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Abstract: We consider the generalized Langevin equation (GLE) in a harmonic poten-
tial with power law decay memory. We study the anomalous diffusion of the particle’s
displacement and velocity. By comparison with the free particle situation in which the
velocity was previously shown to be either diffusive or subdiffusive, we find that, when
trapped in a harmonic potential, the particle’s displacement may either be diffusive or
superdiffusive. Under slightly stronger assumptions on the memory kernel, namely, for
kernels related to the broad class of completely monotonic functions, we show that both
the free particle and the harmonically bounded GLE satisfy the equipartition of energy
condition. This generalizes previously known results for the GLE under particular kernel
instances such as the generalized Rouse kernel or (exactly) a power law function.

1. Introduction

The classical Langevin equation describes the movement of a foreign particle freely
suspended in Newtonian, viscous fluids. If the particle is further subjected to a harmonic
potential U (x) = γ x2/2, where γ reflects the strength of the oscillator, the Langevin
equation system is given by

ẋ(t) = v(t),

m v̇(t) = −λv(t) − γ x(t) +
√
2λkBT Ẇ (t).

(1.1)

In (1.1), (x(t), v(t)) is a two-dimensional process, m is the particle’s mass, λ > 0 rep-
resents the viscous drag coefficient, kB is the Boltzman constant, T is the temperature
and {W (t)}t∈R is a two–sided standard Brownian motion. However, unlike in a clas-
sical Langevin framework, fluid viscoelasticity induces time correlation between the
foreign particle movement and molecular bombardment [6–8,21,24,28,33]. To capture
this memory effect, (1.1) is modified into the so–named generalized Langevin equation
(GLE) system [18,22,23], namely,
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ẋ(t) = v(t),

m v̇(t) = −λv(t) − γ x(t) − β

∫ t

−∞
K (t − s)v(s)ds

+
√

βkBT F(t) +
√
2λkBT Ẇ (t).

(1.2)

In (1.2), the function K : R → R
+ is an even memory kernel that characterizes the

delayed response of the fluid medium to the particle’s past movement [12,29]. In turn,
{F(t)}t∈R is a zero mean, stationary, Gaussian process that is linked to K (t) via the
relation

E[F(t)F(s)] = K (t − s). (1.3)

The equality in (1.3) expresses the so–called fluctuation–dissipation relationship be-
tween K and F . In other words, such relationship is the requirement that, in an equi-
librium state, the covariance observed in thermal fluctuations be determined by the
underlying memory kernel [24,32,33].

In this paper,weprovide twomain sets of results on the long termbehavior of a particle
whose dynamics are given by the system (1.2). Namely, under broad assumptions, (i)we
asymptotically characterize the particle’s (ensemble)mean squared displacement (MSD)
assuming γ > 0 and (i i)we establish that equipartition of energy holds assuming γ ≥ 0
(which includes the free particle instance γ = 0 as in (1.4) below). We now provide a
more detailed description of each set of results.

By setting γ = 0 in (1.2), we arrive at

m v̇(t) = −λv(t) − β

∫ t

−∞
K (t − s)v(s)ds +

√
βkBT F(t) +

√
2λkBT Ẇ (t). (1.4)

Expression (1.4) is the GLE for a particle moving freely in a viscoelastic medium.
Historically, this instance of the GLE was first proposed and studied in the seminal work
[24] and later popularized in [28,32]. In the last several decades, (1.4) has attracted a
great deal of attention due to its ability to model what is known as anomalous diffusion
[22,29,31]. To be more precise, write f (t) ∼ g(t), t → ∞, when, for some c ∈ (0,∞),
limt→∞ f (t)/g(t) = c. A stochastic process is said to exhibit diffusive behavior if its
MSD grows linearly in time, i.e.,E| ∫ t

0 v(s)ds|2 ∼ t as t → ∞. Otherwise, if the growth
rate is given by tα , where either α < 1 or α > 1, then the process is called subdiffusive or
superdiffusive, respectively. It was once a longstanding conjecture that the anomalously
diffusive behavior of the stationary solution of (1.4) was dictated by the decaying rate of
thememory kernel K [31]. There have been several attempts to establish such conjecture
by means of the asymptotic analysis of either Laplace [21,25,31] or Fourier transforms
[7,22,29]. Recently, anomalous diffusion for (1.4) was fully characterized in terms of
the memory kernel K . In other words, if K is integrable, then it can be shown that the
second moment E| ∫ t

0 v(s)ds|2 grows linearly in time. On the other hand, if there exists
α ∈ (0, 1] such that K (t) ∼ t−α as t → ∞, then for α ∈ (0, 1), E| ∫ t

0 v(s)ds|2 ∼ tα

[29]. Moreover, for α = 1, E| ∫ t
0 v(s)ds|2 ∼ t/ log(t) as t → ∞ [7].

Anomalous diffusion has been mostly investigated for free particles. Nevertheless,
there are many viscoelastic fluid systems in which the particle is trapped by a damped
harmonic motion under the action of a stationary noise term that follows the fluctuation–
dissipation relationship. In recent work [5,49], similar systems to (1.2)—with the mem-
ory kernel restricted to the interval [0, t], instead of (−∞, t]—have been examined.
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Using a combination of Laplace analysis and Tauberian theorems, asymptotic expres-
sions for the velocity autocorrelation functions were established in terms of the large
scale (time) asymptotics of thememory kernel and the correlation function of the random
force.

In this paper, we employ the framework of weakly stationary random operators (
[29]; see also [7,11,20,51]) to construct stationary solutions for the system (1.2). More-
over, following up on results for the MSD of the system (1.4) [7,22,29], we use Fourier
analysis [42,43] to characterize the asymptotic behavior of the MSD of the bivariate
stationary–increment process

∫ t
0 (x(s), v(s))ds in terms of the asymptotic decay rate of

K (t). Notably, whereas the process v(t) as in (1.4) may either be diffusive or subdiffu-
sive depending on the memory kernel, in this paper we show that, for a large class of
memory kernels K (see Assumption 2.1), the process x(t) in (1.2) is either diffusive or
superdiffusive (see Theorem 3.3).

In the second set of main results, under slightly stronger assumptions on the memory
kernel, we investigate the so–named equipartition of energy condition for the solution
pair (x(t), v(t)) for (1.2) as well as for the solution v(t) for (1.4). In Statistical Mechan-
ics, it is well known that a stationary process in thermodynamical equilibrium [3,15,38]
must satisfy such condition, i.e., any degree of freedom (e.g., particle position or ve-
locity) appearing quadratically in the energy contributes kBT/2 to the average kinetic
energy of the system. However, the equipartition condition may hold even for out-of-
equilibrium systems [34]. Since such systems are commonly found in nature, the search
for generalized equipartition laws and nonequilibrium relations is still a quite active
research topic [1,27,48]. One key motivation for studying the equipartition property in
the framework of the GLE stems from the fact that (1.2) is a biophysical model [22];
hence, it is of a matter of interest in practice whether or not an equilibrium condition
generally holds.

To the best of the authors’ knowledge, results on the equipartition of energy for
instances of the GLE seem to have first been established in [22] based on memory
kernels of the form

t−α, α ∈ (0, 1). (1.5)

For the free particle case (1.4), it was shown that

E[m v(0)2] = kBT . (1.6)

In turn, under a harmonic potential as in (1.2) (with γ > 0), it was further proven that

E[γ x(0)2] = kBT = E[m v(0)2]. (1.7)

In other words, relations (1.6) and (1.7) show that equipartition of energy holds in each
case. More recently [16–18], relation (1.6) was established in the case of a free particle
GLE (1.4) assuming the so–named generalized Rouse class of memory kernels, i.e.,

1

N

N∑

n=1

e−|t |/τn , (1.8)

where τ1 < · · · < τN are called relaxation times. For such kernels, Fourier transforms
are known in explicit form. This naturally allows for the use of contour integration in
the complex plane and the calculation of the second moments of x(t) and v(t).
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Note that, for a general potential U (x), the system (1.2) is recast in the form

ẋ(t) = v(t),m v̇(t) = −λv(t) −U ′(x(t)) − β

∫ t

−∞
K (t − s)v(s)ds

+
√

βkBT F(t) +
√
2λkBT Ẇ (t). (1.9)

For several kernel instances having the form of an infinite sums of exponentials, the
so–named Mori–Zwanzig formalism [10,13,36,52] can be used to produce a Marko-
vian approximation to (1.9) which in turn admits a stationary distribution [12,37]. In
particular, relation (1.7) holds under harmonic potentials and kernels K that are either
integrable [36,37] or exhibit power law decay K (t) ∼ t−α for all α > 1/2 [12,14]. The
question of whether (1.7) holds—even under harmonic potentials—for K (t) ∼ t−α ,
α ∈ (0, 1/2], remains open [14].

In this paper, we tackle the problem of establishing equipartition of energy for
both (1.4) and (1.2). Namely, we show that relations (1.6) and (1.7) hold under the
former (see Theorem 3.4) and the latter (see Theorem 3.5) systems, respectively. In
both cases, we assume memory kernels either coming from the large class of completely
monotonic functions (cf. Definition 2.4) or which can be expressed as ϕ(t2), where ϕ

is a completely monotonic function. In particular, the former class includes the ker-
nels (1.5) and (1.8), whereas the latter class includes Gaussian and Cauchy kernels,
namely, e−t2 and (t2 + 1)−α , respectively [44–46]. Besides its great generality, the class
of completely monotonic functions is made up of Laplace transforms of positive Radon
measures, which is very convenient for the purpose of establishing analytical results (cf.
Theorem C.1).

The paper is organized as follows. In Sect. 2, we introduce the notation as well as the
assumptions. In Sect. 3, we state the main results of the paper, including Theorem 3.3
on the anomalous diffusion of (1.2) and Theorem 3.5 on equipartition of energy. We
address the well–posedness of (1.2) as well as the proofs of the main results in Sect. 4. In
the Appendix, we review the framework of stationary distributions that is employed in
the construction of solutions for (1.2). We also recapitulate several properties of Fourier
transforms of the memory kernels that are useful in establishing the main theorems.

2. Assumptions and Preliminaries

For a function f : R → C, we define the Fourier transform of f and its inverse as

f̂ (ω) =
∫

R

f (t)e−itωdt, and f̌ (t) = 1

2π

∫

R

f (ω)eitωdω.

We will also make use of the Fourier cosine and sine transforms

Kcos(ω) =
∫ ∞

0
K (t) cos(ωt)dt and Ksin(ω) =

∫ ∞

0
K (t) sin(ωt)dt,

where the two integrals are understood in the sense of improper integrals. Let S be the
Schwartz space of all smooth functions whose derivatives are rapidly decreasing. Recall
that its dual space S ′ is the so–named class of tempered distributions on S. For a given
tempered distribution g ∈ S ′, we write F [g] to denote the Fourier transform of g in S ′.
Namely, for all ϕ ∈ S,

〈g, ϕ̂〉 = 〈F [g] , ϕ〉,
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where 〈g, ϕ̂〉 denotes the action of a tempered distribution g on a Schwartz function ϕ̂.
It is well known that this transformation is a one–to–one relation in S ′.

Throughout the paper, we make the following assumptions on the memory kernel
(cf. [7,29]).

Assumption 2.1. Let K : R → R∪ {∞} be a real–valued function for t �= 0 and which
may be infinite at t = 0. We assume that

(I) (a) K ∈ L1
loc(R) is symmetric around zero and positive for all nonzero t ;

(b) K (t) → 0 as t → ∞ and is eventually decreasing;
(c) the improper integral Kcos(ω) = ∫ ∞

0 K (t) cos(ωt) dt is positive for all nonzero
ω.

(II) Furthermore, K (t) satisfies either
(a) K (t) ∈ L1(R); or
(b) K (t) ∼ t−1 as t → ∞; or
(c) there exists α ∈ (0, 1) such that K (t) ∼ t−α as t → ∞.

Weakly stationary operators generalize stationary distributions in the sense of [11,20].
The conceptual details can be found in “Appendix A”. We now make use of (weakly)
stationary operators to construct a weak solution for the system (1.2). The procedure
consists in reexpressing the system (1.2) in terms of operators as applied to test functions,
and then extracting (covariance) relations that will enter into the definition of a weak
solution. Since (1.2) is a linear Gaussian system, then such covariance relations fully
characterize the weak solution.

We begin by formally multiplying both sides the first equation of (1.2) by a test
function ϕ ∈ S. Then, after integration by parts, we obtain

−
∫

R

x(t)ϕ′(t)dt =
∫

R

v(t)ϕ(t)dt. (2.1)

Moreover, again by integration by parts,
∫

R

v′(t)ϕ(t)dt = −
∫

R

v(t)ϕ′(t)dt. (2.2)

Also, for K (t) as in (1.2) and for a test function ϕ ∈ S, let
K +(t) = K (t)1[0,∞)(t). (2.3)

Then, based on relations (2.1), (2.2) and (2.3), we can formally write

−m
∫

R

v(t)ϕ′(t)dt = −λ

∫

R

v(t)ϕ(t)dt − γ

∫

R

x(t)ϕ(t)dt

− β

∫

R

v(t)
∫

R

K +(s)ϕ(t + s)dsdt

+
√

βkBT
∫

R

F(t)ϕ(t)dt +
√
2λkBT

∫

R

ϕ(t)dW (t).

By grouping together terms in v and terms in x ,
∫

R

v(t)
( − mϕ′(t) + λϕ(t) + β(K + ∗ ϕ̃)(t)

)
dt +

∫

R

x(t)
(
γ ϕ(t)

)
dt

= √
βkBT

∫

R

F(t)ϕ(t)dt +
√
2λkBT

∫

R

ϕ(t)dW (t),
(2.4)
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where ϕ̃(t) := ϕ(−t).
So, let L2(
) be the space of squared integrable, complex–valued random variables.

Also let � = (X, V ) : Dom(�) ⊂ S ′ → L2(
)2 (i.e., d = 2) be a weakly stationary
operator as in Definition A.10. In the formal relation (2.1), we may interpret X and
V as operators acting on test functions ϕ ∈ S. In particular, the (Gaussian) operator
� = (X, V ) is fully characterized by its covariance structure, which we describe next.

First, note that (2.1) yields an intrinsic connection between the correlation structures
of X and V , namely,

E

[
〈X,−ϕ′

1〉〈X,−ϕ′
2〉

]
= E

[
〈V, ϕ1〉〈V, ϕ2〉

]
, ϕ1, ϕ2 ∈ S. (2.5)

In regard to the cross–correlation between X and V , again from the integral equation
(2.1) we obtain

E

[
〈X,−ϕ′

1〉〈X,−ϕ′
2〉

]
= E

[
〈X,−ϕ′

1〉〈V, ϕ2〉
]
. (2.6)

Moreover, on the right-hand side of (2.4), the functions F : S → L2(
) and Ẇ : S →
L2(
) are understood as stationary random distributions in the sense of Definition A.5.
Their autocorrelation functions are given by, respectively,

E

[
〈Ẇ , ϕ1〉〈Ẇ , ϕ2〉

]
=

∫

R

ϕ1(t)ϕ2(t)dt = 1

2π

∫

R

ϕ̂1(ω)ϕ̂2(ω)dω, (2.7)

and

E

[
〈F, ϕ1〉〈F, ϕ2〉

]
=

∫

R

K (t) (ϕ1 ∗ ϕ̃2) (t)dt = 1

2π

∫

R

2Kcos(ω)ϕ̂1(ω)ϕ̂2(ω)dω.

