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Abstract: On an annulus Aq := {z ∈ C : q < |z| < 1} with a fixed q ∈ (0, 1), we
study a Gaussian analytic function (GAF) and its zero set which defines a point process
onAq called the zero point process of the GAF. TheGAF is defined by the i.i.d. Gaussian
Laurent series such that the covariance kernel parameterized by r > 0 is identified with
the weighted Szegő kernel of Aq with the weight parameter r studied by McCullough
and Shen. The GAF and the zero point process are rotationally invariant and have a
symmetry associated with the q-inversion of coordinate z ↔ q/z and the parameter
change r ↔ q2/r . When r = q they are invariant under conformal transformations
which preserveAq . Conditioning the GAF by adding zeros, new GAFs are induced such
that the covariance kernels are also given by the weighted Szegő kernel of McCullough
and Shen but the weight parameter r is changed depending on the added zeros. We
also prove that the zero point process of the GAF provides a permanental-determinantal
point process (PDPP) in which each correlation function is expressed by a permanent
multiplied by a determinant. Dependence on r of the unfolded 2-correlation function of
the PDPP is studied. If we take the limit q → 0, a simpler but still non-trivial PDPP
is obtained on the unit disk D. We observe that the limit PDPP indexed by r ∈ (0,∞)

can be regarded as an interpolation between the determinantal point process (DPP) on D

studied by Peres and Virág (r → 0) and that DPP of Peres and Virág with a deterministic
zero added at the origin (r →∞).

1. Introduction and Main Results

1.1. Weighted Szegő kernel and GAF on an annulus. For a domain D ⊂ C, let X be a
random variable on a probability space which takes values in the space of analytic func-
tions on D. If (X (z1), . . . , X (zn)) follows a mean zero complex Gaussian distribution
for every n ∈ N and every z1, . . . , zn ∈ D, X is said to be a Gaussian analytic function
(GAF) [35]. In the present paper the zero set of X is regarded as a point process on D
denoted by a nonnegative-integer-valued Radon measure ZX =∑z∈D:X (z)=0 δz , and it
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is simply called the zero point process of the GAF. Zero point processes of GAFs have
been extensively studied in quantum and statistical physics as solvable models of quan-
tum chaotic systems and interacting particle systems [10,11,17,27,32,48,49]. Many
important characterizations of their probability laws have been reported in probability
theory [9,24,35,54,64,71,75].

A typical example of GAF is provided by the i.i.d. Gaussian power series defined
on the unit disk D := {z ∈ C : |z| < 1}: Let N0 := {0, 1, 2, . . . } and {ζn}n∈N0 be

i.i.d. standard complex Gaussian random variables with density e−|z|2/π and consider
a random power series,

XD(z) =
∞∑

n=0
ζnz

n, (1.1)

which defines an analytic function on D a.s. This gives a GAF on D with a covariance
kernel

E[XD(z)XD(w)] = 1

1− zw
=: SD(z, w), z, w ∈ D. (1.2)

This kernel is identifiedwith the reproducing kernel of the Hardy space H2(D) called the
Szegő kernel of D [1,7,8,60]. Peres and Virág [64] proved that ZXD

is a determinantal
point process (DPP) such that the correlation kernel is given by SD(z, w)2 = (1−zw)−2,
z, w ∈ D with respect to the reference measure λ = m/π . Here m represents the
Lebesgue measure on C; m(dz) := dxdy, z = x +

√−1y ∈ C. (See Theorem 2.11
in Sect. 2.7 below). This correlation kernel is identified with the reproducing kernel of
the Bergman space on D, which is called the Bergman kernel of D and denoted here by
KD(z, w), z, w ∈ D [1,7,8,33,60]. Thus the study of Peres and Virág on XD and ZXD

is associated with the following relationship between kernels on D [64],

E[XD(z)XD(w)]2 = SD(z, w)2 = KD(z, w), z, w ∈ D. (1.3)

(A brief review of reproducing kernels will be given in Sect. 2.1.)
Let q ∈ (0, 1) be a fixed number and we consider the annulus Aq := {z ∈ C :

q < |z| < 1}. In the present paper we will report the fact that, if we consider a GAF
given by the i.i.d. Gaussian Laurent series XAq on Aq , we will observe interesting new
phenomena related with XAq and its zero point process ZXAq

. The present results are
reduced to those by Peres and Virág [64] in the limit q → 0. Conversely, the point
processes associated with XD are extended to those associated with XAq in this paper.
The obtained new point processes can be regarded as elliptic extensions of the previous
ones, since expressions for the former given by polynomials and rational functions of
arguments are replaced by those of the theta functions with the arguments and the nome
p = q2 for the latter [29,39,45,65,67,77,78,81]. Moreover, we will introduce another
parameter r > 0 in addition toq, and one-parameter families ofGAFs, {Xr

Aq
: r > 0} and

zero point processes, {ZXr
Aq
: r > 0} will be constructed on Aq . Here put XAq := Xq

Aq

and ZXAq
:= ZXq

Aq
. Construction of a model on an annulus will serve as a solid starting

point for arguing general theory on multiply connected domains. Even if the models are
different, studies in this direction provide useful hints for us to proceed the generalization
[5,14–16,26,30,31,37,41,63,66,83].
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Consider the Hilbert space of analytic functions on Aq equipped with the inner
product

〈 f, g〉H2
r (Aq ) =

1

2π

∫

γ1∪γq

f (z)g(z)σr (dz), f, g ∈ H2
r (Aq)

with

σr (dz) =
{
dφ, if z ∈ γ1 := {e

√−1φ : φ ∈ [0, 2π)},
rdφ, if z ∈ γq := {qe

√−1φ : φ ∈ [0, 2π)},

whichwewrite as H2
r (Aq). A complete orthonormal system (CONS) of H2

r (Aq) is given

by {e(q,r)
n }n∈Z with

e(q,r)
n (z) = zn

√
1 + rq2n

, z ∈ Aq , n ∈ Z,

and the reproducing kernel is given by [56]

SAq (z, w; r) =
∑

n∈Z
e(q,r)
n (z)e(q,r)

n (w) =
∞∑

n=−∞

(zw)n

1 + rq2n
. (1.4)

This infinite series converges absolutely for z, w ∈ Aq .When r = q, thisHilbert function
space is known as the Hardy space onAq denoted by H2(Aq) and the reproducing kernel
SAq (·, ·) := SAq (·, ·; q) is called the Szegő kernel of Aq [60,68]. The kernel (1.4) with a
parameter r > 0 is considered as a weighted Szegő kernel of Aq [61] and H2

r (Aq) is the
reproducing kernel Hilbert space (RKHS) [3] with respect to SAq (·, ·; r) [56,57]. We
call r the weight parameter in this paper. We note that (1.4) implies that SAq (z, z; r) is
a monotonically decreasing function of the weight parameter r ∈ (0,∞) for each fixed
z ∈ Aq .

Associated with H2
r (Aq), we consider the Gaussian Laurent series

Xr
Aq

(z) :=
∑

n∈Z
ζne

(q,r)
n (z) =

∞∑

n=−∞
ζn

zn
√
1 + rq2n

, (1.5)

where {ζn}n∈Z are i.i.d. standard complex Gaussian random variables with density
e−|z|2/π . Since limn→∞ |ζn|1/n = 1 a.s., we apply the Cauchy–Hadamard criterion
to the positive and negative powers of Xr

Aq
(z) separately to conclude that this random

Laurent series converges a.s. whenever z ∈ Aq . Moreover, since the distribution ζn is
symmetric, both of γ1 and γq are natural boundaries [38, p.40]. Hence Xr

Aq
provides a

GAF on Aq whose covariance kernel is given by the weighted Szegő kernel of Aq ,

E[Xr
Aq

(z)Xr
Aq

(w)] = SAq (z, w; r), z, w ∈ Aq ,

and the zero point process is denoted by ZXr
Aq
:=∑z∈Aq :Xr

Aq
(z)=0 δz . In particular, we

write XAq (z) := Xq
Aq

(z), z ∈ Aq and ZXAq
:= ZXq

Aq
as mentioned above.
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We recall Schottky’s theorem (see, for instance, [4]): The group of conformal (i.e.,
angle-preserving one-to-one) transformations from Aq to itself is generated by the rota-
tions and the q-inversions Tq(z) := q/z. The invariance of the present GAF and its zero
point process under rotation is obvious. Using the properties of SAq , we can prove the
following.

Proposition 1.1. (i) The GAF Xr
Aq

given by (1.5) has the (q, r)-inversion symmetry in
the sense that

{
(T ′q(z))1/2Xr

Aq
(Tq(z))

}
d=
{√q

r
Xq2/r
Aq

(z)
}
, z ∈ Aq ,

where T ′q(z) := dTq
dz (z) = −q/z2.

(ii) For ZXr
Aq
=∑i δZi , let T

∗
q ZXr

Aq
:=∑i δT−1q (Zi )

. Then T ∗q ZXr
Aq

d= Z
Xq2/r
Aq

.

(iii) In particular,whenr = q, theGAF XAq is invariant under conformal transformations
which preserve Aq , and so is its zero point process ZXAq

.

This result should be compared with the conformal invariance of the DPP of Peres and
Virág on D stated as Proposition 2.12 in Sect. 2.7 below. The proof of Proposition 1.1
is given in Sect. 3.1.

Remark 1. Note that (T ′q(z))1/2 =
√−1q1/2/z is single valued and non-vanishing in

Aq , and so is (T ′q(z))L/2 if L ∈ N. By the calculation given in Sect. 3.1, we have the
equality,

(T ′q(z))L/2(T ′q(w))L/2SAq (Tq(z), Tq(w); r)L =
(q

r

)L
SAq (z, w; q2/r)L .

We define Xr,(L)
Aq

as the centered GAF with the covariance kernel SAq (z, w; r)L on Aq ,
L ∈ N. Then it is rotationally invariant and having the (q, r)-inversion symmetry in the
sense

{
(T ′q(z))L/2Xr,(L)

Aq
(Tq(z))

}
d=
{ (q

r

)L/2
Xq2/r,(L)

Aq
(z)
}
, z ∈ Aq .

This implies that the zero point process of Xr,(L)
Aq

is also rotationally invariant and sym-

metric under the (q, r)-inversion. In particular, the GAF X (L)
Aq
:= Xq,(L)

Aq
and its zero

point process are invariant under conformal transformations which preserve Aq . By def-

inition X (1)
Aq
= XAq given by (1.5) with r = q. The formula (C.1) and Proposition C.2

in Appendix C imply that X (2)
Aq

is realized by X (2)
Aq

(z) =∑n∈Z ζnc
(2)
n zn , z ∈ Aq , where

c(2)
−1 =

√
a − 1/(2 log q) with a = a(q) given by (C.9), c(2)

n = √(n + 1)/(1− q2(n+1)),
n ∈ Z \ {−1}, and {ζn}n∈Z are i.i.d. standard complex Gaussian random variables
with density e−|z|2/π . We do not know explicit expressions for the Gaussian Laurent

series of X (L)
Aq

for L = 3, 4, . . . , but it is expected that limq→0 X
(L)
Aq

(z)
d= X (L)

D
(z) :=

∑
n∈N0

ζn

√
L(L+1)···(L+n−1)√

n! zn , z ∈ D, and X (1)
Aq

and X (2)
Aq

given above indeed satisfy such

limit transitions. Here {X (L)
D
: L > 0} is the family ofGAFs onD studied in [35, Sections

2.3 and 5.4] which are invariant under conformal transformations mapping D to itself.
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Let θ(·) := θ(·; q2) be the theta function, whose definition and basic properties
are given in Sect. 2.2. Following the standard way [29,67], we put θ(z1, . . . , zn) :=∏n

i=1 θ(zi ). Then (1.4) is expressed as [56]

SAq (z, w; r) =
q20θ(−r zw)

θ(−r, zw)
, z, w ∈ Aq (1.6)

with q0 :=∏∞n=1(1− q2n), as proved in Sect. 2.3.

Remark 2. Consider an operator (Uq f )(z) := f (q2z) acting on holomorphic functions
f on C

×. For n ∈ N, Rosengren and Schlosser [67] called f an An−1 theta function of
norm a ∈ C

× if

(Uq f )(z) = (−1)n
azn

f (z).

It is shown that f is an An−1 theta function of norm a if and only if there exist C ,
b1, . . . , bn such that

∏n

=1 b
 = a and f (z) = Cθ(b1z, . . . , bnz) [67, Lemma3.2]. In the

following, given n points z1, . . . , zn ∈ Aq , we will evaluate the weighted Szegő kernel
at these points. In this case, the weight parameter r for H2

r (Aq) can be related to a norm

for An−1 theta functions as explained below. Put a = −r∏n

=1 z
 and let �(n,a)

j (z) :=
Cθ(−r zz j )∏1≤
≤n,
 �= j θ(zz
), z ∈ Aq , j = 1, . . . , n. Then {�(n,a)

j (z)}nj=1 form a
basis of the n-dimensional space of the An−1 theta functions of norm a. If we choose
C = q20/θ(−r), then evaluations of the weighted Szegő kernel at the n points are

expressed as SAq (zi , z j ; r) = �
(n,a)
j (zi )/

∏n

=1 θ(zi z
), i = 1, . . . , n. Multivariate

extensions of such elliptic function spaces were studied in [78].

1.2. McCullough–Shen formula for the conditional Szegő kernel. For any non-empty set
D, given a positive definite kernel k(z, w) on D×D, we can define a centered Gaussian
process on D, XD , such that the covariance kernel is given by E[XD(z)XD(w)] =
k(z, w), z, w ∈ D. The kernel k induces RKHS Hk realized as a function space having
k as the reproducing kernel [3]. Now we define a conditional kernel

kα(z, w) = k(z, w)− k(z, α)k(α,w)

k(α, α)
, z, w ∈ D, (1.7)

for α ∈ D such that k(α, α) > 0. Then, kα is a reproducing kernel for the Hilbert
subspace Hα

k := { f ∈ Hk : f (α) = 0}. The corresponding centered Gaussian process
on Dwhose covariance kernel is given by kα is equal in law to XD given that XD(α) = 0.

We can verify that if D � C is a simply connected domain with C∞ smooth boundary
and the Szegő kernel SD can be defined on it, Riemann’s mapping theorem implies the
equality [2,6]

Sα
D(z, w) = SD(z, w)hα(z)hα(w), z, w, α ∈ D, (1.8)

where hα is the Riemann mapping function; the unique conformal map from D to D

satisfying hα(α) = 0 and h′α(α) > 0. Actually (1.8) is equivalent with (2.7) derived
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Fig. 1. Conformal map hqα : Aq → D \ {a circular slit} is illustrated for q = 1/3 and α = 2/3. The point
α = 2/3 in A1/3 is mapped to the origin. The outer boundary γ1 of A1/3 (denoted by a red circle) is mapped
to a unit circle (a red circle) making the boundary of D. The inner boundary γ1/3 of A1/3 (a green circle) is
mapped to a circular slit (denoted by a green arc) which is a part of the circle with radius α = 2/3, where the
map is two-to-one except the two points on γ1/3 mapped to the two edges of the circular slit

from Riemann’s mapping theorem in Sect. 2.1 below. In particular, when D = D, hα is
the Möbius transformation D → D sending α to the origin,

hα(z) = z − α

1− αz
= z

1− α/z

1− αz
, z, α ∈ D. (1.9)

Since the theta function θ(z) can be regarded as an elliptic extension of 1 − z as
suggested by the formula limq→0 θ(z; q2) = 1− z given by (2.16) below, we can think
of the following function as an elliptic extension of (1.9);

hqα(z) := z
θ(α/z)

θ(αz)
= −α

θ(z/α)

θ(zα)
, z, α ∈ Aq . (1.10)

We can prove that hqα is identified with a conformal map from Aq to the unit disk with a
circular slit in it, in which α ∈ Aq is sent to the origin [56]. See Fig. 1 and Lemma 2.9
in Sect. 2.6. McCullough and Shen proved the equality

Sα
Aq

(z, w; r) = SAq (z, w; r |α|2)hqα(z)hqα(w), z, w, α ∈ Aq , (1.11)

as an extension of (1.8) [56]. See Sect. 2.6 below for a direct proof of this equality by

Weierstrass’ addition formula of the theta function (2.18). Up to the factor hqα(z)hqα(w)

the conditional kernel Sα
Aq

(z, w; r) remains the weighted Szegő kernel, but the weight

parameter should be changed from r to r |α|2.
Following (1.7), conditional kernels kα1,...,αn are inductively defined as

kα1,...,αn (z, w)=(kα1,...,αn−1)αn (z, w), z, w, α1, . . . , αn ∈ D, n = 2, 3, . . . . (1.12)

The kernels kα1,...,αn , n = 2, 3, . . . , will construct Hilbert subspaces Hα1,...,αn
k := { f ∈

Hk : f (α1) = · · · = f (αn) = 0}.
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For n ∈ N, α1, . . . , αn ∈ Aq , define

γ
q
{α
}n
=1(z) :=

n∏


=1
hqα


(z), z ∈ Aq . (1.13)

Then the McCullough and Shen formula (1.11) [56] is generalized as

Sα1,...,αn
Aq

(z, w; r) = SAq

(
z, w; r

n∏


=1
|α
|2

)
γ
q
{α
}n
=1(z)γ

q
{α
}n
=1(w), z, w ∈ Aq , (1.14)

for n ∈ N, α1, . . . , αn ∈ Aq . We can give probabilistic interpretations of the above facts
as follows.

Proposition 1.2. For any α1, . . . , αn ∈ Aq , n ∈ N, the following hold.

(i) The following equality is established,

{Xr
Aq

(z) : z ∈ Aq} given {Xr
Aq

(α1) = · · · = Xr
Aq

(αn) = 0}
d=
{

γ
q
{α
}n
=1(z)X

r
∏n


=1 |α
|2
Aq

(z) : z ∈ Aq

}

.

(ii) Let Zα1,...,αn
Xr
Aq

denote the zero point process of the GAF Xr
Aq

(z) given {Xr
Aq

(α1)

= · · · = Xr
Aq

(αn) = 0}. Then, Zα1,...,αn
Xr
Aq

d= Z
X
r
∏n


=1 |α
|2
Aq

+
∑n

i=1 δαi .

