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Abstract: We study the q-analogue of the Haldane–Shastry model, a partially isotropic
(xxz-like) long-range spin chain that by construction enjoys quantum-affine (really:
quantum-loop) symmetries at finite system size. We derive the pairwise form of the
Hamiltonian, found by one of us building on work of D. Uglov, via ‘freezing’ from
the affine Hecke algebra. To this end we first obtain explicit expressions for the spin-
Macdonald operators of the (trigonometric) spin-Ruijsenaars model. Through freezing
these give rise to the higher Hamiltonians of the spin chain, including another Hamil-
tonian of the opposite ‘chirality’. The sum of the two chiral Hamiltonians has a real
spectrum also when |q| = 1, so in particular when q is a root of unity. For generic q the
eigenspaces are known to be labelled by ‘motifs’. We clarify the relation between these
patterns and the corresponding degeneracies (multiplicities) in the crystal limit q → ∞.
For each motif we obtain an explicit expression for the exact eigenvector, valid for
generic q, that has (‘pseudo’ or ‘l-’) highest weight in the sense that, in terms of the op-
erators from themonodromymatrix, it is an eigenvector ofA andD and annihilated byC.
It has a simple component featuring the ‘symmetric square’ of the q-Vandermonde poly-
nomial times a Macdonald polynomial—or more precisely its quantum spherical zonal
special case. All other components of the eigenvector are obtained from this through the
action of the Hecke algebra, followed by ‘evaluation’ of the variables to roots of unity.
We prove that our vectors have highest weight upon evaluation. Our description of the
exact spectrum is complete. The entire model, including the quantum-loop action, can
be reformulated in terms of polynomials. Our main tools are the Y-operators from the
affine Hecke algebra. From a more mathematical perspective the key step in our diago-
nalisation is as follows. We show that on a subspace of suitable polynomials the first M
‘classical’ (i.e. no difference part) Y-operators in N variables reduce, upon evaluation
as above, to Y-operators in M variables with parameters at the quantum zonal spherical
point.
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1. Overview and Main Results

The Haldane–Shastry spin chain [Hal88,Sha88] and its partially isotropic (xxz-like)
counterpart [BGHP93,Ugl95,Lam18] are quantum-integrable spin chains with long-
range interactions that are such that the model’s spectrum admits an exact description
in closed form—there are no Bethe-type equations that remain to be solved. We begin
with a guided tour to introduce these models and state our results.

In Sect. 1.1 we recall the salient features of the ordinary Haldane–Shastry spin chain.
The reader who is familiar with the isotropic case may wish to glance at the three defini-
tions in Sect. 1.1 before skipping to the partially anisotropic generalisation in Sect. 1.2,
where we introduce the model and give an overview of its remarkable properties, many
of which are new results. In Sect. 1.3 we preview the plan of our derivations in the main
text. These proofs exploit a connection with a more general model, the spin-version of
the (quantum trigonometric) Ruijsenaars model, whose spin-Macdonald operators give
rise to the spin chain by ‘freezing’.

In this tour we follow [BGHP93,Ugl95,Lam18] and denote the deformation
(anisotropy) parameter by q as usual for quantum groups. We use p for the second
parameter of Macdonald polynomials. From Sect. 2 onwards we’ll switch to the nota-
tion t1/2 = q and q = p, standard in the world of Macdonald polynomials and affine
Hecke algebras [Mac95,Mac98,Che05].

1.1. Recap of the isotropic case. In short, the ordinary (isotropic) Haldane–Shastry spin
chain [Hal88,Sha88] is a physically motivated quantum spin chain—e.g. serving as a
toy model for the fractional quantum Hall effect—with many remarkable properties: it

i. (abelian symmetries) belongs to a family of commuting operators [Ino90,HHT+92,
BGHP93,TH95], each of which

ii. (nonabelian symmetries) commutes with an action of the Yangian
[HHT+92,BGHP93];

iii. (explicit eigenvectors) has eigenvectors that are determined by a symmetric polyno-
mial [BGHP93], which for Yangian highest-weight [BPS95] eigenvectors is known
explicitly and involves a Jack polynomial [Hal91a].

Each is a hallmark of quantum integrability: (i) a tower of higher Hamiltonians, (ii) an
underlying quantum-algebraic structure, and (iii) exact solvability. Let us review these
three properties of the Haldane–Shastry spin chain, introducing some useful notation
along the way.

1.1.1. Abelian symmetries In this work we focus on rank one; we will address higher
rank, cf. [Lam18], elsewhere. Consider a chain with N spin-1/2 sites: the spin-chain
Hilbert space isH := (C2)⊗N whereC

2 = C |↑〉⊕C |↓〉. Write Pi j for the permutation
of the i th and j th factors ofH, so Pi j = (1 + 	σi · 	σ j )/2 with 	σ = (σ x , σ y, σ z) the Pauli
matrices. The Hamiltonian is

Hhs =
N∑

i< j

1− Pi j

4 sin2[π (i − j)/N ] . (1.1)

This operator is positive: (−)Hhs models an (anti)ferromagnet. Following Uglov we
introduce
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Definition ([Ugl95]). Let ω := e2π i/N ∈ C
× := C \ {0} be the primitive N th root of

unity. Define the evaluation

evω : z j �−→ ω j = e2π i j/N (1.2)

of z1, . . . , zN at the corresponding N th roots of unity. On shell, i.e. after evaluation, we
think of z j as (the multiplicative notation for) the position of site j of the chain, viewed
as embedded in the unit circle S1 ⊆ C. We will refer to the z j as coordinates.

With this notation (1.1) can be rewritten as

Hhs = evω H̃hs, H̃hs =
N∑

i< j

V hs(zi , z j ) (1− Pi j ), V hs(zi , z j ) = −zi z j

(zi − z j )2
.

(1.3)
The pair potential has a neat geometric interpretation: evω V hs(zi , z j ) = 1/d2, where
d = 2 |sin(π(i − j)/N )| is the chord distance between sites i and j , cf. Fig. 3.

TheHamiltonian (1.3) is amember of a hierarchyof higherHamiltonians that pairwise
commute [BGHP93] and, in principle, can be constructed explicitly and systematically
[TH95]. The first few of these abelian symmetries, apart from (1.3) and the translation
operator

Ghs := PN ,N−1 . . . P12, (1.4)

are given in [Ino90,HHT+92,TH95].
The spectrum of the Haldane–Shastry spin chain is particularly simple. The joint

eigenspaces of the abelian symmetries are labelled by simple combinatorial patterns.

Definition ([HHT+92]). A motif (though ‘N -site sl2 motif’ would be more precise) is
a sequence in {1, . . . , N − 1} increasing with steps of at least two. As in [Ugl95] we
denote the set of all motifs by

MN :=
{

μ⊂{1, . . . , N − 1}
∣∣∣ μm+1 > μm + 1

}
. (1.5)

Let us define the length �(μ) of μ to be the number of parts μm . We further write
|μ| := ∑

m μm .