(2.8)

In (2.8), the last equality follows from the fact that 2Kcos is the Fourier transform of K
in the sense of distributions (cf. Lemma B.2). In other words, the spectral measure of
Ẇ as in Theorem A.6 is the Lebesgue measure, and that of K is π−1Kcos(ω)dω. Define
the operator

�(ϕ) = −mϕ′ + λϕ + β(K + ∗ ϕ̃). (2.9)

Then, we can conveniently recast (2.4) in the form

〈V, �(ϕ)〉 + 〈X, γ ϕ〉 = √
kBT 〈√βF +

√
2λẆ , ϕ〉, ϕ ∈ S. (2.10)

In particular, relation (2.10) can be used in characterizing the covariance structure of the
left-hand side of (2.10) in terms of the covariance structure of the noise terms F and Ẇ .
In other words, for ϕ1, ϕ2 ∈ S,

E

[(〈V, �(ϕ1)〉 + 〈X, γ ϕ1〉
)
(〈V, �(ϕ2)〉 + 〈X, γ ϕ2〉)

]

= kBT E

[
〈√βF +

√
2λẆ , ϕ1〉〈

√
βF +

√
2λẆ , ϕ2〉

]
. (2.11)

We now add the standard assumption that the two thermal forcing terms F and Ẇ
are uncorrelated.
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Assumption 2.2. Let Ẇ and F be the stationary randomdistributions as inDefinitionA.5
whose covariance functions are given by (2.7) and (2.8). F and Ẇ are uncorrelated, i.e.,
for all ϕ1, ϕ2 ∈ S,

E[〈Ẇ , ϕ1〉〈F, ϕ2〉] = 0.

In light of relations (2.5), (2.6), (2.11), as well as of Assumption 2.2, we are now in
a position to define weak solutions for (1.2).

Definition 2.3. Under Assumptions 2.1 and 2.2, let � = (X, V ) : Dom(�) ⊂ S ′ →
L2(
)2 be a stationary operator as in Definition A.10. Then � = (X, V ) is called a
weak stationary solution for Eq. (1.2) if the following conditions are satisfied.

(a) For all ϕ ∈ S, E|〈V, �(ϕ)〉|2 < ∞, where �(ϕ) is the transformation as in (2.9).
(b) For any ϕ1, ϕ2 ∈ S,

E

[
〈X,−ϕ′

1〉〈X,−ϕ′
2〉

]
= E

[
〈V, ϕ1〉〈V, ϕ2〉

]
= E

[
〈X,−ϕ′

1〉〈V, ϕ2〉
]
, (2.12)

and E

[(〈V, �(ϕ1)〉 + 〈X, γ ϕ1〉
)〈V, �(ϕ2)〉 + 〈X, γ ϕ2〉

]
(2.13)

= kBT E

[
〈√βF +

√
2λẆ , ϕ1〉〈

√
βF +

√
2λẆ , ϕ2〉

]

= kBT
(
E

[
β〈F, ϕ1〉〈F, ϕ2〉

]
+ E

[
2λ〈Ẇ , ϕ1〉〈Ẇ , ϕ2〉

])
.

In Sect. 4, we show that, for a weak stationary solution � = (X, V ) of (1.2), its
spectral densities can be computed explicitly, as pointed out in [22]. In other words, let

r11(ω) = 2λ + β K̂ (ω)
∣∣γ − mω2 + iω(λ + β K̂ +(ω))

∣∣2
, (2.14)

r22(ω) = ω2 r11(ω), (2.15)

and r12(ω) = r21(ω) = iω r11(ω). (2.16)

Then, by Lemma 4.1, there exists a unique stationary operator �, cf. Definition A.10,
associated with a 2 × 2 Hermitian positive definite matrix of measures ν such that

ν(dω) = kBT (2π)−1(ri j (ω)dω)1≤i, j≤2

for ri j as in (2.14), (2.15) or (2.16).
For results on equipartition of energy, as mentioned in the Introduction, we consider

kernels that are related to the so–namedclass of completelymonotonic functions, denoted
by CM. We recall their definition next.

Definition 2.4. A function K : (0,∞) → [0,∞) is called completely monotonic if
K ∈ C∞(0,∞) and (−1)nK (n)(t) ≥ 0 for all n ≥ 0, t > 0.

So, we make the following additional assumption on the memory kernels.

Assumption 2.5. Let K : R → R∪ {∞} be a real–valued function for t �= 0 and which
may be infinite at t = 0. We assume that either

(a) K ∈ CM; or
(b) K (t) = ϕ(t2), where ϕ ∈ CM.
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As briefly discussed in the Introduction, the former class includes exact power-law
and sum-of-exponential kernels as in (1.5) and (1.8), respectively, whereas the latter
class includes Gaussian and Cauchy kernels, namely, e−t2 and (t2 + 1)−α , respectively
[44–46]. Besides the broad scope of the CM class, dealing with completely monotonic
functions involves the technically convenient fact that they can be represented as Laplace
transforms of Radon measures on [0,∞) (cf. Theorem C.1). As a consequence, one is
able to express theFourier transformsof thememorykernels described inAssumption2.5
based on the Radon measures (cf. Lemmas C.2 and C.3). For this reason, we are able to
extend these transforms to the complex plane and calculate contour integrals involving
the completely monotonic functions in question.

3. Main Results

In this section, we state the main results of the paper. In Theorem 3.1, we establish
the existence of weakly stationary solutions for (1.2). In Theorem 3.3, we character-
ize the mean squared displacement of

∫ t
0 x(s)ds and

∫ t
0 v(s)ds for weak solutions of

(1.2). Starting from the broad class of completely monotonic kernels, in Theorems 3.4
and 3.5, respectively, we establish the equipartition relation in the GLE framework for
free particles or particles under a harmonic potential.

We start off with the existence of solutions.

Theorem 3.1. Under Assumptions 2.1 and 2.2, then � = (X, V ) is a weakly station-
ary solution of (1.2) as in Definition 2.3 if and only if the spectral measure ν(dω) =
kBT (2π)−1(ri j (ω)dω)1≤i, j≤2 is given by relations (2.14), (2.15) and (2.16).

The proof of Theorem 3.1 is discussed in detail in Sect. 4.1.

Remark 3.2. When γ = 0, Eq. (1.2) is reduced to (1.4), whose weak solution V :
Dom(V ) ⊂ S ′ → L2(
) is defined as satisfying a relation similar to (2.13), namely,

E

[
〈V, �(ϕ1)〉〈V, �(ϕ2)〉

]
= kBT

(
E

[
β〈F, ϕ1〉〈F, ϕ2〉

]
+ E

[
2λ〈Ẇ , ϕ1〉〈Ẇ , ϕ2〉

])
.

The existence of such V for Eq. (1.4) was previously studied in [7,29]. In particular, the
spectral measure of V is also given by r22 as in (2.15) with γ = 0.

Next, we turn to the topic of characterizing of the anomalously diffusive behavior of
solutions to (1.4). For this purpose, we consider the integrated bivariate process resulting
from the solutions encountered in Theorem 3.1. More precisely, in view of Lemma 4.1
(see Sect. 4.1) together with Remark A.13, since r11 and r22 are both integrable, we
can define the bivariate process (x(t), v(t)) associated with the weak stationary solution
(X, V ) as in Definition A.12. Namely, we set

x(t) := 〈X, δt 〉 and v(t) := 〈V, δt 〉, (3.1)

where δt is the Dirac δ distribution centered at t . Moreover, it can be shown that
(x(t), v(t)) is aR2–valued process and has a continuous modification (see Lemma 4.2).
It follows that wemay define the integrals

∫ t
0 x(s)ds and

∫ t
0 v(s)ds in the usual Riemann-

Lebesgue sense. Note that these integrals do agree with 〈X, 1[0,t]〉 and 〈V, 1[0,t]〉, re-
spectively (see Remark 4.3).

As explained in the Introduction, for the case of a free particle as in (1.4) (γ = 0), for
a large class of memory kernels the process v(t) may either be diffusive or subdiffusive
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[7,29] depending on the asymptotic decay of K (t) as t → ∞. In contrast, the process
x(t) defined in (3.1) may be either diffusive or superdiffusive. This is all precisely stated
in the following theorem.

Theorem 3.3. Let (x(t), v(t)) be the bivariate process associated with (X, V ) the weak
stationary solution of (1.2) as in Theorem 3.1. Then, under Assumptions 2.1 and 2.2,
the following holds.

(a) For all t ∈ R, E
[ ∫ t

0 x(s)ds
∫ t
0 v(s)ds

] = 0.

(b) As t → ∞, E
∣∣ ∫ t

0 v(s)ds
∣∣2 → 2E|x(0)|2.

(c) If K (t)

⎧
⎪⎨

⎪⎩

∈ L1(R),

∼ t−1, t→∞,

∼ t−α, α∈(0, 1), t→∞,

then E
∣∣ ∫ t

0 x(s)ds
∣∣2∼

⎧
⎪⎨

⎪⎩

t,
t log(t),
t2−α

as t→∞.

The claim in Theorem 3.3, (a), is not surprising in view of the fact that, for several
other GLE instances in stationarity, x(t) is uncorrelated with v(t) [12,37]. Also, the
appearance of x(0) in Theorem 3.3, (b), may be intuitively explained based on the
observation that v(t) can be regarded as the derivative of x(t). Thus, formally,

E

∣∣∣
∫ t

0
v(s)ds

∣∣∣
2 = E|x(t) − x(0)|2 ∼ 2E|x(0)|2, t → ∞,

where the asymptotic equivalence is a consequence of the fact that x(t) is Gaussian,
(weakly) stationary and mixing [39]. However, note that establishing the asymptotic
growth of E| ∫ t

0 x(s)ds|2 requires a careful characterization of the spectral density r11 in
terms of the asymptotics of K (t). The proof of Theorem 3.3 can be found in Sect. 4.2.

We now turn to equipartition of energy. First, we discuss the case γ = 0, namely, a
free particle as defined by Eq. (1.4). In what follows, we state the result for (1.4) under
kernels K either in the class CM or such that K (t) = ϕ(t2), ϕ ∈ CM. As discussed
in the Introduction, this generalizes the results in [16, Formula (2.7)] and [22, Theorem
4.1].

Theorem 3.4. Suppose that γ = 0 and that Assumptions 2.1, 2.2 and 2.5 are satisfied.
Let v(t) be the process associated with V , a weak solution for (1.4) in the sense of
Remark 3.2. Then,

E[m v(0)2] = kBT . (3.2)

The proof of Theorem 3.4 can be found in Sect. 4.3.1.
In the following theorem, we describe the analogous result for the case γ > 0,

namely, a harmonically bounded particle as defined by (1.2). Its proof is presented in
Sect. 4.3.2.

Theorem 3.5. Suppose that γ > 0 and that Assumptions 2.1, 2.2 and 2.5 are satisfied.
Let (x(t), v(t)) be the process associated with � = (X, V ), a weak solution for (1.2)
as in (3.1). Then,

E[γ x(0)2] = E[m v(0)2] = kBT .

4. Proofs of the Main Results

Throughout the rest of the paper, c denotes a generic positive constant. The main pa-
rameters that c depends on will appear between parenthesis, e.g., c(T, q) is a function
of T and q.
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4.1. Wellposedness. In this section, we provide the proof of Theorem 3.1 giving the
existence of weak solution for (1.2). We start with the following result, which asserts
that {ri j } is a spectral density of a weak stationary operator �.

Lemma 4.1. Let ν(dω) = kBT (2π)−1(ri j (ω)dω)1≤i, j≤2 where ri j is as in (2.14), (2.15)
or (2.16). Then, ν is the spectral measure of a stationary operator as in Definition A.10.

Proof. By symmetry, the Fourier transform K̂ of K satisfies K̂ = 2Kcos. Thus, we can
rewrite r11 in (2.14) as

r11(ω) = 2(λ + βKcos(ω))

|γ − mω2 + βωKsin(ω)|2 + ω2|λ + βKcos(ω)|2 . (4.1)

By Assumption 2.1 (I) (c),Kcos is positive. Hence, r11 is positive a.e., and so is r22(ω) =
ω2r11(ω). In view of (2.14)–(2.16), ν is a Hermitian nonnegative definite matrix a.e.

Next, we claim that both r11 and r22 are integrable. To see this, by symmetry again,
we only need to consider ω ∈ [0,∞). In addition, due to continuity, we only need to
check integrability at ω → ∞ and around the origin. On one hand, as ω → ∞, we
invoke (B.1) to conclude that Kcos(ω) and Ksin(ω) converge to zero. It follows that
r11(ω) is dominated by ω−4, which also implies that r22 is dominated by ω−2. This
proves integrability at infinity. On the other hand, when ω is near the origin, there are
three cases to be considered, depending on the behavior of K (t).
Case 1: K is integrable, cf. Assumption 2.1 (II) (a). By virtue of Lemma B.3 (a), it is
clear that

r11(ω) → 2λ

γ 2 and r22(ω) → 0, as ω → 0. (4.2)

Case 2: K ∼ t−1 as t → ∞, cf. Assumption 2.1 (II) (b). From (4.1), we have

r11(ω)

| log(ω)| = 2λ/| log(ω)| + 2βKcos(ω)/| log(ω)|
|γ − mω2 + βωKsin(ω)|2 + ω2|λ + βKcos(ω)|2 .

By (B.5),

r11(ω) ∼ | log(ω)| and r22(ω) → 0, as ω → 0. (4.3)

Case 3: For some α ∈ (0, 1), K ∼ t−α as t → ∞, cf. Assumption 2.1 (II) (c). Similarly
to Case 2, from (4.1), we obtain

r11(ω)

ωα−1 = 2λω1−α + 2βω1−αKcos(ω)

|γ − mω2 + βωKsin(ω)|2 + ω2|λ + βKcos(ω)|2 .

In view of (B.6),

r11(ω) ∼ ωα−1 and r22(ω) = ω2r11(ω) → 0, as ω → 0. (4.4)

In all three cases, both r11 and r22 are integrable near the origin. Since they are also
integrable at ∞, they are integrable on R, as claimed.

As a consequence, in view of (2.16), by the Cauchy-Schwarz inequality
∫

R

|r12(ω)|dω =
∫

R

|r21(ω)|dω ≤
( ∫

R

r11(ω)dω
)1/2( ∫

R

r22(ω)dω
)1/2

< ∞.
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It follows that kBT (2π)−1(ri j )1≤i, j≤2 satisfies inequality (A.5) with p = 0. By virtue
of Theorem A.6, this implies the existence of a unique stationary distribution G whose
spectral density is kBT (2π)−1(ri j ). Furthermore, since ν is absolutely continuous with
respect to the Lebesgue measure, there exists a unique weak stationary operator � :
Dom(�) ⊂ S ′ → L2(
)2 extending G as in Definition A.10. Thus, the proof is com-
plete. ��

Theorem 3.1 asserts that � is, indeed, a weak solution of (1.2). The argument is
based on that of [29, Theorem 4.5] tailored to our setting.

