Dirac structures to play
an important role in these and related topics.

Complex Dirac structures are Dirac structures in the complexified generalized tan-
gent bundle. The real index is the most basic invariant of a complex Dirac structure
[KT92,Gua04]. When the real index is zero, a complex Dirac structure is a generalized
complex structure. For arbitrary real index, complex Dirac structures can also describe
objects such as presymplectic structures and CR-related geometries, extending the way
generalized complex geometry encompasses symplectic and complex structures.

The purpose of this work is a systematic study of complex Dirac structures. In this
paper, we introduce two new invariants: the order (Definition 4.6), which vanishes on
generalized complex structures, and a normalized version of the type (Definition 4.7),
which extends the type for generalized complex structures. For fixed real index and order,
structures with type 0 or maximal are, respectively, transformations of regular real Dirac
structures and transverse CR structures. We prove that the three invariants altogether
determine the pointwise geometry of a complex Dirac structure (Proposition 4.15).

Since complex Dirac structures include generalized complex structures, it is natural
to ask what properties can be extended and how. We focus on two of them. On the
one hand, any generalized complex structure has associated a Poisson structure. In the
context of complex Dirac structures we prove the following:

Theorem 5.1. A complex Dirac structure with constant order has an underlying real
Dirac structure, which agrees with the Poisson structure of a generalized complex struc-
ture when the real index is zero.

This suggests that the order is a more natural invariant than the real index. Indeed,
we provide an example of a complex Dirac structure with constant real index whose
presymplectic distribution is not smooth and hence does not define a real Dirac structure
(Sect. 6.1).

On the other hand, generalized complex structures [AB06] and real Dirac structures
[Blo17] have a splitting theorem inspired by theWeinstein splitting theorem for Poisson
structures. For complex Dirac structures we prove the following:

Theorem 7.1. Let L be a complex Dirac structure with constant real index r and order
s, and let m ∈ M be a point of type k. Then, locally around m, L is equivalent (via a
diffeomorphism and B-transformation) to the product of a presymplectic manifold (with
(r − s)-dimensional kernel) and a complex Dirac structure of constant real index s and
order s whose associated real Dirac structure is the graph of a Poisson bivector vanishing
at m.

When the real index and the order vanish, we recover the splitting theorem for gen-
eralized complex structures [AB06, Thm. 1.4]. The proof of our result relies on the
techniques developed in [BLM19].

Amongother applications,wehope that this approach to complexDirac structureswill
allow us to better understand reduction [BCG07,Hu09,LT06,SX08,Vai07] and blow-up
[BCvdLD19,CG09,CG11,VdLD18] of generalized complex structures, as we can drop
the hypothesis of the resulting structure remaining generalized complex.

The article is organized as follows. In Sect. 2, we recall the basic definitions and prop-
erties of Dirac and generalized complex structures. Section 3 deals with submanifolds
of generalized complex structures and serves as a motivation. In Sect. 4, we introduce
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the main tools of the theory: the associated distributions and the two new invariants, the
order and the (normalized) type. We present the relationship among these invariants and
a pointwise classification of complex Dirac structures. In Sect. 5, we prove Theorem 5.1
and study some of its consequences. Section 6 gathers two important examples: a com-
plex Dirac structure with constant real index with no associated real Dirac structure, and
a foliation by generalized complex leaves. Finally, in Sect. 7 we prove Theorem 7.1 and
in an appendix we give a visual representation of the invariants.

Notation and conventions. We denote by M a smooth manifold. By a distribution we
mean a subspace assignment p ∈ M �→ Rp ⊆ Ep, where E is a vector bundle over M .
A distribution is said to be smooth when any v ∈ Rp can be extended to a local section
of E taking values in R. The rank of a distribution is the assignment p �→ dim Rp.
A distribution is said to be regular if it is smooth and its rank is constant. Regular
distributions are actually subbundles, but we will keep the term ‘regular distribution’
when E is T M or T MC and use subbundle otherwise. We will omit the vector bundle
E when it is clear from the context.

Given the complexification of a bundle, EC, and a distribution L ⊂ EC such that
L = L , we denote the real elements of L by

Re L := L ∩ E

and call them the real part of L . We will denote the complexification of a map with the
same symbol.

2. Generalized Geometry

2.1. Thegeneralized tangent bundle. Weconsider thegeneralized tangent bundleTM :=
T M ⊕ T ∗M with its natural nondegenerate symmetric bilinear pairing

〈X + ξ,Y + η〉 = 1

2
(η(X) + ξ(Y )),

and the Dorfman bracket [Dor87] on �(TM)

[X + ξ,Y + η] = [X,Y ] + LXη − ıY dξ,

for X + ξ , Y + η ∈ �(TM). The tuple (TM, 〈·, ·〉, [·, ·], prT M ) has the structure of a
Courant algebroid [LWX97].

The automorphisms of TM are bundle automorphisms F of TM covering f ∈
Diff(M) such that, for u, v ∈ �(TM),

a) f ∗〈F(u), F(v)〉 = 〈u, v〉,
b) F[u, v] = [F(u), F(v)],
c) prT M ◦ F = f∗ ◦ prT M .

We denote the group of automorphisms of TM by Aut(TM).

Example 2.1. Any f ∈ Diff(M) defines T f ∈ Aut(TM) by

T f (X + ξ) = f∗X + ( f −1)∗ξ.

Any two-form B ∈ �2(M) defines a bundle automorphism eB by

eB(X + ξ) = X + ξ + ıX B.

When B is closed, eB ∈ Aut(TM) and we call it a B-transformation.
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These examples generate all the automorphisms [Gua04, Prop. 2.2]:

Diff(M) � �2
cl(M) ∼= Aut(TM)

( f, B) �→ T f ◦ eB .

The action of a generalized vector field X + ξ ∈ �(TM) via the Dorfman bracket
[X + ξ, · ] defines an endomorphism of �(TM). By [Hu09], it integrates to a one-
parameter subgroup of automorphisms of TM given by {Tϕs ◦ eγs }s∈R, with {ϕs}s∈R
the one-parameter subgroup integrating X (with the convention X = d

dt |t=0ϕ
∗−t ) and

γs =
∫ s

0
ϕ∗
u (−dξ)du.

This means that

[X + ξ,Y + η] = d

dt

∣∣∣∣
t=0

(
(Tϕs ◦ eγs )(Y + η)

)
.

The bundle TCM := (TM)C equipped with the complexification of the pairing
and bracket of TM has analogous properties to the Courant algebroid TM . Just as in
Example 2.1, the map f ∈ Diff(M) gives rise to T f ∈ Aut(TCM), and a closed
B ∈ �2

C
(M) to eB ∈ Aut(TCM), which we call a complex B-transformation.

2.2. Dirac structures. A Dirac structure [Cou90] is a lagrangian subbundle L ⊂ TM
that is involutive with respect to the Dorfman bracket (that is, [�(L), �(L)] ⊆ �(L)).