Remark 3. For the GAF on D studied by Peres and Virág [64], {XD(z) : z ∈ D}
given {XD(α) = 0} is equal in law to {hα(z)XD(z) : z ∈ D}, ∀α ∈ D, where hα is

given by (1.9), and then, in the notation used in Proposition 1.2, Zα
XD

d= ZXD
+ δα ,

∀α ∈ D. Hence, no new GAF nor new zero point process appear by conditioning
of zeros. For the present GAF on Aq , however, conditioning of zeros induces new
GAFs and new zero point processes as shown by Proposition 1.2. Actually, by (1.4) the

covariance of the induced GAF X
r
∏n


=1 |α
|2
Aq

is expressed by SAq (z, w; r
∏n


=1 |α
|2) =
∑∞

n=−∞(zw)n/(1 + r
∏n


=1 |α
|2q2n). Since q < |α
| < 1, as increasing the number of
conditioning zeros, the variance of induced GAF monotonically increases, in which the
increment is a decreasing function of |α
| ∈ (q, 1).

1.3. Correlation functions of the zero point process. We introduce the following nota-
tion. For an n × n matrix M = (mi j )1≤i, j≤n ,

perdet M = perdet
1≤i, j≤n

[mi j ] := per M det M, (1.15)

that is, perdet M denotes per M multiplied by det M . Note that perdet is a special case
of hyperdeterminants introduced by Gegenbauer following Cayley (see [25,51,53] and
references therein). If M is a positive semidefinite hermitian matrix, then per M ≥
det M ≥ 0 [52, Section II.4] [59, Theorem4.2], and hence perdet M ≥ 0 by the definition
(1.15).

The following will be proved in Sect. 3.2.
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Theorem 1.3. Consider the zero point process ZXr
Aq

on Aq . Then, it is a permanental-

determinantal point process (PDPP) in the sense that it has correlation functions
{ρn

Aq
}n∈N given by

ρn
Aq

(z1, . . . , zn; r) = θ(−r)
θ(−r∏n

k=1 |zk |4)
perdet
1≤i, j≤n

[
SAq

(
zi , z j ; r

n∏


=1
|z
|2

)]
(1.16)

for every n ∈ N and z1, . . . , zn ∈ Aq with respect to m/π .

In Appendix A we rewrite this theorem using the notion of hyperdeterminants (Theo-
rem A.2).

Remark 4. (i) The PDPP with correlation functions (1.16) turns out to be a simple point
process, i.e., there is no multiple point a.s., due to the existence of two-point correlation
function with respect to the Lebesgue measure m/π [40, Lemma 2.7]. (ii) Using the
explicit expression (1.16) together with the Frobenius determinantal formula (3.3), we
can verify that for every n ∈ N, the n-point correlation ρn

Aq
(z1, . . . , zn) > 0 if all

coordinates z1, . . . , zn ∈ Aq are different from each other, and that ρn
Aq

(z1, . . . , zn) = 0
if some of z1, . . . , zn coincide; e.g., zi = z j , i �= j , by the determinantal factor in perdet
(1.15).

Remark 5. The determinantal point processes (DPPs) and the permanental point pro-
cesses (PPPs) have the n-correlation functions of the forms

ρn
DPP(z1, . . . , zn) = det

1≤i, j≤n[K (zi , z j )], ρn
PPP(z1, . . . , zn) = per

1≤i, j≤n
[K (zi , z j )],

respectively (cf. [35,55,73]). Due to Hadamard’s inequality for the determinant [52,
Section II.4] and Lieb’s inequality for the permanent [50], we have

ρ2
DPP(z1, z2) ≤ ρ1

DPP(z1)ρ
1
DPP(z2), ρ2

PPP(z1, z2) ≥ ρ1
PPP(z1)ρ

1
PPP(z2),

in other words, the unfolded 2-correlation functions are ≤ 1 or ≥ 1, respectively (see
Sect. 1.4). These correlation inequalities suggest a repulsive nature (negative correlation)
for DPPs and an attractive nature (positive correlation) for PPPs. Some related topics
are discussed in [70]. Since perdet is considered to have intermediate nature between
determinant and permanent, PDPPs are expected to exhibit both repulsive and attractive
characters, depending on the position of two points z1 and z2. For example, Remark 4
(ii) shows the repulsive nature inherited from the DPP side. The two-sidedness of the
present PDPP will be clearly described in Theorem 1.6 given below.

Remark 6. Since correlation functions are transformed as in Lemma 2.10 given in
Sect. 2.7, Proposition 1.1 (ii) is rephrased using correlation functions as

ρn
Aq

(Tq(z1), . . . , Tq(zn); r)
n∏


=1
|T ′q(z
)|2 = ρn

Aq
(z1, . . . , zn; q2/r) (1.17)

for any n ∈ N and z1, . . . , zn ∈ Aq , where Tq(z) = q/z and |T ′q(z)|2 = q2/|z|4. In
the correlation functions {ρn

Aq
}n∈N given by Theorem 1.3, we see an inductive struc-

ture such that the functional form of the permanental-determinantal correlation kernel
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SAq (·, ·; r
∏n


=1 |z
|2) is depending on the points {z1, . . . , zn}, which we intend to mea-
sure by ρn

Aq
, via the weight parameter r

∏n

=1 |z
|2. This is due to the inductive structure

of the induced GAFs generated in conditioning of zeros as mentioned in Remark 3. In
addition, the reference measure m/π is also weighted by θ(−r)/θ(−r∏n

k=1 |zk |4). As
demonstrated by a direct proof of (1.17) given inSect. 3.3, such ahierarchical structureof
correlation functions and reference measures is necessary to realize the (q, r)-inversion
symmetry (1.17) (and the invariance under conformal transformations preserving Aq
when r = q).

Remark 7. The nonexistence of zero in D of SD(·, α), α ∈ D and the uniqueness of zero
inAq of SAq (·, α), α ∈ Aq are concluded from a general consideration (see, for instance,
[7, Chapter 27]). Define

α̂ := −q

α
, α ∈ Aq . (1.18)

The fact SAq (̂α, α) = 0, α ∈ Aq was proved as Theorem 1 in [79] by direct calculation,
for which a simpler proof will be given below (Lemma 2.3) using theta functions (1.6).
For the GAF XD studied by Peres and Virág [64], all points inD are correlated, while the
GAF XAq has a pair structure of independent points {{α, α̂} : α ∈ Aq} (Proposition 2.4).
As a special case of (1.14), we have

Sα,̂α
Aq

(z, w) = SAq (z, w) f qα (z) f qα (w), z, w ∈ Aq

with

f qα (z) := 1

z
hqα(z)hqα̂(z)

= z
θ(−qzα, α/z)

θ(−qz/α, αz)
= −α

θ(−qzα, z/α)

θ(−qz/α, zα)
.

We notice that f qα is identified with the Ahlfors map from Aq to D, that is, it is holo-
morphic and gives the two-to-one map from Aq to D satisfying f qα (α) = f qα (̂α) = 0.
The Ahlfors map has been extensively studied (see, for instance, [7, Chapter 13]), and
the above explicit expression using theta functions will be useful. We can verify that if
we especially consider the 2n-correlation of n-pairs {{zi , ẑi }}ni=1 of points in the zero
point processZXAq

, the hierarchical structurementioned above vanishes and the formula
(1.16) of Theorem 1.3 is simplified as

ρ2n
Aq

(z1, ẑ1, . . . , zn, ẑn; q) = perdet
1≤i, j≤n

[
SAq (zi , z j ) SAq (zi , ẑ j )
SAq (ẑi , z j ) SAq (ẑi , ẑ j )

]

for any n ∈ N. In other words, we need the hierarchical structure of correlation func-
tions and reference measure in order to describe the probability distributions of general
configurations of the zero point process ZXr

Aq
.

The density of zeros on Aq with respect to m/π is given by

ρ1
Aq

(z; r) = θ(−r)
θ(−r |z|4) SAq (z, z; r |z|2)2 =

q40θ(−r,−r |z|4)
θ(−r |z|2, |z|2)2 , z ∈ Aq , (1.19)
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which is always positive. Since ρ1
Aq

(z; r) depends only on the modulus of the coordinate
|z| ∈ (q, 1), the PDPP is rotationally invariant. As shown by (2.20–2.22) in Sect. 2.2,
in the interval x ∈ (−∞, 0), θ(x) is positive and strictly convex with limx↓−∞ θ(x) =
limx↑0 θ(x) = +∞, while in the interval x ∈ (q2, 1), θ(x) is positive and strictly concave
with θ(x) ∼ q20 (x − q2)/q2 as x ↓ q2 and θ(x) ∼ q20 (1 − x) as x ↑ 1. Therefore, the
density shows divergence both at the inner and outer boundaries as

ρ1
Aq

(z; r) ∼

⎧
⎪⎪⎨

⎪⎪⎩

q2

(|z|2 − q2)2
, |z| ↓ q,

1

(1− |z|2)2 , |z| ↑ 1,
(1.20)

which is independent of r and implies E[ZXr
Aq

(Aq)] = ∞. If M is a 2 × 2 matrix, we

see that perdet M = det(M ◦ M), where M ◦ M denotes the Hadamard product of M ,
i.e., entrywise multiplication, (M ◦ M)i j = Mi j Mi j . Then the two-point correlation is
expressed by a single determinant as

ρ2
Aq

(z1, z2; r) = θ(−r)
θ(−r |z1|4|z2|4) det

1≤i, j≤2

[
SAq (zi , z j ; r |z1|2|z2|2)2

]
, z1, z2 ∈ Aq .

(1.21)

The above GAF and the PDPP induce the following limiting cases. With fixed r > 0
we take the limit q → 0. By the reason explained in Remark 8 below, in this limiting
procedure, we should consider the point processes {ZXr

Aq
: q > 0} to be defined on the

punctured unit disk D
× := {z ∈ C : 0 < |z| < 1} instead of D. Although the limit

point process is given on D
× by definition, it can be naturally viewed as a point process

defined on D, which we will introduce below. Let H2
r (D) be the Hardy space on D with

the weight parameter r > 0, whose inner product is given by

〈 f, g〉H2
r (D) =

1

2π

∫ 2π

0
f (e

√−1φ)g(e
√−1φ)dφ + r f (0)g(0), f, g ∈ H2

r (D).

The reproducing kernel of H2
r (D) is given by

SD(z, w; r) =
∞∑

n=0
e(0,r)
n (z)e(0,r)

n (w) = 1

1 + r
+
∞∑

n=1
(zw)n

= 1 + r zw

(1 + r)(1− zw)
, z, w ∈ D. (1.22)

The GAF associated with H2
r (D) is then defined by

Xr
D
(z) = ζ0√

1 + r
+
∞∑

n=1
ζnz

n, z ∈ D (1.23)

so that the covariance kernel is given by E[Xr
D
(z)Xr

D
(w)] = SD(z, w; r), z, w ∈ D. For

the conditional GAF given a zero at α ∈ D, the covariance kernel is given by

Sα
D
(z, w; r) = SD(z, w; r |α|2)hα(z)hα(w), z, w, α ∈ D,
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where the replacement of the weight parameter r by r |α|2 should be done, even though
the factor hα(z) is simply given by the Möbius transformation (1.9).

For the zero point process Theorem 1.3 is reduced to the following by the formula
limq→0 θ(z; q2) = 1− z.

Corollary 1.4. Assume that r > 0. Then ZXr
D
is a PDPP on D with the correlation

functions

ρn
D
(z1, . . . , zn; r) = 1 + r

1 + r
∏n

k=1 |zk |4
perdet
1≤i, j≤n

[
SD
(
zi , z j ; r

n∏


=1
|z
|2

)]
(1.24)

for every n ∈ N and z1, . . . , zn ∈ D with respect to m/π . In particular, the density of
zeros on D is given by

ρ1
D
(z; r) = (1 + r)(1 + r |z|4)

(1 + r |z|2)2(1− |z|2)2 , z ∈ D. (1.25)

As r increases the first term in (1.23), which gives the value of the GAF at the origin,
decreases and hence the variance at the origin, E[|Xr

D
(0)|2] = SD(0, 0; r) = (1 + r)−1

decreases monotonically. As a result the density of zeros in the vicinity of the origin
increases as r increases. Actually we see that ρ1

D
(0; r) = 1 + r .

Remark 8. The asymptotics (1.20) show that the density of zeros of ZXr
Aq

diverges at

the inner boundary γq = {z : |z| = q} for each q > 0 while the density of ZXr
D
is finite

at the origin as in (1.25). Therefore infinitely many zeros near the inner boundary γq
seem to vanish in the limit as q → 0. This is the reason why we regard the base space
of {ZXr

Aq
: q > 0} and the limit point process ZXr

D
as D

× instead of D as mentioned

before. (See Sect. 2.7 for the general formulation of point processes.) Indeed, in the
vague topology,withwhichwe equip a configuration space,we cannot see configurations
outside each compact set, hence infinitely many zeros are not observed on each compact
set in D

× (not D) for any sufficiently small q > 0 depending on the compact set that we
take.

We note that if we take the further limit r → 0 in (1.22), we obtain the Szegő kernel
of D given by (1.2). Since the matrix (SD(zi , z j )−1)1≤i, j≤n = (1 − zi z j )1≤i, j≤n has
rank 2, the following equality called Borchardt’s identity holds (see Theorem 3.2 in [59],
Theorem 5.1.5 in [35]),

perdet
1≤i, j≤n

[
(1− zi z j )

−1] = det
1≤i, j≤n

[
(1− zi z j )

−2]. (1.26)

By the relation (1.3), the r → 0 limit of ZXr
D
is identified with the DPP on D, ZXD

,
studied by Peres and Virág [64], whose correlation functions are given by

ρn
D,PV(z1, . . . , zn) = det

1≤i, j≤n[KD(zi , z j )], n ∈ N, z1, . . . , zn ∈ D,

with respect to m/π (see Sect. 2.7 below).



1110 M. Katori, T. Shirai

Remark 9. We see from (1.22) that limr→∞ SD(z, w; r) = (1 − zw)−1 − 1, z, w ∈ D,
which can be identified with the conditional kernel given a zero at the origin; S0

D
(z, w) =

SD(z, w) − SD(z, 0)SD(0, w)/SD(0, 0) for SD(z, 0) ≡ 1. In this limit we can use
Borchardt’s identity again, since the rank of the matrix (SD(zi , z j ;∞)−1)1≤i, j≤n =
(z−1i z−1j − 1)1≤i, j≤n is two. Then, thanks to the proper limit of the prefactor of perdet

in (1.24) when zk ∈ D
× for all k = 1, 2, . . . , n; limr→∞(1 + r)/(1 + r

∏n
k=1 |zk |4) =∏n

k=1 |zk |−4, we can verify that limr→∞ ρn
D
(z1, . . . , zn; r) = ρn

D,PV(z1, . . . , zn) for
every n ∈ N, and every z1, . . . , zn ∈ D

×. On the other hand, taking (1.23) into account,
we have X∞

D
(z) = z

∑∞
n=1 ζnzn−1

d= zXD(z), from which, we can see that as r →∞,

ZXr
D
converges to ZX∞

D

d= ZXD
+ δ0; that is, the DPP of Peres and Virág with a deter-

ministic zero added at the origin. This is consistent with the fact that ρ1
D
(0; r) = 1 + r

diverges as r →∞. Since ZX0
D

:= limr→0 ZXr
D

d= ZXD
as mentioned above, the one-

parameter family of PDPPs {ZXr
D
: r ∈ (0,∞)} can be regarded as an interpolation

between the DPP of Peres and Virág and that DPP with a deterministic zero added at the
origin.

1.4. Unfolded 2-correlation functions. By the determinantal factor in perdet (1.15) the
PDPP shall be negatively correlated when distances of points are short in the domain
Aq . The effect of the permanental part [55,73] in perdet will appear in long distances.
Contrary to such a general consideration for the PDPP, if we take the double limit,
q → 0 and then r → 0, Borchardt’s identity (1.26) becomes applicable and the zero
point process is reduced to the DPP studied by Peres and Virág [64]. In addition to this
fact, the two-point correlation of the PDPP can be generally expressed using a single
determinant as explained in the sentence above (1.21). We have to notice the point,
however, that the weight parameter r |z|2 of SAq for the density (1.19) is replaced by
r |z1|2|z2|2 for the two-point correlation (1.21), and the prefactor θ(−r)/θ(−r |z|4) of
S2
Aq

for ρ1
Aq

is changed to θ(−r)/θ(−r |z1|4|z2|4) for ρ2
Aq
. Here we show that due to

such alterations our PDPP can not be reduced to any DPP in general and it has indeed
both of negative and positive correlations depending on the distance of points and the
values of parameters. In order to clarify this fact, we study the two-point correlation
function normalized by the product of one-point functions,

gAq (z, w; r) :=
ρ2
Aq

(z, w; r)
ρ1
Aq

(z; r)ρ1
Aq

(w; r) , (z, w) ∈ A
2
q , (1.27)

where ρ1
Aq

and ρ2
Aq

are explicitly given by (1.19) and (1.21), respectively. This function
is simply called an intensity ratio in [64], but here we call it an unfolded 2-correlation
function following a terminology used in random matrix theory [27]. We will prove
the following: (i) When 0 < q < 1, in the short distance, the correlation is generally
repulsive in common with DPPs (Proposition 1.5). (ii) There exists a critical value
r0 = r0(q) ∈ (q, 1) for each q ∈ (0, 1) such that if r ∈ (r0, 1) positive correlation
emerges between zeros when the distance between them is large enough within Aq
(Theorem 1.6). (iii) The limits gD(z, w; r) := limq→0 gAq (z, w; r), z, w ∈ D

× and
rc := limq→0 r0(q) are well-defined, and rc is positive. When r ∈ [0, rc) all positive
correlations vanish in gD(z, w; r) (Proposition 1.7), while when r ∈ (rc,∞) positive
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correlations can survive (Remark 13 given at the end of Sect. 3). In addition to these
rigorous results, we will report the numerical results for q ∈ (0, 1): In intermediate
distances between zeros, positive correlations are observed at any value of r ∈ (q, 1),
but the distance-dependence of correlations shows two distinct patterns depending on
the value of r , whether r ∈ (q, r0) or r ∈ (r0, 1) (Fig. 2).

It should be noted that the (q, r)-inversion symmetry (1.17) implies the equality (see
the second assertion of Lemma 2.10 given below),

gAq (q/z, q/w; q2/r) = gAq (z, w; r), (z, w) ∈ A
2
q . (1.28)

Provided that the moduli of coordinates |z|, |w| are fixed, we can verify that the unfolded
2-correlation function takes a minimum (resp. maximum) when arg w = arg z (resp.
arg w = −arg z) (Lemma 3.3 in Sect. 3.4.1). We consider these two extreme cases. By
putting w = x, z = q/x ∈ (

√
q, 1) we define the function

G∧
Aq

(x; r) = gAq (q/x, x; r), x ∈ (
√
q, 1) (1.29)

in order to characterize the short distance behavior of correlation, and by putting w =
−z = x ∈ (q, 1) we define the function

G∨
Aq

(x; r) = gAq (−x, x; r), x ∈ (q, 1) (1.30)

in order to characterize the long distance behavior of correlation.
Since the PDPP is rotationally symmetric, G∧

Aq
(x; r) shows correlation between two

points on any line passing through the origin located in the same side with respect to the
inner circle γq of Aq . The Euclidean distance between these two points is (x2 − q)/x
and it becomes zero as x → √

q . We can see the power law with index β = 2 in the
short distance correlation as follows, which is the common feature with DPPs [27].