Proof of Theorem 3.1. (⇒) Let � = (X, V ) be a stationary operator associated with a
spectral measure ν(dω) = kBT (2π)−1(ri j (ω)dω)1≤i, j≤2. Suppose� is a weak solution
for (1.2). For ϕ ∈ S, consider �(ϕ) as in (2.9). Its Fourier transform in S ′ is given by

F [�(ϕ)] = F [−mϕ′ + λϕ + β(K + ∗ ϕ̃)
] = (imω + λ + β K̂ +) · ϕ̂. (4.5)

For any ϕ1, ϕ2 ∈ S, in view of (2.12) together with (A.3) for stationary operators, we
have

kBT

2π

∫

R

ω2ϕ̂1(ω)ϕ̂2(ω)r11(ω)dω = kBT

2π

∫

R

ϕ̂1(ω)ϕ̂2(ω)r22(ω)dω

= −i
kBT

2π

∫

R

ωϕ̂1(ω)ϕ̂2(ω)r12(ω)dω. (4.6)

Recall that the Fourier transform is an automorphism on S [47]. Hence, we can rewrite
(4.6) as

∫

R

ω2ϕ1(ω)ϕ2(ω)r11(ω)dω =
∫

R

ϕ1(ω)ϕ2(ω)r22(ω)dω

= −i
∫

R

ωϕ1(ω)ϕ2(ω)r12(ω)dω. (4.7)

Since (4.7) holds for any ϕ1, ϕ2 ∈ S, we conclude that, a.e.,
r22(ω) = ω2r11(ω), r12(ω) = iωr11(ω) and r21(ω) = −iωr11(ω). (4.8)

Note that, in (4.8), the last equality follows from the fact that ν is a Hermitian measure,
so that r21 = r12.

It remains to show that r11 is given by (2.14) or, equivalently, by (4.1). On one hand,
by (4.5), (4.8) and a simple calculation,

E

[(〈V, �(ϕ1)〉 + 〈X, γ ϕ1〉
)
(〈V, �(ϕ2)〉 + 〈X, γ ϕ2〉)

]

= kBT

2π

∫

R

∣∣γ − mω2 + iω(λ + β K̂ +(ω))
∣∣2ϕ̂1(ω)ϕ̂2(ω)r11(ω)dω.

On the other hand, together with (2.7) and (2.8), the zero correlation assumption between
F and Ẇ (see Assumption 2.2) implies that

kBT E

[
〈√βF +

√
2λẆ , ϕ1〉〈

√
βF +

√
2λẆ , ϕ2〉

]

= kBTβE
[
〈F, ϕ1〉〈F, ϕ2〉

]
+ 2kBTλE

[
〈Ẇ , ϕ1〉〈Ẇ , ϕ2〉

]

= kBT

2π

∫

R

(
2λ + β K̂ (ω)

)
ϕ̂1(ω)ϕ̂2(ω)dω.
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In view of relation (2.13), for all ϕ1, ϕ2 ∈ S we readily obtain
∫

R

∣∣γ − mω2 + iω(λ + β K̂ +(ω))
∣∣2ϕ̂1(ω)ϕ̂2(ω)r11(ω)dω

=
∫

R

(
2λ + β K̂ (ω)

)
ϕ̂1(ω)ϕ̂2(ω)dω.

It follows that (2.14) holds, namely,

r11(ω) = 2λ + β K̂ (ω)
∣∣γ − mω2 + iω(λ + β K̂ +(ω))

∣∣2
a.e.

(⇐) Suppose � = (X, V ) is the weakly stationary operator whose spectral density
is given by (2.14)–(2.16). We first check condition (a) in Definition 2.3. In fact, by (4.5),

E|〈V, �(ϕ)〉|2 = kBT

2π

∫

R

|imω + λ + β K̂ +(ω)|2|ϕ̂(ω)|2ω2r11(ω)dω. (4.9)

Similarly to the proof of Lemma 4.1, it suffices to consider the integrand in (4.9) as ω

tends to infinity and for ω around the origin. On one hand, since r11 ∼ ω−4 as ω → ∞,
it is clear that the integrand (4.9) is dominated by ϕ̂, which is integrable. On the other
hand, in view of Lemma B.3, |imω+λ+β K̂ +(ω)|2|ω2 tends to zero asω → 0. It follows
that, around the origin, the integrand is dominated by r11(ω), which is integrable (see
the proof of Lemma 4.1).

To verify condition (b) in Definition 2.3, one can adapt the calculation in part (a) so
as to arrive at (2.12) and (2.13). The proof is thus complete. ��
Lemma 4.2. Let (x(t), v(t)) = 〈�, δt 〉 be the stochastic process defined by (3.1). Then
(x(t), v(t)) is a well defined real stationary bivariate process. Moreover, (x(t), v(t))
has a continuous modification.

Proof. Establishing that the bivariate stochastic process (x(t), v(t)) is well defined is
equivalent to showing that δt ∈ Dom(�). In turn, the latter is equivalent to proving
that r11 and r22 are integrable, cf. Remark A.13, which is established in the proof of
Lemma 4.1. In addition, since r11 and r22 are even functions, x(t) and v(t) are, indeed,
real–valued (weakly) stationary processes [20].

Recall that, by [4, Chapter 9.3], if there exists a constant a > 3 such that
∫ ∞

0

[
log(1 + ω)

]a (
r11(ω) + r22(ω)

)
dω < ∞, (4.10)

then (x(t), v(t))has a continuousmodification. In fact, following theproof ofLemma4.1,
r11 and r22 are dominated by ω−4 and ω−2, respectively, as ω → ∞. Also, both func-
tions are integrable around the origin. As a consequence, (4.10) does hold for any a > 3.
Therefore, (x(t), v(t)) has a continuous modification, as claimed. ��
Remark 4.3. Since the bivariate, stationary stochastic process (x(t), v(t)) has a continu-
ousmodification, then we can define the integral

∫ t
0 (x(s), v(s))ds in the usual Riemann–

Lebesgue sense. However, integration over t may also be defined by means of the action
〈(X, V ), 1[0,t]〉. Moreover, it can be shown that, for all t ≥ 0,

E

[( ∫ t

0
(x(s), v(s))ds−〈(X, V ), 1[0,t]〉

)∗( ∫ t

0
(x(s), v(s))ds−〈(X, V ), 1[0,t]〉

)]
= 0.

This implies that, for every t ≥ 0, these two notions of integration agree a.s.
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4.2. Anomalous diffusion of (x(t), v(t)). In this section, we prove Theorem 3.3 on the
asymptotic behavior of

∫ t
0 (x(s), v(s))ds. While the result for E| ∫ t

0 v(s)ds|2 and the
cross–covariance between x(t) and v(t) are relatively straightforward, the asymptotics
of E| ∫ t

0 x(s)ds|2 requires a more careful analysis depending on three cases of K as in
Assumption 2.1 (II). The approach that we are going to employ is similar to those in
[7, Section 5] and [29, Section 6]. For the reader’s convenience, we first summarize the
method to characterize the growth rate of E| ∫ t

0 x(s)ds|2.
Step 1: we relate the large (time) scale behavior of the memory K to the behavior of
Kcos(ω) and Ksin(ω) as ω → 0. This result appears in Lemma B.3.
Step 2: similarly to the proof of Lemma 4.1, we obtain the near–zero behavior of
the spectral densities r11(ω), the spectral density for x(t) as in (2.14), through that of
Kcos(ω) and Ksin(ω) as ω → 0;
Step 3: the behavior of r11(ω) as ω → 0 and the Dominated Convergence Theorem are
used to characterize the asymptotic growth of E

∣∣ ∫ t
0 x(s)ds

∣∣2.

Proof of Theorem 3.3. (a) Recall that r12 = iωr11(ω) by relation (2.16). By (A.3) for
the operator �,

E

[ ∫ t

0
x(s)ds

∫ t

0
v(y)dy

]
=

∫ t

0

∫ t

0
E

[〈X, δs〉〈V, δy〉
]
dsdy

= kBT

2π

∫ t

0

∫ t

0

∫

R

e−i(s−y)ωr12(ω)dωdsdy

= kBT

2π

∫ t

0

∫ t

0

∫

R

e−i(s−y)ωiωr11(ω)dωdsdy

= kBT

2π

∫

R

∣∣∣
eitω − 1

ω

∣∣∣
2
iωr11(ω)dω = 0. (4.11)

The last equality in (4.11) is a consequence of the fact that the integrand is an odd
function. This establishes (a).

(b) Similarly to part (a), we compute the second moment of
∫ t
0 v(s)ds using formula

r22 = ω2r11 as in (2.15) and covariance function (A.3) for �. In fact,

E

∣∣∣
∫ t

0
v(s)ds

∣∣∣
2 =

∫ t

0

∫ t

0
E

[〈V, δs〉〈V, δy〉
]
dsdy

= kBT

2π

∫ t

0

∫ t

0

∫

R

e−i(s−y)ωω2r11(ω)dωdsdy

= kBT

2π

∫

R

2(1 − cos(tω))r11(ω)dω

= 2E|x(0)|2 − kBT

π

∫

R

cos(tω)r11(ω)dω.

Since r11 is integrable by virtue of the proof of Lemma 4.1, its Fourier cosine transform
converges to zero as t tends to infinity. This establishes part (b).

(c) As in the proofs of parts (a) and (b), note that the second moment of
∫ t
0 x(s)ds

can be written explicitly as

E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = 2kBT

π

∫ ∞

0

1 − cos(tω)

ω2 r11(ω)dω, (4.12)
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where r11 is the even function given by (4.1). Now, there are three situations depending
on the asymptotic behavior of K as characterized in Assumption 2.1 (II).
Case 1: K is integrable (Assumption 2.1 (II) (a)). By a change of variable u := tω
in (4.12), we obtain

E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = t

2kBT

π

∫ ∞

0

1 − cos(u)

u2
r11

(u
t

)
du. (4.13)

Similarly to the proof of Lemma 4.1, on one hand, as ω tends to infinity, r11 converges
to zero. On the other hand, by virtue of relation (4.2), r11(ω) converges to 2λ/γ 2 as
ω → 0. In other words, r11 is bounded on [0,∞). As a consequence, by the Dominated
Convergence Theorem, we arrive at the limit

1

t
E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = 2kBT

π

∫ ∞

0

1 − cos(u)

u2
r11

( z
t

)
dz → 4kBTλ

πγ 2

∫ ∞

0

1 − cos(u)

u2
du,

as t → ∞.
Case 2: K ∼ t−1 as t → ∞ (Assumption 2.1 (II) (b)). In this situation, r11(ω) ∼
| log(ω)| as ω → 0 (see (B.5)). In particular, supω∈(0,1/2) r11(ω)/| log(ω)| is finite.

Starting from (4.13), recast

π

2kBT t log(t)
E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = 1

log(t)

∫ ∞

0

1 − cos(u)

u2
r11

(u
t

)
du. (4.14)

We want to show that the right-hand side of (4.14) converges to a finite limit as t → ∞.
To this end, we first decompose the integral into three terms, i.e.,

1

log(t)

∫ ∞

0

1 − cos(u)

u2
r11

(u
t

)
du

= 1

log(t)

{ ∫ e−2

0
+

∫ t/2

e−2
+

∫ ∞

t/2

}1 − cos(u)

u2
r11

(u
t

)
du

= I1(t) + I2(t) + I3(t).

With regard to I3, recall from the proof of Lemma 4.1 that r11(ω) ∼ ω−4 as ω → ∞.
Then,

0 ≤ I3(t) = 1

log(t)

∫ ∞

t/2

1 − cos(u)

u2
r11

(u
t

)
du

≤ 1

log(t)

∫ ∞

t/2

1 − cos(u)

u2
du · sup

ω≥1/2
r11(ω) (4.15)

≤ C

t log(t)
→ 0, t → ∞. (4.16)

Concerning I1(t), rewrite

I1(t) = 1

log(t)

∫ e−2

0

1 − cos(u)

u2
r11

(u
t

)
du

=
∫ e−2

0

1 − cos(u)

u2
· log(t/u)

log(t)
· r11(u/t)

| log(u/t)|du.
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Note that, for sufficiently large t and for all u ∈ (0, e−2),

log(t/u)

log(t)
≤ | log(u)|.

Together with (4.3), this implies that

log(t/u)

log(t)
· r11(u/t)

| log(u/t)| ≤ | log(u)| sup
0<ω<1/2

r11(ω)

| log(ω)| .

It follows from Lemma B.3, (b), combined with the Dominated Convergence Theorem,
that

lim
t→∞ I1(t) =

∫ e−2

0

1 − cos(u)

u2
du · lim

ω→0

r11(ω)

| log(ω)| ∈ (0,∞). (4.17)

Regarding I2(t), similarly to I1(t), we note that, for all u ∈ (e−2, t/2),

log(t/u)

log(t)
≤ log(t) + 2

log(t)
< 2.

So,

log(t/u)

log(t)
· r11(u/t)

| log(u/t)| ≤ 2 sup
0<ω<1/2

r11(ω)

| log(ω)| .

In light of the Dominated Convergence Theorem together with Lemma B.3, (b), we
obtain

lim
t→∞ I2(t) =

∫ ∞

e−2

1 − cos(u)

u2
du · lim

ω→0

r11(ω)

| log(ω)| ∈ (0,∞). (4.18)

The asymptotic expression for E
∣∣∣
∫ t
0 x(s)ds

∣∣∣
2
now follows from (4.14), (4.15), (4.17)

and (4.18).
Case 3: For some α ∈ (0, 1), K ∼ t−α as t → ∞ (Assumption 2.1 (II) (c)). Note that
(4.13) may be rewritten as

1

t2−α
E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = 2kBT

π

∫ ∞

0

1 − cos(u)

u3−α
· r11(u/t)

(u/t)α−1 du.

On one hand, for large ω, r11(ω) ≤ Cω−4. Thus, r11(ω)/ωα−1 → 0 as ω → ∞. On
the other hand, as ω → 0, relation (4.4) implies that r11(ω)/ωα−1 has a finite limit.
In particular, this also implies that r11(ω)/ωα−1 is bounded on (0,∞). In light of the
Dominated Convergence Theorem together with (4.4), we obtain

1

t2−α
E

∣∣∣
∫ t

0
x(s)ds

∣∣∣
2 = 2

π

∫ ∞

0

1 − cos(u)

u3−α
· r11(u/t)

(u/t)α−1 du → c ∈ (0,∞),

as t → ∞. This completes the proof. ��
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4.3. Equipartition of Energy. In what follows, we provide the proofs of Theorems 3.4
and 3.5. So, let

C
+ = {u + iv : u ∈ R, v ≥ 0} and C

− = {u + iv : u ∈ R, v ≤ 0}
be the upper half and lower half complex plane, respectively. Also, let

C
∗ = {z : �(z) ≤ 0}

be the left half plane of nonpositive real part in C.