Example 2.2. The graphs of a presymplectic structure ω and a Poisson structure π are
Dirac structures:

Lω = {X + ıXω | X ∈ T M}, Lπ = {π(α) + α | α ∈ T ∗M}.
The range distribution E of a lagrangian subbundle L is E := prT M L , which

is smooth but not necessarily regular. There exists a skew-symmetric bilinear map
ε : E × E → R such that

L = L(E, ε) := {X + ξ | X ∈ E, ξ|E = ıXε}.
The range distribution of a Dirac structure is integrable and ε restricts to each leaf as a
presymplectic form [Cou90], so it generalizes the symplectic foliation associated to a
Poisson bivector. Furthermore:

Proposition 2.3 [DW08]. Let L be a Dirac structure and a point m ∈ M. If the presym-
plectic leaf passing through m is a single point, then on a neighbourhood of m, L is the
graph of a Poisson structure.

A Dirac structure is called regular when E is regular. We then have:

Proposition 2.4 [Cou90,Gua11]. A lagrangian subbundle L(E, ε) is a regular Dirac
structure if and only if E is regular, ε is a (smooth) bundle map and dEε = 0, where dE
denotes the differential along the directions of E.
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On the other hand, we call L ∩ T M the null distribution of a Dirac structure L . If
L ∩ T M has constant rank, then it is smooth and integrable and its associated foliation
is called the null foliation.

Given a map ϕ : N → M and lagrangian subbundles L ⊂ TM , L ′ ⊂ TN , the
backward image of L is the (regular) distribution

ϕ!L := {X + ϕ∗ξ | ϕ∗X + ξ ∈ L} ⊂ TN ,

and the forward image of L ′ is the (regular) distribution
ϕ!L ′ = {ϕ∗X + ξ | X + ϕ∗ξ ∈ L ′} ⊂ ϕ∗

TM.

For an inclusion ι : N → M , a sufficient condition for ι!L ⊂ TN to be a Dirac structure
is the transversality condition prT M L |N + T N = T M|N (see, for instance, [Bur13]).

2.3. Generalized complex structures. A generalized almost complex structure [Gua11]
is a bundle map J : TM → TM such that J 2 = −1 and J ∗ = −J . If the lagrangian
subbundle ker(J − i I d) ⊂ TCM is involutive with respect to the Dorfman bracket
we say that J is a generalized complex structure, which is equivalently given by an
involutive lagrangian subbundle L ⊂ TCM such that L ∩ L = 0.

Example 2.5. A complex structure J and a symplectic structure ω determine the gener-
alized complex structures

L J = T0,1 ⊕ T ∗
1,0, Liω = {X + i ıXω | X ∈ TCM}.

A manifold admitting a generalized almost complex structure must be even dimen-
sional, so we take dim M = 2n.

The main invariant of generalized complex structures is an integer-valued function
called the type, which is defined, with the notation E := prTCML , as

type L := corank E . (1)

The type varies from 0 to n. In Example 2.5, the structure Liω is of constant type 0,
whereas L J is of constant type n. A point m in M is called of complex type if it is of
type n, and it is called regular if there exists a neighborhood of m with constant type.

The map J determines the Poisson bivector πJ = prT MJ |T ∗M , so a generalized
complex structure gives a symplectic foliation. To recall Weinstein splitting-like the-
orems for generalized complex structures, we need the definition of product. Con-
sider isotropic subbundles K1 of TCM1 (or TM1) and K2 of TCM2 (or TM2). Let
πi : M1 × M2 → Mi denote the canonical projections. The bundle

K1 × K2 := π∗
1 K1 ⊕ π∗

2 K2 (2)

is an isotropic subbundle of TC(M1×M2) (or T(M1×M2)). For L1 and L2 generalized
complex structures, the product L1 × L2 is a generalized complex structure.

By [AB06], for any m ∈ M , there exists a neighborhood U , a closed two-form B,
a symplectic structure ω and a generalized complex structure L ′ of complex type at m
such that

L|U ∼= eB(L ′ × Liω).

Around a regular point m of type k, we can be more precise [Gua04]:

L|U ∼= eB(L J × Liω),

where J is the canonical complex structure on C
k and ω is the canonical symplectic

structure of R
2(n−k).



628 D. Aguero, R. Rubio

3. From Generalized Complex to Complex Dirac Structures

Let M be a manifold with a generalized complex structure L ⊂ TCM . Consider a

submanifold N
ι

↪−→ M . Undermild regularity conditions (see, e.g., Definition 5.7 below),
ι!L ⊂ TCN is a lagrangian and involutive subbundle. However, it is not necessarily a
generalized complex structure, as the next examples show.

Example 3.1. Let ω ∈ �2(M) be a symplectic structure. Note that ι!Liω = Li ι∗ω and so
ι!Liω ∩ ι!Liω = (ker ι∗ω)C, which is nonzero unless N is a symplectic submanifold.

Example 3.2. Let J be a complex structure on M . Assume that N is of codimension
one and consider the J -invariant distribution D := T N ∩ J (T N ) over N . We have that
(D, J|D) is a CR structure of corank one in N , and ι!L J = L(ker(J|D − i I d), 0). Hence,

ι!L J ∩ ι!L J = (Ann D)C, which has rank one.

The subbundle ι!L lies in a larger class than generalized complex:

Definition 3.3. A complex Dirac structure is a lagrangian subbundle L ⊂ TCM that is
involutive (with respect to the Dorfman bracket).

Example 3.4. A generalized complex structure is a complex Dirac structure L such that
L ∩ L = {0}. On the other hand, the complexification LC of a real Dirac structure
L ⊂ TM is a complex Dirac structure that satisfies LC = LC . The bundle Liω as in
Example 2.5 for a presymplectic form ω ∈ �2

cl(M) is a complex Dirac structure.

Example 3.5. A CR-structure (D, J ), consisting of a regular distribution D ⊆ T M and
J ∈ End(D) such that J 2 = − Id, determines, with the notation D1,0 := ker(J−i Id) ⊂
DC, the complex Dirac structure

L(D,J ) := D1,0 ⊕ Ann D1,0.

Proposition 3.6. Let N ⊆ M be a submanifold of codimension r. Let L be a lagrangian
subbundle of TCM such that L ∩ L = {0}. Then

rank(ι!L ∩ ι!L) ≤ r.

Proof. Suppose that rank(ι!L ∩ ι!L) > r at m ∈ N , so there exist real elements

X1 + ξ1, . . . , Xr+1 + ξr+1 ∈ ι!Lm,

linearly independent, with X j ∈ TmN and ξ j ∈ T ∗
mN . By definition of ι!L , there exist

τ j ∈ T ∗
mM with ι∗τ j = ξ j and η j ∈ Ann TmN , such that

X1 + τ1 + iη1, . . . , Xr+1 + τr+1 + iηr+1 ∈ Lm .