Denote the empty motif by 0. For example, M2 = {0, (1)}, M3 = {0, (1), (2)}
and M4 = {0, (1), (2), (3), (1, 3)}. Motifs are stable under increase of the system
size, MN−1⊂MN . Conditioning on whether N − 1 ∈ μ yields a recursion MN ∼=
MN−1 � MN−2 (disjoint union), so the number of motifs forms a Fibonacci sequence
with offset one: #MN = FibN+1.

As for any homogeneous (translationally invariant) spin chain the momentum phs is

defined such that (1.4) has eigenvalue ei phs . For the eigenspace labelled by μ ∈ MN it
is given by

phs(μ) =
M∑

m=1

phsm mod 2π, phsm = 2π

N
μm . (1.6)

The energy is (strictly) additive too, with a quadratic dispersion relation:

Ehs(μ) =
M∑

m=1

εhs(μm), εhs(μm) = 1

2
μm (N − μm) = N 2

8π2 phsm

(
2π − phsm

)
.

(1.7)
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Thanks to additivity all energies are half integral, i.e. lie in 1
2Z≥0. The μm can be seen

as the ‘Bethe quantum numbers’, or, up to a factor, quasimomenta phsm . Indeed, μm
parametrises the contribution of the mth magnon not just to the momentum (1.6) but,
by (1.7), also to the energy. We stress that, in view of the definition (1.5) of motifs
these energies are strictly additive: the quasimomenta phsm are all real—there are only
‘1-strings’—and there is no interaction (bound-state) energy. The physical picture is that
of a gas of anyons: free quasiparticles that interact through their fractional (exclusion)
statistics only [Hal91a,Hal91b]. See also [Hal94] and [Pol99].

The spectrum is highly degenerate [Hal88]. In part this is because the eigenvalues (1.7)
may be (‘accidentally’ [FG15]) degenerate, e.g. forμ = (1, 3) andμ = (5, 7) at N = 8.
Another reason is the presence of a large nonabelian symmetry algebra.

1.1.2. Nonabelian symmetries The Hamiltonian (1.3) is clearly isotropic, i.e. invariant
under Uhs := Usl2, the universal enveloping algebra of sl2 = (su2)C. The latter acts as
usual: if σ± := (σ x ± i σ y)/2 then

S± :=
N∑

i=1

σ±
i , Sz := 1

2

N∑

i=1

σ z
i , [Sz, S±] = ±S±, [S+, S−] = 2 Sz . (1.8)

For the Haldane–Shastry spin chain this symmetry is enhanced to the Yangian Ûhs :=
Y (sl2), with additional generators [HHT+92] (note that evω i (zi + z j )/(zi − z j ) =
cot

(
π(i − j)/N

)
)

Q± = evω Q̃±, Q̃± = ∓ i

2

N∑

i< j

zi + z j

zi − z j
(σ±

i σ z
j − σ z

i σ±
j ),

Qz = evω Q̃z, Q̃z = i

2

N∑

i< j

zi + z j

zi − z j
(σ +

i σ−
j − σ−

i σ +
j ).

(1.9)

Even off shell these live in the adjoint representation of sl2,

[Sz, Q̃±] = ±Q̃±, [S±, Q̃∓] = ±2 Q̃z, [S±, Q̃z] = ∓Q̃±, (1.10a)

and obey the Serre relation

[Q̃z, [Q̃+, Q̃−]] = −(S+ Q̃− − Q̃+ S−) Sz . (1.10b)

On shell, (1.9) moreover commute with the abelian symmetries, including Ghs and Hhs.
The upshot is that the Hilbert space decomposes as

H =
⊕

μ∈MN

Hμ,hs. (1.11)

Each Hμ,hs is a joint eigenspace for the abelian symmetries, with energy and momen-
tum (1.7), as well as an irreducible Yangian module with known Drinfeld polynomial
[BGHP93]. It contains a unique (up to rescaling) vector |μ〉hs ∈ Hμ,hs with Yangian
highest weight, i.e. S+ |μ〉hs = Q+|μ〉hs = 0. Conversely, all of Hμ,hs is generated by
the Ûhs-action on |μ〉hs. This structure ofH is illustrated in Fig. 1. The vector |μ〉hs can
be written down in closed form, as follows.
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Fig. 1. Schematic picture of the structure of the Hilbert spaceH for N = 6. Each dot represents an eigenvector
of the abelian symmetries. The vertical axis records its Sz , equal to 3− M for HM . The Ûhs highest-weight
Hhs-eigenvectors |μ〉hs are labelled by their motif. Vertical lines connect vectors in an Uhs-irrep, which are
combined by dotted lines into Ûhs-irreps Hμ,hs. The value of the momentum phs is indicated below each
irrep, where we have also linked parity-conjugate pairs with opposite momentum and mirror-image motifs.
(In the q-deformed case the picture is the same: just drop the superscripts ‘hs’)

1.1.3. Explicit eigenvectors The abelian symmetries preserve the decomposition

H =
N⊕

M=0

HM , HM := ker
[
Sz − ( 1

2 N − M
)]

. (1.12)

Any vector in the M-particle sector (weight space)HM can be written via the coordinate
basis:

N∑

i1<···<iM

�(i1, . . . , iM ) |i1, . . . , iM 〉〉, |i1, . . . , iM 〉〉 := σ−
i1

. . . σ−
iM

|↑ · · · ↑〉. (1.13)

Thus, |∅〉〉 = |↑ · · · ↑〉 ∈ H0 is the pseudovacuum, while |i〉〉 ∈ H1 has a ↓ at site i , and
so on. Property (iii) of the Haldane–Shastry spin chain comprises two statements. Firstly,
every Hhs-eigenvector inHM is completely determined by some symmetric polynomial
�̃hs(z1, . . . , zM ) via [BGHP93]

�hs(i1, . . . , iM ) = 〈〈i1, . . . , iM |�〉hs = evω �̃hs(zi1 , . . . , ziM ). (1.14)

Secondly, for the Ûhs highest-weight eigenvectors these polynomials take an elegant
form.