4.3.1. Free-particle case (γ = 0) In this subsection, we consider the case of a free
particle as in Eq. (1.4). Our approach builds upon the work in [16,22].

We introduce f1(z), the complex–valued function given by

f1(z) = 1

λ + β(Kcos(z) − iKsin(z)) + imz
. (4.19)

The function f1(z) is closely related to the expressions for spectral densities r22 and r11,
respectively, as in (2.15) and (4.1), and will be used in the proof of Lemma 4.4 (see also
(4.42) in the proof of Lemma 4.5).

Remark 4.4. Note that, whereas Kcos(ω) and Ksin(ω) are well-defined for ω ∈ R \ {0}
(see Lemmas C.2 and C.3),Kcos(z) andKsin(z) need not be for every z ∈ C\{0}. Hence,
in formula (4.19),Kcos(z)−iKsin(z) is understood as the integrals in either (C.2) or (C.6)
extended to C, depending on either K ∈ CM or K = ϕ(t2), ϕ ∈ CM, respectively.
Later in the proof of Theorem 3.4, we will see thatKcos(z)− iKsin(z) is actually analytic
on suitable subspaces of C.

For a large constant R > 0, define, respectively, the outer circle and inner half circle
in C+ as

C+
R = {Reiθ : 0 ≤ θ ≤ π} and C+

1/R = {eiθ /R : 0 ≤ θ ≤ π}. (4.20)

Further define their counterparts in C
− as

C−
R = {Reiθ : −π ≤ θ ≤ 0} and C−

1/R = {eiθ /R : −π ≤ θ ≤ 0}. (4.21)

Also, let

C(R) = [−R,−1/R] ∪ C−
1/R ∪ [1/R, R] ∪ C−

R (4.22)

be a closed curve in C−, oriented clockwise.
Before discussing the proof of Theorem 3.4, it is illuminating to recapitulate some

technical aspects of previous work. In [16], establishing (1.6) for the case of generalized
Rouse kernels involved considering a complex–valued function similar to f1 as in (4.19)
and its contour integrals on the upper half plane C+. The argument relies heavily on a
careful analysis of the locations of the poles of the functions involved. In turn, in [22],
establishing (1.6) for the class ofmemorykernels (1.5) involved employing an integration
trick via a smart change of variables.

Nevertheless, neither approach is available in the more general framework of this
paper, which involves memory kernels that either are in CM or which have the form
ϕ(t2) for ϕ ∈ CM. As in [16], we investigate contour integrals of f1(z) as in (4.19).
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However, we shift the analysis to the lower half complex plane C
−. As it turns out,

unlike in [16], dealing with poles is not needed when K ∈ CM since, in this case, the
function f1(z) is analytic in C− \ {0}.

For the reader’s convenience, we summarize the idea of the proof of Theorem 3.4.
The argument essentially consists of three steps as follows.

Step 1: We first consider f1(z) as in (4.19) and show that this function is analytic
on C

− \ {0}. This is established via the auxiliary results Lemma 4.6 and Lemma 4.7,
respectively, for the cases K ∈ CM and K (t) = ϕ(t2), ϕ ∈ CM.

Step 2: Next, we consider the contour integral on C
− \ {0} given by

∫

C(R)

f1(z)dz =
{ ∫ −1/R

−R
+

∫

C−
1/R

+
∫ R

1/R
+

∫

C−
R

}
f1(z)dz = 0. (4.23)

In (4.23), the second equality holds by the analyticity of f1(z), as established in step
1. Then, we show that, as R → ∞, the sum of the first and third integrals in (4.23)
converges to E[m v(0)2], whereas the sum of the two remaining integrals converges to
−kBT . This establishes equipartition of energy for v(t). This is discussed in detail in the
proof of another auxiliary result, namely, Lemma 4.5, which states sufficient conditions
on f1, Kcos and Ksin for equipartition of energy to hold for the system (1.4).

Step 3: We prove Theorem 3.4 by verifying the assumptions of Lemma 4.5, while mak-
ing use of Lemma 4.6 and Lemma 4.7 depending onwhether K ∈ CM or K (t) = ϕ(t2),
ϕ ∈ CM , respectively.

For the sake of clarity, the proofs of Lemmas 4.5–4.7 will be deferred to the end of
this section. We start by stating Lemma 4.5, where equipartition of energy is established
directly based on assumptions on f1, Kcos and Ksin.

Lemma 4.5. Suppose that γ = 0. Let v(t) be the process associated with the weak
solution V of (1.4) and f1(z) be as in (4.19). Suppose that

lim
|z|→∞, z∈C−

|Kcos(z) − iKsin(z)|
|z| = 0, (4.24)

and

lim
|z|→0, z∈C− |z f1(z)| = 0. (4.25)

Furthermore, suppose that, for all large enough R > 0,
∫

C(R)

f1(z)dz = 0, (4.26)

where C(R) is the curve (4.22). Then,

E[m v(0)2] = kBT . (4.27)

Next, we state Lemma 4.6, which is employed in showing that f1 as in (4.19) is
analytic on C− \ {0} when K ∈ CM.
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Lemma 4.6. Let μ be the representation measure on [0,∞) for K ∈ CM as in Theo-
rem C.1. Let p(z) and q1(z) be the complex–valued functions defined on C

∗ \ {0} and
given by

p(z) =
∫ ∞

0

1

z − x
μ(dx) and q1(z) = λ − mz − βp(z). (4.28)

(a) Then, the function p(z) is analytic onC∗ \{0}. Moreover, for z ∈ C
∗ \{0}, it satisfies

lim|z|→∞ |p(z)/z| = 0 = lim|z|→0
|z · p(z)|, (4.29)

and, for |z| ≤ 1 in C∗ \ {0}

|λ − βp(z)| ≥ β√
2

∫ ∞

0

1

x + 1
μ(dx). (4.30)

(b) The function q1(z) in (4.28) is analytic in C
∗ \ {0} and q1(z) does not admit any

complex root in C∗ \ {0}.
In Lemma 4.7, covering the case where K = ϕ(t2), ϕ ∈ CM, the analysis involves

the special class of error functions. For the reader’s convenience, we briefly recapitulate
some related notions.

Recall that the so–named complementary error function is given by

erfc(z) := 2√
π

∫ ∞

z
e−t2dt = 1 − erf(z), z ∈ C, (4.31)

where the error function admits the MacLaurin series representation

erf(z) := 2√
π

∫ z

0
e−t2dt = 2√

π

∞∑

n=0

(−1)nz2n+1

n!(2n + 1)
, z ∈ C. (4.32)

In particular, both erf and erfc are entire functions. Now consider the function

w(z) = e−z2erfc(−iz), z ∈ C, (4.33)

also called Faddeeva function or plasma dispersion function. The function w(z) also
admits the Hilbert transform representation [9, expression (8)]

w(z) = i
π

∫

R

e−t2

z − t
dt, �(z) > 0. (4.34)

When z = x ∈ R, (4.34) should be modified to

w(x) = e−x2 +
2i√
π
daw(x), (4.35)

where the so–named Dawson integral is given by [50, pp. 1497–1498]

daw(z) = e−z2
∫ z

0
et

2
dt, z ∈ C. (4.36)

Having introduced these special functions, we are now in a position to state Lemma 4.7,
which is employed in showing that f1 as in (4.19) is analytic inC−\{0}when K = ϕ(t2),
ϕ ∈ CM.
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Lemma 4.7. Suppose K (t) = ϕ(t2) where ϕ ∈ CM. Let μ be the representation mea-
sure on [0,∞) for ϕ as in Theorem C.1. Let p̃(z) and q̃1(z) be the complex–valued
functions defined on C

− \ {0} and given by

p̃(z) =
√

π

2

∫ ∞

0

1√
x
w

(
− z

2
√
x

)
μ(dx) and q̃1(z) = λ + imz + β p̃(z). (4.37)

(a) Then, the function p̃(z) is analytic onC−\{0}. Moreover, for z ∈ C
−\{0}, it satisfies

lim|z|→∞ | p̃(z)/z| = 0 = lim|z|→0
|z · p̃(z)|, (4.38)

and, for |z| ≤ 1 in C− \ {0}

|λ + β p̃(z)| ≥ β

√
π

4

∫ ∞

0

1√
x
e− 1

2x μ(dx). (4.39)

(b) The function q̃1(z) in (4.37) is analytic in C
− \ {0} and q̃1(z) does not admit any

complex root in C− \ {0}.
After stating Lemmas 4.5–4.7, we provide the proof of Theorem 3.4.

Proof of Theorem 3.4. We first consider the case where K ∈ CM. The proof is based
on verifying the assumptions of Lemma 4.5, while making use of Lemma 4.6.

With regard to condition (4.24), note that, by virtue of formula (C.2) extended to
C

− \ {0},

Kcos(z) − iKsin(z) =
∫ ∞

0

x − iz
x2 + z2

μ(dx) = −
∫ ∞

0

1

−iz − x
μ(dx) = −p(−iz),

where p(x) is as in (4.28). Also, since z ∈ C
− \ {0}, it is clear that −iz ∈ C

∗ \ {0}. In
light of Lemma 4.6, (a), cf. (4.29), we conclude that (4.24) holds.

Turning to the limit (4.25), first recall that q1(z) is given by (4.28). Next, let f1(z)
be as in (4.19). Recast

f1(z) = 1

λ + β
∫ ∞
0

1
iz+x μ(dx) + imz

= 1

λ − βp(−iz) − m(−iz)
= 1

q1(−iz)
. (4.40)

Then, for z ∈ C
− \ {0} such that |z| is small enough, relation (4.30) in Lemma 4.6, (a),

implies that

|z f1(z)| ≤ |z|
|λ − βp(−iz)| − m|z| ≤ |z|

β√
2

∫ ∞
0

1
x+1μ(dx) − m|z| . (4.41)

Since the upper bound in (4.41) converges to zero as |z| → 0 inC− \{0}, then condition
(4.25) holds.

However, by Lemma 4.6, (b), q1(−iz) is analytic as a function of z ∈ C
− \ {0} and,

also, does not admit any complex root in the same domain. Therefore, by expression
(4.40), f1(z) is analytic in C− \ {0}. In particular, condition (4.26) holds. Consequently,
by Lemma 4.5, relation (3.2) is established.

We now turn to the case K (t) = ϕ(t2) where, ϕ ∈ CM. Similarly to the previous
case, we need to verify the assumptions of Lemma 4.5 while making use of the auxiliary
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results in Lemma 4.7. Concerning limit (4.24), in view of expressions (C.6) and (4.37),
we immediately obtain for z ∈ C

− \ {0}
|Kcos(z) − iKsin(z)|

|z| = | p̃(z)|
|z| → 0, |z| → ∞,

by virtue of Lemma 4.7, (a), cf. (4.38).
Considering the limit (4.25), first recall that p̃(z) and q̃1(z) are given by (4.37). Next,

observe that f1(z) as in (4.19) can be rewritten as

f1(z) = 1

q̃1(z)
= 1

λ + β p̃(z) + imz
.

In light of the estimate (4.39), for z ∈ C
− \ {0} and sufficiently small |z|, we obtain

|z f1(z)| ≤ |z|
|λ + β p̃(z)| − m|z| ≤ |z|

β
√

π

4

∫ ∞
0

1√
x
e− 1

2x μ(dx) − m|z|
→ 0, |z| → 0.

This establishes (4.25).
In regard to condition (4.26), fix R > 0. By virtue of Lemma 4.7, (b), since q̃1(z) is

analytic and does not admit any root in C
− \ {0}, then there exists a simply connected

region D ⊇ C(R) such that q̃1(z) �= 0, for all z ∈ D. Hence, f1(z) = 1/q̃1(z) is analytic
on D, implying that condition (4.26) holds.

As a consequence, by Lemma 4.5, relation (3.2) is established. This concludes the
proof. ��

We now turn to the proofs of the auxiliary results. First, we provide the proof of
Lemma 4.5.

Proof of Lemma 4.5. Recall that the spectral density r22 for v(t) is given by (2.15)
and (4.1). Together with the covariance function (A.3) and based on the condition that
γ = 0, we have

E[v(0)2] = kBT

π

∫ ∞

0
r22(ω)dω = kBT

π

∫ ∞

0

2
(
λ + βKcos(ω)

)

|mω − βKsin(ω)|2 + |λ + βKcos(ω))|2 dω.

(4.42)

It therefore suffices to prove that
∫ ∞
0 r22(ω)dω = πm−1.

Now, consider the contour integral of the function f1 as in (4.19) on C(R). Note that
we may decompose

∫

C(R)

f1(z)dz =
{ ∫ −1/R

−R
+

∫

C−
1/R

+
∫ R

1/R
+

∫

C−
R

}
f1(z)dz

= I1(R) + I2(R) + I3(R) + I4(R),

where we recall thatC−
R andC−

1/R , respectively, are the outer and inner half circles inC
−

as in (4.21). Using the variable ω for integration along the real axis, it is straightforward
to see that

I3(R) =
∫ R

1/R

dω

λ + βKcos(ω) + i(mω − βKsin(ω))
.
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Concerning I1(R), note that Kcos(ω) and Ksin(ω) are even and odd functions, respec-
tively. Thus, by a change of variable z := −ω, we obtain

I1(R) =
∫ 1/R

R

−dω

λ + βKcos(−ω) + i(m(−ω) − βKsin(−ω))

=
∫ R

1/R

dω

λ + βKcos(ω) − i(mω − βKsin(ω))
.

It follows immediately that

I1(R) + I3(R) =
∫ R

1/R

2
(
λ + βKcos(ω)

)

|mω − βKsin(ω)|2 + |λ + βKcos(ω))|2 dω.

By the Monotone Convergence Theorem, we obtain

I1(R) + I3(R) →
∫ ∞

0
r22(ω)dω, as R → ∞. (4.43)

Concerning I2(R), by making the change of variable z := R−1eiθ , we can write

I2(R) =
∫ 0

−π

R−1eiθ idθ

λ + β
[Kcos(R−1eiθ ) − iKsin(R−1eiθ )

]
+ imR−1eiθ

=
∫ 0

−π

R−1eiθ f1(R
−1eiθ )idθ.

Then, by virtue of the Dominated Convergence Theorem together with (4.25),

lim
R→∞ I2(R) = 0. (4.44)

Likewise, with regards to I4(R), by the change of variable z := Reiθ ,

I4(R) =
∫ −π

0

idθ

λR−1e−iθ + βR−1e−iθ
[Kcos(Reiθ ) − iKsin(Reiθ )

]
+ im

. (4.45)

In view of condition (4.24), the integrand in (4.45) converges to m−1 as R → ∞. By
the Dominated Convergence Theorem, we further obtain

I4(R) → −πm−1, as R → ∞. (4.46)

Together with the limits (4.44), (4.43) and (4.46), expression (4.26) yields the limit

0 = lim
R→∞

∫

C(R)

f (z)dz =
∫ ∞

0
r22(ω)dω − πm−1. (4.47)

Hence,
∫ ∞

0
r22(ω)dω = πm−1.