Proposition 1.5. As x → √
q, G∧

Aq
(x; r) ∼ c(r)(x −√q)β with β = 2, where c(r) =

(8q40r
3θ(−qr)6)/(q2θ(q)2θ(−r)6) > 0.

Proof is given in Sect. 3.4.2.
The function G∨

Aq
(x; r) shows correlation between two points on a line passing

through the origin, which are located in the opposite sides with respect to γq and have
the Euclidean distance 2x . Long-distance behavior of the PDPP will be characterized
by this function in the limit x → 1 in Aq (see Remark 10 given below). In this limit the
correlation decays as G∨

Aq
(x; r)→ 1. We find that the decay obeys the power law with

a fixed index η = 4, but the sign of the coefficient changes at a special value of r for
each q ∈ (0, 1). Given (q, r), define τq and φ−r by

q = e
√−1πτq , −r = e

√−1φ−r ,

and consider the Weierstrass ℘-function ℘(φ−r ) = ℘(φ−r ; τq) given by (2.38) in
Sect. 2.4 below. The functions of q, ei = ei (q), i = 1, 2, 3 and g2 = g2(q) are defined
by (2.39) and (2.41).

Theorem 1.6. (i) For r > 0,

G∨
Aq

(x; r) ∼ 1 + κ(r)(1− x2)η as x ↑ 1, (1.31)
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and

G∨
Aq

(x; r) ∼ 1 +
κ(r)

q8
(x2 − q2)η as x ↓ q, (1.32)

with η = 4, where

κ(r) = κ(r; q) := 5℘(φ−r )2 + 2e1℘(φ−r )− (e21 + g2/2). (1.33)

The coefficient κ has the reciprocity property, periodicity property, and their combi-
nation,

κ(1/r) = κ(r), κ(q2r) = κ(r), κ(q2/r) = κ(r). (1.34)

Hence for the parameter space {(q, r) : q ∈ [0, 1], r > 0}, a fundamental cell is
given by � := {(q, r) : q ∈ (0, 1), q ≤ r ≤ 1}.

(ii) It is enough to describe κ(r) in �. Let

℘+ = ℘+(q) := −e1
5

+
1

10

√
24e21 + 10g2. (1.35)

Then e1 > ℘+ > e2 > e3, and

r0 = r0(q) := exp
[
− 1

2

∫ e1

℘+

ds√
(e1 − s)(s − e2)(s − e3)

]
(1.36)

satisfies the inequalities,

q < r0(q) < 1, q ∈ (0, 1). (1.37)

The coefficient κ(r) in (1.31) and (1.32) changes its sign at r = r0 as follows;
κ(r) < 0 if r ∈ (q, r0), and κ(r) > 0 if r ∈ (r0, 1).

(iii) The curve {r = r0(q) : q ∈ (0, 1)} ⊂ � satisfies the following;

(a) rc := lim
q→0

r0(q) =
1−

√
4−√6√
5

1 +
√

4−√6√
5

= 2
√
6− 3− 2

√

8− 3
√
6 = 0.2846303639 · · · ,

(b) r0(q) ∼ rc + cq2 as q → 0

with c = 8

3

[
− 72 + 22

√
6 + 3(4

√
6− 1)

√

8− 3
√
6
]
= 8.515307593 · · · ,

(c) r0(q) ∼ 1− 1

2
(1− q) as q → 1.

The proof is given in Sects. 3.4.3–3.4.5.

Remark 10. For s > 0, define a horizontal slit [−s +√−1, s +√−1] in the upper half
plane H = {z ∈ C : Imz > 0} and consider a doubly connected domain D(s) :=
H \ [−s +

√−1, s +
√−1]. Such a domain is called the chordal standard domain

with connectivity n = 2 in [5] (see also Chapter VII in [60]). As briefly explained in
Appendix B, the conformal map from Aq to D(s) is given by

Hq(z) = −2
{
ζ(−√−1 log z) +√−1(η1/π) log z

}
, z ∈ Aq , (1.38)
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where the Weierstrass ζ -function and its special value η1 are defined in Sect. 2.4 below.
This conformal map is chosen so that the boundary points are mapped as

Hq(−1) = 0, Hq(1) = ∞, Hq(±
√−1q) = ∓s +√−1, Hq(±q) = √−1.

The x → 1 limit for a pair of points −x and x on Aq ∩ R is hence regarded as the
pull-back of an infinite-distance limit of two points on H ∩√−1R. In the q → 0 limit,
Hq is reduced to the Cayley transformation fromD toH, H0(z) = −

√−1(z+1)/(z−1),
such that H0(−1) = 0, H0(1) = ∞ and H0(0) =

√−1.
Theorem 1.6 implies that if r ∈ (r0, 1), G∨Aq

(x; r) > 1 when x is closed to q or 1.
Appearance of such positive correlations proves that the present PDPP ZXr

Aq
is indeed

unable to be identified with any DPP.
Let gD(z, w; r) = ρ2

D
(z, w; r)/ρ1

D
(z; r)ρ1

D
(w; r), (z, w) ∈ D

2. The asymptotic
(1.31) holds forG∨

D
(x; r) := gD(−x, x; r)with κ0(r) := limq→0 κ(r; q), which has the

reciprocity property κ0(1/r) = κ0(r) (see (3.21) in Sect. 3.4.5). When r ∈ (rc, 1/rc),
κ0(r) > 0 and hence G∨

D
(x; r) > 1 for x � 1, which indicates appearance of attractive

interaction at large intervals in D
×. When r ∈ [0, rc) or r ∈ (1/rc,∞), negative κ0(r)

implies G∨
D
(x; r) < 1 even for x � 1. Moreover, we can prove the following.

Proposition 1.7. If r ∈ [0, rc), then gD(z, w; r) < 1, ∀(z, w) ∈ D
2.

The proof is given in Sect. 3.5. We should note that this statement does not hold for
r ∈ (1/rc,∞), since we can verify that gD(z, w; r) can exceed 1 when r > 1 (see
Remark 13 in Sect. 3.5). Therefore, we say that there are two phases for the PDPP ZXr

D

in the following sense:

(i) Repulsive phase: when r ∈ [0, rc), all pairs of zeros are negatively correlated.
(ii) Partially attractive phase: when r ∈ (rc,∞), positive correlations emerge between

zeros.

When q ∈ (0, 1), however, the repulsive phase seems to disappear and positive
correlations can be observed at any value of r > 0. Figure 2 shows numerical plots of
G∨

Aq
(x; r) for q = 0.1 with r0(0.1) = 0.348 · · · . The red solid (resp. blue dashed) curve

shows the pair correlation for r = 0.2 (resp. r = 0.6). Since r = 0.2 < r0(0.1) the
red solid curve tends to be less than unity in the vicinity of edges x = q and x = 1 as
shown in the insets (following Theorem 1.6 (i) and (ii)), but shows two local maxima
greater than unity and then has a uniqueminimum< 1 at the point near

√
q = 0.316 · · · .

On the other hand, the blue dashed curve with r = 0.6 > r0(0.1) tends to be greater
than unity in the vicinity of edges as shown in the insets (following Theorem 1.6 (i)
and (ii)), but shows two local minima < 1 and then has a unique maximum > 1 at the
point near

√
q = 0.316 · · · . As demonstrated by these plots, the change of sign of κ(r)

at r = r0 ∈ (q, 1) seems to convert a global pattern of correlations. Figure 3 shows
a numerical plot of the curve r = r0(q), q ∈ (0, 1) in the fundamental cell � of the
parameter space. Detailed characterization of correlations (not only pair correlations but
also ρn

Aq
, n ≥ 3) in PDPPs will be a future problem.

The paper is organized as follows. In Sect. 2 we give preliminaries, which include a
brief review of reproducing kernels, conditional Szegő kernels, and a general treatment
of point processes including DPPs. There we also give definitions and basic properties
of special functions used to represent and analyze GAFs and their zero point processes
on an annulus. Section 3 is devoted to proofs of theorems. Concluding remarks are given
in Sect. 4. Appendices will provide additional information related to the present study.
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Fig. 2. Numerical plots of G∨
Aq

(x; r) with q = 0.1 are given in the interval (q, 1) for r = 0.2 (red solid

curve) and r = 0.6 (blue dashed curve). Note that 0.2 < r0(0.1) = 0.348 · · · < 0.6. Then following Theorem
1.6 (i) and (ii), the red solid curve (resp. blue dashed curve) approaches to the unity from below (resp. from
above) as x → q = 0.1 (see the upper left inset) and as x → 1 (see the upper right inset). In the intermediate
values of x , the red solid curve shows two local maxima greater than unity and a unique minimum < 1 at the
point near

√
q = 0.316 · · · , while the blue dashed curve has two local minima < 1 and a unique maximum

> 1 at the point near
√
q = 0.316 · · · . The global pattern of correlations is converted when the sign of κ(r)

is changed

2. Preliminaries

2.1. Reproducing kernels. A Hilbert function space is a Hilbert space H of functions
on a domain D in C

d equipped with inner product 〈·, ·〉H such that evaluation at each
point of D is a continuous functional on H. Therefore, for each point w ∈ D, there is
an element of H, which is called the reproducing kernel at w and denote by kw, with
the property 〈 f, kw〉H = f (w),∀ f ∈ H. Because kw ∈ H, it is itself a function on D,
kw(z) = 〈kw, kz〉H. We write

kH(z, w) := kw(z) = 〈kw, kz〉H

and call it the reproducing kernel for H. By definition, it is hermitian; kH(z, w) =
kH(w, z), z, w ∈ D. IfH is a holomorphic Hilbert function space, then kH is holomor-
phic in the first variable and anti-holomorphic in the second. We see that kH(z, w) is a
positive semi-definite kernel: for any n ∈ N := {1, 2, . . . }, for any points zi ∈ D and
ξi ∈ C, i = 1, 2, . . . , n,

n∑

i=1

n∑

j=1
kH(zi , z j )ξiξ j =

∥
∥
∥

n∑

i=1
ξi kH(zi , ·)

∥
∥
∥
2

H ≥ 0. (2.1)
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Fig. 3. The curve r = r0(q) given by (1.36) in Theorem 1.6 (ii) is numerically plotted (in red) in the
fundamental cell � in the parameter space, which is located between the diagonal line r = q (shown by a
blue line) and the horizontal line r = 1 satisfying (1.37). The parabolic curve rc + cq2 given by (iii) (b) and
the line 1 − (1 − q)/2 by (iii) (c) are also dotted, which approximate r = r0(q) well for q � 0 and q � 1,
respectively

Let {en : n ∈ I} be any CONS for H, where I is an index set. Then one can prove that
the reproducing kernel for H is written in the form

kH(z, w) =
∑

n∈I
en(z)en(w). (2.2)

We note that the positive definiteness of the kernel (2.1) is equivalent with the situation
such that, for any points zi ∈ D, i ∈ N, the matrix (kH(zi , z j ))1≤i, j≤n has a nonnegative
determinant, det1≤i, j≤n[kH(zi , z j )] ≥ 0, for any n ∈ N.

Here we show two examples of holomorphic Hilbert function spaces, the Bergman
space and the Hardy space, for a unit disk D and the domains which are conformally
transformed from D [1,7,8,33,60].

The Bergman space on D, denoted by L2
B(D), is the Hilbert space of holomorphic

functions on D which are square-integrable with respect to the Lebesgue measure on C

[8]. The inner product for L2
B(D) is given by

〈 f, g〉L2
B(D) :=

1

π

∫

D

f (z)g(z)m(dz) =
∞∑

n=0

f̂ (n)ĝ(n)

n + 1
,

where the nth Taylor coefficient of f at 0 is denoted by f̂ (n); f (z) = ∑∞
n=0 f̂ (n)zn .

Let ẽn(z) :=
√
n + 1zn, n ∈ N0. Then {ẽn(z)}n∈N0 form a CONS for L2

B(D) and the
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reproducing kernel (2.2) is given by

KD(z, w) := kL2
B(D)(z, w)

=
∑

n∈N0

(n + 1)(zw)n = 1

(1− zw)2
, z, w ∈ D. (2.3)

This kernel is called the Bergman kernel of D.
The Hardy space on D, H2(D), consists of holomorphic functions on D such that the

Taylor coefficients form a square-summable series;

‖ f ‖2H2(D)
:=
∑

n∈N0

| f̂ (n)|2 <∞, f ∈ H2(D).

For every f ∈ H2(D), the non-tangential limit limr↑1 f (re
√−1φ) exists a.e. by Fatou’s

theorem and we write it as f (e
√−1φ). It is known that f (e

√−1φ) ∈ L2(∂D) [1]. Then
one can prove that the inner product of H2(D) is given by the following three different
ways [1],

〈 f, g〉H2(D) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∑

n∈N0

f̂ (n)ĝ(n),

lim
r↑1

1

2π

∫ 2π

0
f (re

√−1φ)g(re
√−1φ)dφ, f, g ∈ H2(D),

1

2π

∫ 2π

0
f (e

√−1φ)g(e
√−1φ)dφ,

(2.4)

with ‖ f ‖2
H2(D)

= 〈 f, f 〉H2(D). Let σ be the measure on the boundary of D which is the
usual arc length measure. Then the last expression of the inner product (2.4) is written
as 〈 f, g〉H2(D) = (1/2π)

∫
γ1

f (z)g(z)σ (dz), where γ1 is a unit circle {e
√−1φ : φ ∈

[0, 2π)} giving the boundary of D. If we set en(z) := e(0,0)
n (z) = zn, n ∈ N0, then

{en(z)}n∈N0 form CONS for H2(D). The reproducing kernel (2.2) is given by

SD(z, w) := kH2(D)(z, w)

=
∑

n∈N0

(zw)n = 1

1− zw
, z, w ∈ D, (2.5)

which is called the Szegő kernel of D.
Let f : D → D̃ be a conformal transformation between two bounded domains

D, D̃ � C with C∞ smooth boundary. We find an argument in Chapter 12 of [7]
concluding that the derivative of the transformation f denoted by f ′ has a single valued
square root on D. We let

√
f ′(z) denote one of the square roots of f ′. The Szegő kernel

and the Bergman kernel are then transformed by f as

SD(z, w) = √ f ′(z)
√

f ′(w)SD̃( f (z), f (w)),

KD(z, w) = | f ′(z)|| f ′(w)|KD̃( f (z), f (w)), z, w ∈ D. (2.6)
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See Chapters 12 and 16 of [7]. Consider the special case in which D � C is a simply
connected domain with C∞ smooth boundary and D̃ = D. For each α ∈ D, Riemann’s
mapping theorem gives a unique conformal transformation [2];

hα : D→ D conformal such that hα(α) = 0, h′α(α) > 0.

Such hα is called the Riemann mapping function. By (2.5), the first equation in (2.6)
gives the following formula [6],

SD(z, w) = SD(z, α)SD(w, α)

SD(α, α)

1

1− hα(z)hα(w)
, z, w, α ∈ D. (2.7)

Similarly, we have

KD(z, w) = SD(z, α)2SD(w, α)2

SD(α, α)2

1

(1− hα(z)hα(w))2
, z, w, α ∈ D. (2.8)

Hence the following relationship is established,

SD(z, w)2 = KD(z, w), z, w ∈ D. (2.9)

Although the Szegő kernel could be eliminated from the right-hand sides of (2.7) and
(2.8) by noting that h′α(z) = SD(z, α)2/SD(α, α), the formula (2.7) and the relation
(2.9) played important roles in the study by Peres and Virág [64]. As a matter of fact,
(2.7) is equivalent with (1.8) and the combination of (2.9) and (1.26) gives (1.3).

2.2. Theta function θ . Assume that p ∈ C is a fixed number such that 0 < |p| < 1. We
use the following standard notation [29,45,67],

(a; p)n :=
n−1∏

i=0
(1− api ), (a; p)∞ :=

∞∏

i=0
(1− api ),

(a1, . . . , ak; p)∞ := (a1; p)∞ · · · (ak; p)∞. (2.10)

The theta function with argument z and nome p is defined by

θ(z; p) := (z, p/z; p)∞. (2.11)

We often use the shorthand notation θ(z1, . . . , zn; p) :=∏n
i=1 θ(zi ; p).

As a function of z, the theta function θ(z; p) is holomorphic in C
× and has single

zeros precisely at pi , i ∈ Z, that is,

{z ∈ C
× : θ(z; p) = 0} = {pi : i ∈ Z}. (2.12)

We will use the inversion formula

θ(1/z; p) = −1

z
θ(z; p) (2.13)

and the quasi-periodicity property

θ(pz; p) = −1

z
θ(z; p) (2.14)



1118 M. Katori, T. Shirai

of the theta function. By comparing (2.13) and (2.14) and performing the transformation
z �→ 1/z, we immediately see the periodicity property,

θ(p/z; p) = θ(z; p). (2.15)

By Jacobi’s triple product identity (see, for instance, [29, Section 1.6]), we have the
Laurent expansion

θ(z; p) = 1

(p; p)∞
∑

n∈Z
(−1)n p(n2)zn .

One can show that [62, Chapter 20]

lim
p→0

θ(z; p) = 1− z, (2.16)

θ ′(1; p) := ∂θ(z; p)
∂z

∣
∣
∣
z=1 = −(p; p)2∞. (2.17)

The theta function satisfies the followingWeierstrass’ addition formula [44],

θ(xy, x/y, uv, u/v; p)− θ(xv, x/v, uy, u/y; p) = u

y
θ(yv, y/v, xu, x/u; p).