Definition. Recall that a partition ν = (ν1 ≥ ν2 ≥ · · · ≥ 0) is a weakly decreasing
sequence of integers, with length �(ν) the number of nonzero parts. There is a length-
preserving bijection fromMN to the set of partitions with ν1 ≤ N −2 �(ν)+1 (see also
Fig. 2): at length M set

νm := μM−m+1 − 2 (M − m), 1 ≤ m ≤ M . (1.15a)

If δM := (M − 1, M − 2, . . .) denotes the staircase partition of length M − 1, and μ+

the partition obtained from μ ∈ MN by reversal, this relation takes the succinct form

ν + 2 δM = μ+, (1.15b)

where addition and scalar multiplication are pointwise.
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With this notation the (unnormalised) wave function (1.14) of |μ〉hs is determined
by the polynomial [Hal91a,BGHP93]

�̃hs
ν (z1, . . . , zM ) =

M∏

m<n

(zm − zn)2 P(1/2)
ν (z1, . . . , zM ). (1.16)

Here P(α)
ν is a Jack polynomial [Jac70] with parameter α = k−1 related to the coupling

k (k − 1) of the (trigonometric quantum) Calogero–Sutherland model [Sut71,Sut72].
These symmetric polynomials are studied extensively in the literature, see e.g. [Sta89,
Mac95]. They play an important role in [Mat92], and appear for the fractional quantum
Hall effect [KP07,BH08]. If α = 1/2, as in (1.16), one gets zonal spherical polynomials,
see e.g. §VII.6 in [Mac95]. (For comparison: α = 1 gives Schur and α = 2 zonal
polynomials; cf. Fig. 5.)

Remark. i. Note that �(ν) = M means that νM ≥ 1 and νM+1 = 0, so νm = ν̄m + 1 for
some partition ν̄ with �(ν̄) ≤ M (see again Fig. 2). Jack polynomials have the property

P(α)
ν (z1, . . . , zM ) = z1 . . . zM P(α)

ν̄ (z1, . . . , zM ), νm = ν̄m + 1. (1.17)

In the literature on the Haldane–Shastry model this relation is often used to extract an
explicit centre-of-mass factor z1 . . . zM and end up with a polynomial associated to ν̄ as
on the right-hand side of (1.17). This factor (or, equivalently, the condition �(ν) = M)
ensures that the resulting eigenvector has Yangian highest-weight on shell [BPS95].

ii. The relation (1.15) has the following origin. Write zν = zν1
1 . . . zνN

N , appending
zeros to ν if necessary to get a (weak) partition with N entries. With respect to the domi-
nance ordering, see (2.30) in Sect. 2.1.2, the highest term in (1.16) receives contributions
from

M∏

m<n

(zm − zn) = zδM + lower, P(α)
ν (z1, . . . , zM ) = zν + lower.

Therefore

�̃hs
ν (z1, . . . , zM ) = zμ

+
+ lower monomials, (1.18)

explaining (1.15). Next, the degree of (1.16) in any variable is degz1�̃
hs
ν = ν1 + 2 (M −

1) = μM . As evω zN
1 = 1 it suffices to consider partitions ν such that degz1�̃

hs
ν ≤ N −1.

This reproduces the condition ν1 ≤ N − 2 M + 1, i.e. μM < N , from the line preceding
(1.15).

iii. Since P(α)
ν is a homogeneous polynomial of total degree |ν|, the polynomial (1.16)

is homogeneous of total degree |μ|. This readily yields (1.6). The proof of (1.7) is more
intricate.

1.1.4. Spin-Calogero–Sutherland and freezing The key insight of [BGHP93] is that the
many special properties of the Haldane–Shastry spin chain naturally arise from a con-
nection with a dynamical model. Consider the spin-version of the Calogero–Sutherland
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Fig. 2. The correspondence (1.15) between a motif μ ∈ MN of length M = �(μ) ≥ 1 and a partition with
ν1 ≤ N − 2 M + 1 and �(ν) = M , given by νm = ν̄m + 1, 1 ≤ m ≤ M . Note that ν̄ characterises the extent
by which μ differs from the left-most filled motif of length M

model, with N spin-1/2 particles moving on a circle while interacting in pairs, and
Hamiltonian [HH92,MP93,HW93]

H̃nr = 1

2

N∑

i=1

(
zi ∂zi

)2 +
N∑

i< j

−zi z j

(zi − z j )2
k (k − Pi j )

= −1

2

N∑

i=1

∂2xi
+

N∑

i< j

k (k − Pi j )

4 sin2[(xi − x j )/2]
, z j = ei x j .

(1.19)

Here k is the reduced coupling parameter. In the second line we switched to additive
notation. This model already

i. (abelian symmetries) belongs to a family of commuting operators [BGHP93,Che94b,
Res17], each of which

ii. (nonabelian symmetries) commutes with an action of the Yangian [BGHP93], cf.
[Dri86];

iii. (explicit eigenvectors) has eigenvectors that are determined by a suitably symmetric
polynomial, which for Yangian highest-weight eigenvectors is known explicitly in
terms of a Jack polynomial [TU97,Ugl98].

As foreseen in [Sha88] the spin chain emerges through freezing [Pol93,SS93,BGHP93,
TH95]: when k → ∞ the kinetic energy becomes negligible compared to the potential
energy and the particles ‘freeze’ at their equally spaced classical equilibrium positions
evω z j to yield (1.3). By carefully evaluating this limit one shows that properties (i)
and (ii) are inherited by the spin chain [BGHP93,TH95]. The derivation of property (iii)
for the spin chain is also based on freezing, though the argument is more subtle; we do
not know how to get (1.16) directly from the spin-Calogero–Sutherland eigenvectors of
[TU97,Ugl98] via freezing.

1.2. q-deformed Haldane–Shastry. Our goal is to study the partially isotropic (xxz-like)
counterpart of the Haldane–Shastry spin chain, building on [BGHP93,TH95,Ugl95,
Lam18]. Let q ∈ C

× denote the anisotropy parameter. In a nutshell, the isotropy of the
Haldane–Shastry spin chain can be q-deformed in such a way that the result

i. (abelian symmetries) belongs to a family of commuting operators [BGHP93,Ugl95],
each of which

ii. (nonabelian symmetries) commutes with an action of the quantum-affine (more
pecisely: quantum-loop) algebra [BGHP93];
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iii. (explicit eigenvectors) has eigenvectors that are determined by a symmetric poly-
nomial, which for (‘pseudo’) highest-weight eigenvectors are known explicitly and
involves a Macdonald polynomial.

The state of the art can be summarised as follows. A Hamiltonian that q-deforms (1.3)
was found by Uglov [Ugl95] and simplified significantly by one of us [Lam18]. We
shall give a direct derivation of the latter and of the appropriate translation operator,
which was proposed in [Lam18]. These abelian symmetries are reviewed in Sect. 1.2.1,
where we will moreover present two new q-deformations of (1.3). One of them has real
spectrum also for the regime |q| = 1 that should be most interesting physically. We give
the higher abelian symmetries in Sect. 1.3.4.

By construction [BGHP93] the q-deformation is such that the nonabelian symmetries
are deformed to the quantum-affine level. We preview these symmetries in Sect. 1.2.2.
Unfortunately we have not been able to formulate their action, which was also studied in
[Ugl95], as concretely as that of the Yangian generators (1.9). We describe this action a
little later, in Sect. 1.2.4, where we also explain the appropriate notion of highest weight,
which we call pseudo highest weight.