This establishes (4.27).��
Next, we provide the proof of Lemma 4.6.
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Proof of Lemma 4.6. (a) Firstly, with regards to analyticity, letting z0 ∈ C
∗ \ {0}, it

suffices to show that p(z) as in (4.28) can be expanded for all z ∈ B(z0, |z0|/2). To see
this, we compute

∫ ∞

0

1

z − x
μ(dx) =

∫ ∞

0

1

(z0 − x)
( z−z0
z0−x + 1

)μ(dx)

=
∑

n≥0

∫ ∞

0

(−1)n

(z0 − x)n+1
μ(dx) · (z − z0)

n, (4.48)

where the second equality is obtained by interchanging integration and summation. To
justify this interchange, we claim that the series in (4.48) converges absolutely for all
z ∈ B(z0, |z0|/2). Indeed, by writing z0 = −u + iv ∈ C

∗ \ {0}, with u ≥ 0, for all x ≥ 0
we can bound

|z0 − x | = | − (x + u) + iv| ≥ max{|z0|, x}. (4.49)

Thus, we can estimate

∣∣∣
∫ ∞

0

(−1)n

(z0 − x)n+1
μ(dx) · (z − z0)

n
∣∣∣ ≤

∫ ∞

0

1

| − (x + u) + iv|n+1μ(dx)
|z0|n
2n

=
{ ∫ 1

0
+

∫ ∞

1

} 1

| − (x + u) + iv|n+1μ(dx)
|z0|n
2n

≤ 1

2n|z0|
∫ 1

0
μ(dx) +

1

2n

∫ ∞

1

1

x
μ(dx).

This implies that

∑

n≥0

∣∣∣
∫ ∞

0

(−1)n

(z0 − x)n+1
μ(dx) · (z − z0)

n
∣∣∣ ≤ 1

|z0|μ([0, 1]) +
∫ ∞

1

1

x
μ(dx) < ∞,

where the last implication follows from the fact that μ([0, 1]) and ∫ ∞
1

1
x μ(dx) are both

finite by virtue of (C.3)-(C.4). This establishes the analyticity of p(z).
Next, we turn to (4.29). On one hand, by (4.49),

|p(z)| ≤ 1

|z|
∫ 1

0
μ(dx) +

∫ ∞

1

1

x
μ(dx),

implying that lim|z|→∞ |p(z)/z| = 0. On the other hand, the bound (4.49) (with z ∈
C

∗\{0} in place of z0) implies that

∫ ∞

0

|z|
|z − x |μ(dx) ≤

∫ 1

0

|z|
|z − x |μ(dx) +

∫ ∞

1

|z|
x

μ(dx). (4.50)

Since
∫ ∞
1 x−1μ(dx) < ∞, cf. (C.4), the second term on the right-hand side of (4.50)

converges to zero as |z| → 0. Also, by virtue of (4.49), the integrand in the first term on
the right-hand side of (4.50) is bounded uniformly in x . By the Dominated Convergence
Theorem, this implies that its limit is also zero. Therefore, lim|z|→0 |z · p(z)| = 0, as
claimed. This establishes (4.29).
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In regard to (4.30), let z = −u + iv ∈ C
∗ \ {0}, u ≥ 0, such that |z| ≤ 1. Then, for

any x, u, |v| ≥ 0, we claim that

x + u + |v|
(x + u)2 + v2

≥ 1

x + 1
.

Indeed, by multiplying through the denominators, the above inequality is equivalent to

x2 + xu + x |v| + x + u + |v| ≥ x2 + 2xu + u2 + v2,

i.e.,

x |v| + x + u + |v| ≥ xu + u2 + v2. (4.51)

However, inequality (4.51) always holds, since u, |v| ∈ [0, 1] and x ≥ 0.
Therefore, by the elementary inequality

√
2(a2 + b2) ≥ |a| + |b|,

|λ − βp(z)| =
∣∣∣λ + β

∫ ∞

0

u + x

(u + x)2 + v2
μ(dx) + iβ

∫ ∞

0

v

(u + x)2 + v2
μ(dx)

∣∣∣

≥ 1√
2

(
λ + β

∫ ∞

0

u + x + |v|
(u + x)2 + v2

μ(dx)
)

≥ β√
2

∫ ∞

0

1

x + 1
μ(dx).

This establishes (a).
(b) Since p(z) is analytic, then so is q1(z). To show that q1(z) does not admit any root

inC∗ \ {0}, suppose, by means of contradiction, that, for some z0 := −u + iv ∈ C
∗ \ {0},

q1(z0) = 0. In particular, u ≥ 0, v ∈ R. A simple calculation yields

0 = �(
q1(z0)

) = λ + mu + β

∫ ∞

0

u + x

(u + x)2 + v2
μ(dx) > 0,

a contradiction. This shows (b). ��
We finish this subsection by presenting the proof of Lemma 4.7.

Proof of Lemma 4.7. (a) Similarly to the proof of Lemma 4.6, fixing z0 ∈ C
− \ {0}, we

want to show p̃(z) can be expanded in a neighborhood of z0. To see this, we first choose
an open disk B(z0, ε) centered at z0 with radius ε such that

B(z0, ε) ⊂
{
Reiθ : −9π

8
< θ <

π

8
, R > 0

}
. (4.52)

For each x > 0, let wx (z) = w
( − z

2
√
x

)
. Since w(z) is entire, then so is wx (z). In light

of Cauchy’s integral formula, for all z1 ∈ B(z0, ε), we can write

wx (z1) = 1

2π i

∑

n≥0

∫

∂B(z0,ε)

1

(z − z0)n+1
wx (z)dz · (z1 − z0)

n

= 1

2π i

∑

n≥0

∫

∂B(z0,ε)

1

(z − z0)n+1
w

(
− z

2
√
x

)
dz · (z1 − z0)

n .
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Recall that p̃(z) is given by (4.37). Then,

2√
π
p̃(z1) =

∫ ∞

0

1√
x
wx (z1)μ(dx)

= 1

2π i

∫ ∞

0

1√
x

[∑

n≥0

∫

∂B(z0,ε)

1

(z − z0)n+1
w

(
− z

2
√
x

)
dz · (z1 − z0)

n
]
μ(dx)

= 1

2π i

∑

n≥0

[ ∫ ∞

0

1√
x

∫

∂B(z0,ε)

1

(z − z0)n+1
w

(
− z

2
√
x

)
dz μ(dx)

]
· (z1 − z0)

n

= 1

2π i

∑

n≥0

In · (z1 − z0)
n . (4.53)

In the third equality, we formally interchanged the order of integration with respect to
μ(dx) and the summation. To justify this step, it suffices to show that the series in (4.53)
converges absolutely for all z1 ∈ B(z0, ε). In fact, considering In ,

|In| ≤ c
∫ ∞

0

1√
x

sup
z∈∂B(z0,ε)

∣∣∣w
(
− z

2
√
x

)∣∣∣μ(dx) · 1

εn

= c
{ ∫ 1

0
+

∫ ∞

1

} 1√
x

sup
z∈∂B(z0,ε)

∣∣∣w
(
− z

2
√
x

)∣∣∣μ(dx) · 1

εn
, (4.54)

where c = c(z0, ε) is a positive constant independent of n. We now bound the integrals
with respect toμ on the right-hand side of (4.54). On one hand, we invoke (C.8) together
with the fact that w(z) is entire to bound

∫ ∞

1

1√
x

sup
z∈∂B(z0,ε)

∣∣∣w
(
− z

2
√
x

)∣∣∣μ(dx) ≤
∫ ∞

1

1√
x
μ(dx) · sup

z∈B(0,|z0|+ε)

|w(z)| < ∞.

(4.55)

On the other hand, by the choice of B(z0, ε) as in (4.52), for all z ∈ B(z0, ε) and
x ∈ (0, 1),

− z

2
√
x

∈
{
Reiθ : −π

8
< θ <

9π

8

}
.

In view of Lemma C.4, cf. (C.15), namely, |w(z)| ≤ c/|z|, we have the bound
∫ 1

0

1√
x

sup
z∈∂B(z0,ε)

∣∣∣w
(
− z

2
√
x

)∣∣∣μ(dx) ≤ cμ([0, 1]). (4.56)

By (4.55) and (4.56), we conclude that there exists a constant c = c(z0, ε) > 0, inde-
pendent of n, such that

|In| ≤ c ε−n . (4.57)

Recall that z1 ∈ B(z0, ε). Relation (4.57) implies that

∑

n≥0

|In| · |z1 − z0|n ≤ c
∑

n≥0

∣∣∣
z1 − z0

ε

∣∣∣
n

< ∞.
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This establishes the analyticity of p̃(z0) for all z0 ∈ C
− \ {0}.

Next, we turn to the limits (4.38). To show that

lim|z|→∞ | p̃(z)/z| = 0, (4.58)

first recast

2√
π

· p̃(z)

z
= 1

z

{ ∫ 1

0
+

∫ |z|2

1
+

∫ ∞

|z|2

} 1√
x
w

(
− z

2
√
x

)
μ(dx) = I1(z) + I2(z) + I3(z).

Now, to bound I3, consider z ∈ C
− \ {0} such that |z| > 1. Then, we can invoke (C.8)

to conclude that

|I3(z)| ≤ 1

|z|
∫ ∞

1

1√
x
μ(dx) · sup

z1∈B(0,1/2)
|w(z1)| → 0 (4.59)

as |z| → ∞ in C− \ {0}. With regard to I2, by combining (C.8) with (C.15), we obtain

|I2(z)| ≤ c

|z|2
∫ |z|2

1
μ(dx) ≤ c

|z|
∫ |z|2

1

1√
x
μ(dx) → 0, |z| → ∞. (4.60)

Likewise,

|I1(z)| ≤ c

|z|2μ([0, 1]) → 0, |z| → ∞. (4.61)

Relation (4.58) is now a consequence of (4.59), (4.60) and (4.61).
We now show that

lim|z|→0
|z · p̃(z)| = 0. (4.62)

Similarly to the argument for (4.58), for |z| < 1 we write

2√
π

z p̃(z) = z
{ ∫ |z|2

0
+

∫ |z|

|z|2
+

∫ 1

|z|
+

∫ ∞

1

} 1√
x
w

(
− z

2
√
x

)
μ(dx)

= I4(z) + I5(z) + I6(z) + I7(z).

By (C.8),

|I7(z)| ≤ |z|
∫ ∞

1

1√
x
μ(dx) · sup

z1∈B(0,1)
|w(z1)| → 0, |z| → 0. (4.63)

Likewise, again as |z| → 0,

|I6(z)| ≤ |z|
∫ 1

|z|
1√
x
μ(dx) · sup

z1∈B(0,1)
|w(z1)| ≤ √|z|μ([0, 1]) sup

z1∈B(0,1)
|w(z1)| → 0

(4.64)

and

|I5(z)| ≤ |z|
∫ |z|

|z|2
1√
x
μ(dx) · sup

z1∈B(0,1)
|w(z1)| ≤ μ([0, |z|]) sup

z1∈B(0,1)
|w(z1)| → 0.

(4.65)
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In the last limit above, we employed the fact that lim|z|→0 μ([0, |z|]) = μ({0}) = 0 as
in (C.5). Moreover, by combining (C.8) with (C.15), we obtain

|I4(z)| ≤ cμ([0, |z|2]), (4.66)

which converges to 0 as |z| → 0. Then, relations (4.63)–(4.66) imply (4.38).
Next,we establish (4.39).Webreak up the proof into two cases, depending onwhether

or not z is real. We consider the first case z = u + iv ∈ C
− \ {0} where v < 0 and

|z|2 = u2 + v2 < 1 . In view of expression (4.34) together with (4.37), we write

λ + β p̃(z) = λ − β
i

2
√

π

∫ ∞

0

1√
x

∫

R

e−t2

u
2
√
x
+ i v

2
√
x
+ t

dt μ(dx).

Then, in view of the fact that 1
/[( u

2
√
x
+ t)+ i v

2
√
x
] = [ u

2
√
x
+ t− i v

2
√
x
]/[( u

2
√
x
+ t)2 + v2

4x ],
we can bound

|λ + β p̃(z)| ≥ λ +
β

2
√

π

∫ ∞

0

1√
x

{ ∫

R

e−t2

( u
2
√
x
+ t)2 + v2

4x

dt
} (−v)

2
√
x

μ(dx)

= λ +
β

2
√

π

∫ ∞

0

1√
x

∫

R

e− (t |v|−u)2

4x

t2 + 1
dt μ(dx)

≥ β

2
√

π

∫ ∞

0

1√
x

∫ 1

−1

e− (t |v|−u)2

4x

t2 + 1
dt μ(dx).

Now consider the elementary system of inequalities

(t |v| − u)2 ≤ 2(t2v2 + u2) ≤ 2,

which holds for |t | < 1 and u2 + v2 < 1. Then,

|λ + β p̃(z)| ≥ β

2
√

π

∫ ∞

0

1√
x
e− 1

2x μ(dx) ·
∫ 1

−1

1

t2 + 1
dt = β

√
π

4

∫ ∞

0

1√
x
e− 1

2x μ(dx),

where the equality follows from the elementary identity
∫ 1
−1

1
t2+1

dt = π
2 . This

proves (4.39) for the case �(z) < 0.
We now consider the second case where z = u ∈ R \ {0} and |u| ≤ 1. In view of

expression (4.35) together with (4.37), we can write

λ + β p̃(z) = λ + β

√
π

2

∫ ∞

0

1√
x

[
e− u2

4x +
2i√
π
daw

(
− u

2
√
x

)]
μ(dx).

Since e− u2
4x ≥ e− 1

2x for |u| ≤ 1, this implies that

|λ + β p̃(z)| ≥ β

√
π

2

∫ ∞

0

1√
x
e− u2

4x μ(dx) ≥ β

√
π

4

∫ ∞

0

1√
x
e− 1

2x μ(dx).

This proves (4.39). Hence, part (a) is established.
(b) By part (a), q̃1(z) is analytic. It remains to show that q̃1(z) does not admit any root
in C− \ {0}.
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Similarly to the proof of (4.39), we consider two cases depending on whether or not
z is real.

Let z = u + iv, v < 0, and consider q̃1(z) as in (4.37). Note that, by expression
(4.34),

q̃1(z) = λ + imz + β p̃(z) = λ + im(u + iv) − β
i

2
√

π

∫ ∞

0

1√
x

∫

R

e−t2

u
2
√
x
+ i v

2
√
x
+ t

dt μ(dx).

So,

�(q̃1(z)) = λ +
β

2
√

π

∫ ∞

0

1√
x

∫

R

e−t2

( u
2
√
x
+ t)2 + v2

4x

dt
(−v)

2
√
x

μ(dx) + m(−v) > 0.