(2.18)

When p is real and p ∈ (0, 1), we see that

θ(z; p) = θ(z; p). (2.19)

In this case the definition (2.11) with (2.10) implies that

θ(x; p) > 0, x ∈ (p2i+1, p2i )
θ(x; p) = 0, x = pi

θ(x; p) < 0, x ∈ (p2i , p2i−1)

⎫
⎬

⎭
i ∈ Z,

θ(x; p) > 0, x ∈ (−∞, 0). (2.20)

Moreover, we can prove the following: In the interval x ∈ (−∞, 0), θ(x) := θ(x; p) is
strictly convex with

min
x∈(−∞,0)

θ(x) = θ(−√p) =
∞∏

n=1
(1 + pn−1/2)2 > 0, (2.21)

and limx↓−∞ θ(x) = limx↑0 θ(x) = +∞, and in the interval x ∈ (p, 1), θ(x) is strictly
concave with

max
x∈(p,1)

θ(x) = θ(
√
p) =

∞∏

n=1
(1− pn−1/2)2, (2.22)

θ(x) ∼ (p; p)2∞(x− p)/p as x ↓ p, and θ(x) ∼ (p; p)2∞(1− x) as x ↑ 1, where (2.14)
and (2.17) were used.
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2.3. Ramanujan ρ1-function, Jordan–Kronecker function and weighted Szegő kernel of
Aq . Assume that q ∈ (0, 1). Consider the so-called Ramanujan ρ1-function [19,80]
defined by

ρ1(z) = ρ1(z; q) = 1

2
+
∑

n∈Z\{0}

zn

1− q2n
(2.23)

with q2 < |z| < 1. As a generalization of ρ1 the following function has been studied in
[19,56,80],

f JK(z, a) = f JK(z, a; q) :=
∑

n∈Z

zn

1− aq2n
, (2.24)

with q2 < |z| < 1, a /∈ {q2i : i ∈ Z}, which is called the Jordan–Kronecker function
(see [80, p.59] and [82, pp.70-71]).

Proposition 2.1. Assume that r > 0. Then the weighted Szegő kernel of Aq (1.4) is
expressed by the Jordan–Kronecker function (2.24) as

SAq (z, w; r) = f JK(zw,−r), z, w ∈ Aq . (2.25)

In particular, the Szegő kernel of Aq is given by SAq (z, w) = f JK(zw,−q), z, w ∈ Aq .

The bilateral basic hypergeometric series in base p with one numerator parameter a
and one denominator parameter b is defined by [29]

1ψ1(a; b; p, z) = 1ψ1

[a
b ; p, z

]
:=
∑

n∈Z

(a; p)n
(b; p)n z

n, |b/a| < |z| < 1.

The Jordan–Kronecker function (2.24) is a special case of the 1ψ1 function [19,80];

f JK(z, a; q) = 1

1− a
1ψ1(a; aq2; q2, z).

The following equality is known as Ramanujan’s 1ψ1 summation formula [19,29,80],

∑

n∈Z

(a; p)n
(b; p)n z

n = (az, p/(az), p, b/a; p)∞
(z, b/(az), b, p/a; p)∞ , |b/a| < |z| < 1.

Combining the above two equalities with an appropriate change of variables, we obtain
[19,80]

f JK(z, a) = f JK(z, a; q) = (az, q2/(az), q2, q2; q2)∞
(z, q2/z, a, q2/a; q2)∞ = q20θ(za; q2)

θ(z, a; q2) , (2.26)

where q0 :=∏n∈N(1−q2n) = (q2; q2)∞. Note that θ(z; q2) is a holomorphic function
of z in C

×. Hence relying on (2.26), for every fixed a in C
× \ {q2i : i ∈ Z}, f JK(·, a)

can be analytically continued to C
× \ {q2i : i ∈ Z}. The poles are located exactly at the

zeros of θ(z; q2) appearing in the denominator; {q2i : i ∈ Z}. The following symmetries
of f JK are readily verified by (2.26) using (2.13) and (2.14) [19,80].

f JK(z, a) = f JK(a, z), (2.27)
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f JK(z, a) = − f JK(z−1, a−1), (2.28)

f JK(z, a) = z f JK(z, aq2) = a f JK(zq2, a). (2.29)

As shown in Chapter 3 in [80], (2.24) is rewritten as

f JK(z, a) = 1− za

(1− z)(1− a)
+
∞∑

n=1
q2n

2
znan

(
1 +

zq2n

1− zq2n
+

aq2n

1− aq2n

)

−
∞∑

n=1
q2n

2
z−na−n

(
1 +

z−1q2n

1− z−1q2n
+

a−1q2n

1− a−1q2n
)
,

which is completely symmetric in z and a and valid for z, a /∈ {q2i : i ∈ Z}. The
equalities (2.27)–(2.29) are proved also using this expression [80].

From now on, we assume that p = q2 and hence θ(·)means θ(·; q2) in the following.
We replace z by zw and a by −r in (2.26). Then Proposition 2.1 implies the following.

Proposition 2.2 (McCullough and Shen [56]). For r > 0

SAq (z, w; r) =
q20θ(−r zw)

θ(−r, zw)
, z, w ∈ Aq . (2.30)

In particular,

SAq (z, w) = SAq (z, w; q) = q20θ(−qzw)

θ(−q, zw)
, z, w ∈ Aq . (2.31)

Since θ(·) is holomorphic in the punctured complex plane C
× := {z ∈ C : |z| > 0},

by the expression (2.30), SAq (z, w; r) can be analytically continued toC
× as an analytic

function of z, r and an anti-analytic function ofw. Actually the inversion formula (2.13)
and the quasi-periodicity property (2.14) of the theta function given in Sect. 2.2 imply
the following functional equations,

(i) SAq (q
2z, w; r) = −1

r
SAq (z, w; r),

(ii) SAq (1/z, w; r) = −SAq (z, 1/w; 1/r),
(iii) SAq (z, w; q2r) =

1

zw
SAq (z, w; r). (2.32)

Then the following is easily verified.

Lemma 2.3. Assume that α ∈ Aq . Then SAq (z, α; r) has zeros at z = −q2i/(αr), i ∈ Z

in C
×. In particular, SAq (z, α) has a unique zero in Aq at z = α̂ given by (1.18).

Proof. Since θ is holomorphic in C
×, the expression (2.30) implies that SAq (z, α; r) is

meromorphic in C
×. By (2.12), SAq (z, α; r) vanishes in C

× only if−zαr = q2i , i ∈ Z.
By assumption |α| ∈ (q, 1). Hence, when r = q, | − q2i/(αr)| = q2i−1/|α| ∈ (q, 1),
if and only if i = 1. ��

The second assertion of Lemma 2.3 gives the following probabilistic statement.

Proposition 2.4. For each α ∈ Aq , XAq (α) and XAq (̂α) are mutually independent.
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2.4. Weierstrass elliptic functions and other functions. Here we show useful relations
between the theta function, Ramanujan ρ1-function, Jordan–Kronecker function, and
Weierstrass elliptic functions.

Assume that ω1 and ω3 are complex numbers such that if we set τ = ω3/ω1, then
Imτ > 0. The lattice L(ω1, ω3) on C with lattice generators 2ω1 and 2ω3 is given by

L = L(ω1, ω3) := {2mω1 + 2nω3 : (m, n) ∈ Z
2}.

The Weierstrass ℘-function and ζ -function are defined by

℘(φ) = ℘(φ|2ω1, 2ω3) := 1

φ2 +
∑

v∈L(ω1,ω3)\{0}

[
1

(φ − v)2
− 1

v2

]

,

ζ(φ) = ζ(φ|2ω1, 2ω3) := 1

φ
+

∑

v∈L(ω1,ω3)\{0}

[
1

φ − v
+
1

v
+

φ

v2

]

. (2.33)

(See, for instance, Chapter 23 in [62].)We putω2 = −(ω1 +ω3). By the definition (2.33)
we see that℘(φ) is even and ζ(φ) is oddwith respect toφ, and℘(φ) is an elliptic function
(i.e., a doubly periodic meromorphic function in C); ℘(φ + 2ων) = ℘(φ), ν = 1, 2, 3.
We note that ℘′(ων) = 0, ν = 1, 2, 3, ℘(φ) = −ζ ′(φ), and ζ(φ + 2ων) = ζ(φ) + 2ην

where ην := ζ(ων), ν = 1, 2, 3. In the present paper we consider the following setting;

ω1 = π,
ω3

ω1
= τq , and

q = e
√−1πτq ∈ (0, 1) ⇐⇒ τq = −

√−1 log q
π

∈ √−1R>0. (2.34)

In the terminology of [29, page 304], when we regard p := q2 as the nome of the
theta function, τq shall be called the nome modular parameter, and when we regard

q = p1/2 =: e2
√−1πσq as the base of q-special functions, τq will be the twice of the

base modular parameter σq . In this setting, the ℘-function is considered as a function
of an argument φ and the modular parameter τq though q. Then we have the following
expansions,

℘(φ) = ℘(φ; τq) = − 1

12
+ 2

∞∑

n=1

q2n

(1− q2n)2
+
1

4

1

sin2(φ/2)
− 2

∞∑

n=1

nq2n

1− q2n
cos(nφ)

= − 1

12
+ 2

∞∑

n=1

q2n

(1− q2n)2
−

∞∑

n=−∞

e
√−1φq2n

(1− e
√−1φq2n)2

. (2.35)

We use the notation

z = e
√−1φz ⇐⇒ φz = −

√−1 log z. (2.36)

Then φzw = φz + φw, φz−1 = −φz , and φq2 = 2ω3 modulo 2πZ. Hence the evenness
and the periodicity property of ℘ are written as

℘(−φz) = ℘(φz−1) = ℘(φz), ℘ (φq2z) = ℘(φz). (2.37)
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The expansion (2.35) is written as

℘(φz) = ℘(φz; τq) = − 1

12
− z

(1− z)2
+ 2

∞∑

n=1

q2n

(1− q2n)2
−

∞∑

n=1

nq2n

1− q2n

(

zn +
1

zn

)

= − 1

12
− z

(1− z)2
+2

∞∑

n=1

q2n

(1− q2n)2
−

∞∑

n=1

zq2n

(1− zq2n)2
−
∞∑

n=1

z−1q2n

(1− z−1q2n)2
.

(2.38)

The special values of ℘ are denoted by

e1 = e1(q) := ℘(π) = ℘(φ−1; τq)

= 1

6
+ 2

∞∑

n=1

q2n

(1− q2n)2
+ 2

∞∑

n=1

q2n

(1 + q2n)2
,

e2 = e2(q) := ℘(π + πτq) = ℘(φ−q; τq)

= − 1

12
+ 2

∞∑

n=1

q2n

(1− q2n)2
+ 2

∞∑

n=1

q2n−1

(1 + q2n−1)2
,

e3 = e3(q) := ℘(πτq) = ℘(φq; τq)

= − 1

12
+ 2

∞∑

n=1

q2n

(1− q2n)2
− 2

∞∑

n=1

q2n−1

(1− q2n−1)2
. (2.39)

We see that

e1 + e2 + e3 = 0, (2.40)

and define

g2 = g2(q) := 2(e21 + e22 + e23) = −4(e2e3 + e3e1 + e1e2) > 0,

g3 = g3(q) := 4e1e2e3 = 4

3
(e31 + e32 + e33). (2.41)

The imaginary transformation of ℘ is given by [80, p.31], ℘(φ; τq) = τ−2q ℘(φ/τq;
−1/τq). Hence (2.35) is written as

℘(φ) = ℘(φ; τq) = 1

|τq |2
[ 1

12
+
1

4

1

sinh2(φ/(2|τq |))

− 2
∞∑

n=1

e−2nπ/|τq |

(1− e−2nπ/|τq |)2
+ 2

∞∑

n=1

ne−2nπ/|τq |

1− e−2nπ/|τq | cosh(nφ/|τq |)
]
, (2.42)

where we used the relation τq =
√−1|τq | which is valid in the present setting (2.34).

It can be verified that ℘ satisfies the following differential equations [62, Chapter
23]),

℘′(φ)2 = 4℘(φ)2 − g2℘(φ)− g3
= 4(℘ (φ)− e1)(℘ (φ)− e2)(℘ (φ)− e3), (2.43)
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℘′′(φ) = 6℘(φ)2 − g2
2

. (2.44)

When q ∈ (0, 1), e1, e2, e3 ∈ R and the following inequalities hold ( [58, Section
2.8]),

e3 < e2 < e1. (2.45)

From (2.43), we see that ℘ inverts the incomplete elliptic integral [47,58]. Under the
setting (2.34), we will use the following special result [62, (23.6.31)] (see Section 6.12
of [47]); if e2 ≤ x ≤ e1, then ℘−1(x) ∈ [ω1, ω1 +ω3] := {π +

√−1y : 0 ≤ y ≤ π |τq |}
and

y = 1

2

∫ e1

x

ds√
(e1 − s)(s − e2)(s − e3)

. (2.46)

We introduce the Euler operator

Dz = z
∂

∂z
. (2.47)

If we use the notation (2.36), then Dz = −
√−1∂/∂φz .

Lemma 2.5. Under the notation (2.36), the following equalities hold,

f JK(z, a) f JK(z, b) = Dz f
JK(z, ab) + (ρ1(a) + ρ1(b)) f

JK(z, ab), (2.48)

f JK(z, a) f JK(z, a−1) = Dzρ1(z)−Daρ1(a), (2.49)

Dzρ1(z) = −
√−1 d

dφz
ρ1(z) = −℘(φz) +

P

12
, (2.50)

f JK(z, a) f JK(z, a−1) = ℘(φa)− ℘(φz), (2.51)

f JK(z,−1)2 = e1 − ℘(φz), (2.52)

where

P = P(q) = 1− 24
∞∑

n=1

q2n

(1− q2n)2
= 12

π
η1(q) = 1− 24

∞∑

n=1

nq2n

1− q2n
.

The equality (2.48) is called the fundamental multiplicative identity of the Jordan–
Kronecker function in [19,80]. The equality (2.49) is obtained by taking the limit b→
1/a in (2.48) [19]. The derivation of (2.50) is also found in [19]. Combination of (2.49)
and (2.50) gives (2.51). The equality (2.52) is a special case of (2.51) with a = −1
where the definition of e1 is used.

We set

an(z) := Dn
z log θ(z), n ∈ N. (2.53)

Lemma 2.6. The following equalities hold,

a1(z) = 1

2
− ρ1(z), a2(z) = ℘(φz)− P

12
,

a3(z) = −
√−1℘′(φz), a4(z) = −℘′′(φz).
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Proof. For a1(z) we have

a1(z) = z
θ ′(z)
θ(z)

= − z

1− z
−

∞∑

n=1

( zq2n

1− zq2n
− z−1q2n

1− z−1q2n
)

= − z

1− z
−
{
ρ1(z)− 1 + z

2(1− z)

}
= 1

2
− ρ1(z). (2.54)

For a2(z) use (2.50) in Lemma 2.5. Use Dz = −
√−1∂/∂φz for a3(z) and a4(z). ��

Lemma 2.7. The following equalities holds,

(i) lim
z→1

(
a1(z) +

z

1− z

)
= 0,

(ii) γ2 := lim
z→1

{
a2(z) +

z

(1− z)2

}
= −2

∞∑

n=1

q2n

(1− q2n)2
= P − 1

12
,

(iii) a1(−1) = 1

2
,

(iv) a2(−1) = 1

4
+ 2

∞∑

n=1

q2n

(1 + q2n)2
.

Proof. We notice (2.54) and

a2(z) = − z

(1− z)2
−

∞∑

n=1

{ zq2n

(1− zq2n)2
+

z−1q2n

(1− z−1q2n)2
}
.

The formulas (i)–(iv) are all obtained from these equalities. ��
We note that the following is the case,

θ ′(−1) = −θ(−1)/2 ⇐⇒ a1(−1) = 1/2 ⇐⇒ ρ1(−1) = 0.

2.5. q → 0 limits and asymptotics in q → 1. By the definition (1.4), the following are
readily confirmed;

lim
q→0

SAq (z, w) = SD(z, w),

lim
q→0

SAq (z, w; r) =
1 + r zw

(1 + r)(1− zw)
= 1

1− zw
− r

1 + r
=: SD(z, w; r),

lim
r→0

SD(z, w; r) = SD(z, w).

Notice that if we use the expressions (2.30) and (2.31) in Proposition 2.2, their q → 0
limits are immediately obtained by (2.16) with p = q2.

By (2.35) and (2.38), we see the following,

lim
q→0

℘(φ; τq) = − 1

12
+

1

4 sin2(φ/2)
,
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lim
q→0

℘(φz; τq) = − 1

12
− z

(1− z)2
= −1 + 10z + z2

12(1− z)2
. (2.55)

Similarly, (2.39) and (2.41) give

e1(0) = 1/6, e2(0) = e3(0) = −1/12, g2(0) = 1/12, g3(0) = 1/216.

(2.56)

In the present setting (2.34), q → 1 ⇐⇒ |τq | → 0. For Reφ ∈ (0, 2π), (2.42)
gives the following asymptotics in |τq | → 0,

℘(φ, τq) ∼ (1/12 + e−φ/|τq | + e−(2π−φ)/|τq |)/|τq |2,
e1 ∼ (1/12 + 2e−π/|τq |)/|τq |2, e2 ∼ (1/12− 2e−π/|τq |)/|τq |2. (2.57)

By (2.40), the above implies

e3 = −(e1 + e2) ∼ −1/(6|τq |2), g2 ∼ (1 + 4e−π/|τq |)/|τq |2. (2.58)

2.6. Conditional weighted Szegő kernels. For r > 0, define

Sα
Aq

(z, w; r) := SAq (z, w; r)−
SAq (z, α; r)SAq (α,w; r)

SAq (α, α; r) , z, w, α ∈ Aq .

(2.59)

Weput Sα
Aq

(z, w; r) = f (z, w; r, α)hqα(z)hqα(w) assuming f (w, z; r, α) = f (z, w; r, α)

and here we intend to determine f . By the definition of the conditional kernel (1.7),
we can verify that Sα

Aq
satisfies the same functional equations with (2.32) (i) and

(iii); Sα
Aq

(q2z, w; r)= −(1/r)Sα
Aq

(z, w; r), Sα
Aq

(z, w; q2r)= (1/zw)Sα
Aq

(z, w; r), but
in the equation corresponding to (2.32) (ii) the conditioning parameter α should be
also inverted as Sα

Aq
(1/z, w; r) = −S1/α

Aq
(z, 1/w; 1/r). Moreover (2.32) (i) implies

Sq
2α

Aq
(z, w; r) = Sα

Aq
(z, w; r). On the other hand, (1.10) gives hqα(q2z) = |α|2hqα(z),

hq
q2α

(z) = z2(α/α)hqα(z), and hqα(1/z) = (α/α)hq1/α(z). Hence f should satisfy the
functional equations

(i) f (q2z, w; r, α) = − 1

r |α|2 f (z, w; r, α),

(ii) f (1/z, w; r, α) = − f (z, 1/w; 1/r, 1/α),

(iii) f (z, w; q2r, α) = 1

zw
f (z, w; r, α),

(iv) f (z, w; r, q2α) = 1

(zw)2
f (z, w; r, α).

Comparing themwith (2.32), it is easy to verify that if f (z, w; r, α) = SAq (z, w; r |α|2),
these functional equations are satisfied. The above observation implies the equality
(1.11). Actually, McCullough and Shen proved the following.

Proposition 2.8 (McCullough and Shen [56]). The equality (1.11) holds with (1.10).
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McCullough and Shen proved the above by preparing an auxiliary lemma. Here we
give a direct proof from Weierstrass’ addition formula (2.18).