The structure of the Hilbert space parallels the isotropic case. In particular we find
that all eigenvectors are still determined by some polynomial, which we are able to
give explicitly for the eigenvectors with (pseudo) highest weight. We present these
eigenvectors in Sect. 1.2.3.

These remarkable properties once again stem from a dynamical model that reduces to
the q-deformed Haldane–Shastry spin chain via freezing. We return to this in Sect. 1.3.

1.2.1. Abelian symmetries A Hamiltonian for the q-deformed Haldane–Shastry spin
chain was found in [Ugl95]. Like (1.3) it admits an expression in a long-range pairwise
form [Lam18]:1

Hl = evω H̃l, H̃l = [N ]
N

N∑

i< j

V (zi , z j ) Sl[i, j]. (1.20)

(The superscript ‘L’ will make sense soon.) The prefactor involves the q-analogue of
N ∈ N,

[N ] := qN − q−N

q− q−1 = qN−1 + qN−3 + · · · + q3−N + q1−N . (1.21)

Next, the potential in (1.20) reads

V (zi , z j ) = zi z j

(q zi − q−1z j )(q z j − q−1zi )
, (1.22)

where the sign is chosen such that evω V (zi , z j ) > 0 for q ∈ R. A geometric way to
think about this potential is shown in Fig. 3.

1 We set the coupling constant from [Lam18] to J = [N ]/N as in [Ugl95]. Note that in [Lam18] all
spectral parameters were inverted, cf. (1.25) and (1.27), in order to stay close to the expressions of [Ugl95].
Equivalently, H from [Lam18] is related to (1.20) by inverting q and flipping all spins |↑〉 ↔ |↓〉. Indeed,
in [Lam18] it was observed that Hl is (‘cpt’) invariant under simultaneous reversal of spins |↓〉 ↔ |↑〉,
the order of the coordinates z j �→ zN− j+1 (on shell equivalent to z j �→ 1/z j as all coordinates occur in
ratios), and inverting q. This symmetry is easy to understand: the R-matrix (1.23) is invariant under inverting
its arguments, as well as q, together with conjugation by (P or) σ x ⊗ σ x . This extends to the Sl[i, j], and thus
the Hamiltonian, where conjugation by the antidiagonal matrix (σ x )⊗N implements global spin reversal. (In
particular, complex conjugation of Hl is equivalent to global spin reversal if q ∈ S1.)
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Fig. 3. The potential (1.22) is a point splitting of the inverse square in (1.3). Consider a little ‘dipole’ at each
site, with length set by q−q−1. Then evω V (zi , z j ) = 1/d+ d−, where d± are illustrated for q ∈ iR>1 (left)
and q ∈ R>1 (right). As q → 1 both d± → d reduce to the chord distance

Finally, the operators Sl[i, j] in (1.20) deform the long-range exchange interactions of
(1.3). The deformation is accomplished via the spin-1/2 xxz (six-vertex) R-matrix

Ř(u) :=
⎛

⎜⎝

1 0 0 0
0 u g(u) f (u) 0
0 f (u) g(u) 0
0 0 0 1

⎞

⎟⎠ , f (u) := u − 1

q u − q−1 , g(u) := q− q−1

q u − q−1 .

(1.23)
Here the 4 × 4 matrix is with respect to the standard basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 of
C
2⊗C

2. The functions f and g can be recognised as the ratios of the six-vertex model’s
local weights.2 The properties of (1.23), notably including the Yang–Baxter equation,
are reviewed in Sect. 2.2.2. Note that Ř(u) → P as q → 1.

Note that the isotropic interactions in (1.3) can be decomposed into nearest-neighbour
steps consisting of transport to the left, interaction, and transport back:

1− Pi j = Pj−1, j . . . Pi+1,i+2 (1− Pi,i+1) Pi+1,i+2 . . . Pj−1, j .

The appropriate q-deformation has the same structure, cf. [HS96]. It is perhaps most
clearly defined using graphical notation:

Sl[i, j] :=

zN

zN

z j+1

z j+1

z j

z j

z j

z j

z j

z j

z j

z j

z j−1

z j−1

z j−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi−1

zi−1

z1

z1

· · · · · · . (1.24)

The little arrows at the top indicate that the diagrams are read from bottom to top (time
goes up). The coordinates, here in the role of inhomogeneity parameters, follow the lines
as indicated. The nearest-neighbour transport is accounted for by the R-matrix,

v

v

u

u

:= Ř(u/v), (1.25)

2 Namely, f (u) = b/a and u g(u) = c+/a, g(u) = c−/a in terms of the vertex weights of the asymmetric
six-vertexmodel. Note that one usually thinks of R(u) = P Ř(u) as encoding these vertex weights, so b ↔ c±
are swapped. The asymmetry c+ �= c− stems from the connection to the q-deformed algebras in Sect. 2.2.1,
see (2.48).
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while the nearest-neighbour exchange is deformed to the Temperley–Lieb generator3

u

u

v

v

:= esp = −(q− q−1) Ř′(1) =
⎛

⎜⎝

0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

⎞

⎟⎠ . (1.26)

This q-antisymmetriser (up to normalisation) is the local Hamiltonian of the quantum-
sl2 invariant Heisenberg spin chain [PS90], see Sect. 2.2.3. It reduces to esp → 1 − P
when q → 1.

An example of the long-range spin interactions (1.24) is

Sl[1,5] = Ř45(z5/z4) Ř34(z5/z3) Ř23(z5/z2)

×−(q− q−1) Ř′
12(1)

× Ř23(z2/z5) Ř34(z3/z5) Ř45(z4/z5).

(1.27)

We stress that in the graphical notation the parameters follow the lines, but (unlike if
one would draw R = P Ř or Ř P) the vector spaces do not, cf. the subscripts in (1.27).
The notation ‘[i, j]’ as an interval in (1.24), which is borrowed from [HS96], reflects the
fact that the intermediate spins are affected by the transport via the R-matrix: the model
involves multi-spin interactions when q �= ±1. As a result the direct computation of the
action of Hl on any vector is quite complicated even for a single excited spin.

Remark. i. If q ∈ R
× the hermiticity of (1.26) is inherited by Hl [Lam18]. ii. The

structure of Hl, with its multi-spin interactions, might be somewhat involved, yet is
precisely such that the key properties of (1.3) generalise to the q-case. We will derive
the formula for Hl in Sect. 3.2.1, see Sect. 1.3.4 for a sketch. iii. Hl has a stochastic
version too: see Sect. B.1. iv.TheHamiltonian dependsmildly on the sign ofq: Hl|q �→−q

differs from (−1)N Hl by a conjugation. We will prove this in Sect. B.1, see (B.8).

As in the isotropic case, the energy spectrum of the Hamiltonian (1.20) can be given
explicitly. They are still labelled by motifs (1.5) and remain (strictly) additive.