Therefore, q̃1(z) has no root in {z ∈ C : �(z) < 0}.
Now fix z = u ∈ R \ {0} (i.e., v = 0). Then, expression (4.35) implies that we can

write

q̃1(z) = λ + imu + β p̃(z) =
λ + β

√
π

2

∫ ∞

0

1√
x

[
e− u2

4x +
2i√
π
daw

(
− u

2
√
x

)]
μ(dx) + imu.

In particular,

�(z) = λ + β

√
π

2

∫ ∞

0

1√
x
e− u2

4x μ(dx) > 0.

It follows that q̃1(z) has no root in z ∈ R \ {0}. This concludes the proof. ��
4.3.2. Harmonically bounded case (γ > 0) We now turn to the proof of Theorem 3.5.
Similarly to the previous subsection, let

f2(z) = 1

z
(
λz + βz

[Kcos(z) + iKsin(z)
]
+ i(γ − mz2)

) . (4.67)

Remark 4.8. Similarly toRemark 4.4, we note that in formula (4.67),Kcos(z)+iKsin(z) is
understood in the sense of (C.2) and (C.6) extended toC. Furthermore,Kcos(z)+iKsin(z)
is actually analytic on suitable subspaces of C (see the proof of Theorem 3.5).

For a large constant R > 0, recall that C+
R and C+

1/R are, respectively, the outer and

inner half circles as in (4.20). Also consider the following closed curve C̃(R) ⊂ C
+

oriented counterclockwise

C̃(R) = [1/R, R] ∪ C+
R ∪ [−R,−1/R] ∪ C+

1/R . (4.68)

Our approach is similar to that in the proof of Theorem 3.4. We essentially need to show
that f2 as in (4.67) is analytic on the upper half plane C+. Once this is accomplished,
in view of Cauchy’s theorem for contour integrals, we are then able to establish Theo-
rem 3.5, whence equipartition of energy holds for (1.2). Some statements appear in the
auxiliary Lemmas 4.9–4.11, whose proofs are deferred to the end of the section.

First, in the following lemma we provide sufficient conditions on f2 and on the
Fourier transform of K for equipartition of energy to hold.
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Lemma 4.9. Let (x(t), v(t)) be the stationary process associated with the weak solution
(X, V ) of (1.2). Suppose that, for z ∈ C

+ \ {0},

lim|z|→∞
|Kcos(z) + iKsin(z)|

|z| = 0 = lim|z|→0

∣∣z
(Kcos(z) + iKsin(z)

)∣∣. (4.69)

Let f2(z) be as in (4.67) and let C̃(R) be the curve as in (4.68). Then, the following
holds.

(a) If, for all large enough R > 0,
∫

C̃(R)

f2(z)dz = 0, (4.70)

then

E[γ x(0)2] = kBT . (4.71)

(b) If, for all large enough R > 0,
∫

C̃(R)

z2 f2(z)dz = 0, (4.72)

then

E[mv(0)2] = kBT . (4.73)

The proof of Theorem 3.5 is based on verifying that the assumptions of Lemma 4.9
are met. To this end, we show that f2 is analytic on C+ \ {0}, which is established based
on the following lemmas.

Lemma 4.10. Let μ be the representation measure on [0,∞) for K ∈ CM as in Theo-
rem C.1. Let q2(z) be the function defined on C

∗ \ {0} and given by

q2(z) = γ − λz + mz2 + βzp(z), (4.74)

where p(z) = ∫ ∞
0

1
z−x μ(dx) is as in (4.28). Then,

(a) q2(z) is analytic on C
∗ \ {0}; and

(b) q2(z) does not admit any root in C∗ \ {0}.
Lemma 4.11. Suppose K (t) = ϕ(t2) where ϕ ∈ CM. Let μ be the representation
measure on [0,∞) for ϕ as in Theorem C.1. Let q̃2(z) be the function defined onC+ \{0}
and given by

q̃2(z) = λz + βz p̃(−z) + i(γ − mz2), (4.75)

where p̃(z) =
√

π

2

∫ ∞
0

1√
x
w

(
− z

2
√
x

)
μ(dx) is as in (4.37). Then,

(a) q̃2(z) is analytic on C
+ \ {0}; and

(b) q̃2(z) does not admit any root in C+ \ {0}.
We now provide the proof of Theorem 3.5.
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Proof of Theorem 3.5. Similarly to the proof of Theorem 3.4, we first consider the case
where K ∈ CM. It suffices to check that the conditions for Lemma 4.9 are met using
auxiliary results provided in Lemma 4.10.

We first verify the limit condition (4.69). First note that z ∈ C
+ \ {0} implies iz ∈

C
∗ \ {0}. Then, as a consequence of relations (C.2) extended to C+ \ {0},

Kcos(z) + iKsin(z) =
∫ ∞

0

x + iz
x2 + z2

μ(dx) = −
∫ ∞

0

1

iz − x
μ(dx) = −p(iz),

where p(z) is as in (4.28). Condition (4.69) now follows immediately from Lemma 4.6,
(a), cf. (4.29).

To verify the contour integral conditions (4.70) and (4.72) for all large enough R, it
suffices to prove that f2(z) is, indeed, analytic on C

+ \ {0}. To this end, recast

f2(z) = 1

z
(
λz − βz

∫ ∞
0

1
iz−x μ(dx) + i(γ − mz2)

)

= 1

iz
(
γ − λ(iz) + m(iz)2 + β(iz)

∫ ∞
0

1
iz−x μ(dx)

)

= 1

izq2(iz)
,

where q2(·) is as in (4.74). Since z ∈ C
+ \ {0}, then iz ∈ C

∗ \ {0}. Also, in view
of Lemma 4.10, q2(·) is analytic and does not have poles in C

∗ \ {0}. It then follows
immediately that, for z ∈ C

+ \ {0}, (izq2(iz))−1 = f2(z) is analytic on C+ \ {0}, which
clearly implies the contour integral conditions (4.70) and (4.72).

We now turn to the case where K (t) = ϕ(t2) ∈ CM. We have to verify the as-
sumptions of Lemma 4.9 by combining auxiliary results in Lemmas 4.7 and 4.11. Recall
that p̃(z) and q̃2(z), respectively, are given by (4.37) and (4.75). In light of (C.6), for
z ∈ C

+ \ {0},

Kcos(z) + iKsin(z) = p̃(−z), and f2(z) = 1

zq̃2(z)
.

The limits in (4.69) are now a consequence of the fact that, for z ∈ C
+ \ {0},

lim|z|→∞
| p̃(−z)|

|z| = 0 = lim|z|→0

∣∣z p̃(−z)
∣∣, (4.76)

where (4.76) follows from Lemma 4.7, (a), cf. (4.38).
Also, by Lemma 4.11, the function f2(z) = (zq̃2(z))−1 is analytic on C

+ \ {0}. It
follows that the contour integral conditions (4.70) and (4.72) hold for all large enough
R. Consequently, the assumptions of Lemma 4.9 have been verified, which implies that
relations (4.71) and (4.73) hold. Thus, the proof is complete. ��

We now provide the proof of Lemma 4.9.

Proof of Lemma 4.9. (a) First, recall from (2.14) and covariance relation (A.3) that

E[x(0)2] = kBT

2π

∫

R

r11(ω)dω

= kBT

π

∫ ∞

0

2
(
λ + βKcos(ω)

)

∣∣i(γ − mω2 − βωKsin(ω)) + λω + βωKcos(ω))
∣∣2
dω. (4.77)
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Hence, it suffices to prove that the value of the integral (4.77) is πγ −1.
Let f2(z) be the function as in (4.67). Then, the contour integral of f2 on C̃(R) may

be decomposed into
∫

C̃(R)

f2(z)dz =
{ ∫ R

1/R
+

∫

C+
R

+
∫ −1/R

−R
+

∫

C+
1/R

}
f2(z)dz

= I1(R) + I2(R) + I3(R) + I4(R).

We now proceed to reexpress and establish the limiting behavior of each integral Ii (R),
i = 1, 2, 3, 4, as R → ∞. First, note that

I1(R) =
∫ R

1/R

dω

ω(λω + βωKcos(ω) + i(γ − mω2 + βωKsin(ω)))
,

where, once again, we use the notation ω for integration along the real axis. Turning to
I3(R), recall that the function Kcos is even, whereas Ksin is odd. Thus, by a change of
variable z := −ω, we can reexpress

I3(R) =
∫ 1/R

R

−dω

−ω(−λω − βωKcos(−ω) + i(γ − mω2 + β(−ω)Ksin(−ω)))

= −
∫ R

1/R

dω

ω(−λω − βωKcos(ω) + i(γ − mω2 + βωKsin(ω)))
.

Therefore,

I1(R) + I3(R) =
∫ R

1/R

2λ + 2βKcos(ω)

|γ − mω2 + βωKsin(ω)|2 + ω2|λ + βKcos(ω)|2 dω.

By virtue of the Monotone Convergence Theorem,

I1(R) + I3(R) →
∫ ∞

0
r11(ω)dω, as R → ∞. (4.78)

With regard to I2(R), for z ∈ CR ⊂ C
+ \ {0}, recast f2(z) in the form

f2(z) = 1

z
(
λz + βz(Kcos(z) + iKsin(z)) + i(γ − mz2)

)

= 1

z3
(
λz−1 + βz−1(Kcos(z) + iKsin(z)) + i(γ z−2 − m)

) .

By making the change of variable z := Reiθ ,

I2(R)

=
∫ π

0

i dθ

R2ei2θ
[
λR−1e−iθ + βR−1e−iθ [Kcos(Reiθ )) + iKsin(Reiθ )] + i(γ R−2e−i2θ − m)

] .
(4.79)

By (4.69), as R → ∞, the integrand in (4.79) converges to 0. Hence, by the Domi-
nated Convergence Theorem,

I2(R) → 0, as R → ∞. (4.80)
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Similarly, by making a change of variable z = R−1eiθ , we have

I4(R) =
∫ 0

π

idθ
λR−1eiθ + βR−1eiθ [Kcos(R−1eiθ ) + iKsin(R−1eiθ )] + i(γ − mR−2ei2θ )

.

(4.81)

As R → ∞, again by relation (4.69), the integrand in (4.81) converges to γ −1. In light
of the Dominated Convergence Theorem, this implies that

I4(R) → −πγ −1, as R → ∞. (4.82)

Collecting the limits (4.78), (4.80) and (4.82), we obtain

0 = lim
R→∞

∫

C(R)

f2(z)dz =
∫ ∞

0
r11(ω)dω − πγ −1.

Hence,

E[γ x(0)2] = γ
kBT

π

∫ ∞

0
r11(ω)dω = kBT,

which establishes (4.71).
With regard to E[v(0)2], expressions (2.14) and (2.15) imply that

E[v(0)2] = kBT

2π

∫

R

r22(ω)dω

= kBT

π

∫ ∞

0

2ω2
(
λ + βKcos(ω)

)

∣∣i(γ − mω2 − βωKsin(ω)) + λω + βωKcos(ω))
∣∣2
dω. (4.83)

We now claim that the integral in (4.83) is equal to πm−1. Similarly to the argument for
E[x(0)2], to establish this we consider the contour integral

∫

C̃(R)

z2 f (z)dz =
{ ∫ R

1/R
+

∫

C+
R

+
∫ −1/R

−R
+

∫

C+
1/R

}
z2 f2(z)dz (4.84)

= I5(R) + I6(R) + I7(R) + I8(R). (4.85)

By calculations analogous to those for I1(R) + I3(R),

I5(R) + I7(R) →
∫ ∞
0

2ω2(λ + βKcos(ω)
)

∣∣i(γ − mω2 − βωKsin(ω)) + λω + βωKcos(ω))
∣∣2
dω, as R → ∞,

(4.86)

where the limit is a consequence of the Monotone Convergence Theorem.
On the other hand, in regard to integration along the outer half circle C+

R , note that
we can express

z2 f (z) = 1

z
(
λz−1 + βz−1(Kcos(z) + iKsin(z)) + i(γ z−2 − m)

) .
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Thus, by making a change of variable z = Reiθ , we obtain

I6(R) =
∫ π

0

i dω
λR−1e−iθ + βR−1e−iθ [Kcos(Reiθ )) + iKsin(Reiθ )] + i(γ R−2e−i2θ − m)

.

Consequently, in light of the Dominated Convergence Theorem together with condi-
tion (4.69),

I6(R) → −πm−1, as R → ∞. (4.87)

Likewise, by a change of variable z = R−1eiθ ,

I8(R) =
∫ π

0

R−3ei3θ i dω
λR−1eiθ + βR−1eiθ [Kcos(R−1eiθ )) + iKsin(R−1eiθ )] + i(γ − mR−2ei2θ )

.

(4.88)

By (4.69), the integrand in (4.88) converges to zero. Therefore, by the Dominated Con-
vergence Theorem,

I8(R) → 0, as R → ∞. (4.89)

Based on expressions (4.84), (4.86), (4.87) and (4.89), we obtain the limit

0 = lim
R→∞

∫

C(R)

z2 f (z)dz =
∫ ∞

0
r22(ω)dω − πm−1.

Hence,

E[mv(0)2] = m
kBT

π

∫ ∞

0
r22(ω)dω = kBT .

This establishes (4.73). ��
We now provide the proof of Lemma 4.10.

Proof of Lemma 4.10. In view of Lemma 4.6 (a), p(z) is analytic in C∗ \ {0}, and so is
q2(z). This shows (a).

We now show (b), i.e., we prove that q2(z) does not admit any root in C
∗ \ {0}.

Similarly to the proof of Lemma 4.6 for q1(z), first observe that q2(z) cannot have a
(real) negative real root. Indeed, if z < 0, then

q2(z) = γ + λ|z| + m|z|2 + β|z|
∫ ∞

0

1

|z| + x
μ(dx) > 0.

Next, by means of contradiction, suppose that z0 = −u + iv, is a root of q2(z), where
u ≥ 0 and

v �= 0. (4.90)

A routine calculation shows that the condition q2(z0) = 0 is equivalent to

0 = γ + m(u2 − v2) − i2uv + λu − iλv + β(−u + iv)

∫ ∞

0

1

−u − x + iv
μ(dx)

= γ + m(u2 − v2) + λu +
∫ ∞

0

βu(u + x) + βv2

(u + x)2 + v2
μ(dx)

− iv
(
2mu + λ + β

∫ ∞

0

x

(u + x)2 + v2
μ(dx)

)
.

Consequently, v = 0, which contradicts (4.90). This establishes (b). ��
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We now provide the proof of Lemma 4.11. The argument is essentially the same as
that for proving Lemma 4.7, (b).

Proof of Lemma 4.11. By Lemma 4.7, (a), p̃(z) is analytic on C
− \ {0}. Therefore,

q̃2(z) = λz + βz p̃(−z) + i(γ − mz2) is analytic on C
+ \ {0}. This establishes (a).