Proof. We put (2.59) with (2.30) and (1.10) to (1.11), then the equality is expressed by
theta functions. After multiplying both sides by the common denominator, we see that
the equality (1.11) is equivalent to the following,

θ(−r zw,−r |α|2, αz, αw)− θ(−rαz,−rαw, zw, |α|2)
= zwθ(−r zw|α|2, αz−1, α w−1,−r). (2.60)

Now we change the variables from {z, w, α, r} to {x, y, u, v} as αz = x/y, αw =
u/v, zw = x/v, |α|2 = u/y, and r = −yv. Then the left-hand side of (2.60)
becomes θ(xy, x/y, uv, u/v) − θ(xv, x/v, uy, u/y), and the right-hand side becomes
(x/v)θ(yv, (y/v)−1, xu, (x/u)−1) which is equal to (u/y)θ(yv, y/v, xu, x/u) by
(2.13). HenceWeierstrass’ addition formula (2.18) proves the equality (2.60). The proof
is complete. ��

We can prove the following.

Lemma 2.9. For α ∈ Aq ,

(i) hqα(α) = 0,
(ii) 0 < |hqα(z)| < 1 ∀z ∈ Aq \ {α},
(iii) |hqα(z)| =

{
1, if z ∈ γ1 := {z ∈ C : |z| = 1},
|α|, if z ∈ γq := {z ∈ C : |z| = q},

(iv) hqα
′
(α) = − θ ′(1)

θ(|α|2) =
q20

θ(|α|2) > 0,

(v) lim
q→0

hqα(z) = z − α

1− zα
.

Proof. When w = z, (2.59) gives Sα
Aq

(z, z; r) = SAq (z, z; r)− |SAq (z, α; r)|2/SAq (α,

α; r) ≥ 0, z ∈ Aq , which implies 0 ≤ Sα
Aq

(z, z; r)/SAq (z, z; r) ≤ 1, z ∈ Aq . As noted
just after (1.4), SAq (z, z; r) is monotonically decreasing in r > 0. Then, by (1.11),
Sα
Aq

(z, z; r) = SAq (z, z; r |α|2)|hqα(z)|2 > SAq (z, z; r)|hqα(z)|2, if |α| < 1. Hence it is

proved that |hqα(z)| < Sα
Aq

(z, z; r)/SAq (z, z; r) ≤ 1, z ∈ Aq . By the explicit expression
(1.10) and by basic properties of the theta function given in Sect. 2.2, provided z ∈
Aq := Aq ∪ γ1 ∪ γq , it is verified that hqα(z) = 0 if and only if z = α, and |hqα(z)| = 1
if and only if z ∈ γ1 . Using (2.14) and (2.19), we can show that

hqα(qe
√−1φ) = qe

√−1φ θ(αq−1e−
√−1φ)

θ(q2αq−1e
√−1φ)

= −αe2
√−1φ θ(αq−1e

√−1φ)

θ(αq−1e
√−1φ)

, φ ∈ [0, 2π).

Then (i)–(iii) are proved. If we apply (i) and (2.17) to the derivative of (1.10) with respect
to z, then (iv) is obtained. Applying (2.16) to (1.10) proves (v). The proof is complete.

��
Since hqα(·), α ∈ Aq is holomorphic in Aq , (i)–(iii) of Lemma 2.9 implies that hqα

gives a conformal map from Aq to D \ {a circular slit} as shown by Fig. 1. In addition
(v) of Lemma 2.9 means limq→0 h

q
α(z) = hα(z), where hα(z) is the Riemann mapping

function associated to α in D given by a Möbius transformation (1.9).
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Remark 11. Thepresent functionhqα(z) is closely relatedwith theBlaschke factor defined
on page 17 in [68] for an annulus Aq1/2,q−1/2 := {z ∈ C : q1/2 < |z| < q−1/2}, whose
explicit expression using the theta functions was given on pp. 386–388 in [20]. These
two functions are, however, different from each other. Let ĥqα(z) denote the Blaschke
factor for the annulus Aq , which is appropriately transformed from the function given
in [20] for Aq1/2,q−1/2 . We found that

ĥqα(z) = z− logα/ log qhqα(z).

Also for the Blaschke factor ĥqα(z), (i), (ii), and (v) in Lemma 2.9 are satisfied, but instead
of (iii), we have |̂hqα(z)| = 1 if and only if z ∈ γ1 ∪ γq for z ∈ Aq . Moreover, ĥqα is not
univalent in Aq and is branched.

2.7. Correlation functions of point processes and the DPP of Peres and Virág on D . A
point process is formulated as follows. Let S be a base space, which is locally compact
Hausdorff spacewith a countable base, andλ be aRadonmeasure on S. The configuration
space of a point process on S is given by the set of nonnegative-integer-valued Radon
measures;

Conf(S) =
{
ξ =

∑

i

δxi : xi ∈ S, ξ(�) <∞ for all bounded set � ⊂ S
}
.

Conf(S) is equipped with the topological Borel σ -fields with respect to the vague
topology. A point process on S is a Conf(S)-valued random variable � = �(·). If
�({x}) ∈ {0, 1} for any point z ∈ S, then the point process is said to be simple. Assume
that �i , i = 1, . . . ,m, m ∈ N are disjoint bounded sets in S and ki ∈ N0, i = 1, . . . ,m
satisfy

∑m
i=1 ki = n ∈ N0. A symmetric measure λn on Sn is called the n-th correlation

measure, if it satisfies

E
[ m∏

i=1

�(�i )!
(�(�i )− ki )!

]

= λn(�
k1
1 × · · · ×�km

m ),

where when�(�i )−ki < 0, we interpret�(�i )!/(�(�i )−ki )! = 0. If λn is absolutely
continuous with respect to the n-product measure λ⊗n , the Radon–Nikodym derivative
ρn(x1, . . . , xn) is called the n-point correlation function with respect to the reference
measure λ; that is, λn(dx1 · · · dxn) = ρn(x1, . . . , xn)λ⊗n(dx1 · · · dxn).

Consider the case in which S is given by a domain D̃ ⊂ C and � = ∑i δZi is a
point process on D̃ associated with the correlation functions {ρn

D̃
}n∈N. Here we assume

that the reference measure λ is given by the Lebesgue measure m on C multiplied by
a constant for simplicity (e.g., λ = m/π ). For a one-to-one measurable transformation
F : D → D̃, D ⊂ C, we write the pull-back of the point process from D̃ to D as
F∗� := ∑i δF−1(Zi ). We assume that F is analytic and F ′(z) = dF(z)/dz, z ∈ D is
well-defined. By definition the following is derived.

Lemma 2.10. The point process F∗� on D has correlation functions {ρn
D}n∈N with

respect to λ given by

ρn
D(z1, . . . , zn) = ρn

D̃
(F(z1), . . . , F(zn))

n∏

i=1
|F ′(zi )|2, n ∈ N, z1, . . . , zn ∈ D.
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The unfolded 2-correlation function (1.27) is hence invariant under transformation,

gD(z1, z2) = gD̃(F(z1), F(z2)), z1, z2 ∈ D.

For a point process � =∑i δZi on D ⊂ C, assume that there is a measurable function
K det

D : D× D→ C such that the correlation functions are given by the determinants of
K det

D ; that is,

ρn
D(z1, . . . , zn) = det

1≤i, j≤n[K
det
D (zi , z j )] for every n ∈ N and z1, . . . , zn ∈ D

with respect to λ. Then � is said to be a determinantal point process (DPP) on D with
the correlation kernel K det

D . For a one-to-one measurable transformation F : D → D̃,
D ⊂ C with a bounded derivative F ′, F∗� is also a DPP on D such that the correlation
kernel with respect to λ is given by

K det
D (z, w) := |F ′(z)||F ′(w)|K det

D̃
(F(z), F(w)), z, w ∈ D. (2.61)

See [35,42,43,72–74,76] for general construction and basic properties of determinantal
point processes.

The zero point process ZXD
of the GAF XD defined by (1.1) has the unit circle ∂D

as a natural boundary and ZXD
(D) = ∞ a.s. For this zero process, Peres and Virág [64]

showed the following remarkable result.

Theorem 2.11 (Peres and Virág [64]). ZXD
is a DPP on D such that the correlation

kernel with respect to m/π is given by the Bergman kernel KD of D given by (2.3).

The distribution of ZXD
is invariant under Möbius transformations that preserve D

[64,75]. This invariance is a special case of the following, which can be proved using the
conformal transformations of the Szegő kernel and the Bergman kernel given by (2.6)
[35,64].

Proposition 2.12 (Peres and Virág [64]). Let D̃ � C be a simply connected domain
with C∞ boundary. Then there is a GAF XD̃ with covariance kernelE[XD̃(z)XD̃(w)] =
SD̃(z, w), z, w ∈ D̃, where SD̃ denotes the Szegő kernel of D̃. The zero point process
ZXD̃

is the DPP such that the correlation kernel is given by the Bergman kernel KD̃ of
D̃. This DPP is conformally invariant in the following sense. If D � C is another simply
connected domain with C∞ boundary, and f : D → D̃ is a conformal transformation,
then f ∗ZXD̃

has the same distribution as ZXD . In other words, f ∗ZXD̃
is a DPP such

that the correlation kernel (2.61) with K det
D̃
= KD̃ is equal to the Bergman kernel KD

of D.

3. Proofs

3.1. Proof of Proposition 1.1. Use the expression (2.25) of SAq (z, w; r) in Proposi-
tion 2.1. Using (2.28) and (2.29), we can show that

√
T ′q(z)

√
T ′q(w)SAq (Tq(z), Tq(w); r) =

√

(−q)/z2
√

(−q)/w2 f JK(q2/zw,−r)
= q

zw
f JK(q2/zw,−r) = − q

zw
f JK(zw/q2,−1/r)
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= q

rzw
f JK(zw,−1/r) = q

r
f JK(zw,−q2/r) = q

r
SAq (z, w; q2/r).

In particular, when r = q,

√
T ′q(z)

√
T ′q(w)SAq (Tq(z), Tq(w); q)=

√
T ′q(z)

√
T ′q(w)SAq (Tq(z), Tq(w))=SAq (z, w),

which implies the invariance of the GAF XAq under conformal transformations preserv-
ing Aq by Schottkey’s theorem [4].

3.2. Proof of Theorem 1.3. We recall a general formula for correlation functions of zero
point process of a GAF, which is found in [64], but here we use a slightly different
expression given by Proposition 6.1 of [71]. Let ∂z∂w := ∂2

∂z∂w
.

Proposition 3.1. The correlation functions of ZXD of the GAF XD on D � C with
covariance kernel SD(z, w) are given by

ρn
D(z1, . . . , zn) =

per
1≤i, j≤n

[
(∂z∂wS

z1,...,zn
D )(zi , z j )

]

det1≤i, j≤n
[
SD(zi , z j )

] , n ∈ N, z1, . . . , zn ∈ D,

with respect to m/π , whenever det1≤i, j≤n[SD(zi , z j )] > 0. Here the conditional kernels
are defined by (1.7) and (1.12).

Here we abbreviate γ
q
{z
}n
=1 given by (1.13) to γ

q
n . Then (1.14) gives S

z1,...,zn
Aq

(z, w; r) =
SAq (z, w; r

∏n

=1 |z
|2)γ q

n (z)γ q
n (w) for z, w, z1, . . . , zn ∈ Aq . By Lemma 2.9 (i), this

formula gives

(∂z∂wS
z1,...,zn
Aq

)(zi , z j ; r) = SAq

(
zi , z j ; r

n∏


=1
|z
|2

)
γ
q
n
′
(zi )γ

q
n
′
(z j ).

Therefore, Proposition 3.1 gives now

ρn
Aq

(z1, . . . , zn; r) =
per

1≤i, j≤n
[
SAq

(
zi , z j ; r∏n


=1 |z
|2
)]∏n

k=1 |γ q
n
′
(zk)|2

det1≤i, j≤n
[
SAq (zi , z j ; r)

] . (3.1)

By (1.10) and Lemma 2.9 (i) and (iv), we see that

n∏

i=1
|γ q

n
′
(zi )|2 =

n∏

i=1

∣
∣
∣
( ∏

1≤ j≤n, j �=i
hqz j (zi )

)
hqzi

′
(zi )
∣
∣
∣
2 =

n∏

i=1

∣
∣
∣
( ∏

1≤ j≤n, j �=i
zi

θ(z j/zi )

θ(z j zi )

) q20
θ(|zi |2)

∣
∣
∣
2

=
∣
∣
∣
∣
q2n0

∏
1≤i< j≤n zi θ(z j/zi ) ·∏1≤i ′< j ′≤n z j ′θ(zi ′/z j ′ )

∏n
i=1
∏n

j=1 θ(zi z j )

∣
∣
∣
∣

2

.

By (2.13), ziθ(z j/zi ) = zi (−z j/zi )θ(zi/z j ) = −z jθ(zi/z j ). Hence this is written as

n∏

i=1
|γ q

n
′
(zi )|2 = q4n0

∣
∣
∣
∣
∣

(−1)n(n−1)/2(∏
1≤i< j≤n z jθ(zi/z j )

)2

∏n
i=1
∏n

j=1 θ(zi z j )

∣
∣
∣
∣
∣

2
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= q4n0

(∏
1≤i< j≤n |z j |2θ(zi/z j , zi/z j )
∏n

i=1
∏n

j=1 θ(zi z j )

)2

. (3.2)

The following identity is known as an elliptic extension of Cauchy’s evaluation of
determinant due to Frobenius (see Theorem 1.1 in [39], Theorem 66 in [45], Corollary
4.7 in [67], and references therein),

det
1≤i, j≤n

[
θ(t xi a j )

θ(t, xia j )

]

= θ(t
∏n

k=1 xkak)
θ(t)

∏
1≤i< j≤n x j a jθ(xi/x j , ai/a j )
∏n

i=1
∏n

j=1 θ(xia j )
.

By (2.30) in Proposition 2.2, we have

q2n0

∏
1≤i< j≤n |z j |2θ(zi/z j , zi/z j )
∏n

i=1
∏n

j=1 θ(zi z j )
= θ(−s)

θ(−s∏n

=1 |z
|2)

det
1≤i, j≤n

[
SAq (zi , z j ; s)

]
, ∀s > 0.

(3.3)

Then (3.2) is written as

n∏

i=1
|γ q

n
′
(zi )|2 = θ(−r)

θ(−r∏n

=1 |z
|2)

det
1≤i, j≤n[SAq (zi , z j ; r)]

× θ(−r∏n

=1 |z
|2)

θ(−r∏n

=1 |z
|4)

det
1≤i, j≤n

[
SAq

(
zi , z j ; r

n∏


=1
|z
|2

)]

= θ(−r)
θ(−r∏n


=1 |z
|4)
det

1≤i, j≤n[SAq (zi , z j ; r)] det
1≤i, j≤n

[
SAq

(
zi , z j ; r

n∏


=1
|z
|2

)]
.

Applying the above to (3.1), the correlation functions in Theorem 1.3 are obtained.

3.3. Direct proof of the (q, r)-inversion symmetry of correlation functions. The follow-
ing is a corollary of Proposition 1.1 (ii) and (iii). Here we give a direct proof using the
explicit formulas for correlation functions given in Theorem 1.3.

Corollary 3.2. For every n ∈ N and z1, . . . , zn ∈ Aq ,

ρn
Aq

(Tq(z1), . . . , Tq(zn); r)
n∏


=1
|T ′q(z
)|2 = ρn

Aq
(z1, . . . , zn; q2/r). (3.4)

In particular, ρn
Aq

(Tq(z1), . . . , Tq(zn); q)
∏n


=1 |T ′q(z
)|2 = ρn
Aq

(z1, . . . , zn; q), for n ∈
N and z1, . . . , zn ∈ Aq .

Proof. We calculate ρn
Aq

(Tq(z1), . . . , Tq(zn); r) for ρn
Aq

given by (1.16) in Theorem 1.3.
By (2.25) in Proposition 2.1,

SAq

(
Tq(z), Tq(w); r

n∏


=1
|Tq(z
)|2

)
= SAq

(
qz−1, qw−1; q2nr

n∏


=1
|z
|−2

)

= f JK
(
q2(zw)−1,−q2nr

n∏


=1
|z
|−2

)
= − f JK

(
q−2zw,−q−2nr−1

n∏


=1
|z
|2

)
,
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where we used (2.28) at the last equation. If we apply the equality between the leftmost
side and the rightmost side in (2.29), we see that the above is equal to q−2nr−1

∏n

=1 |z
|2

f JK(zw,−q−2nr−1∏n

=1 |z
|2). Then we apply the first equality in (2.29) n + 1 times

and obtain

SAq

(
Tq (z), Tq (w); r

n∏


=1
|Tq (z
)|2

)
= q−2nr−1

n∏


=1
|z
|2(zw)n+1 f JK

(
zw,−q2r−1

n∏


=1
|z
|2

)

= q−2nr−1
n∏


=1
|z
|2(zw)n+1SAq

(
z, w; q2r−1

n∏


=1
|z
|2

)
. (3.5)

Here we note that by definition (1.15) of perdet, the multilinearity of permanent and
determinant implies the equality

perdet
1≤i, j≤n

[
abi c jmi j

]
= a2n

n∏

k=1
b2kc

2
k · perdet

1≤i, j≤n
[mi j ].

Then by (3.5), we have

perdet
1≤i, j≤n

[
SAq

(
Tq(zi ), Tq(z j ); r

n∏


=1
|Tq(z
)|2

)]

= perdet
1≤i, j≤n

[
q−2nr−1

n∏


=1
|z
|2(zi z j )n+1SAq

(
zi , z j ; q2r−1

n∏


=1
|z
|2

)]

= q−4n2r−2n
n∏


=1
|z
|4(2n+1) perdet

1≤i, j≤n

[
SAq

(
zi , z j ; q2r−1

n∏


=1
|z
|2

)]
. (3.6)

Now we consider the prefactor of perdet in (1.16). By (2.15), θ(−r) = θ(−q2/r).
On the other hand,

θ
(
− r

n∏


=1
|Tq(z
)|4

)
= θ

(
− rq4n

n∏


=1
|z
|−4

)
= θ

(
− q−2(2n−1)r−1

n∏


=1
|z
|4

)
.

If we apply (2.14) once, then we find that the above is equal to q−2(2n−1)r−1
∏n


=1 |z
|4
θ(−q−2(2n−2)r−1∏n


=1 |z
|4). We apply (2.14) 2n−1more times. Then the above turns

to be equal to q−2
∑2n−1

i=1 i r−2n
∏n


=1 |z
|8n θ(−q2r−1∏n

=1 |z
|4). Then we have the

equality

θ(−r)
θ
(
− r

∏n

=1 |Tq(z
)|4

) = q2n(2n−1)r2n
n∏


=1
|z
|−8n θ(−q2/r)

θ
(
− q2r−1

∏n

=1 |z
|4

) .