Since dimAnn TmN = r , there exist a non-trivial linear combination
∑r+1

j=1 c jη j = 0
with c j ∈ R. Consequently,

r+1∑
j=1

c j (X j + τ j + iη j ) =
r+1∑
j=1

c j (X j + τ j )

is real in Lm , so must vanish (since L ∩ L = {0}) and, thus, ∑r+1
j=1 c j (X j + ξ j ) = 0,

which yields a contradiction. ��
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Corollary 3.7. For a codimension-one submanifold N
ι

↪−→ M we have

rank(ι!L ∩ ι!L) = 1.

Proof. Since dim N is odd, then ι!L ∩ ι!L �= {0} and so the corollary follows from the
proposition. ��

4. Invariants and Classification of Complex Dirac Structures

In this section we introduce a set of invariants for complex Dirac structures which will
allow us to characterize their local geometry.

4.1. The real index. The following definition stems from [KT92].

Definition 4.1. The real index of any subbundle L ⊂ TCM is

real-index L := rank(L ∩ L),

which is a function that we usually denote by r .

Let L ⊂ TCM be a lagrangian subbundle. Consider the distribution

K := Re(L ∩ L).

Its orthogonal distribution is given by K⊥ = Re(L + L). We have r = real-index L =
rank K and (

K⊥

K

)
C

∼= L + L

L ∩ L
.

The pairing onTM descends to a pointwise pairing on K⊥/K of signature (dim M−
r, dim M − r) ([Dru14, Prop. 2.28]). When the real index r is everywhere constant, the
distributions K and K⊥ become bundles of rank r and 2 dim M − r , respectively. In this
case, K⊥/K becomes a euclidean vector bundle (vector bundle with a nondegenerate
pairing). In general, K⊥/K does not inherit a bracket from TM . However, there are
cases where K⊥/K can be reduced to a Courant algebroid [BCG07,Zam08]. In this
case, L + L ∩ L reduces to a complex Dirac structure, possibly with real index zero. In
Sect. 6.2, we will see an example where K⊥/K is a Courant algebroid.

Many results, like the next two, are stated for lagrangian subbundles but are usually
used for complex Dirac structures.

Proposition 4.2. A lagrangian subbundle L ⊂ TCM with constant real index r , is
equivalent to the choice of an r-dimensional isotropic subbundle K ⊂ TM and a bundle
map J : K⊥/K → K⊥/K such that J 2 = −1 and J ∗ + J = 0.

Proof. Given such L , the distribution L0 = L +L∩L ⊂ (L +L)/(L∩L) is a lagrangian
subbundle of (K⊥/K )C with zero real index, that is, L0 ∩ L0 = 0. So, L0 defines a
map J : K⊥/K → K⊥/K such that J 2 = −I d. Moreover, since L0 is lagrangian, J
preserve the pairing and thus J ∗ + J = 0.

Given an isotropic subbundle K ⊂ TM and a map J : K⊥/K → K⊥/K satisfying
the conditions of the statement, we retrieve a complex Dirac structure by taking L =
q−1(ker(JC − i Id)), where q : K⊥ → K⊥/K is the quotient map. Its real index equals
rank K and is hence constant. ��
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Corollary 4.3. A lagrangian subbundle L ⊂ TCM determines a distribution K ⊂ TM
together with a pointwise complex structure J ∈ End(K⊥/K ) which is moreover skew-
symmetric, J ∗ + J = 0.

The map J in Corollary 4.3 is pointwise a linear generalized complex structure. By
the obstruction for their existence [Gua04, Prop. 4.5]:

Proposition 4.4. The dimension of a manifold M admitting a lagrangian subbundle of
TCM with real index r must satisfy

dim M ≡ r mod 2.

Thus, the parity of the real index is constant.

Example 4.5. For a generalized complex structure, the real index is zero and the associ-
ated map J corresponds to the generalized complex structure itself. For the complex-
ification of a real Dirac structure, LC, the real index is dim M and the map J is zero.
For Liω and L(D,J ) as in Examples 3.4 and 3.5,

Liω ∩ Liω = (ker ω)C, real-index Liω = rank(ker ω),

L(D,J ) ∩ L(D,J ) = (Ann D)C, real-index L(D,J ) = corank D.

4.2. The order and the (normalized) type. Analogously to the real case, a lagrangian
subbundle L ⊂ TCM determines a complex range distribution and a skew-symmetric
map ε : E → E∗,

E := prTCML , ε ∈ ∧2E∗,

such that L = L(E, ε).
In order to describe lagrangian subbundles we shall associate real data, which can

be interpreted geometrically. The following definitions associate real distributions to
any complex distribution E ⊆ TCM , although we work on the case of a lagrangian
subbundle L with E = prTCML . Define the distributions

� := Re(E ∩ E),

D := Re(E + E).

Let J : D/� → D/� be the real part of the map on (D/�)C having +i-eigenspace
E/(E ∩ E) and −i-eigenspace E/(E ∩ E). The triple (D,�, J ) is thus real data recov-
ering E .

On the other hand, we consider the restriction of the two-form ε on � and look at its
imaginary part

ω� = Im ε|�,

which is a possibly degenerate two-formω� ∈ ∧2�∗. Thus, at anym ∈ M , we have that
� inherits a linear presymplectic two-form and D/� is endowed with a linear complex
map.1

This motivates the introduction of new invariants involving the size of D and �,
which we define in terms of both real and complex data.

1 We have ignored Re ε since it will be regarded as a B-transformation.
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Definition 4.6. The order of a lagrangian subbundle L ⊂ TCM is

order L := corank D = corank(E + E),

which is a function that we usually denote by s.

Definition 4.7. The type of a lagrangian subbundle L ⊂ TCM is

type L : = 1

2
(rank D − rank�)

= corankE+E E,

which is a function that we usually denote by k.

Note that, for a generalized complex structure, this definition coincides with the type
as defined in (1). We have the identity

type L + order L = corank E . (3)

Finally, we see how the real index and the order are related. Define

�0 := ker ω� ⊆ T M.

Lemma 4.8. For the distributions K and K⊥ we have

prT MK⊥ = D, prT MK = �0.

Proof. For the first part, prT MK⊥ = prT M (L + L) = prT M (E + E) = D.
For the second part, take X + α ∈ K = Re(L ∩ L), so α|E = ε(X) and α|E = ε(X).