We now turn to (b), i.e., we want to show that q̃2(z) does not admit any root in
C
+ \ {0}. To see this, first recall that q̃1(z) is given by (4.37). Then, q̃2(z) as in (4.75)

can be rewritten as

q̃2(z) = z
(
λ + β p̃(−z) + im(−z) − i

γ

−z

)
= z

(
q̃1(−z) − i

γ

−z

)
.

Thus, it suffices to show that q̃1(z)−i γz does not admit any root inC−\{0}. The argument
for showing this is similar to the one in the proof of Lemma 4.7, (b), and involves two
cases, i.e., for real and non-real z ∈ C

− \ {0}.
Assume first that �(z) < 0. Write z = u + iv, v < 0 and note that, by expression

(4.34),

q̃1(z) − i
γ

z
= λ + im(u + iv) − β

i
2
√

π

∫ ∞

0

1√
x

∫

R

e−t2

u
2
√
x
+ i v

2
√
x
+ t

dt μ(dx) − i
γ

z
.

After a routine calculation, we obtain

�
(
q̃1(z) − i

γ

z

)
= λ +

β

2
√

π

∫ ∞

0

1√
x

∫

R

e−t2

( u
2
√
x
+ t)2 + v2

4x

dt
(−v)

2
√
x

μ(dx)

+m(−v) +
γ (−v)

u2 + v2
> 0. (4.91)

Alternatively, assume z = u ∈ R \ {0}. Then, by expression (4.35),

q̃1(u) − i
γ

u
= λ + β

√
π

2

∫ ∞

0

1√
x

[
e− u2

4x +
2i√
π
daw

(
− u

2
√
x

)]
μ(dx) + imu − i

γ

z
.

Hence,

�
(
q̃1(u) − i

γ

u

)
= λ + β

√
π

2

∫ ∞

0

1√
x
e− u2

4x μ(dx) > 0. (4.92)

By (4.91) and (4.92), we conclude that q̃1(z) − iγ /z has no root in z ∈ C
− \ {0}, and

that neither does q̃2(z) in C+ \ {0}. This finishes the proof. ��
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Appendix A: Stationary Random Operators

In this section, we review and generalize the framework of stationary distributions [7,20,
29,51]. The goal is to construct stationary random operators for the purpose of analyzing
the well–posedness of the 2D GLE.
Hereinafter, ∗ denotes Hermitian transposition and ‖ · ‖ denotes the operator norm.

H≥0(d,C) and M(d,C) denote, respectively, the convex cone of Hermitian positive
semidefinite matrices and the space of d × d, entry–wise C-valued matrices.
Given d ∈ N, u(t) = (u1(t), . . . , ud(t))T denotes a C

d–valued stochastic process.
We now briefly recall the definitions of weak stationarity and mean squared continuity.

Definition A.1. A stochastic process {u(t)}t∈R is said to be weakly stationary if, for all
t, s ∈ R,

(a) E‖u(t)u(t)∗‖ < ∞;
(b) E[u(t)] = u, for some constant vector u (we may assume u = 0); and
(c) the covariance matrix E

[
u(t)u(s)∗

]
only depends on the difference t − s.

Definition A.2. A second order stochastic process {u(t)}t∈R is said to be mean squared
continuous if, for all t ∈ R, limh→0 E(u(t + h) − u(t))∗(u(t + h) − u(t)) = 0.

In the following theorem, we recall the fact that, under mild conditions, the covariance
structure of aweakly stationary process is characterized by its so-named spectralmeasure
(see also [40], [26, Theorem 7.1] and [2, Chapter 4]).

Theorem A.3. Amean squared continuous process {u(t)}t∈R is weakly stationary if and
only if its matrix–valued covariance function has the representation

E
[
u(t)u(s)∗

] =
∫

R

ei(t−s)ων(dω), t, s ∈ R. (A.1)

In (A.1),

ν(dω) = (νi j (dω))1≤i, j≤d ∈ H≥0(d,C) (A.2)

is a matrix-valued Borel measure such that ‖ν(R)‖ < ∞.

Remark A.4. If the matrix–valued measure ν(dω) is entry–wise absolutely continuous
with respect to the Lebesgue measure, then we can write

ν(dω) = f (ω)dω

for some entry-wise integrable function f taking values in H≥0(d,C) a.e. (cf. [26,
Theorem 7.1]). The function f is called the spectral density of u(t).

Analogously, we briefly recall the notion of stationary random distributions, a gener-
alization of multivariate stationary processes, first introduced in [11,20]. So, let τy be
the shift operator given by τyϕ(x) := ϕ(x − y) for any ϕ ∈ S. Also, let L2(
) be the
space of all complex–valued random variables with finite variance. We now provide the
definition of a stationary distribution (see [51, Section 1]).

Definition A.5. A linear functional F : S → L2(
)d given by 〈F, ϕ〉 = (〈F1, ϕ〉,
. . . , 〈Fd , ϕ〉)T is called a stationary random distribution on S if the following two
conditions hold.

(a) For all y ∈ R and for all ϕ ∈ S, E〈F, τyϕ〉 = E〈F, ϕ〉; and
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(b) for all y ∈ R and for all ϕ1, ϕ2 ∈ S,
E

[〈F, τyϕ1〉〈F, τyϕ2〉∗
] = E

[〈F, ϕ1〉〈F, ϕ2〉∗
]
.

Analogously to Theorem A.3, we have the following characterization of the second
order structure of a stationary distribution in terms of covariance functionals and spectral
measures. See also [26,51].

Theorem A.6. A linear functional F : S → L2(
)d is a stationary random distribution
on S if and only if its covariance matrix B(ϕ1, ϕ2) has the representation

B(ϕ1, ϕ2) := E
[〈F, ϕ1〉〈F, ϕ2〉∗

] =
∫

R

ϕ̂1(ω)ϕ̂2(ω)ν(dω). (A.3)

In (A.3), ν(dω) = (νi j (dω))1≤i, j≤d is aH≥0(d,C)–valued measure such that, for some
p ∈ R,

∫

R

‖ν(dω)‖
(1 + ω2)p

< ∞. (A.4)

Remark A.7. (a) Note that, due to condition (A.4) and to the fact that ϕ is a Schwartz
function, 〈F, ϕ〉 is, indeed, an element of L2(
)d .

(b) Similarly to Remark A.4, in case the measure ν as in Theorem A.6 has the form
ν(dω) = f (ω)dω for some a.e. H≥0(d,C)–valued function f , then f is called the
spectral density of the stationary distribution F . Furthermore, in view of (A.4), there
exists p ∈ R such that

∫

R

‖ f (ω)‖
(1 + ω2)p

dω < ∞. (A.5)

Whereas TheoremA.6 describes the spectral representation of the covariance structure
of the stationary distribution F , a representation formula for the linear functional F itself
is provided next. For this purpose, we need the definition of a random measure.

Definition A.8. Let ν be a matrix-valued Borel measure satisfying (A.2) and (A.4).
Let Bν be the collection of all Borel sets E ⊂ R such that ‖ν(E)‖ < ∞. A map
Z : Bν → L2(
)d is called a random measure with respect to ν if for E1, E2 ∈ Bν ,

E
[
Z(E1)Z(E2)

∗] = ν(E1 ∩ E2).

So, let Z(dω) be a random measure with respect to ν as in Definition A.8. The natural
space of integrands for Z(dω) is given by

L2(ν) =
{
g : R → M(d,C) :

∥∥∥
∫

R

g(ω)ν(dω)g(ω)∗
∥∥∥ < ∞

}
.

In fact, for every g1, g2 ∈ L2(ν), the stochastic integral
∫
R
g(ω)Z(dω) is a well defined

random vector such that

E

[ ∫

R

g1(ω)Z(dω)
( ∫

R

g2(ω
′)Z(dω′)

)∗] =
∫

R

g1(ω)ν(dω)g2(ω)∗ (A.6)

(see [20,51] for a detailed discussion). In the following theorem, F is characterized by
means of random measures (see also [51, Theorem 3]).
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Theorem A.9. Let F be a stationary random distribution with the spectral measure ν

as in Theorem A.6. Then, there exists a random measure Z corresponding to ν as in
Definition A.8 such that, for all ϕ ∈ S,

〈F, ϕ〉 =
∫

R

ϕ̂(ω) · Id Z(dω), (A.7)

where Id is the identity matrix. Moreover, Z is uniquely determined by F and ν.

Note that, as of now, the stationary distribution F is a functional whose domain is
restricted to S. In order to define the process u(t) via F , it is necessary to extend the
definition of F to a subclass of tempered distributions S ′. For this purpose, we employ
the approach introduced in [7,29].

Definition A.10. Let ν be a matrix–valued Borel measure satisfying conditions (A.4)
and (A.2). Let Z be the vector–valued random measure associated with ν as in Def-
inition A.8. Further suppose that ν is absolutely continuous with respect to Lebesgue
measure. Then, we define an operator � : S ′ → L2(
)d by means of the mapping

g ∈ S ′ �→ 〈�, g〉 =
∫

R

F [g] (ω) · Id Z(dω). (A.8)

The domain of �, denoted by Dom(�), is the set of tempered distributions g such that
its Fourier transform F [g] in S ′ is a function defined on R and that F [g] ∈ L2(ν).

In the following lemma we establish that the absolute continuity of ν with respect to
Lebesgue measure is a sufficient condition for the extension of � as in Definition A.10
to be well defined. This extends analogous results for one–dimensional settings [7,29].

Lemma A.11. Let � : Dom(�) ⊂ S ′ → L2(
)d be the operator as in Definition A.10.
Then, � is well defined.

The proof of Lemma A.11 is essentially the same as that of [29, Lemma 2.15]. Since
the argument is short, we include it here for the sake of completeness.

Proof of Lemma A.11. By the absolutely continuity of ν with respect to Lebesgue mea-
sure, we may write ν(dω) = f (ω)dω. We proceed to show that the right-hand side of
(A.8) does not depend on the choice of F [g]. To see that, suppose F1[g] and F2[g]
are Fourier transforms of g in S ′. Then, F1[g] = F2[g] a.e. [47]. In view of (A.6), this
implies that

E

[( ∫

R

F1[g](ω) · Id Z(dω) −
∫

R

F2[g](ω) · Id Z(dω)
)

×
( ∫

R

F1[g](ω) · Id Z(dω) −
∫

R

F2[g](ω) · Id Z(dω)
)∗]

=
∫

R

∣∣∣F1[g](ω) − F2[g](ω)

∣∣∣
2
f (ω)dω = 0.

(A.9)

It follows that the random vectors
∫
R
F1[g](ω) · Id Z(dω) and

∫
R
F2[g](ω) · Id Z(dω)

are equal a.s., implying that � is well defined. This finishes the proof. ��
Having obtained the extension � of F to S ′, we are now ready to define the process

u(t) via the action of � on Dirac functions as in the following definition.
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Definition A.12. (The function–valued version of a stationary random operator) Let δt
be the Dirac δ distribution centered at t . If δt ∈ Dom(�), then we define

u(t) := 〈�, δt 〉. (A.10)

Remark A.13. We note that the condition δt ∈ Dom(�) in Definition A.12 is equivalent
to the assumption νi i are all finite nonnegative measures. To see this, by Definition A.10
together with (A.6) and (A.8), it holds that

E

[ ∫

R

F [δt ] (ω) · Id Z(dω)
( ∫

R

F [δt ] (ω) · Id Z(dω)
)∗] =

∥∥∥
∫

R

ν(dω)

∥∥∥
2

< ∞,

where the last implication above is equivalent to
∑d

i=1 νi i (R) < ∞, sinceν ∈ H≥0(d,C).
In view of Theorem A.3, u(t) = 〈�, δt 〉 is thus simply the ordinary stochastic process
version for � (cf. Lemma 4.2).

Appendix B: Fourier Analysis of the Memory Kernel K (t)

In this section, we collect several useful properties of Fourier transforms for K (t) under
Assumption 2.1. More details can be found in [7,29,41–43].
In the following lemma, we state the fact that the Fourier transform of K under As-

sumption 2.1 is well defined in the sense of improper integrals.

Lemma B.1. Suppose that K satisfiesAssumption2.1 (I) (a) and (b). Then, forω �= 0, the
improper integrals Kcos(ω) = ∫ ∞

0 K (t) cos(tω)dt and Ksin(ω) = ∫ ∞
0 K (t) sin(tω)dt

are well defined, continuous in ω, and

lim
ω→∞Kcos(ω) = lim

ω→∞Ksin(ω) = 0. (B.1)

Proof. The proof is essentially the same as in [29, Lemma 2.18]. See also [42, Lemma
1]. ��
Next, we describe the Fourier transform of K in the sense of distributions.

Lemma B.2. Suppose that K satisfies Assumption 2.1. Then, the following holds.

(a) The Fourier transform of K in the sense of tempered distributions is given by 2Kcos.
In other words, for every ϕ ∈ S,

∫

R

K (t)ϕ̂(t)dt =
∫

R

2Kcos(ω)ϕ(ω)dω. (B.2)

(b) For any ϕ ∈ S, the Fourier transform of K + ∗ ϕ in S ′ is given by

F [
K + ∗ ϕ

]
(ω) = K̂ + · ϕ̂ = (Kcos(ω) − iKsin(ω)) ϕ̂(ω), (B.3)

where K +(t) = K (t)1[0,∞)(t).

Proof. (a) If K is integrable then (B.2) is a consequence of Fubini’s theorem. When K
satisfies the tail behavior t−1 (see Assumption 2.1 (II) (b)), then the argument can be
found in the proof of [7, Proposition 17]. Finally, if K satisfies Assumption 2.1 (II) (c),
the argument is the same as that in the proof of [29, Proposition 2.19 (a)].
(b) The proof of (B.3) is essentially the same as the proof of [29, Proposition 2.19 (b)].

��
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In the following result, we provide the asymptotic behavior of the functions Kcos and
Ksin near the origin. These properties play an import role in establishing the asymptotic
growth of

∫ t
0 (x(s), v(s))ds as t → ∞ in Theorem 3.3. See also [19,42,43] for related

results.

Lemma B.3 (Abelian direction). Suppose that K ∈ L1
loc(0,∞) satisfies Assumption 2.1.

Then, the following holds.

(a) If K is integrable, then

Kcos(ω) →
∫ ∞

0
K (t)dt and Ksin(ω) → 0 as ω → 0. (B.4)

(b) If K (t) ∼ t−1 as t → ∞, then

Kcos(ω)

| log(ω)| → c1, and Ksin(ω) → c1
π

2
, as ω → 0, (B.5)

where c1 = limt→∞ t K (t) ∈ (0,∞).
(c) If there exists α ∈ (0, 1) such that K (t) ∼ t−α as t → ∞, then

ω1−αKcos(ω) → cα

∫ ∞

0

cos(u)

uα
du and (B.6)

ω1−αKsin(ω) → cα

∫ ∞

0

sin(u)

uα
du as ω → 0, (B.7)

where cα = limt→∞ tα K (t) ∈ (0,∞).