Theorem 1.1 (cf. [Ugl95]). The spectrum of Hl is given by4

El(μ) =
M∑

m=1

εl(μm), εl(μm) = 1

q− q−1

(
qN

qμm
[μm] − μm

N
[N ]

)
, (1.28)

for μ ∈ MN . More precisely,
i. ([Ugl95]) All eigenvalues of the Hamiltonian Hl are of the form (1.28) for appro-

priate μ.
ii. For each μ ∈ MN the eigenvalue (1.28) does indeed occur in the spectrum of Hl.
iii. For generic values of q ∈ C

×, i.e. qN �= 1, the assignment (1.28) is injective on
MN .

iv. (Completeness) All eigenvalues of Hl are given by (1.28) with μ ∈ MN .

3 Unlike the usual graphical notation for e
sp
i this does not naturally represent the Temperley–Lieb relations

(Sect. 2.2.1), but it correctly accounts for the flow of (spectral) parameters along the lines.
4 The dispersion in [Ugl95,Lam18] differs from εl by q �→ q−1, cf. ‘cpt’ invariance from Footnote 1.
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Part (i) is due to Uglov [Ugl95]; we will review his proof in Sect. 3.2.1. Concerning
part (ii), we will give an explicit eigenvector with that energy in Sect. 1.2.3—see also
Remark (vi) therein; these eigenvectors will be derived in Sect. 3.2.3. Part (iv) will be
shown at the end of Sect. 1.2.2 based on a result that will be established in Sect. 3.2.4.
Here we can already give the simple

Proof of Theorem 1.1 (iii). As a Laurent polynomial in q, (1.28) is given by [Lam18]

εl(μm) = 1

N

N−1∑

n=1

min
(
μm (N − n), (N − μm) n

)
qN−2n .

The coefficient in this expression, viewed as a function of n on the interval [0, N ], is
piecewise linear, from the origin to a maximum at n = μm and back down to zero at
n = N . Therefore the coefficients of El(μ) as a Laurent polynomial in q look like
a piecewise linear function with kinks at the parts of μ. This allows us to reconstruct
μ ∈ MN uniquely from El(μ). ��

The q-deformation (1.24) breaks left-right symmetry; the model described by (1.20)
is chiral. One of our new results is a Hamiltonian with the opposite chirality, which also
q-deforms (1.3) and is very similar to (1.20):

Hr = evω H̃r, H̃r = [N ]
N

N∑

i< j

V (zi , z j ) Sr[i, j], (1.29a)

now featuring long-range spin interactions where the q-antisymmetrisation takes place
on the right,

Sr[i, j] :=

zN

zN

z j+1

z j+1

z j

z j

z j−1

z j−1

z j−1

· · ·

· · ·

· · ·

zi+1

zi+1

zi+1

zi

zi

zi

zi

zi

zi

zi

zi

zi−1

zi−1

z1

z1

· · · · · · . (1.29b)

Theorem 1.2. i. The abelian symmetries of the q-deformed Haldane–Shastry spin chain
include the operator Hr. In particular, the two chiral Hamiltonians Hl, Hr commute.

ii. The eigenvalues of Hr are as in Theorem 1.1 with (1.28) modified by inverting q
or, equivalently, by reflecting the motif:

Er(μ) =
M∑

m=1

εr(μm), εr(μm) = εl(μm)
∣∣
q �→q−1 = εl(N − μm). (1.30)
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In Sect. 3.2.1 we will show that the first part is true by construction. The second part
follows from Theorem 1.1 except that the first part therein has to be adjusted, which will
be done in Sect. 3.2.1. The results in Theorem 1.2 are new.

The q-deformed chiral energies (1.28)–(1.30) are real when q ∈ R
×, in which case

Hl is hermitian [Lam18]. Recall that for the Heisenberg xxz spin chain the regime
|q| = 1, where its parameter � = (q + q−1)/2 obeys |�| ≤ 1, is physically most
interesting. With this in mind, Theorem 1.2 implies the following important

Corollary. i. The abelian symmetries include the full Hamiltonian

H full := 1

2
(Hl + Hr) = evω H̃ full, H̃ full = [N ]

2N

N∑

i< j

V (zi , z j )
(
Sl[i, j] + Sr[i, j]

)
.

(1.31)
ii. The eigenvalue of H full for μ ∈ MN involves a beautiful q-deformed dispersion

relation:

E full(μ) =
M∑

m=1

εfull(μm), εfull(μm) = εl(μm) + εr(μm)

2
= 1

2
[μm] [N − μm].

(1.32)
In particular, its spectrum is manifestly real also for q ∈ S1⊂C

×.

The elegant expression (1.32) causes H full to have some extra degeneracies with
respect to the chiral Hamiltonians. Indeed, for Hl (or Hr) the set of distinct energies
is typically equinumerous with the set of motifs: the chiral Hamiltonians ‘only’ have
representation-theoretic degeneracies to reflect the nonabelian symmetry, which we will
explore in Sect. 1.2.2. The Hamiltonian H full has some additional degeneracies, as
mirror-image motifs yield equal E full, reflecting parity invariance. At special values of q
the dispersion relation simplifies, making additional ‘accidental’ degeneracies possible.
Examples include the isotropic limit q → 1, with many [FG15] accidental degeneracies
for Hhs, and the crystal limit q → ∞, which we will treat in Sect. 1.2.5. The root-of-
unity case, for which very large degeneracies occur too, will be investigated elsewhere.

Before we introduce another abelian symmetry it is instructive to pause for a mo-
ment and investigate the boundary conditions. The periodicity of the isotropic Hamilto-
nian (1.3), which is invariant under conjugation by the cyclic translation operator (1.4),
is affected by the q-deformation. Consider Hl for definiteness. The potential (1.22)
remains periodic as it depends on the ratio zi/z j , i.e. on the distance i − j in additive
language. On the other hand, the long-range interactions (1.24) are not periodic: com-
pare the highly non-local multispin operator Sl[1,N ] with any genuine nearest-neighbour
interaction Sl[i,i+1] = espi . From this perspective the model lives on a strip rather than a
circle: no particle ever really wraps around the back of the chain. This periodicity break-
ing is required by the coproduct of the nonabelian symmetries, cf. [HS96]. As q → 1
the ‘wall’ between sites N and 1 becomes transparent. For q → ∞ we instead get an
open chain, as we will show in Sect. 1.2.5. In general the spin chain can be viewed as
having some sort of twisted (quasiperiodic) boundary conditions:

Lemma 1.3. (braid limit) Let T sp
i = q − espi be the q-deformed permutation (Hecke

generator), with inverse T sp−1
i = q−1 − espi . The Hamiltonian (1.20) formally contains
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the twisted Heisenberg xxz spin chain:

−
 ev
 H̃l →
N−1∑

i=1

espi + T sp
N−1 . . . T sp

2 esp1 T sp−1
2 . . . T sp−1

N−1 , 
 → ∞, (1.33)

where we replaced (1.2) by the (hyperbolic) evaluation ev
 : z j �−→ 
 j with 
 ∈ R
×.