When restricting to �, ε(X)|� = ε(X)�, so its imaginary part ω�(X) vanishes, that is,
X ∈ �0. Conversely, for X ∈ �0, the forms ε(X) ∈ E∗ and ε(X) ∈ E

∗
extend uniquely

to a form β ∈ (E + E)∗ such that β = β. We extend it further to α ∈ T ∗
C
M such that

α = α, that is, α ∈ T ∗M so that X + α ∈ K . ��
Lemma 4.9. For L ⊂ TCM a lagrangian subbundle, the distribution K fits into the
short exact sequence

0 −→ Ann D −→ K
prT M−−−→ �0 −→ 0 (4)

and, consequently,

real-index L = order L + rank�0. (5)

Proof. We first look at ker prT M |K = K ∩ T ∗M , which is Ann(prT MK⊥), since α ∈
T ∗M satisfies 〈α, prT MK⊥〉 = 0 if and only if 〈α, K⊥〉 = 0, that is α ∈ (K⊥)⊥ = K .
By Lemma 4.8, the sequence follows. ��

From (5), it follows that

0 ≤ order L ≤ real-index L . (6)

With the notation r for real index, s for order, k for type, and n for the function such
that dim M = 2n + r , we have

rank D = 2n + r − s,

rank� = 2(n − k) + r − s, (7)

rank�0 = r − s.
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Example 4.10. For a generalized complex structure, the order is always zero and the type
varies between 0 and dim M/2. For the complexification of a Dirac structure, LC, the
order is corank prT M L and the type is always zero. For Liω and L(D,J ) as inExamples 3.4
and 3.5,

order Liω = 0, order L(D,J ) = corank D,

type Liω = 0, type L(D,J ) = n.

Equation (5) also generalizes the fact that ω� is nondegenerate for generalized com-
plex structures [Gua04, Prop. 4.4].

Regarding the product (2), a direct computation shows the following.

Lemma 4.11. Let L1, L2 ⊂ TCM be two lagrangian subbundles over the manifolds
M1 and M2 with real parts K1 and K2, respectively. Then the real part of L1 × L2 is
K1 × K2 and, as a consequence,

real-index(L1 × L2) = real-index L1 + real-index L2,

order(L1 × L2) = order L1 + order L2.

4.3. Properties of invariants and associated distributions. We look now at the properties
of the distributions and the three invariants introduced in Sects. 4.1 and 4.2. These
properties just depend on the smoothness of the lagrangian subbundle.

To start with, the distributions E and D are smooth. Indeed, since E is the image of
L under the anchor map, we have that E is smooth. The distribution E is then smooth
and so E + E is. Since D = prT M (E + E), we have that D is also smooth.

Recall that the rank of a smooth distribution is a lower semicontinuous function
(around any point the rank stays the same or drops).

Lemma 4.12. The real index and the order are upper semicontinuous. If the order is
constant, the type is upper semicontinuous.

Proof. The real index is rank(L ∩ L) = 2 dim M − rank(L + L), whereas the order is
corank D. Since L + L and D are smooth distributions, the first part follows. The second
part follows similarly from (3). ��

The following result plays a key role in Sect. 5.

Proposition 4.13. If the order is constant, the distribution � is smooth.

Proof. Consider the imaginary part of the projection to TCM ,

� = Im ◦ prTCM : L → T M,

whose image is Im(prTCML) = Im(E) = Im(E + E) = D.
Since the order is constant, D is a vector bundle and hence the kernel of �,

L ∩ (T M ⊕ T ∗
C
M),

is also a vector bundle. As prT M ker� = �, the proposition holds. ��
We will see in Sect. 6.1 an example where the order is not constant and � is not

smooth.
Another distribution playing an important role in the theory is K .

Proposition 4.14. If L has constant real index, then K is a Lie algebroid whose orbits
are precisely the leaves of �0.

Proof. This result follows from the involutivity of K and Lemma 4.8. ��
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4.4. Pointwise description of complex Dirac structures. The real index, order and type
determine the pointwise geometry of the complex Dirac structure up to B-transform.

Proposition 4.15. Let L ⊂ TCM be a lagrangian subbundle on a manifold M of di-
mension 2n + r . At a a point m where

real-index L = r, order L = s, type L = k,

there exists a complement N of � in TmM, and B ∈ ∧2T ∗
mM, such that, at the point m,

L ∼= eB(Liω� × L(C,J )),

where Liω� is associated to the two-form ω� ∈ ∧2�∗
m, and L(C,J ) is an almost CR-

structure on N.

For its proof, we shall use the inclusion ι and the projection p in

D
D

�0

T M

p

ι

together with the map q : Ann�0 → (D/�0)
∗ such that ι∗ = p∗ ◦ q.

With sequence (4) in mind, we say that K splits when

K = �0 ⊕ Ann D.

We then have K⊥ = D ⊕ Ann�0 and, consequently,

K⊥

K
∼= D

�0
⊕

(
D

�0

)∗
,

where [X + ξ ] ∈ K⊥/K maps to pX +qξ . The pointwise generalized complex structure
on K⊥/K (Corollary 4.3) corresponds to

L̃ := {pX + qξ | X + ξ ∈ L},
whose associated symplectic subspace is pointwise �/�0.

Proof of Proposition 4.15. We work pointwise. We assume first that K splits. With the
notation above, we have that ι! p! L̃ = L , since

ι! p! L̃ = {X + ξ | ι∗ξ = p∗η for some η with pX + η ∈ L̃}
which clearly contains L and they are both lagrangian. From the pointwise splitting for
generalized complex structures ([Gua11, Thm. 3.6]), there exists a splitting D/�0 =
�/�0 ⊕ (C + �0)/�0 and B ′ ∈ ∧2(D/�0)

∗ such that

L̃ ∼= eB
′
(Liω′ × L J ).

We then have p! L̃ ∼= ep
∗B′

(Liω×L J )on D = �⊕C withω = (p∗ω′)|� a presymplectic
structure on �, and J a complex structure on C ∼= (C + �0)/�0. Finally, we look at
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ι! p! L̃: we choose any N containing C , via ιC : C → N , such that T M = � ⊕ N . For
B ∈ ∧2T ∗M any extension of p∗B ′ we have a natural injective map

eB(Liω × ιC! L J ) → ι! p! L̃
eB(X + π∗

�iω(X) + Y + π∗
Nα) �→ ep

∗B′
(X + Y + iω(X) + α).

Since they are both lagrangian subspaces, this map is an isomorphism. As, always at m,
ker ω = �0, we have Liω ∼= Liω� so we conclude:

ι! p! L̃ ∼= eB(Liω × ιC! L J ) = eB(Liω� × L(C,J )),

with ω� ∈ ∧2�∗
m and (C, J ) an almost CR-structure on N .

When K does not split, sequence (4) determines a map

h : �0 → T ∗M/Ann D ∼= D∗

satisfying h(x)(x) = 0 for x ∈ �0, as K is isotropic. By taking a complement of�0 ⊆ D
where we set the map to vanish, we get h ∈ ∧2D∗, which we extend to B ∈ ∧2T ∗M .
We then have that for e−B L , its subbundle K splits and we apply the first part of the
proof. ��

4.5. Extremal type. We study now complex Dirac structures with constant real index
and order whose type is 0 or maximal.

Example 4.16. A regular real Dirac structure L(�,ω), defines the complex Dirac struc-
ture L(�C, iω). It has real index r = rank ker ω+corank�, order s = corank� and type
0. If ker ω is regular, L(�C, iωC) has constant real index and order.