Proof. The limit (B.4) is a consequence of the Dominated Convergence Theorem. The
limits (B.5) and (B.6) can be found in [7, Proposition 9] and [29, Proposition 3.1],
respectively. ��

Appendix C: Completely Monotonic Functions

In this section, we discuss two important properties of completely monotonic functions
that are needed in the calculation of the secondmoment of (x(t), v(t)) (see Theorems 3.4
and 3.5). First, we recall the following well–known theorem on the representation of the
class CM in terms of Laplace transforms of Radon measures.

Theorem C.1. (Hausdorff–Bernstein–Widder Theorem) A function K is completely
monotone as in Definition 2.4 if and only if K admits the formula

K (t) =
∫ ∞

0
e−t xμ(dx), (C.1)

for some positive Borel measure μ on [0,∞).

In Lemma C.2, stated and proven next, we compute Fourier transforms of completely
monotonic functions based on their representation measures.
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Lemma C.2. Suppose that K ∈ CM and that K is locally integrable and is decreasing
to 0 as t → ∞. Let μ be the representation measure as in (C.1). Then for every ω �= 0,
we can write

Kcos(ω) ± iKsin(ω) =
∫ ∞

0

x ± iω
x2 + ω2μ(dx). (C.2)

The proof of Lemma C.2 is essentially the same as that of [30, Lemma 3.8]. The
only difference is that in [30, Lemma 3.8], K belongs to CMb, the class of completely
monotone functions such that K (0) is finite, whereas in LemmaC.2,we assume a slightly
more general condition, namely, K being locally integrable around the origin.

Proof of Lemma C.2. First note that, for all ω �= 0, the integrals in (C.2) are finite.
Indeed, since K is locally integrable, Fubini’s theorem implies that

∫ 1

0
K (t)dt =

∫ 1

0

∫ ∞

0
e−xtμ(dx)dt =

∫ ∞

0

1 − e−x

x
μ(dx) < ∞.

In particular,

μ([0, 1]) ≤ e
∫ 1

0

1 − e−x

x
μ(dx) ≤ e

∫ ∞

0

1 − e−x

x
μ(dx) < ∞, (C.3)

and
∫ ∞

1

1

x
μ(dx) <

1

1 − e−1

∫ ∞

1

1 − e−x

x
μ(dx) < ∞. (C.4)

It follows that
∫ ∞

0

x

x2 + ω2μ(dx) =
{ ∫ 1

0
+

∫ ∞

1

} x

x2+ω2μ(dx) ≤ 1

ω2μ([0, 1]) +
∫ ∞

1

1

x
μ(dx)<∞.

Likewise,
∫ ∞

0

ω

x2 + ω2μ(dx) ≤ 1

ω
μ([0, 1]) + ω

∫ ∞

1

1

x2
μ(dx) < ∞.

Now, by the definition of improper integral,

Kcos(ω) − iKsin(ω) := lim
A→∞

∫ A

0
K (t)e−itωdt.

Based on the representation K (t) = ∫ ∞
0 e−t xμ(dx) (see (C.1)) and on Fubini’s theorem,

we obtain
∫ A

0
K (t)e−itωdt =

∫ A

0

∫ ∞

0
e−t xμ(dx)e−itωdt

=
∫ ∞

0

∫ A

0
e−(x+iω)tdtμ(dx)

=
∫ ∞

0

1 − e−(x+iω)A

x + iω
μ(dx)

=
∫ ∞

0

(
1 − e−(x+iω)A

)
x

x2 + ω2 μ(dx) − i
∫ ∞

0

(
1 − e−(x+iω)A

)
ω

x2 + ω2 μ(dx).
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Also, since K (t) decreases to 0 as t → ∞, theDominatedConvergenceTheorem implies
that

μ({0}) = lim
t→∞

∫ ∞

0
e−t xμ(dx) = lim

t→∞ K (t) = 0. (C.5)

It follows that μ−a.e. on x ∈ [0,∞),

lim
A→∞

(
1 − e−(x+iω)A

)
x

x2 + ω2 = x

x2 + ω2 , and lim
A→∞

(
1 − e−(x+iω)A

)
ω

x2 + ω2 = ω

x2 + ω2 .

Again by the Dominated Convergence Theorem, we obtain

lim
A→∞

[ ∫ ∞

0

(
1 − e−(x+iω)A

)
x

x2 + ω2 μ(dx) − i
∫ ∞

0

(
1 − e−(x+iω)A

)
ω

x2 + ω2 μ(dx)
]

=
∫ ∞

0

x

x2 + ω2μ(dx) − i
∫ ∞

0

ω

x2 + ω2μ(dx) =
∫ ∞

0

x − iω
x2 + ω2μ(dx).

This establishes (C.2) for Kcos(ω) − iKsin(ω). The formula for Kcos(ω) + iKsin(ω) can
be derived using a similar argument. ��
Next, we consider the case K = ϕ(t2), where ϕ ∈ CM. Unlike in the situation where

K ∈ CM, computing the Fourier transform of K = ϕ(t2) is more complicated since it
relies on delicate estimates for the error functions erf and erfc as well as for the Faddeeva
function w introduced in (4.31)-(4.33).

Lemma C.3. Suppose that K (t) = ϕ(t2), where ϕ ∈ CM. Also suppose that K is
locally integrable and decreases to 0 as t → ∞. Let μ be the representation measure
for ϕ ∈ CM as in (C.1). Then, for every ω �= 0, we can write

Kcos(ω) ± iKsin(ω) =
√

π

2

∫ ∞

0

1√
x
e− ω2

4x erfc
(

∓ i
ω

2
√
x

)
μ(dx)

=
√

π

2

∫ ∞

0

1√
x
w

(
± ω

2
√
x

)
μ(dx).

(C.6)

Proof. We will prove formula (C.6) forKcos(ω) − iKsin(ω). The formula forKcos(ω) +
iKsin(ω) can be derived using a similar argument.
In view of the expression (C.1) for ϕ ∈ CM, K (t) admits the representation

K (t) = ϕ(t2) =
∫ ∞

0
e−t2xμ(dx) ≥ 0. (C.7)

For μ(dx) as in (C.7), we claim that
∫ ∞

1

1√
x
μ(dx) < ∞. (C.8)

To see this, first note that, due to the local integrability of K ,

∞ >

∫ 1

0
K (t)dt =

∫ 1

0

∫ ∞

0
e−t2xμ(dx)dt =

∫ ∞

0

1√
x

∫ √
x

0
e−t2dt μ(dx), (C.9)
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where the second equality in (C.9) follows from a change of variable. Also,

∫ ∞

0

1√
x

{ ∫ √
x

0
e−t2dt

}
μ(dx)

≥
∫ ∞

1

1√
x

{ ∫ √
x

0
e−t2dt

}
μ(dx) ≥

∫ ∞

1

1√
x
μ(dx) ·

∫ 1

0
e−t2dt,

which proves (C.8).
Now fix A > 0 and let ω �= 0. Fubini’s Theorem and a change of variable imply that

∫ A

0
K (t)e−iωtdt =

∫ ∞

0

∫ A

0
e−t2x−iωtdt μ(dx) =

∫ ∞

0

e− ω2
4x√
x

∫ A
√
x+i ω

2
√
x

i ω
2
√
x

e−z2dz μ(dx).

(C.10)

When considering the limit A → ∞, wewant to apply theDominated Convergence The-
orem in expression (C.10) so as to establish formula (C.6). To this end, it suffices to find a

dominatingμ−integrable function for the family of integrands e− ω2
4x√
x

∫ A
√
x+i ω

2
√
x

i ω
2
√
x

e−z2dz,

A > 0.
We consider the contour integral on the rectangle curve

D1 : 0 ��� i
ω

2
√
x

��� A
√
x + i

ω

2
√
x

��� A
√
x ��� 0.

By the analyticity of e−z2 ,
∫
D1

e−z2dz = 0, whence

∫ A
√
x+i ω

2
√
x

i ω
2
√
x

e−z2dz =
∫ A

√
x

0
e−t2dt −

∫ i ω
2
√
x

0
e−z2dz +

∫ A
√
x+i ω

2
√
x

A
√
x

e−z2dz. (C.11)

By making the changes of variable z = it and z = A
√
x + it in the second and last terms

on the right-hand side of (C.11), we obtain

∫ A
√
x+i ω

2
√
x

i ω
2
√
x

e−z2dz =
∫ A

√
x

0
e−t2dt − i

∫ ω
2
√
x

0
et

2
dt + i

∫ ω
2
√
x

0
e−(A

√
x+it)2dt.

It follows that

∣∣∣
∫ A

√
x+i ω

2
√
x

i ω
2
√
x

e−z2dz
∣∣∣ ≤

√
π

2
+ 2

∫ |ω|
2
√
x

0
et

2
dt.

It remains to show that
∫ ∞

0

1√
x
e− ω2

4x μ(dx) < ∞ (C.12)

and

0 ≤
∫ ∞

0

1√
x
daw

( |ω|
2
√
x

)
μ(dx) < ∞. (C.13)
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To show (C.12), we employ (C.8) and the elementary bound e−t < 1/t for all t > 0 to
construct the estimate

∫ ∞

0

1√
x
e− ω2

4x μ(dx) ≤ 4

ω2

∫ 1

0

√
xμ(dx) +

∫ ∞

1

1√
x
μ(dx) < ∞.

In turn, to show (C.13), note that, for all real t , daw(t) as in (4.36) satisfies [35, Section
7.8]

daw(|t |) ≤ C

|t | . (C.14)

Therefore,

∫ ∞

0

1√
x
daw

( |ω|
2
√
x

)
μ(dx) ≤ c

|ω|μ([0, 1]) + c
∫ ∞

1

1√
x
μ(dx) < ∞.

This concludes the proof. ��
We finish this section by the establishing the following useful estimate on w(z). The

result is employed in Sect. 4 in establishing the equipartition of energy condition.

Lemma C.4. Let w(z) be the Faddeeva function as in (4.33). For all z = reiθ , −π/8 <

θ < 9π/8 and sufficiently large r ,

|w(z)| ≤ C

|z| . (C.15)

Remark C.5. The interval (−π/8, 9π/8) in LemmaC.4 can actually be any (θ1, θ2) such
that −π/4 < θ1 < θ2 < 5π/4.

Proof of Lemma C.4. There are two situations to be considered, depending on the loca-
tion of z in C.
We first consider the case where �(z) ≥ 0. By writing z = u + iv, v ≥ 0, in view

of (4.31), (4.32) and (4.33), we can reexpress w(z) as

w(z) = e−z2
(
1 − 2√

π

∫ v−iu

0
e−z2dz

)
.

We consider the contour integral on the triangle curve

D2 : 0 ��� v ��� v − iu ��� 0.

Since
∫
D2

e−z2dz = 0, then

∫ v−iu

0
e−z2dz =

∫ v

0
e−z2dz +

∫ v−iu

v

e−z2dz

=
∫ v

0
e−t2dt − i

∫ u

0
e−(v−it)2dt.
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It follows that

w(z) = e−u2+v2−i2uv
(
1 − 2√

π

∫ v

0
e−t2dt + i

2√
π

∫ u

0
e−v2+t2+i2vtdt

)

= 2√
π
e−u2+v2−i2uv

( ∫ ∞

v

e−t2dt + i
∫ u

0
e−v2+t2+i2vtdt

)
.

Therefore,
√

π

2
|w(z)| ≤ e−u2+v2

∫ ∞

v

e−t2dt + e−u2
∣∣∣
∫ u

0
et

2+i2vtdt
∣∣∣ =: I1(u, v) + I2(u, v).

So, the bound (C.15) holds provided we can show that

sup
v≥0

(|u| + v)(I1(u, v) + I2(u, v)) < ∞. (C.16)

We first consider I1(u, v). Note that there exists a positive c > 0 such that, for all
|u|, v ≥ 0,

e−u2 ≤ c

|u| + 1
and ev2

∫ ∞

v

e−t2dt ≤ c

v + 1
.

Hence, for all u ∈ R and v ≥ 0,

I1(u, v) = e−u2+v2
∫ ∞

v

e−t2dt ≤ c

(|u| + 1)(v + 1)
≤ c

|u| + v + 1
,

implying

sup
v≥0

(|u| + v)I1(u, v) < ∞. (C.17)

In regard to I2(u, v), we invoke (C.14) to estimate

|u|I2(u, v) = |u|e−u2
∣∣∣
∫ u

0
et

2+i2vtdt
∣∣∣ ≤ |u|e−u2

∫ |u|

0
et

2
dt ≤ c. (C.18)

To bound v I2(u, v), it suffices to consider v ≥ 1. Note that

I2(u, v) ≤ e−u2
∣∣∣
∫ u

0
et

2
cos(2vt)dt

∣∣∣ + e−u2
∣∣∣
∫ u

0
et

2
sin(2vt)dt

∣∣∣

= e−u2
∣∣∣
∫ |u|

0
et

2
cos(2vt)dt

∣∣∣ + e−u2
∣∣∣
∫ |u|

0
et

2
sin(2vt)dt

∣∣∣.

By Second Mean Value Theorem, for each v ≥ 1, there exists 0 < u∗ < |u| such that

∣∣∣
∫ |u|

0
et

2
cos(2vt)dt

∣∣∣ =
∣∣∣
∫ u∗

0
cos(2vt)dt + eu

2
∫ |u|

u∗
cos(2vt)dt

∣∣∣ ≤ c
1 + eu

2

v
.

Likewise,

∣∣∣
∫ |u|

0
et

2
sin(2vt)dt

∣∣∣ ≤ c
1 + eu

2

v
.
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Therefore, still for v ≥ 1,

v I2(u, v) ≤ c. (C.19)

The bounds (C.17), (C.18) and (C.19) imply (C.16). This establishes (C.15) for the case
v = �(z) ≥ 0.
Alternatively, consider the case z = reiθ , θ ∈ [−π/8, 0] ∪ [π, 9π/8]. In particular,

�(z) < 0. By writing z = u − iv, v > 0, we note that

v

|u| = | tan(θ)| ≤ tan
(π

8

)
< 1.

In other words, there exists ε ∈ (0, 1) such that v ≤ ε|u|. Note that w(z) satisfies the
property [9, expression (3)]

w(−z) = e−2z2 − w(z), ∀z ∈ C.

Then, for v ≥ 0,

w(u − iv) = w(−(−u + iv)) = e−2(−u+iv)2 − w(−u+iv) ≤ e−2(u2−v2) + |w(−u + iv)|.
(C.20)

We invoke (C.15) for the first case �(z) ≥ 0 to see that for all |u|, v ≥ 0,

(|u| + v)|w(−u + iv)| ≤ c. (C.21)

Also, since 0 ≤ v ≤ ε|u|, ε ∈ (0, 1), we infer the existence of a (possibly different)
positive constant c > 0 such that

(|u| + v)e−2(u2−v2) ≤ (1 + ε)|u|e−2(1−ε)u2 < c. (C.22)

We finally combine the estimates (C.22) and (C.21) with (C.20) to establish the desired
estimate (C.15) for the second case z = reiθ , θ ∈ [−π/8, 0]∪[π, 9π/8]. This concludes
the proof. ��
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