The last term in (1.33), describing the twisted boundary conditions, is known as a ‘braid
translation’ [MS93] (with trivial ‘blob’ generator [MS94]).

Proof of Lemma 1.3. We need to evaluate the limit 
 → ∞ for the components of
H̃l from (1.20). Up to a simple rescaling the potential (1.22) boils down to the usual,
q-independent nearest-neighbour pair potential:

−
 ev
 V (zi , z j ) → δ|i− j |mod N , 1, i �= j, 
 → ∞.

In the bulk only the nearest-neighbour interactions Sl[i,i+1] = espi from (1.26) survive.

The only other term in (1.20) that survives this limit is Sl[1,N ]. Now from the viewpoint

of the R-matrix (1.23), 
 → ∞ (
 → 0) is the braid limit, yielding T sp
i (resp. T sp−1

i ),
yielding the final term in (1.33). ��

Despite these somewhat subtle boundary conditions, theq-deformedHaldane–Shastry
spin chain is formally periodic.

Proposition 1.4 (cf. [Lam18]). i. The q-deformed Haldane–Shastry spin chain is q-
homogeneous: its abelian symmetries include the (left) q-translation operator

G := evω G̃, G̃ := ŘN−1,N (z1/zN ) . . . Ř12(z1/z2) =

z2

z2 · · ·

· · · zN

zNz1

z1

z1

z1

z1

. (1.34)

ii. For each μ ∈ MN as in Theorems 1.1 and 1.2 the eigenvalue of G is eip where
the q-momentum is

p(μ) =
M∑

m=1

pm mod 2π, pm = 2π

N
μm . (1.35)

This was conjectured in [Lam18]. The first part of the proposition will be established in
Sect. 3.2.1. As for the second part, we note that for generalq ∈ C

× themulti-spin interac-
tions make it rather hard to verify (1.35) by direct computation on the explicit expression
for the eigenvectors that we will give in Sect. 1.2.3 even for M = 1. Nevertheless, (1.35)
has a simple proof.
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Fig. 4. The one-particle energies as functions of the q-momentum p. For this plot we have taken q = 1.2
and N = 10. Though the quadratic dispersion (1.7) of isotropic Haldane–Shastry is a function of the ordinary
(q = 1) momentum we included a parabola for comparison

Proof of Proposition 1.4 (ii). TheYang–Baxter equation for theR-matrix impliesG N =
1, so G has eigenvalues of the form ei p, with p ∈ (2π/N ) ZN for ZN := Z/N Z,
quantised as usual for particles on a circle. Since the value of p is discrete, it cannot
depend on q ∈ C

×. (Instead, the dependence on q is hidden in the meaning of p, as
eigenvalue of−i logG.) As the entries of G are continuous in the deformation parameter
its eigenvalues can be calculated at any q. The isotropic point q = 1 suffices, where
G → Ghs so that (1.35) follows from (1.6). (One can also use the crystal limit q → ∞,
see (1.60) in Sect. 1.2.5 below.) ��

In summary we have encountered two chiral Hamiltonians, (1.20) and (1.29), which
combine to give the full Hamiltonian (1.31). We have also met the q-translation op-
erator (1.34). These operators commute with each other. Their eigenvalues are known
explicitly. The different q-deformed dispersion relations are plotted in Fig. 4. Each of
them reduces to the isotropic dispersion relation (1.7) as q → 1. The full Hamiltonian
has a real spectrum even if |q| = 1, which is expected to be most relevant physically.
We will get back to the remaining abelian symmetries in Sect. 1.3.4; see Table 4 for an
overview.

1.2.2. Nonabelian symmetries: preview To understand the structure of the joint eigen
spaces of the abelian symmetries we turn to the nonabelian symmetries. By construction
[BGHP93] the q-deformation is such that the Yangian is deformed to the quantum-affine
(or more precisely: quantum-loop) algebra

Û := U ′
q(ĝl2)c=0 = Uq(Lgl2).

In this sectionwe examine the concrete consequence: the presence of this large symmetry
algebra is directly visible in the degeneracies in the spectrum—which are much higher
than those of the Heisenberg xxz or even xxx spin chain.

Just like the Yangian incorporates sl2 as a subalgebra, Û contains the q-deformation
of sl2,

U := Uq(sl2).

Formore about this subalgebra, including its actionon theHilbert spaceH, seeSect. 2.2.1.
Herewe stress that this action commuteswith the abelian symmetries. The representation
theory of U for generic q parallels that of sl2; in particular the q-deformed Haldane–
Shastry model has at least the same degeneracies as any isotropic model, despite its
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partial isotropy. This is true for G̃, H̃l, . . . off shell (at arbitrary zi )—and in the braid
limit (1.33): the twisted Heisenberg xxz spin chain is well known to be U-invariant.

On shell (upon evaluation) the abelian symmetries G, Hl, . . . furthermore have their
nonabelian symmetries enhanced to invariance under the much larger algebra Û. We
will recall the relevant facts about Û in Sect. 2.2.2, and summarise its connection to
the Heisenberg xxz spin chain in Sect. 2.2.3. For the q-deformed Haldane–Shastry spin
chain we need a more intricate representation of the affine generators to ensure that they
commute with the abelian symmetries. This action will be described in Sect. 1.2.4.

Let us preview the structure of the Hilbert space H for generic q, which is like the
structure at q = 1. For each motif μ ∈ MN there is a unique (up to normalisation)
vector |μ〉 ∈ HM at M = �(μ) with eigenvalues as in Sect. 1.2.1. We will explicitly
construct |μ〉 in Sect. 1.2.3.
Definition. Let

Hμ := Û · C |μ〉 (1.36)

be the subspace ofH generated by the action of the nonabelian symmetries on the vector
|μ〉.
Since the Û-action commuteswith the abelian symmetries,Hμ is a joint eigenspace of the
latter, with eigenvalues (1.28)–(1.30) and (1.35). By Theorem 1.1 (iii) these eigenvalues
are pairwise distinct for generic q, so the subspacesHμ only intersect at the origin. The
Hilbert space decomposes as a direct sum

H =
⊕

μ∈MN

Hμ. (1.37)

We will momentarily verify that we did not miss any eigenspace, as asserted in part (iv)
of Theorem 1.1. For generic q each Hμ has the structure of an irreducible Û-module,
characterised as follows.