This example is key to describe type 0 complex Dirac structures.

Proposition 4.17. Let L be a complex Dirac structure with constant real index r and
order s over a (2n + r)-dimensional manifold. If type L = 0, then L = eB L(�C, iω),
with � a corank-r involutive distribution, ω ∈ ∧2�∗ a d�-closed form with (r −
s)−dimensional kernel, and B a d�-closed real two-form (that is, B|� is d�-closed).
Locally, we can choose B to be closed.

Proof. Let L be L(E, ε). Since L has constant real index, order and type, � and D are
regular distributions. As type L = 0, the distribution E is real and so E = �C. Then
ε decomposes into its real and imaginary parts: ε = B ′ + iω, with B ′, ω ∈ ∧2�∗. By
Proposition 2.4, we have that B ′ is d�-closed, L(�C, iω) is involutive, and, for any
extension B of B ′, L = eB L(�C, iω). Locally, we obtain B closed by considering a
foliated chart and extending B ′ to be constant in the directions of the distribution and
vanish on the complementary directions. ��

The maximal type, in dimension 2n + r with real index r , is n. In order to describe
this case, we introduce transverse CR structures.2

2 This name was used, with a different definition, in the context of foliations on CR-manifolds [BD97].



Complex Dirac Structures: Invariants and Local Structure 635

Definition 4.18. A transverse CR structure (S, R, J ) consists of regular distributions
R ⊆ S ⊆ T M , with R integrable, and a bundle map J : S/R → S/R, such that
J 2 = − Id and, for the projection q : T M → T M/R, the distribution

E = q−1(ker(J − i Id)) ⊂ TCM (8)

is regular and involutive.

TransverseCRstructures include, as particular cases,CRstructures (when R = 0) and
transverse holomorphic structures (when S = T M). Given a transverse CR structure
(S, R, J ), it can be proved [Agu20, Lem. 2.76] that around any point, there exists a
neighbourhood U where the foliation associated to R|U is simple and its leaf space
carries a CR structure.

For a transverse CR structure (S, R, J ), with E as in (8), we associate the complex
Dirac structure

L(S,R,J ) := L(E, 0) = E ⊕ Ann E, (9)

with real index r = corank S + rank R. If dim M = 2n + r , L(S,R,J ) has order s =
corank S and type n.

For maximal type complex Dirac structures, we prove the following:

Proposition 4.19. Let L be a complex Dirac structure with constant real index r and
order s over a (2n + r)-dimensional manifold. If L has constant type n, then there exist
a transverse CR structure (D,�, J ) and B ∈ �2(M) such that L = eB L(D,�,J ).

Proof. Let L = L(E, ε) with ε ∈ �(∧2E∗). Define a real form in �(∧2(E + E)∗) by
the skew-symmetric extension of

{
ε(X) for X ∈ E,

ε(X) for X ∈ E .

Note that it iswell defined as type n implies that�0 = � and hence ε(X) = ε(X) for X ∈
E ∩ E . Extend it to B ∈ �2(M) ⊂ �2

C
(M). We then have L = L(E, ε) = eB L(E, 0).

We recall that the real data (D,�, J ) recovers E , so L(E, 0) = L(D,�,J ). Finally,
(D,�, J ) is a transverseCR-structure, since� is integrable because� = �0 = prT MK
and K is a Lie algebroid (Lemma 4.14). ��

These results generalize the appearance in generalized complex structures of sym-
plectic (type 0) and complex (type dim M/2) structures.

4.6. Pointwise classification. Proposition 4.15 gives a pointwise classification of la-
grangian subbundles, up to a linear B-transformation.

Propositions 4.17 and 4.19 make the left and right columns of Table 1 work locally
(with constant invariants) up to B-transformation and real transformation, respectively.
Corollary 7.4 below will make the central column work locally (up to a transformation
closed in the presymplectic directions).
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Table 1. Classification of complex Dirac structures

Order r Symplectic (�,ω�) · · · CR structure (D, J ),
corank� = r corank D = r

Order s (�,ω�) × (D/�, J )

Presymplectic (�, ω�) Presymplectic × CR Transverse CR (D, �, J )

corank� = s corank D = s corank D = s
rank ker ω� = r − s corankD � = 2k rank� = r − s

rank ker ω� = r − s
Order 0 Presymplectic (T M, ω) Transverse holomorphic

rank ker ω = r · · · (T M, �, J ), rank� = r

Type 0 Type k Type n

5. The Associated Real Dirac Structure

For a complex Dirac structure L = L(E, ε), the distribution � is pointwise endowed
with the presymplectic structure ω�. When the order is constant, we have proved in
Proposition 4.13 that � defines a smooth distribution. When L is a generalized complex
structure, (�,ω�) corresponds to the symplectic foliation of the associated Poisson
structure. So it is natural to ask whether the distribution

L̂ = L(�,ω�)

is a Dirac structure. In this section we prove that this is the case.

Theorem 5.1. For constant order, the distribution L̂ is a real Dirac structure.

Proof. By definition, L̂ is pointwise lagrangian. We have to check that it is smooth and
involutive. We first prove the following identity:

L̂ = prTM

((
1 0
0 −i

)
(L ∩ (T M ⊕ T ∗

C
M))

)
, (10)

where the 2 × 2 matrix denotes, by blocks, a linear map of TCM .
Take X + α ∈ L̂ . Denote also by α its C-linear extension to T ∗

C
M , and consider

ε(X) − iα|E ∈ E∗.

We extend this element to γ ∈ (E + E)∗ by γ (Z) = γ (Z). This is well defined as it is
real for �, since

ε(X)|� − iα|� = Re ε(X)|�.

The element γ is the C-linear extension of an element of D∗, which we can extend to
α′ ∈ T ∗M . We check that X + α′ + iα belongs to L:

(α′ + iα)|E = ε(X) − iα|E + iα|E = ε(X).

Thus L̂ is contained in the right-hand side. The right-hand side is isotropic, as for
X + α′ + iα, Y + β ′ + iβ ∈ L ,

〈X + α,Y + β〉 = Im〈X + α′ + iα,Y + β ′ + iβ〉 = 0.

Since L̂ is lagrangian, they must be equal.
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To see the smoothness of L̂ , note that in the proof of Proposition 4.13 we have shown
that L ∩ (T M ⊕ T ∗

C
M) is smooth, and so its image by the linear map

(
1 0
0 −i

)
and the

projection prTM is smooth.
Finally, note that the right-hand side of (10) is involutive, as the distribution L ∩

(T M ⊕ T ∗
C
M) is and the linear map and the projection preserve involutivity. Hence, L̂

is involutive and a Dirac structure. ��
Constant order is a sufficient but not a necessary condition: let L = L(S, ε) be a

real Dirac structure, its complexification LC is a complex Dirac structure. Note that
L̂C = L and order LC = codim S as D = S. Hence, LC has associated a real Dirac
structure, although its order is not necessarily constant (codim S may change on real
Dirac structures).