(3.7)

Combining the results (3.6) and (3.7), we have

ρn
Aq

(Tq(z1), . . . , Tq(zn); r) = ρn
Aq

(z1, . . . , zn; q2/r)q−2n
n∏


=1
|z
|4.

Since |T ′q(z)|2 = q2/|z|4, (3.4) is proved. ��
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3.4. Proofs of Proposition 1.5 and Theorem 1.6.

3.4.1. Upper and lower bounds of unfolded 2-correlation function By (1.19) and (1.21),
the unfolded 2-correlation function (1.27) is explicitly written as follows,

gAq (z, w; r) =
θ(−r |z|2,−r |w|2,−r |z|4|w|2,−r |z|2|w|4)2

θ(−r,−r |z|4,−r |w|4,−r |z|4|w|4)θ(−r |z|2|w|2)4

×
[

1−
{

θ(|z|2, |w|2)
θ(−r |z|4|w|2,−r |z|2|w|4)

}2 |θ(−r zw|z|2|w|2)|4
|θ(zw)|4

]

, (3.8)

with z, w ∈ Aq . Using (2.12) and (2.14), it is readily verified that

gAq (1, z; r) = gAq (z, 1; r) = gAq (q, z; r) = gAq (z, q; r) = 1, z ∈ Aq .

Lemma 3.3. If we set a = |z|, b = |w|, a, b ∈ (q, 1), then

gAq (a, b; r) ≤ gAq (z, w; r) ≤ gAq (−a, b; r), z, w ∈ Aq ,

where

gAq (±a, b; r) = b2θ(±a/b,−ra2,−rb2)2
θ(−r,−ra4,−rb4)θ(±ab)4θ(−ra2b2)3
×
[
θ(−ra4b2,−ra2b4)θ(±ab)2 + θ(a2, b2)θ(∓ra3b3)2

]
. (3.9)

First we show the following lemma.

Lemma 3.4. Let α, β > 0 with α �∈ {q2i : i ∈ Z}. Then the function
|θ(−βeiϕ)/θ(αeiϕ)|2 on ϕ ∈ [0, 2π) attains its maximum at ϕ = 0 and its minimum at
ϕ = π .

Proof. Set f (x;α, β) = (1 + 2βx + x2)/(1− 2αx + x2) for x ∈ [−1, 1]. Then,
∣
∣
∣
∣
θ(−βeiϕ)

θ(αeiϕ)

∣
∣
∣
∣

2

=
∞∏

n=0
f (cosϕ;αq2n, βq2n)

∞∏

m=0
f (cosϕ;α−1q2(m+1), β−1q2(m+1))

Since ∂ f (x;α, β)/∂x = 2(1+αβ)(α +β)/(1− 2αx +α2)2 ≥ 0, f attains its maximum
(resp. minimum) at x = 1 (resp. x = −1). Hence the assertion follows. ��
Now we proceed to the proof of Lemma 3.3.

Proof. We set z = ae
√−1ϕz , w = be

√−1ϕw , a, b ∈ (q, 1), ϕz, ϕw ∈ [0, 2π).
Then we can see that (3.8) depends on the angles ϕz, ϕw only through the factor
|θ(−r zw|z|2|w|2)/θ(zw)|4, and we have |θ(−r zw|z|2|w|2)/θ(zw)|2 = |θ(−ra3b3
e
√−1(ϕz−ϕw))/θ(abe

√−1(ϕz−ϕw))|2. We can conclude that θ(−ra3b3)2/θ(ab)2 ≥
∣
∣θ(−r zw|z|2|w|2)/θ(zw)

∣
∣2 ≥ θ(ra3b3)2/θ(−ab)2 from Lemma 3.4, and the inequal-

ities are proved. If we use Weierstrass’ addition formula (2.18) by setting x =
r1/2a5/2b3/2, y = −r1/2a3/2b1/2, u = −r1/2a3/2b5/2, and v = r1/2a1/2b3/2, then we
obtain θ(−ra4b2,−ra2b4)θ(−ab)2 − θ(a2, b2)θ(ra3b3)2 = b2θ(−a/b)2θ(−ra2b2,
−ra4b4). Using this equality and the one obtained by replacing a by −a, it is easy to
obtain (3.9). The proof is complete. ��
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3.4.2. Proof of Proposition 1.5 By the definition (1.29), if we use (2.13)–(2.15), we can
derive the following from (3.9),

G∧
Aq

(x; r) = r2θ(qx2)2θ(−r x2,−r−1x2)3
x2θ(q)2θ(−r)4θ(−r x4,−r−1x4)

[

1 +
θ(−rq, x2)2

θ(q)2θ(−r x2,−r−1x2)
]

, x ∈ (
√
q, 1).

Since x2 ∼ q{1 + 2q−1/2(x − √q)} when x ∼ √q , θ(qx2) ∼ θ(q2{1 + 2q−1/2(x −√
q)}) ∼ −θ(1 + 2q−1/2(x −√q)), where (2.14) was used. Then

θ(qx2) ∼ −θ ′(1) · 2q−1/2(x −√q) = 2q20q
−1/2(x −√q) as x →√

q.

where (2.17) was used. Hence θ(qx2)2 ∼ (4q40/q)(x − √q)2 as x → √
q , and

G∧
Aq

(x; r) " (x − √q)2 as x → √
q . Using (2.13)–(2.15), we can show that

θ(−r−1q) = θ(−rq), θ(−r−1q2) = θ(−r), θ(−rq2) = r−1θ(−r). Then the coef-
ficient is determined as given by c(r).

3.4.3. Proof of Theorem 1.6 (i) Replacing x by
√
c in (1.30), here we consider G̃(c) =

G̃(c; r, q) := G∨
Aq

(
√
c; r), c ∈ (q2, 1). From (3.9) in Lemma 3.3, we have

G̃(c) = cθ(−rc)4θ(−1,−rc3)2
θ(−r)θ(−c)2θ(−rc2)5

[

1 +
θ(c, rc3)2

θ(−c,−rc3)2
]

. (3.10)

It is easy to see that G̃(1) = 1. Here we will prove the following.

Proposition 3.5.

G̃ ′(1) = G̃ ′′(1) = G̃ ′′′(1) = 0, (3.11)

G̃(4)(1) = G̃(4)(1; r, q) = 12(10℘(φ−r )2 + 4e1℘(φ−r )− 2e21 − g2). (3.12)

This proposition implies (1.31) with (1.33), since κ(r) = G̃(4)(1)/4!. By (1.28), we have
the equality G∨

Aq
(x; r) = G∨

Aq
(q/x; q2/r). Since x → q is equivalent with q/x → 1,

(1.31) implies

GAq (q/x; q2/r) ∼ 1 + κ(q2/r)(1− (q/x)2)4 as x ↓ q.

Therefore, once Proposition 3.5 is proved and hence (1.33) is verified, then the equalities
(1.34) are immediately concluded from (2.37). With the third equality in (1.34), the
above proves (1.32). If r > 1, then 1/r < 1, on the other hand if 0 < r < q, given
q ∈ (0, 1), then q2/r > q. Hence by the first and the third equalities in (1.34) the values
of κ(r) in the parameter space outside of � can be determined by those in �. By the
three equalities in (1.34), the structure in � described by Proposition 1.6 (ii) and (iii) is
repeatedly mapped into the parameter space outside of �.

Now we proceed to the proof of Proposition 3.5. First we decompose G̃(c) given by
(3.10) as

G̃(c) = I (c) + J (c) = I (c) + β2
r (c − 1)2 I (c)K (c),

with

I (c) = cθ(−rc)4θ(−1,−rc3)2
θ(−r)θ(−c)2θ(−rc2)5 , βr = θ ′(1)θ(r)

θ(−1,−r) ,
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K (c) =
( θ(c)

(c − 1)θ ′(1)

)2 θ(−1,−r, rc3)2
θ(−c,−rc3, r)2 , (3.13)

The following is easily verified, where Dz denotes the Euler operator (2.47).

Lemma 3.6. Suppose that f is a C∞-function and f (1) = 1, then

Dz log f (z)|z=1 = f ′(1),
D2

z log f (z)|z=1 = f ′′(1) + f ′(1)− f ′(1)2.

If, in addition, f ′(1) = 0, then

D2
z log f (z)|z=1 = f ′′(1),

D3
z log f (z)|z=1 = f ′′′(1) + 3 f ′′(1),

D4
z log f (z)|z=1 = f (4)(1) + 6 f ′′′(1) + 7 f ′′(1)− 3 f ′′(1)2.

Recall that an(z), n ∈ N are defined by (2.53) in Sect. 2.4.

Proposition 3.7. (i) Dn
z

(
log θ(αzk)

) = knan(αzk), (ii) Dz
(
an(αzk)

) = kan+1(αzk).

This proposition is a corollary of the following lemma.

Lemma 3.8. Suppose that f is a C∞-function. Let Fn(w) := Dn
w log f (w), n ∈ N. Then

for k, n ∈ N and a constant α, Dn
z

(
log f (αzk)

) = knFn(αzk).

Proof. It suffices to show the equality Dz
(
Fn(αzk)

) = kFn+1(αzk). Indeed,

Dz
(
Fn(αz

k)
) = z · d

dw
Fn(w)

∣
∣
∣
w=αzk

· αkzk−1 = k ·
(

w
d

dw
Fn(w)

) ∣
∣
∣
w=αzk

= kFn+1(αz
k).

Then the proof is complete. ��
Lemma 3.9. β2

r = a2(−1)− a2(−r).
Proof. First we note that by (2.25) in Proposition 2.1, (2.30) in Proposition 2.2 and
(2.17), βr = −SAq (−1, 1; r) = − f JK(−1,−r). Then by (2.52) in Lemma 2.5 in Sect.
2.4

β2
r = e1 − ℘(φ−r ) = ℘(π)− ℘(φ−r ) = ℘(φ−1)− ℘(φ−r ). (3.14)

Hence the formula for a2(z) in Lemma 2.6 in Sect. 2.4 proves the statement. ��
By the definition (3.13), it is easy to see that

I (1) = K (1) = 1, J (1) = J ′(1) = 0, J ′′(1) = 2β2
r . (3.15)

In what follows, we will use Proposition 3.7 (i) repeatedly. Using Lemma 3.6 with
I (1) = 1 and Proposition 3.7 (i),

I ′(1) = Dc log I (c)
∣
∣
∣
c=1

= 1 + 4a1(−rc) + 2 · 3a1(−rc3)− 2a1(−c)− 5 · 2a1(−rc2)
∣
∣
∣
c=1

= 1− 2a1(−1) = 0,
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where Lemma 2.7 (iii) in Sect. 2.4 was used at the last equality. Therefore, G̃ ′(1) =
I ′(1) + J ′(1) = 0.

Fromnowon,weuse the notation An(r) := an(r)−an(−r), n ∈ N.UsingLemma3.6
with K (1) = 1, Proposition 3.7 (i), and Lemma 2.7 (i), (iii) in Sect. 2.4, we see that

K ′(1) = Dc log K (c)
∣
∣
∣
c=1

= 2{a1(c) + c/(1− c)} + 2 · 3a1(rc3)− 2a1(−c)− 2 · 3a1(−rc3)
∣
∣
∣
c=1

= 6a1(r)− 1− 6a1(−r) = −1 + 6A1(r). (3.16)

Using Lemma 3.6 with I (1) = 1, I ′(1) = 0 and Proposition 3.7 (i),

I ′′(1) = D2
c log I (c)

∣
∣
∣
c=1

= 4a2(−rc) + 2 · 32a2(−rc3)− 2a2(−c)− 5 · 22a2(−rc2)
∣
∣
∣
c=1

= 2(a2(−r)− a2(−1)) = −2β2
r , (3.17)

where we used Lemma 3.9 at the last equality. Therefore, by (3.15), we obtain G̃ ′′(1) =
I ′′(1) + J ′′(1) = 0.

Lemma 3.10. Drβr = βr A1(r). Moreover, limr→1 βr A1(r) = (θ ′(1)/θ(−1))2.
Proof. We observe that Dr logβr = Dr log θ(r)− Dr log θ(−r) = a1(r)− a1(−r) =
A1(r). On the other hand, Dr logβr = Drβr/βr . Hence we obtain the first assertion.
Note that

lim
r→1

βr

r − 1
= lim

r→1

θ ′(1)
θ(−1)θ(−r)

θ(r)

r − 1
=
( θ ′(1)
θ(−1)

)2
. (3.18)

From Lemma 2.7 (i) and (iii) in Sect. 2.4, we see that (r − 1)A1(r) = 1 + O(r − 1) as
r → 1 and the second assertion is also proved. ��
Lemma 3.11. a3(−r) = −2β2

r A1(r). In particular, a3(−1) = 0.

Proof. We apply Dr to both sides of the identity of Lemma 3.9. From Lemma 3.10, we
have the left-hand side Drβ

2
r = 2βr · Drβr = 2β2

r A1(r), which is equal to the right-
hand side −Dr a2(−r) = −a3(−r). The second assertion is obtained using the second
assertion of Lemma 3.10 and the fact that β1 = 0. ��
Using Lemma 3.6 with I (1) = 1, I ′(1) = 0, Proposition 3.7 (i), and Lemma 3.11, we
see that

I ′′′(1) + 3I ′′(1) = D3
c log I (c)

∣
∣
∣
c=1

= 4a3(−rc) + 2 · 33a3(−rc3)− 2a3(−c)− 5 · 23a3(−rc2)
∣
∣
∣
c=1 = 18a3(−r).

With (3.17) we have I ′′′(1) = 18a3(−r) + 6β2
r . By the Leibnitz rule, we see that

J ′′′(1) = 3
d

dc
(β2

r I (c)K (c))
∣
∣
∣
c=1 · 2 = 6β2

r (I ′(1)K (1) + I (1)K ′(1)) = 6β2
r K

′(1)

= −6β2
r + 36β2

r A1(r) = −6β2
r − 18a3(−r).
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Here we used the fact I ′(1) = 0, (3.16) and Lemma 3.11. Therefore, we have G̃ ′′′(1) =
I ′′′(1) + J ′′′(1) = 0. The proof of (3.11) is complete now.

Then we begin to prove (3.12). Using Lemma 3.6 with I (1) = 1, I ′(1) = 0, Propo-
sition 3.7 (i), and Lemma 3.11,

I (4)(1) + 6I ′′′(1) + 7I ′′(1)− 3I ′′(1)2 = D4
c log I (c)

∣
∣
∣
c=1

= 4a4(−rc) + 2 · 34a4(−rc3)− 2a4(−c)− 5 · 24a4(−rc2)
∣
∣
∣
c=1

= 86a4(−r)− 2a4(−1).

Therefore, I (4)(1) = 86a4(−r)− 2a4(−1)− 108a3(−r)− 22β2
r + 12β4

r .

Lemma 3.12. a4(−r)=−2β2
r (2A1(r)2+A2(r)). In particular, a4(−1)=−2(θ ′(1)/θ(−1))4.

Proof. Applying Dr to both sides of the first assertion of Lemma 3.11 together with
Proposition 3.7 (ii) yields the first assertion. The second assertion follows from (3.18)
and the facts that (r − 1)A1(r) = 1 + O(r − 1) and (r − 1)2A2(r) = −1 + O(r − 1)2

as r → 1, which are verified by Lemma 2.7 (i)–(iv) in Sect. 2.4. ��
By the Leibnitz rule,

J (4)(1) = β2
r

( 4!
2!2!0! I

′′(1)K (1) +
4!

2!1!1! I
′(1)K ′(1) + 4!

2!0!2! I (1)K
′′(1)

)
· 2

= 2β2
r

(
−12β2

r + 6K ′′(1)
)

,

where we used the fact I ′(1) = 0, (3.16) and (3.17). From (3.16), we have

D2
c log K (c)

∣
∣
∣
c=1 = 2

{
a2(c) + c/(c − 1)2

}
+ 2 · 32a2(rc3)− 2a2(−c)− 2 · 32a2(−rc3)

∣
∣
∣
c=1

= 2(γ2 − a2(−1)) + 18A2(r),

where Lemma 2.7 (ii) in Sect. 2.4 was used. Using Lemma 3.6 with K (1) = 1 and
nonzero K ′(1) given by (3.16), we obtain

K ′′(1) = K ′(1)2 − K ′(1) +D2
c log K (c)

∣
∣
∣
c=1

= (−1 + 6A1(r))(−2 + 6A1(r)) + 2(γ2 − a2(−1)) + 18A2(r)

= 2− 18A1(r) + 36A1(r)
2 + 2(γ2 − a2(−1)) + 18A2(r).

Hence we have

J (4)(1) = −24β4
r + 24β2

r + 108 · 2β2
r (2A1(r)

2 + A2(r))− 108 · 2β2
r A1(r) + 24β2

r (γ2 − a2(−1))
= −24β4

r + 24β2
r − 108a4(−r) + 108a3(−r) + 24β2

r (γ2 − a2(−1)),

where Lemmas 3.11 and 3.12 were used. Therefore,

G̃(4)(1) = I (4)(1) + J (4)(1)

= −22a4(−r)− 12β4
r + 24β2

r (γ2 − a2(−1) + 1/12)− 2a4(−1).
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Now we use the equality a4(−r) = −℘′′(φ−r ) given by Lemma 2.6 in Sect. 2.4 and
(3.14). We also note that we can verify the equality γ2 − a2(−1) + 1/12 = −e1 from
Lemma 2.7 (ii), (iv) and (2.39) in Sect. 2.4. Then the above is written as

G̃(4)(1) = 22℘′′(φ−r )− 12(℘ (φ−r )− e1)
2 + 24(℘ (φ−r )− e1)e1 + 2℘′′(π)

= 22℘′′(φ−r )− 12℘(φ−r )2 + 48e1℘(φ−r )− 36e21 + 2℘′′(π).

Finally we use the differential equation (2.44) of ℘. Then (3.12) is obtained. Proposi-
tion 3.5 is hence proved and the proof of Theorem 1.6 (i) is complete.

3.4.4. Proof of Theorem 1.6 (ii) By the definition and the properties of ℘ explained in
Sect. 2.4, the following is proved for q ∈ (0, 1).

Lemma 3.13. For r ∈ (q, 1), ℘(φ−r ) is a monotonically increasing function of r .

By (2.40) and (2.41), we see that κ(r) given by (1.33) is written as follows,

κ(r) = 2(℘ (φ−r )− e2)(℘ (φ−r )− e3) + 6(℘ (φ−r ) + e1)(℘ (φ−r )− e1).