Recall that there is a bijection betweenfinite-dimensional Û-irreps (up to equivalence)
and Drinfeld polynomials (normalised so that P(0) = 1) [CP91]. One can think of the
Drinfeld polynomial as an affine analogue of a highest weight. For us it is given by

Proposition 1.5 ([Ugl95]). The Drinfeld polynomial for Hμ, μ ∈ MN , is

Pμ(u) :=
∏N

i=1(1− qN−2 i+1 u)
∏

n∈μ

(1− qN−2 n−1 u)(1− qN−2 n+1 u)
, (1.38)

where μ specifies which (consecutive pairs of) factors to omit.

In [BGHP93] it was argued (for q = 1) that any Drinfeld polynomial that can occur in
the model must be of this form for some μ. Uglov [Ugl95] gave (1.38) without direct
derivation. We prove Proposition 1.5 in Sect. 3.2.4.

The zeros of Pμ form (q-)strings, i.e. sets of the form {v,q2v,q4v, . . . } [CP91]. For
N = 4, for example, P0(u) = (1− q3u)(1− qu)(1− q−1u)(1− q−3u) gives a string
of length four, both P(1)(u) = (1−q−1u)(1−q−3u) and P(3)(u) = (1−q3u)(1−qu)

a string of length two, P(2)(u) = (1 − q3u)(1 − q−3u) two strings of length one, and
P(1,3)(u) = 1 an empty string (of length zero). The Drinfeld polynomial in particular
describes the structure of Hμ as a module for U⊂Û: each string of length j among
the zeros of Pμ corresponds to a factor of dimension j + 1 (spin j/2) [CP91], cf. the
graphical rule from [Lam18]. Proposition 1.5 thus leads to



Spin-Ruijsenaars, q-Deformed Haldane–Shastry and Macdonald Polynomials 77

Corollary. For μ ∈ MN set M = �(μ). For genericq the eigenspaceHμ has dimension

dimHμ =
M∏

m=0

(μm+1 −μm − 1) =
⎧
⎨

⎩

N + 1 i f μ = 0,

μ1 (N − μM )

M−1∏

m=1

(μm+1 − μm − 1) i f M ≥ 1,

(1.39)
where on the left one has to interpret μ0 := −1 and μM+1 := N + 1.

For example, at N = 4 we have dimH0 = 5, dimH(1) = dimH(3) = 3, and
dimH(1,3) = 1. The affine symmetries appear for H(2). As a U-module it is the tensor
product of two 2-dimensional factors, and decomposes into irreducible pieces of dimen-
sions 3 and 1. The affine generators connect them to turn H(2) into a Û-irrep. Figure 1
illustrates this structure for N = 6.

Once we construct the eigenvector |μ〉 (Sect. 1.2.3) and establish that Û does indeed
act by symmetries (Sect. 1.2.4)—so that the definition (1.36) ofHμ makes sense—the di-
mension formula (1.39) implies thatwe didn’tmiss anything in the decomposition (1.37):
Sketch of the proof of Theorem 1.1 (iii) To count dimensions we add (1.39) for all
μ ∈ MN . To see that the result is 2N = dimH observe that motifs allow us to organise
the coordinate basis in terms of the pattern · · · ↓↑ · · · . In short, the parts of μ ∈ MN
record the positions of the ↓ in the pattern, and (1.39) is the number of coordinate basis
vectors prescribed in this way. (This combinatorial interpretation is no coincidence, as
we’ll see in Sect. 1.2.5.) ��

Next we turn to the eigenvector |μ〉.

1.2.3. Explicit eigenvectors As in the isotropic case any eigenvector in the M-particle
sector (1.12) is completely determined by some symmetric polynomial in M variables.
For q = 1 the relation was given in (1.14), which can be rewritten as follows. Let us
identify the permutation (i, i + 1) with its action si : zi ↔ zi+1 on coordinates. Using
cycle notation ( j, j − 1, . . . , i) = ( j − 1, j) · · · (i, i + 1) we write

{i1, . . . , iM } := (i1, i1 − 1, . . . , 1) · · · (iM , iM − 1, . . . , M) (1.40)

for the shortest permutation that sends m �−→ im for all 1 ≤ m ≤ M . Then (1.14) states

�hs(i1, . . . , iM ) = evω

(
s{i1,...,iM }�̃hs(z1, . . . , zM )

)
.

In the q-case the different components of the wave function are likewise related through
the action of q-deformed permutations before evaluation. Here we suffice with the
minimum needed to state this result; see Sect. 2.1.1 for more about the Hecke algebra.

The q-analogue of the coordinate permutation si is the Hecke generator. In terms of
the functions f, g from (1.23) it reads

T pol
i = f (zi/zi+1)

−1 (si − g(zi/zi+1)
)
. (1.41)

The q-deformed cyclic permutation and the q-analogue of (1.40) are constructed from
it as

T( j, j−1,...,i) = Tj−1 . . . Ti , T{i1,...,iM } = T(i1,...,1) . . . T(iM ,...,M), (1.42a)
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or, in terms of (braid) diagrams,

Ti =
1 N

· ·· ·· ·

i+1i

,

T −1
i =

1 N

· ·· ·· ·

i i+1

,

T{i1,...,iM } =

N

· · ·

M

iM

· · ·

· · ·

1

i1

.

(1.42b)

(Here we only included the inverse generator for completeness. Note that these dia-
grams differ from (1.24), as the lines do not carry parameters and there are under- and
overcrossings.)

Theorem 1.6. Any eigenvector |�〉 ∈ HM in the M-particle sector of the q-deformed
Haldane–Shastry spin chain is determined by some symmetric polynomial �̃(z1, . . . , zM )

via

�(i1, . . . , iM ) = 〈〈i1, . . . , iM |�〉 = evω

(
T pol
{i1,...,iM }�̃(z1, . . . , zM )

)
. (1.43)

In Sect. 3.2.3 we will prove this powerful new result for the explicit eigenvectors that we
will give just below. Thanks to the nonabelian symmetries (see Sect. 1.2.2, especially
the dimension counting) this extends to the full Hilbert spaceH.

The wave function� depends on the positions (sites) im ∈ ZN of the magnons on the
spin chain, while the polynomial �̃ depends on the M ‘q-magnon coordinates’ zm , which
we think of as being transported by the Hecke action to the same location zim ∈ S1⊂C

upon evaluation. Whereas �̃ is a symmetric polynomial in M variables, its image under
T pol
{i1,...,iM } is not symmetric and depends on iM > M variables. In particular, the Hecke

operators in (1.43) act nontrivially even though �̃ is symmetric.
Nowwe return to the decomposition (1.37) of the Hilbert space into joint eigenspaces

of the abelian symmetries. For every motif we have obtained the wave function that q-
deforms (1.16):

Theorem 1.7. For every μ ∈ MN the eigenspaceHμ contains a unique (up to rescaling)
vector |μ〉 ∈ Hμ ∩ HM at M = �(μ). If ν is the partition associated to μ as in (1.15)
its wave function is determined through (1.43) by the ‘symmetric square’ of the q-
Vandermonde polynomial times a Macdonald polynomial:

�̃ν(z1, . . . , zM ) :=
( M∏

m<n

(q zm − q−1zn) (q−1zm − q zn)

)
P�

ν (z1, . . . , zM ), (1.44)

where P�
ν denotes the special case p� = q� = q2 of a Macdonald polynomial.