Since L̂ is a Dirac structure, its image by the anchor map is an integrable distribution,
so we obtain a refinement of Proposition 4.13:

Corollary 5.2. If the order is constant, then � is integrable.

We can thus associate a presymplectic foliation to any complex Dirac structure with
constant order. We will see in Sect. 7 that this foliation plays a fundamental role in the
splitting theorem for complex Dirac structures. Note that constant real index does not
play any role in the smoothness of � and hence L̂ , as we shall see in Sect. 6.1.

Example 5.3. If we start with a real Dirac structure L , we have L̂C = L . For Liω as in
Example 2.5 and Lω as in Example 2.2,

L̂iω = Lω.

Example 5.4. Starting with a real Dirac structure L(�,ω�), the complex Dirac structure
L := L(�C, iω�) (see Example 4.16) satisfies

L̂ = L(�,ω�).

For a CR-structure (D, J ) or, more generally, for a transverse CR-structure (S, R, J ) as
in (9), we have

L̂(D,J ) = T ∗M, L̂(S,R,J ) = R ⊕ Ann R.

Remark 5.5. From Theorem 5.1, constant order implies that � is an involutive distri-
bution. As for D, non-Levi flat CR structures (e.g. S3 with the CR structure inherited
by C

2) provide examples of complex Dirac structures with constant invariants but with
non-involutive D.

The associated Dirac structure L̂ is preserved by backward image.

Lemma 5.6. Let ψ : N → M be a smooth map, and L be a complex Dirac structure

over M. Then, as distributions, ψ ! L̂ = ̂ψ !L.

Proof. By equation (10),

̂ψ !L = prTN

((
1 0
0 −i

)
· {X + ψ∗ξ1 + iψ∗ξ2 | ψ∗X + ξ1 + iξ2 ∈ L}

)

= {X + ψ∗ξ2 | ψ∗X + ξ2 ∈ L̂} = ψ ! L̂.

��
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Let N
ι

↪−→ M be a submanifold. Just as in the real case (Sect. 2.2), for the backward
image ι!L to be a complex Dirac structure, it is analogously proved that a transversality
condition is sufficient:

Definition 5.7. A submanifold N
ι

↪−→ M is transversal to a complex lagrangian subbun-
dle L ⊂ TCM if

TCN + prTCML |N = TCM|N .

Lemma 5.8. If L is a complex Dirac structure over M and N
ι

↪−→ M is a transversal to
L, then ι!L is a complex Dirac structure over N.

By Lemmas 5.6 and 5.8 , if L is a generalized complex structure with associated

Poisson bivector π and N
ι

↪−→ M , then ι̂!L = ι!Lπ . Moreover:

Lemma 5.9. Let L be a complex Dirac structure with constant real index and order,

N
ι

↪−→ M a submanifold, and m ∈ N. If TmN ⊕ �m = TmM, then, around m, ι!L is
a complex Dirac structure and ι! L̂ is a Dirac structure given by the graph of a Poisson
bivector vanishing at m.

Proof. By the local foliation property [DW08, Section 1.5], there exists a neighbourhood
U ofm where N is transversal to L̂ , and hence to L (as�C ⊆ prTCML |N ). Consequently,
ι!L |U is a complex Dirac structure and ι̂!L |U is a Dirac structure. Since ι̂!L |U = ι! L̂ |U
by Lemma 5.6, the presymplectic leaves of ι̂!L |U are the intersection of N ∩U with the
presymplectic leaves of L̂ . Consequently, the leaf of ι! L̂ |U passing through m is a single
point (we shrink U if needed) and, by Proposition 2.3, the last part follows. ��

Finally, we give a definition motivated by Lemma 5.9 and Table 1.

Definition 5.10. Let L be a complex Dirac structure. We say that a point m ∈ M is of
CR type if, at m, the real index and the order are equal and the type is maximal.

By (7), a point m is of CR type if and only if �m = {0}. Assume moreover that L̂
is a Dirac structure. By Proposition 2.3, L̂ is, around m, the graph of a Poisson bivector
vanishing at m. Consequently, �0 = L̂ ∩ T M = {0} and so the real index and the order
are equal around m. In terms of Table 1, the complex Dirac structure lies in the top right
corner at m, whereas around m it lies in the top row (of a possibly different table with
higher real index).

Remark 5.11. On generalized complex structures, the points of CR type are precisely
the points of complex type.

6. More Examples

6.1. Order and type change with constant real index. Consider M = R
3 with coordi-

nates (x, y, z) and the lagrangian subbundle

L = L(E, i ι∗Eω),

with ω = dx ∧ dy ∈ �2(R3) and E the involutive regular distribution

E = 〈∂x , (ey∂y + i f (y)∂z)〉C,
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where f ∈ C∞(M; R) only depends on the variable y and has non-empty zero set
Z = {(x, y, z) | f (y) = 0}.

Since E is regular, L is smooth. Moreover, dE ι∗Eω = ι∗Edω = 0 and by Proposi-
tion 2.4, L is a complex Dirac structure.

We have �|Z = 〈∂x , ∂y〉R and �|M\Z = 〈∂x 〉R, whereas for ω� = ι∗�ω,

ω�|p =
{
dx ∧ dy, for p ∈ Z ,

0, for p �∈ Z .

So ω� is nondegenerate on Z and has one-dimensional kernel on M \ Z .
We look at the associated distributions and invariants of L .

� D order L type L real-index L
p ∈ Z 〈∂x , ∂y〉R �p 1 0 1
p �∈ Z 〈∂x 〉R TpM 0 1 1

The real index follows from dim ker ω�, the order and Proposition 4.15. Thus, L has
constant real index one, and type and order changing along Z . Note that the distribution
� is not smooth and, hence, neither is the associated lagrangian distribution L̂ .

Remark 6.1. A straightforward computation shows that

K = R · ( f (y)∂x + eydz),

which also explains the variation of the invariants along M .

6.2. A foliation with generalized complex leaves. Let D ⊆ T M be a regular involutive
distribution. Consider a complex Dirac structure L ⊂ TCM such that K = Ann D. We
then have K⊥ = D ⊕ T ∗M , so D is precisely the distribution defined in Sect. 4.2, and
the real index and the order of L are constant and equal. Moreover,

K⊥

K
= D ⊕ T ∗M

Ann D
∼= D ⊕ D∗,

so J in Proposition 4.2 defines a generalized almost complex structure on each leaf
S ⊆ M , as T S = D|S . We prove next that it is integrable.

The Dorfman bracket descends to D ⊕ D∗, obtaining the bracket

[X + α,Y + β]D = [X,Y ] + LD
Xβ − ıY dDα,

for X + α,Y + β ∈ �(D ⊕ D∗), where dD is the differential along D and

LD
X = ıXdD + dDıX .