Hence κ(1) = 2(e1 − e2)(e1 − e3) and κ(q) = 6(e3 + e1)(e3 − e1). Then by the
inequalities (2.45), we can conclude that κ(1) > 0 and κ(q) < 0. By (1.33), we have
κ(r) = 5(℘ (φ−r ) − ℘+)(℘ (φ−r ) − ℘−) with the roots ℘± = ℘±(q) = (−2e1 ±√
24e21 + 10g2)/10 satisfying ℘− < 0 < ℘+. Since monotonicity is guaranteed by

Lemma 3.13 for r ∈ (q, 1), r0 is the unique zero of κ in the interval (q, 1). This is
determined by

℘(φ−r0) = ℘+, (3.19)

which is equivalent to

φ−r0 = ℘−1(℘+) ⇐⇒ r0 = −e
√−1℘−1(℘+) = e

√−1(−π+℘−1(℘+)). (3.20)

Using (2.40), (2.41), and (2.45), we can verify by (1.35) that e3 < e2 < ℘+ < e1. Hence
(2.46) implies

−π + ℘−1(℘+) =
√−1
2

∫ e1

℘+

ds√
(e1 − s)(s − e2)(s − e3)

and (3.20) gives (1.36). The proofs of (1.37) and the assertion mentioned below it are
complete.

3.4.5. Proof of Theorem 1.6 (iii) In the limit q → 0, we have (2.56) and (1.35) gives
℘+(0) = (−2 + 3

√
6)/60. The integral appearing in (1.36) is then reduced to

1

2

∫ 1/6

℘+(0)

ds

(s + 1/12)
√
1/6− s

= − log
1− 2

√
1/6− ℘+(0)

1 + 2
√
1/6− ℘+(0)

= − log
1−

√
4−√6√
5

1 +
√

4−√6√
5

.

Hence the first expression for rc in (a) is obtained.
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Remark 12. If we apply (2.55) and (2.56) in Sect. 2.5 to (1.33), then we have

κ0(r) := lim
q→0

κ(r; q) = −r4 + 12r3 − 58r2 + 12r + 1

16(1 + r)4

= − (r + r−1)2 + 12(r + r−1)− 60

16(r1/2 + r−1/2)4
. (3.21)

Since we have assumed rc ∈ (0, 1), rc + r−1c ∈ (2,∞). Then we see that r = rc satisfies
the equation

r + r−1 = 2(2
√
6− 3) ⇐⇒ r2 − 2(2

√
6− 3)r + 1 = 0.

The above quadratic equation has two positive solutions which are reciprocal to each
other. The second expression for rc in (a) is the smaller one of them.

From (2.35) and (2.39), we have

℘(φ−r ) = −1/12 + r/(1 + r)2 +
{
2 + (r + r−1)

}
q2

+
{
6 + (r + r−1)− 2(r2 + r−2)

}
q4 + O(q6),

e1 = 1/6 + 4q2 + 4q4 + O(q6), e2 = −1/12 + 2q − 2q2 + 8q3 − 2q4 + O(q5),

e3 = −1/12− 2q − 2q2 − 8q3 − 2q4 + O(q5), g2 = 1/12 + 20q2 + 180q4 + O(q6).

Then the equation (3.19) is expanded in the variable q as

− 1/12 + (r1/20 + r−1/20 )−2 +
{
2 + (r0 + r−10 )

}
q2 +

{
6 + (r0 + r−10 )− 2(r20 + r−20 )

}
q4

= −(2− 3
√
6)/60− 2(6− 29

√
6)q2/15− 2(18 + 2533

√
6)q4/45 + O(q6).

Put r0 = rc + c1q + c2q2 + O(q3) and use the value of rc given by (a). Then we have
c1 = 0 and the assertion (b) is proved.

For (c) we consider the asymptotics of the equation (3.19). By (2.57) and (2.58)
we have (1/12 + e−φ−r0(q)/|τq | + e−(2π−φ−r0(q))/|τq |)/|τq |2 ∼ 1/(12|τq |2) in |τq | → 0.
This is satisfied if and only if e−φ−r0(q)/|τq | + e−(2π−φ−r0(q))/|τq | = 0, that is, cos((π −
φ−r0(q))/τq) = 0. Under the setting (2.34) with r ∈ (0, 1), this is realized by

π − φ−r0(q) = −πτq/2 ⇐⇒ r0(q) = −e
√−1φ−r0 (q) = e

√−1πτq/2 = q1/2.

Since q1/2 = (1− (1− q))1/2 ∼ 1− (1− q)/2 as q → 1, (c) is proved.
Hence the proof of Theorem 1.6 (iii) is complete.

3.5. Proof of Proposition 1.7. By taking the q → 0 limit in Lemma 3.3, the following
is obtained.

Lemma 3.14. Assume that r > 0. If we set a = |z|, b = |w|, a, b ∈ (0, 1], then
gD(z, w; r) ≤ gD(−a, b; r), where

gD(−a, b; r) = (a + b)2(1 + ra2)2(1 + rb2)2

(1 + ab)4(1 + r)(1 + ra4)(1 + rb4)(1 + ra2b2)3

×
{
a6b6(2− a2 + 2ab − b2 + 2a2b2)r2
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+ a2b2(a2 − 2ab + 4a3b + b2 + a4b2 + 4ab3 − 2a3b3 + a2b4)r

+ (2− a2 + 2ab − b2 + 2a2b2)
}
.

From now on we will assume r ∈ (0, 1]. It is easy to see that gD(−a, b; r) =
gD(a,−b; r), and gD(−a, 1; r) = gD(−1, b; r) = 1, a, b ∈ (0, 1]. We define a function
D(a, b; r) by
∂gD(−a, b; r)

∂a
= 4a7b4r5/2D(a, b; r)(1− a)(1 + a)(1− b)2(1 + b)2(a + b)(1 + ra2)(1 + rb2)2

(1 + ab)5(1 + r)(1 + ra4)2(1 + ra2b2)4(1 + rb4)
.

The above implies that if D(a, b; r) ≥ 0 for r ∈ (0, rc), ∀(a, b) ∈ (0, 1]2, then Propo-
sition 1.7 is proved.

We can prove the following.

Lemma 3.15. Let p(x) := x + 1/x and D̃(a, b; s) = p(a7b4s5) + 13p(a3b2s3) −
46p(a4b2s). Then D(a, b; r) ≥ D̃(a, b; r1/2), ∀(a, b, r) ∈ (0, 1]3.
Proof. A tedious but direct computation shows that

D(a, b; r) = p(a7b4r5/2)

+
{
p(a3b2r3/2) + 5p(a5b2r3/2)− p(a2b3r3/2) + 3p(a4b3r3/2)

+ 2p(a6b3r3/2) + 3p(a5b4r3/2)
}

− {10p(ar1/2) + 5p(a3r1/2) + 2p(ab−2r1/2) + 3p(b−1r1/2) + 9p(a2b−1r1/2)
+ 5p(br1/2) + 10p(a2br1/2) + p(a4br1/2) + 2p(ab2r1/2)− p(ab4r1/2)

}
. (3.22)

We note that p(x) is decreasing on (0, 1] and p(x) = p(x−1). By the monotonicity of
p(x), the following inequalities are guaranteed,

3p(a4b3r3/2) ≥ p(a2b3r3/2) + 2p(a3b2r3/2), (3.23)

2p(ab2r1/2) ≤ p(ab4r1/2) + p(a4b2r1/2), (3.24)

max{p(ab−2r1/2), p(b−1r1/2), p(a2b−1r1/2)} ≤ p(a4b2r1/2). (3.25)

For (3.22) we apply (3.23) in the first braces and do (3.24) and (3.25) in the second
braces. Then the desired inequality readily follows. ��

Now we prove the following.

Lemma 3.16. Let

m(s) := inf
(a,b,u)∈(0,1]×(0,1]×(0,s] D̃(a, b; u),

and sc := r1/2c . Then, m(s) attains its minimum at (1, 1, s) and m(s) ≥ 0 if and only if
0 < s ≤ sc.

Proof. We fix s ∈ (0, 1]. For x ∈ (0, 1], we consider the curve Cx defined by a2b = x ,
or equivalently by b = x/a2. We note that

(0, 1]2 =
⋃

x∈(0,1]
{(a, b) ∈ (0, 1]2 : a2b = x, x1/2 ≤ a ≤ 1}.
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On the curve Cx , we can write D̃(a, a−2x; s) = p(a−1x4s5) + 13p(a−1x2s3) −
46p(x2s), x1/2 ≤ a ≤ 1. Since p′(x) = 1− x−2 ≤ 0 for x ∈ (0, 1], we have

∂

∂a
D̃(a, a−2x; s) = p′(a−1x4s5)(−a−2x4s5) + 13p′(a−1x2s3)(−a−2x2s3) ≥ 0,

and hence D̃(a, a−2x; s) attains its minimum at a = x1/2 and b = 1. Therefore, for
s ∈ (0, 1],

inf
(a,b)∈(0,1]×(0,1] D̃(a, b; s) = inf

x∈(0,1] D̃(x1/2, 1; s) = inf
a∈(0,1] D̃(a, 1; s). (3.26)

For (a, u) ∈ (0, 1]×(0, s], we consider D̃(a, 1; u) = p(a7u5)+13p(a3u3)−46p(a4u).
For y ∈ (0, s], we consider the curve C ′y defined by a4u = y or equivalently, by
a = (y/u)1/4. Note that

(0, 1] × (0, s] =
⋃

y∈(0,s]
{(a, u) ∈ (0, 1] × (0, s] : a4u = y, y ≤ u ≤ s}.

Then, on the curveC ′y ,we canwrite D̃((y/u)1/4, 1; u) = p(y7/4u13/4)+13p(y3/4u9/4)−
46p(y), y ≤ u ≤ s. Since (∂/∂u)D̃((y/u)1/4, 1; u) ≤ 0, we conclude that
D̃((y/u)1/4, 1; u) attains its minimum at u = s, and hence, from (3.26), we have

m(s) = inf
(a,u)∈(0,1]×(0,s] D̃(a, 1; u) = inf

y∈(0,s] D̃((y/s)1/4, 1; s) = inf
a∈(0,1] D̃(a, 1; s).

(3.27)

It suffices to show m(s) ≥ 0 if s ≤ sc. Since xp′(x) = q(x) := x − 1/x , we can verify
easily that

a
∂

∂a
D̃(a, 1; s) = 7q(a7s5) + 13 · 3q(a3s3)− 46 · 4q(a4s)

= 1

a7s5
(7a14s10 − 7 + 39a10s8 − 39a4s2 − 184a11s6 + 184a3s4)

=: 1

a7s5
δ(a, s).

For a, s ∈ (0, 1], we see that
δ(a, s) ≤ 7s10 + 39s8 + 184a2s4 − 39a4s2 − 7

= 7s10 + 39s8 − 39s2
(
a2 − 92

39
s2
)2

+
922

39
s6 − 7 ≤ 7s10 + 39s8 +

922

39
s6 − 7.

Since the last function of s is increasing in (0, 1] and it takes a negative value at s =
11/20, we have δ(a, s) < 0 for (a, s) ∈ (0, 1] × (0, 11/20]. Therefore, D̃(a, 1, s) is
decreasing in a for s ∈ (0, 11/20], which together with (3.27) implies

m(s) = D̃(1, 1, s) = 1 + s2

s5
(s8 + 12s6 − 58s4 + 12s2 + 1).

Here we note Remark 12 given in Sect. 3.4.5. Consequently, m(s) ≥ m(sc) = 0 for
s ∈ (0, sc] as sc = r1/2c = 0.533 · · · ≤ 11/20. ��
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Remark 13. We see that

gD(−r−1/4, r−1/4; r) = 6 + r + r−1

4(r1/2 + r−1/2)
=: g̃(r).

It is readily verified that g̃(1) = 1 and dg̃(r)/dr = (r −1)3/{8r3/2(r +1)2} ≥ 0, r ≥ 1.
Then, g̃(r) > 1 for any r > 1. Since 1/rc = 3.51 · · · > 1, the PDPP ZXr

D
is still in the

partially attractive phase although κ0(r) becomes negative when r ∈ (1/rc,∞) due to
the symmetry r ↔ 1/r built in (3.21).

4. Concluding Remarks

Peres and Virág proved a relationship between the Szegő Kernel SD and the Bergman
kernel KD in the context of probability theory: A GAF is defined so that its covariance
kernel is given by SD. Then the zero point process ZXD

is proved to be a DPP for which
the correlation kernel is given by KD. The background of their work is explained in
the monograph [35], in which we find that the Edelman–Kostlan formula [24] gives the
density of ZXD

with respect to m/π as

ρ1
D,PV(z) = 1

4
� log SD(z, z), z ∈ D,

where � := 4∂z∂z . Moreover, we have the equality

KD(z, w) = ∂z∂w log SD(z, w) = SD(z, w)2, z, w ∈ D. (4.1)

On the other hand, as explained above (2.9), for the kernels on simply connected domain
D � C, the equality

SD(z, w)2 = KD(z, w), z, w ∈ D, (4.2)

is established.
In the present paper, we have reported our work to generalize the above to a family

of GAFs and their zero point processes on the annulus Aq . By comparing the expression
(1.19) for the density obtained from Theorem 1.3 with (C.4) in Proposition C.1 in
Appendix C.2 given below, we can recover the Edelman–Kostlan formula as follows,

ρ1
Aq

(z; r) = θ(−r)
θ(−r |z|4) SAq (z, z; r |z|2)2 =

1

4
� log SAq (z, z; r), z ∈ Aq .

However, (4.1) does not hold for the weighted Szegő kernel for H2
r (Aq). As shown by

(C.3), the second log-derivative of SAq (z, w; r) cannot be expressed by SAq (z, w; r)
itself but a new function SAq (z, w; r zw) should be introduced. In addition the propor-
tionality between the square of the Szegő kernel and the Bergman kernel (4.2) is no
longer valid for the point processes on Aq as shown in Proposition C.2 in Appendix C.3.

The Borchardt identity plays an essential role in the proof of Peres and Virág, which
is written as

perdet
1≤i, j≤n

[
SD(zi , z j )

]
= det

1≤i, j≤n

[
SD(zi , z j )

2
]
, n ∈ N, z1, . . . , zn ∈ D.

Since the n-point correlation function ρn
D,PV(z1, . . . , zn) of ZXD

is given by the left-
hand side, ∀n ∈ N, this equality proves that ZXD

is a DPP. For SAq the corresponding
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equality does not hold. We have proved, however, that all correlation functions of our
two-parameter family of zero point processes {ZXr

Aq
: q ∈ (0, 1), r > 0} on Aq can

be expressed using perdet defined by (1.15) and we stated that they are permanental-
determinantal point processes (PDPPs).

We would like to place an emphasis on the fact that the present paper is not an
incomplete work nor just replacing determinants by perdet’s. The essentially new points,
which are not found in the previous works [35,64], are the following:

(i) Even if we start from the GAF whose covariance kernel is given by the original
Szegő kernel SAq (·, ·) = SAq (·, ·; q) on Aq , the full description of conditioning
with zeros needs a series of new covariance kernels.

(ii) The covariance kernels of the induced GAFs generated by conditioning of zeros are
identified with the weighted Szegő kernel SAq (·, ·;α) studied by McCullough and
Shen [56]. In the present study, the weight parameter α plays an essential role, since
it is determined by α = r

∏n

=1 |z
|2 and represents a geometrical information of

the zeros in Aq {z1, . . . , zn}, n ∈ N put in the conditioning.
(iii) Corresponding to such an inductive structure of conditional GAFs, the correlation

kernel of our PDPP of ZAr
q
, r > 0 is given by SAq (·, ·;α) with α = r

∏n

=1 |z
|2 in

order to give the correlation function for the points {z1, . . . , zn}; ρn
Aq

(z1, . . . , zn; r).
In addition, the n-product measure of the Lebesgue measure on C divided by π ,
(m/π)⊗n , should be weighted by θ(−r)/θ(−r∏n

k=1 |zk |4) to properly provide
ρn
Aq

(·; r).
(iv) The parameter r also plays an important role to describe the symmetry of the

GAF and its zero point process under the transformation which we call the (q, r)-
inversion,

(z, r) ←→
(
q

z
,
q2

r

)

∈ Aq × (0,∞). (4.3)

And if we adjust r = q the GAF and its zero point process become invariant under
conformal transformations which preserve Aq .

Inapplicability of the Borchardt identity to our zero poin processes ZXr
Aq

causes

interesting behaviors of them as interacting particle systems. We have proved that the
short-range interaction between points is repulsive with index β = 2 in a similar way to
the usual DPP, but attractive interaction is also observed inZXr

Aq
. The index for decay of

correlations is given by η = 4. We found that there is a special value r = r0(q) ∈ (q, 1)
for each q ∈ (0, 1) at which the coefficient of the power-law decay of correlations
changes its sign. We have studied the zero point process obtained in the limit q → 0,
which has a parameter r ∈ [0,∞). In this PDPPZXr

D
, rc := r0(0) can be regarded as the

critical value separating two phases in the sense that if r ∈ [0, rc) the zero point process
is completely repulsive, while if r ∈ (rc,∞) attractive interaction emerges depending
on distances between points.

There are many open problems, since such PDPPs have not been studied so far. Here
we list out some of them.