From the axioms of the Courant algebroid TM , it follows that:

Lemma 6.2. The bundle D⊕D∗ is a Courant algebroidwith the natural pairing, bracket
and anchor.

The +i-eigenbundle of J is

L ′ = {X + ξ|DC
| X + ξ ∈ L} ⊂ (D ⊕ D∗)C.

Since (LXη−ıY dξ)|DC
= LD

X (η|DC
)−ıY dD(ξ|DC

) and L is involutive, the subbundle L ′
is involutive. This involutivity descends to any leaf S ⊆ T M , as any element of �(L ′|S)
can be extended to �(L ′). We thus have a foliation by generalized complex leaves.

Remark 6.3. This example appeared in [LB11] with the name of a generalized CR struc-
ture.
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7. Splitting Theorem

Our last result is an extension of the splitting theorem for generalized complex structures
[AB06, Thm. 1.4] to complex Dirac structures.

Theorem 7.1. Let L ⊂ TCM be a complex Dirac structure with constant real index
r and order s. Let m ∈ M be a point of type k, denote by (S, ω) the presymplectic
leaf of L̂ passing through m, and let N ⊆ M be a submanifold containing m such that
TmN ⊕ TmS = TmM. Then there exist neighbourhoods V ⊆ N, W ⊆ S and U ⊆ M of
m, with U ∼= V × W, and a local closed real two-form B, such that

L |U ∼= eB(ι!L × Liω),

where ι : V → M is the inclusion, ι!L has constant real index s and order s and it is
of CR type (Definition 5.10) at m, and Liω is the complex Dirac structure associated to
(W, ω|W ).

The pointwise proof of Proposition 4.15 does not extend locally, since L/KC does
not always define a generalized complex structure. Our proof of Theorem 7.1 is inspired
by [BLM19] but requires a local understanding of complex Dirac structures. We start
by finding a local isomorphism for L where all its associated distributions are trivial.

Note that �0 := ker ω� is a regular involutive distribution of rank r − s whose asso-
ciated foliation is the null foliation F of L̂ . Take a foliated chart U where F is a simple
foliation. Since TmN ∩ �0 = 0, N is transversal to F (shrinking U if necessary) and
we can take a neighbourhood of m in N as the leaf space P with associated submersion
u : U → P . Note that u(U ∩ N ) = U ∩ N and from the chart we get a diffeomorphism
ψ1 : U → P × R

r−s . If S′ is a leaf of �, then u(U ∩ S′) = P ∩ S′ (as S′ is foliated by
leaves of �0) and so ψ1(S′) = (P ∩ S′) × R

r−s . By [Cou90, Cor. 2.6.3], the leaf space
P inherits a Poisson bivector π from the Dirac structure L̂ and L̂ |U = u!Lπ .

Let S be the presymplectic leaf of L̂ passing throughm, note that u(S) = P∩ S is the
symplectic leaf of π passing through u(m). By the Weinstein Splitting theorem [DZ05,
Thm. 1.4.5] around u(m) with transversal U ∩ N , there exists a chart ψ2 on P around
u(m) with chart

ψ2 = (x1, . . . , x2k+s, q1, . . . , qn−k, p1, . . . , pn−k),

with coordinates (x1, . . . , x2k+s) forU∩N and (q1, . . . , qn−k, p1, . . . , pn−k) forR2(n−k)

(which is equivalent to the symplectic leaf), and in those coordinates π = π0 +πN with
π0 = ∑n−k

i=1 ∂pi ∧ ∂qi and πN a Poisson bivector in a neighbourhood V0 of u(m) in
U ∩ N vanishing at u(m). Finally, we obtain a foliated chart for �0,

ψ = ψ−1
1 ◦ (ψ−1

2 , I d) : U → U,

ψ−1 = (x1, . . . , x2k+s, q1, . . . , qn−k, p1, . . . , pn−k, y1, . . . yr−s),

where V is the image by (x1, . . . , x2k+s) of V0 and U = V ×R
2(n−k) ×R

r−s , satisfying:

a) ψ sends V × {0} onto V0, and {m} × R
2(n−k) × R

r−s onto U ∩ S.
b) ψ2 ◦ u ◦ ψ−1 : V × R

2(n−k) × R
r−s → V × R

2(n−k) is the projection.
c) ψ∗({0} × {0} × TR

r−s) = �0.
d) ψ ! L̂ has a simple null foliation with leafwise Poisson bivector π0 + πN .
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Recall that, given a vector bundle E over M , the Euler vector field is the vector
field associated to the one-parameter subgroup s �→ κe−s in Aut(E) ⊆ Diff(E), where
κt : E → E , κt e = te for every t ∈ R \ {0} and e ∈ E . In a fibred local coordinate
system for E , (x j , y j ), with x j as the fibre directions and y j as the base directions, it is
expressed as

∑
j

x j
∂

∂x j
.

Lemma 7.2. With the notation above, there exists a section E = X +β + iα ∈ �(ψ !L |U )

such that E|V×{0} = 0, X is the Euler vector field of the trivial bundle U = V ×
R
2(n−k)+r−s over V , β ∈ �1(U), and

α =
n−k∑
j=1

(q jdp j − p jdq j ) ∈ �1(U). (11)

Proof. We keep the notation K , �0, L̂ and u for their respective transformations by ψ .
The expression (11) defines also α0 ∈ �1(V × R

2(n−k)), so that α = u∗α0. Consider
the vector field

Y =
n−k∑
j=1

(p j∂p j + q j∂q j ) ∈ X(U).

Note that π(α0) = π0(α0) = u∗Y , so u∗Y +α0 ∈ Lπ . Hence, Y +α ∈ L̂ . By (10), there
exists β1 ∈ �1(U) such that

Y + β1 + iα ∈ �(ψ !L |U ). (12)

On the other hand, since prT MK = �0, we obtain a local frame

{∂y1 + ζ1, . . . , ∂yr−s + ζr−s, ζr−s+1, . . . , ζr }
of K , where ζ j ∈ �1(U), {ζ j }rj=r−s+1 is a frame of K ∩T ∗U (shrinkU if necessary). By
evaluating (12) on V × {0}, we obtain β1|V×{0}, which is a section of (K ∩ T ∗U)|V×{0}.
Thus, there exist functions c j ∈ C∞(V ), for r − s + 1 ≤ j ≤ r , such that −β1|V×{0} =∑r

j=r−s+1 c jζ j |V×{0}. By extending the functions c j to U , we obtain a section

β2 =
r∑

j=r−s+1

c jζ j ∈ �(K ∩ T ∗U) ⊆ �(ψ !L |U ) (13)

such that β2|V×{0} = −β1|V×{0}. Finally, we consider

r−s∑
j=1

y j∂y j +
r−s∑
j=1

y jζ j ∈ �(ψ !L |U ). (14)

By taking the sum of (12), (13) and (14), we obtain E . ��
We are now ready to prove Theorem 7.1.
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Proof of Theorem 7.1. Assume that Theorem 7.1 holds for ψ !L around (m, 0, 0) with
transversal V . Then,

ψ !L |U ∼= eB
′
(ι!V×{0}ψ !L × L(Rrank�m ,ω)).

By applying Tψ on both sides we recover the local splitting of L . Consequently, for the
sake of simplicity, we can use in this proof the notation M for U , N for V and L for
ψ !L |U , and also the identification M = N × R

2(n−k)+r−s .
Let E = X + β + iα ∈ �(L) be as in Lemma 7.2. Since X is an Euler field, the

associated one-parameter subgroup to E in Aut(TM) is

Tκe−s ◦ eσs ,

where the two-form, by the change of variable u = log τ , is given by

σs = −
∫ s

0
κ∗
eu (dβ + idα)du = −

∫ es

1

1

τ
κ∗
τ (dβ + idα)dτ.

Since E ∈ �(L), its flow preserves L (see, e.g., [VdLD16, Lem. 1.1.5]). By perform-
ing the change of variable s = − log t and acting on L ,

L = eσlog t Tκ−t L , (15)

for all t > 0. We define real forms Bt , ωt ∈ �2(M), for t > 0 such that

Bt + iωt = σlog t =
∫ 1

t

1

τ
κ∗
τ (dβ + idα)dτ.

Note that this integral is well defined for t = 0, so we can also define B0 and ω0. Since
α only depends on coordinates p j and q j we have

ωt =
∫ 1

t

1

τ
κ∗
τ (dα)dτ = (1 − t2)dα,

so ω0 = ∑n−k
j=1 dq j ∧ dp j . Consider the limit when t → 0 in (15), so

L = eB0+iω0(κ !
0L). (16)

With p : M = N ×R
2(n−k)+r−s → N the projection map and ι : N → M the inclusion

map, we have κ0 = ι ◦ p. Thus, (16) becomes

L = eB0+iω0(p!ι!L) = eB0eiω0(ι!L × TR
(2n−k)+r−s) = eB0(ι!L × Liω0).

By Lemma 4.11, ι!L has constant real index s and order s. By Lemma 5.9, ι!L is a
complex Dirac structure with associated Poisson structure vanishing at m and so m is of
CR type. The result follows with B = B0, which is closed. ��
Remark 7.3. The section E = X + β + iα ∈ �(ψ !L |U ) defines a section Ê = X + α ∈
�(ψ ! L̂ |U ). By [BLM19, Thm. 5.1], we obtain a splitting for L̂ in terms of the real Dirac
structures associated to the factors of the splitting of L , which coincides with that of
[Blo17].
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A regular point for a complex Dirac structure is a point admitting a neighbourhood
where the type is constant. For these points we have:

Corollary 7.4. Let L ⊂ TCM be a complex Dirac structure with constant real index r
and order s; let m be a regular point of type k and N ⊆ M be a (2k + s)-dimensional
submanifold containing m transversal to �m. Then there exist a neighbourhood U of m
such that

L|U ∼= eB(L(D,J ) × Liω),

where L(D,J ) is associated to a CR structure of codimension s on a neighbourhood of
m in N, Liω is associated to the presymplectic foliation, and B is a real two-form on M
that is closed on the presymplectic directions.

Proof. Since m is a regular point, there exists a neighbourhood of m where the type is
constant. Let N be any transversal to � at m inside that neighbourhood. Since TmN ⊕
�m = TmM at m, by shrinking N if necessary, we have that T N ⊕ �|N = T M|N .

By Theorem 7.1, there exist a neighbourhood U of m, and a neighbourhood of m
in N , which we denote again by N , such that U ∼= N × S′ ∼= N × R

2(n−k)+r−s and
L |U ∼= eB

′
(ι!L × Liω) for B ′ ∈ �2

cl(U ). Since T N ⊕ �|N = T M|N , ι!L is a complex
Dirac structure of constant real index s, order s andmaximum type. By Proposition 4.19,
there exists B1 ∈ �2(U ) such that eB1(ι!L) is a CR structure (D, J ) on N .

Finally, we have that L |U ∼= eB
′−pr∗

N B1(L(D,J ) × Liω), where prN is the projection
onto N . Note that B = B ′ − pr∗

N B1 is only closed on the directions of R
2(n−k)+r−s , the

presymplectic foliation. ��

8. Visual representation of invariants

The type in generalized complex structures takes integer values in the interval between
0 (symplectic up to B-tranformation) and dim M/2 (complex up to action by a real
two-form).

symp.
gen.cplx.

cplx.

Fig. 1. Type in generalized complex geometry

For complex Dirac structures, the real index r ranges between 0 and dim M , the
type between 0 and (dim M − r)/2 and, by (6), the order ranges between 0 and r .
From the two latter inequalities, any admissible combination of the invariants can be
represented as an integer point of a right tetrahedron (Fig. 2, the two right angles being
at the vertex ‘presymp.C’). We label the vertices with the corresponding structures for
constant invariants, up to a transformation by a real two-form, which is closed on the
left edge and, in general, closed in the presymplectic directions. The front edge of this
tetrahedron corresponds to Fig. 1 (where L ∩ L = {0}), whereas any slice for fixed real
index is Table 1. The furthest vertical edge corresponds to the complexification of Dirac
structures in Example 3.4, that is, L = L .
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symp.
gen.cplx.

cplx.

presymp.C

DiracC

T ∗
C
M

presymp.

Dirac

Poisson

trans.hol.

trans.CR

CR

type

order
real-index

Fig. 2. Right tetrahedron representing geometric structures encompassed by complex Dirac structures

We can interpret the associated Dirac structure L̂ in terms of this tetrahedron and
draw the surface of all L mapping to the same type of L̂ , which contains (L̂)C. A point
of coordinates (r, s, k) corresponds to complex Dirac structures whose distribution �

has rank

2(n − k) + r − s = (2n + r) − s − 2k = dim M − s − 2k,

so the order of (L̂)C is s +2k. We thus obtain the planes s +2k = C for 0 ≤ C ≤ dim M .
The intersection with the plane s + 2k = 0 corresponds to the edge (symp.–presymp.C)
whereas the intersection with s + 2k = dim M corresponds to (cplx.–T ∗

C
M).

If we look at the change of invariants, we can regard a complex Dirac structure
as moving along the tetrahedron. For instance, the property of a point m of CR type
(described at the end of Sect. 5) can be understood as the complex Dirac structure lying
at m on a point CR of the top right edge, and around m, on the triangle (CR–T ∗

C
M–

Poisson). In fact, the upper semicontinuity of the real index and the order, the parity of
the real index and the type, and the upper semicontinuity of the type for constant order,
give constraints on how a complex Dirac structure can move within this tetrahedron.
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