(1) We prove that the GAF Xr
Aq

and its zero point process ZXr
Aq

have the rotational

invariance and the (q, r)-inversion symmetry, and when r = q, they are invariant
under conformal transformationswhich preserveAq (Proposition 1.1).We claimed in
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Remark 1 that Xr
Aq

can be extended to a one-parameter family of GAFs {Xr,(L)
Aq

: L ∈
N} having the rotational invariance and the (q, r)-inversion symmetry and this family
is an extension of {X (L)

D
: L ∈ N} studied in [35, Sections 2.3 and 5.4] in the sense that

limq→0 X
r,(L)
Aq

|r=q d= X (L)
D

, L ∈ N. In [35, Section 2.5], it is argued that {X (L)
D
: L >

0} is the only GAFs, up to multiplication by deterministic non-vanishing analytic
functions, whose zeros are isometry-invariant under the conformal transformations
preserving D. This assertion is proved by the fact that the zero point process of
the GAF is completely determined by its first correlation function. Therefore, the
“canonicality” of the GAFs {X (L)

D
: L > 0} is guaranteed by the uniqueness, up to

multiplicative constant, of the density function with respect tom(dz)/π , ρ1
D,PV(z) =

1/(1−|z|2)2, which is invariant under the Möbius transformations preserving D. We
have found, however, that the density function with parameter r > 0, �(z; r), z ∈ Aq

is not uniquely determined to be ρ1
Aq

(z; r) as (1.19) by the requirement that it is
rotationally invariant and having the (q, r)-inversion symmetry. For example, we
have the three-parameter (α1 > 1−α2, α2 > 0, α3 ∈ R) family of density functions,

�(z; r;α1, α2, α3) = θ(−r)α3
θ(−|z|2α1rα2)

f JK(|z|2,−|z|2β1rβ2)2

with β1 = (α1− α2)(α1 + α2 − 1)/4 + 1/2, β2 = α2(α1 + α2 − 1)/2, which satisfy
the above requirement of symmetry. We see that �(z; r; 2, 1, 1) = ρ1

Aq
(z; r) and

limq→0 �(z; q;α1, α2, α3) = ρ1
D,PV(z). The present study of the GAFs on Aq and

their zero point processes will be generalized in the future.
(2) As shown by (1.20), the asymptotics of the density of zeros ρ1

Aq
(z) ∼ (1− |z|2)−2

with respect to m(dz)/π in the vicinity of the outer boundary of Aq can be identi-
fied with the metric in the hyperbolic plane called the Poincaré disk model (see, for
instance, [18,34]). The zero point process ZXD

of Peres and Virág can be regarded
as a uniform DPP on the Poincaré disk model [13,22,64]. Is there any meaning-
ful geometrical space in which the present zero point process ZXr

Aq
seems to be

uniform? As mentioned in Remark 3, conditioning with zeros does not induce any
new GAF on D [64], but it does on Aq . Is it possible to give some geometrical
explanation for such a new phenomenon appearing in replacing D by Aq reported
in the present paper?

(3) As mentioned above and in Theorem 1.6 (i), we have found power-law decays
of unfolded 2-correlation functions to the unity with an index η = 4. Although
the coefficient of this power-law changes depending on q and r , the index η = 4
seems to be universal in the PDPPs ZXr

Aq
, ZXr

D
and the DPP of Peres and Virág

ZXD
(except the PDPPs at r = r0(q) ∈ (q, 1), q ∈ [0, 1)). The present proof of

Theorem 1.6 (i) relied on brute force calculations showing vanishing of derivatives
up to the third order. Simpler proof is required. In the metric of a proper hyperbolic
space, the decay of correlation will be exponential. In such a representation, what
is the meaning of the ‘universal value’ of η?

(4) As mentioned in Remark 9, the simplified PDPPs {ZXr
D
: r ∈ (0,∞)} can be

regarded as an interpolation between the DPP of Peres and Virág ZXD
and its

deterministic perturbation at the origin ZXD
+ δ0. The first approximation of the

perturbation of the deterministic zero near r = ∞ is given by −1√
1+r

ζ0/ζ1 by solving
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the approximated linear equation ζ0√
1+r

+ζ1z = 0. Here the ratio ζ0/ζ1 is distributed
according to the push-forward of the uniform distribution on the unit sphere by the
stereographic projection (see Krishnapur [46] for the matrix generalization). Can
we trace such a flow of zeros in {ZXr

D
: r ∈ (0,∞)} more precisely?

(5) The simplified PDPP ZXr
D
was introduced as a q → 0 limit of the PDPP ZX

r
Aq

in

this paper. On the other hand, as shown by (1.23) the GAF Xr
D
can be obtained from

the GAF XD of Peres and Virág by adding a one-parameter (r > 0) perturbation on
a single term. Can we explain the hierarchical structures of these GAF and PDPP
on D and the existence of the critical value rc for correlations of ZXr

D
apart from all

gadgets related to elliptic functions? Can we expect any interesting phenomenon at
r = rc?

(6) As mentioned at the end of Section 1.3, the zero point process of the GAF XD

studied by Peres and Virág [64] is the DPP ZXD
, whose correlation kernel is given

by KD(z, w) = SD(z, w)2 = 1/(1− zw)2, z, w ∈ D with respect to the reference
measure m/π . Krishnapur [46] introduced a one-parameter (
 ∈ N) extension
of DPPs {Z(
)

XD
: 
 ∈ N}, whose correlation kernels are given by K (
)

D
(z, w) =

1/(1− zw)
+1 with respect to the reference measure 
(1− |z|2)
−1m/π on D. He
proved that Z(
)

D
is realized as the zeros of det[∑n∈NGnzn], where {Gn}n∈N are

i.i.d. complex Ginibre random matrices of size 
 ∈ N. A similar extension of the
present PDPP ZAr

q
on Aq will be challenging.

(7) For 0 < t ≤ 1, let Dt := {z ∈ C : |z| < t}. The CLT for the number of points
ZXD

(Dt ) as t → 1 can be easily shown, since ZXD
is a DPP and then ZXD

(Dt ) can
be expressed as a sum of independent Bernoulli random variables [64, Corollary 3
(iii)] [69]. For 0 < q ≤ s < t ≤ 1, let As,t := {z ∈ C : s < |z| < t}. It would
also be expected that the CLT holds for

(ZAq (As,
√
q),ZAq (A

√
q,t )
)
as s → q and

t → 1 simultaneously in some sense. Is there a useful expression for those random
variables as above and can we prove the CLTs for them?

(8) In the present paper, we have tried to characterize the density functions and the
unfolded 2-correlation functions of the PDPPs. As demonstrated by Fig.2, change
of global structure is observed at r = rc for the unfolded 2-correlation function.
Precise description of such a topological change is required. More detailed quan-
titative study would be also interesting. For example, we can show that G∨

Aq
(x; r)

plotted in Fig.2 attains its maximum at x = √
q when r = 1 and the value is

given by G∨
Aq

(
√
q; 1) = (q2(q)8 + q3(q)8)/(16qq1(q)8) > 1, where q1(q) :=

∏∞
n=1(1 + q2n), q2(q) :=∏∞n=1(1 + q2n−1), and q3(q) :=∏∞n=1(1− q2n−1). How

about the localminima?Moreover, systematic study on three-point and higher-order
correlations will be needed to obtain a better understanding of differences between
PDPPs and DPPs.

(9) Matsumoto and one of the present authors [54] studied the real GAF on a plane
and proved that the zeros of the real GAF provide a Pfaffian point process (PfPP).
There a Pfaffian–Hafnian analogue of Borchardt’s identity was used [36]. Is it
meaningful to consider the Pfaffian–Hafnian analogues of PDPPs? Systematic study
on the comparison amongDPPs, PfPPs, permanental PPs, Hafnian PPs, PDPPs, and
Hafnian–Pfaffian PPs will be a challenging future problem.

(10) The symmetry of the present GAF and its zero point process under the (q, r)-
inversion (4.3) mentioned above and the pairing of uncorrelated points in the GAF
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XAq shown by Proposition 2.4 suggest that the inner boundary γq plays essentially
the same role as the outer boundary γ1. As an extension of the Riemann mapping
function for a simply connected domain D � C, a functionmapping amultiply con-
nected domain to the unit disk is called the Ahlfors map [7,79]. (See also Remark 7
again.) Could we use such Ahlfors maps to construct and analyze GAFs and their
zero point processes on general multiply connected domains?
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A. Hyperdeterminantal Point Processes

Recall that determinant and permanent are defined for an n × n matrix (a 2nd order
tensor on an n-dimensional space) M = (mi1i2)1≤i1,i2≤n as

det M = det
1≤i1,i2≤n

[mi1i2 ] :=
∑

σ∈Sn

sgn(σ )

n∏


=1
m
σ(
) = 1

n!
∑

(σ1,σ2)∈S2
n

sgn(σ1)sgn(σ2)
n∏


=1
mσ1(
)σ2(
),

per M = per
1≤i1,i2≤n

[mi1i2 ] :=
∑

σ∈Sn

n∏


=1
m
σ(
) = 1

n!
∑

(σ1,σ2)∈S2
n

n∏


=1
mσ1(
)σ2(
), (A.1)

whereSn denotes the symmetric group of order n. The notion of determinant has been
extended as follows. Cayley’s first hyperdeterminant is defined for a k-th order tensor
(hypermatrix) on an n-dimensional space M = (mi1...ik )1≤i1,...,ik≤n as

Det M = Det
1≤i1,...,ik≤n

[mi1...ik ] :=
1

n!
∑

(σ1,...,σk )∈Sk
n

k∏

i=1
sgn(σi )

n∏


=1
mσ1(
)...σk (
). (A.2)

It is straightforward to see that Det M = 0 if k is odd. Gegenbauer generalized (A.2) to
the case where some of the indices are non-alternated. If I denotes a subset of {1, . . . , k},
one has

DetIM = DetI
1≤i1,...,ik≤n

[mi1...ik ] :=
1

n!
∑

(σ1,...,σk )∈Sk
n

∏

i∈I
sgn(σi )

n∏


=1
mσ1(
)...σk (
). (A.3)

These extensions of the determinant are called hyperdeterminants. See [25,51,53] and
references therein.

http://creativecommons.org/licenses/by/4.0/
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Lemma A.1. Let A = (ai1i2) and B = (bi1i2) be n × n matrices. Then per A det B =
Det{2,3} C, where C = (ci1i2i3) is the n × n × n hypermatrix with the entries

ci1i2i3 = ai2i1bi2i3 , i1, i2, i3 ∈ {1, . . . , n}. (A.4)

In particular, perdet M = Det{2,3}[mi2i1mi2i3 ], where perdet M is defined by (1.15).

Proof. By the definition (A.1),

per A det B =
∑

τ1∈Sn

n∏

i=1
aiτ1(i)

∑

τ2∈Sn

sgn(τ2)
n∏

j=1
b jτ2( j) =

∑

τ1∈Sn

∑

τ2∈Sn

sgn(τ2)
n∏

i=1
aiτ1(i)biτ2(i)

= 1

n!
∑

σ1∈Sn

∑

σ2∈Sn

∑

σ3∈Sn

sgn(σ−11 ◦ σ3)

n∏

i=1
ai σ−11 ◦σ2(i)bi σ−11 ◦σ3(i)

= 1

n!
∑

σ1∈Sn

∑

σ2∈Sn

∑

σ3∈Sn

sgn(σ1)sgn(σ3)
n∏

i=1
aσ1(i)σ2(i)bσ1(i)σ3(i).

Wechange the symbols of permutations asσ1 → ρ2, σ2 → ρ1, σ3 → ρ3. Then the above
iswritten as (1/n!)∑ρ1∈Sn

∑
ρ2∈Sn

∑
ρ3∈Sn

sgn(ρ2)sgn(ρ3)
∏n

i=1 aρ2(i)ρ1(i)bρ2(i)ρ3(i).
Hence if we assume (A.4), then this is written as (1/n!)∑(σ1,σ2,σ3)∈S3

n

∏
i∈{2,3} sgn(σi )∏n

j=1 cσ1( j)σ2( j)σ3( j). By the definition (A.3), the proof is complete. ��
Theorem 1.3 of the present paper can be written in the following way.

Theorem A.2. ZXr
Aq

is a hyperdeterminantal point process (hDPP) in the sense that it

has correlation functions expressed by hyperdeterminants as

ρn
Aq

(z1, . . . , zn; r) = θ(−r)
θ(−r∏n

k=1 |zk |4)

× Det{2,3}
1≤i1,i2,i3≤n

[
SAq

(
zi2 , zi1; r

n∏


=1
|z
|2

)
SAq

(
zi2 , zi3; r

n∏


=1
|z
|2

)]
,

for every n ∈ N and z1, . . . , zn ∈ Aq with respect to m/π .

B. Conformal Map from Aq to D(s)

A general Schwarz–Christoffel formula for conformal maps from Aq to a doubly con-
nected domain is given as Eq.(1) in [21] and on page 68 in [23]. We can read that a
conformal map from Aq to a chordal standard domain D(s), s > 0 is given in the form

f (z) = C
∫ z

−1
θ(−√−1qu,

√−1qu)

θ(u)
du,

where C is a parameter. We can show that the integral is transformed into an integral of
the Weierstrass ℘-function and hence the map is expressed by the ζ -function. A result
is given by (1.38) in Remark 10. We note that the obtained function Hq is related to the
Villat kernel K (see, for instance, [28]),

K(z) = K(z; q) :=
∑

n∈Z

1 + q2nz

1− q2nz
= 1 + z

1− z
+ 2

∞∑

n=1

(
q2n

q2n − z
+

q2nz

1− q2nz

)

, z ∈ Aq ,

by a simple relation Hq(z) =
√−1K(z), z ∈ Aq . Moreover, we can verify the equality

K(z) = 2ρ1(z), z ∈ Aq .
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C. Bergman Kernel and Szegő Kernel of an Annulus

C.1. KAq expressed by Weierstrass ℘-function. A CONS for the Bergman space on Aq

is given by {̃e(q)
n (z)}n∈Z where we set

ẽ(q)
n (z) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

√
n + 1

1− q2(n+1)
zn, n ∈ Z \ {−1},

√
1

−2 log q z
−1, n = −1.

The Bergman kernel of Aq is then given by

KAq (z, w) := kL2
B(Aq )(z, w) =

∑

n∈Z
ẽ(q)
n (z)̃e(q)

n (w)

= − 1

2 log q

1

zw
+

1

zw

∑

n∈Z\{0}

n

1− q2n
(zw)n, z, w ∈ Aq . (C.1)

Using (2.35) and the notation (2.36), we can verify that this kernel is expressed using
the Weierstrass ℘-function (2.35) as [8]

KAq (z, w) = − 1

2 log q

1

zw
− 1

zw

(
℘(φzw) +

P

12

)
, z, w ∈ Aq . (C.2)

C.2. Second log-derivatives of SAq . Here we prove the following.

Proposition C.1. For r > 0, the following equality holds,

∂z∂w log SAq (z, w; r) =
θ(−r)

θ(−r(zw)2)
SAq (z, w; r zw)2, z, w ∈ Aq . (C.3)

In particular,

� log SAq (z, z; r) = 4
θ(−r)

θ(−r |z|4) SAq (z, z; r |z|2)2, z ∈ Aq . (C.4)

Proof. Let ϑ1(ξ) := √−1q1/4q0e−
√−1ξ θ(e2

√−1ξ ) [29, (11.2.2)]. This is one of the
well-known four kinds of Jacobi theta functions ϑi (ξ), i = 0, 1, 2, 3. (See [29, Section
1.6] and [62, Section 20.5].) Using ϑ1, (2.30) in Proposition 2.2 is written as

SAq (z, w; r) =
√−1ϑ ′1(0)ϑ1(φ−r zw/2)

2ϑ1(φ−r/2)ϑ1(φzw/2)
,

where the notation (2.36) has been used. This gives

∂z∂w log SAq (z, w; r) = −
(
∂2ξ logϑ1(ξ)

∣
∣
∣
ξ=φ−r zw/2

− ∂2ξ logϑ1(ξ)

∣
∣
∣
ξ=φzw/2

)
/(4zw).

We use the equality ℘(2ω1z/π) = (π/(2ω1)){ϑ ′′′1 (0)/(3ϑ ′1(0)) − ∂2z logϑ1(z)} (see
Eq. (23.6.14) in [62]). In the setting (2.34) we have

∂z∂w log SAq (z, w; r) =
(
℘(φ−r zw)− ℘(φzw)

)
/(zw). (C.5)
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Now we use (2.51) in Lemma 2.5 given in Sect. 2.4 [19]. Combining with (2.25) in
Proposition 2.1, (C.5) gives

∂z∂w log SAq (z, w; r) = f JK(zw,−r zw) f JK(zw,−(r zw)−1)/(zw)

= SAq (z, w; r zw)SAq (z, w; (r zw)−1)/(zw). (C.6)

The expression (2.25) of SAq (·, ·; r) in Proposition 2.1 gives

SAq (z, w; (r zw)−1) = f JK(zw,−(r zw)−1) = − f JK((zw)−1,−r zw)

= −SAq (z
−1, w−1; r zw), (C.7)

where (2.28) was used. On the other hand, the expression (2.30) of SAq (·, ·; r) in Propo-
sition 2.2 gives SAq (z, w; r zw) = q20θ(−r(zw)2)/θ(−r zw, zw), and

SAq (z
−1, w−1; r zw)= q20θ(−r zw(zw)−1)

θ(−r zw, (zw)−1)
= q20θ(−r)

θ(−r zw, (zw)−1)
=−zw q20θ(−r)

θ(−zwr, zw)
,

where (2.13) was used. Hence, SAq (z
−1, w−1; r zw) = −zw{θ(−r)/θ(−r(zw)2)}SAq

(z, w; r zw) and (C.7) gives SAq (z, w; (r zw)−1) = zw{θ(−r)/θ(−r(zw)2)}SAq (z, w;
r zw). Then (C.6) proves the proposition. ��

C.3. Relation between KAq and SAq . We prove the following relation between the
Bergman kernel KAq and the Szegő kernel SAq of an annulus.

Proposition C.2. The equality

SAq (z, w)2 = KAq (z, w) +
a

zw
, z, w ∈ Aq , (C.8)

holds, where

a = a(q) = e2 +
P

12
+

1

2 log q
= −2

∑

n∈N

(−1)nnqn
1− q2n

+
1

2 log q
. (C.9)

Proof. ByProposition2.1, SAq (z, w)2 = f JKq (zw,−q)2. Since f JK(z, a) = f JK(z, a/q2)

/z is given by (2.29), we have f JK(zw,−q) = f JK(zw,−q−1)/(zw), and hence

SAq (z, w)2 = 1

zw
f JK(zw,−q) f JK(zw,−q−1). (C.10)

Here we use (2.51) in Lemma 2.5 given in Sect. 2.4 [19]. Then

f JK(zw,−q) f JK(zw,−q−1) = ℘(π + πτq)− ℘(φzw) = e2 − ℘(φzw),

where we have used the setting (2.34), the notation (2.36) and the evenness of ℘(z).
The equality (C.10) is thus written as SAq (z, w)2 = −℘(φzw)/(zw) + e/(zw). Now we
use (C.2). Then (C.8) is obtained with a given by the first expression in (C.9). If we set
z = −q/w in (C.8), then Lemma 2.3 gives an equality, 0 = KAq (−q/w,w)− a/q. By
(C.1) with a short calculation, the second expression for a in (C.9) is obtained. ��
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Remark 14. The relationship (C.8) between SAq and KAq with an additional term a is
concluded from a general theory (see, for instance, Exercise 3 in Section 6, Chapter VII
of [60], and Chapter 25 of [7]). It was shown in [12] that a is readily determined by
Lemma 2.3 as shown above, if the equality (C.8) is established. Here we showed direct
proof of (C.8) using the equality (2.51) between f JK and℘ [19]. By the explicit formulas
(C.9) for a, we see that limq→0 a(q) = 0. Therefore, the relation (C.8) is reduced in the
limit q → 0 to SD(z, w)2 = KD(z, w), z, w ∈ D, which is a special case of (2.9), as
expected.
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