This key result will be established in Sect. 3.2.3.
Macdonald polynomials Pν are a family of homogeneous symmetric polynomials

depending on two parameters (Sect. 2.1.2; Fig. 5). In the notation q ≡ p, t ≡ q2 of
Macdonald [Mac95] we are dealing with the special case q� = t� α for (Jack) parameter
α = 1/2. That is, P�

ν is (essentially) a quantum spherical zonal polynomial, related to
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harmonic analysis on a quantum homogeneous space [Nou96].5 In Sect. 1.2.6 we give
several concrete examples to get some feeling for these P�

ν .

Remark. i. There is no freedom to pick α: the value α = 1/2 rolls out of the proof in
Sect. 3.2.3.

ii. The dependence of P�
ν on q2 reflects a symmetry of Hl under q �→ −q, see (B.8)

in Sect. B.1.
iii. At the end of Sect. 1.2.5 we will sketch a proof showing that the eigenvectors

given by Theorems 1.6–1.7 are nonzero despite the evaluation—which, after all, kills
some polynomials.

iv. In Sect. 1.2.4 we will see that Theorem 1.7 describes (all) highest-weight eigen-
vectors. The relation (1.17) extends to Macdonald polynomials (§VI.4 in [Mac95]),

Pν(z1, . . . , zM ) = z1 . . . zM Pν̄ (z1, . . . , zM ), ν = ν̄ + (1M ), (1.45)
so that (1.44) is divisible by z1 . . . zM . This is a highest-weight condition, see Theo-
rem 1.9.

v. The property (1.18) carries over to the polynomial (1.44) since

M∏

m<n

(q±1 zm − q∓1zn) = q±M(M−1)/2 zδM + lower, Pν(z1, . . . , zM ) = zν + lower.

vi. Our proof of Theorem 1.7 (in Sect. 3.2.3) is separate from the derivation of the
corresponding eigenvalues fromTheorems 1.1 and 1.2 (ii). At present we do not properly
understand the direct connection between the two derivations; we’ll return to this in the
future. For general q ∈ C

× the multi-spin interactions make it rather hard to verify by
direct computation that

Hl |μ〉 = El(μ) |μ〉, Hr |μ〉 = Er(μ) |μ〉 . (1.46)

At the isotropic point q = 1 these eigenvalue equations can be confirmed analytically
[Hal91b]. We have further checked (1.46) for all μ ∈ MN , N ≤ 10 numerically with
(pseudo)random values of q ∈ C

×. Yet another verification comes from q → ∞, see
Sect. 1.2.5.

vii.As a corollary of our description of the eigenvectorswe get the following ‘on-shell
identities’ for quantum spherical zonal polynomials. Denote the left eigenvector with the
same eigenvalues (1.28), (1.30) and (1.35) by 〈μ|. If q ∈ R

× it is the complex transpose
of |μ〉 since Hl is hermitian in that case [Lam18]. Write · ∗ for complex conjugation.
For generic q ∈ C

× the wave function of 〈μ| is determined by (1.44) as

〈μ|i1, . . . , iM 〉〉 = ev∗ω
(

T pol
{i1,...,iM }�̃ν(z1, . . . , zM )

)
, ev∗ω = evω∗ = evω−1 . (1.47)

For twomotifsμ(1), μ(2) ∈ MN of the same length �(μ(1)) = �(μ(2)) = M let ν(1), ν(2)

be the associated partitions. The corollary following (1.37) implies that the polynomials
(1.44) obey the on-shell identities

N∑

i1<···<iM

ev∗ω
(

T pol
{i1,...,iM }�̃ν(1) (z1, . . . , zM )

)
evω

(
T pol
{i1,...,iM }�̃ν(2) (z1, . . . , zM )

)
∝ δμ(1), μ(2) .

5 The pairwise form of e.g. (1.20) looks like an affine (z-dependent) version of the trace formula for the
first quantum Casimir operator C1 of Uq(glN ) from [RTF89]; cf. (5.12) in [Nou96]. Noumi showed [Nou96]
(‘case Sp’ of Theorem 5.2) that the radial component of C1 is the quantum zonal spherical operator, i.e. D�

1
in our notation. This must be closely related to the appearance of P�

ν in (1.44).
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The evaluation is crucial; for example, for μ(1) = (1) and μ(2) = (2) it is the evaluation
of

N∑

i=1

(
T pol

(i,...,1) z1
)∗ (

T pol
(i,...,1) z21

)
= q−2 (N−1)

N∑

i=1

zi , z∗i := z−1
i ,

which only vanishes upon evaluation. We do not have a direct proof of these on-shell
identities, nor a general expression for the norms of our eigenvectors.

1.2.4. Nonabelian symmetries: details The eigenvector determined by (1.43)–(1.44) has
highest weight in the appropriate sense and gives rise to all other eigenvectors in Hμ

through the action of the nonabelian symmetries. These are constructed as follows.
Let si j := s(i j) swap zi ↔ z j , so si,i+1 = si . Following [BGHP93] we set

xi j :=
{

f (zi/z j )
−1 − f (zi/z j )

−1 g(zi/z j ) si j , i < j,
f (zi/z j )

−1 + f (z j/zi )
−1 g(z j/zi ) s ji , i > j.

(1.48)

Then xi,i+1 = T pol
i si , we have x ji = x−1

i j , and the xi j obey the Yang–Baxter equation.
The ‘Y -operators’

Y ◦
i := xi,i+1 xi,i+2 . . . xi N xi1 . . . xi,i−2 xi,i−1 (1.49)

mutually commute. We use the superscript ‘◦’ to indicate that these are the ‘classical’
(i.e. no difference part) version of q-deformed Dunkl operators Yi from the affine Hecke
algebra, which will be reviewed in Sect. 2.1.1.

The monodromy matrix of the q-deformed Haldane–Shastry spin chain is obtained
from that of the Heisenberg xxz spin chain (Sect. 2.2.3) by ‘quantising’ its inhomogene-
ity parameters to (the inverse of) the Y -operators (1.49).

Theorem 1.8 ([BGHP93]). Consider an auxiliary space Va ∼= C
2. Using R(u) =

P Ř(u) define the monodromy matrix on Va ⊗H as

La(u) = evω L̃◦
a(u), L̃◦

a(u) = RaN (u Y ◦
N ) . . . Ra1(u Y ◦

1 ). (1.50)

Written as a 2×2 matrix on Va its entries, acting on H, preserve the property from The-
orem 1.6 (possibly changing the value of M) and commute with the abelian symmetries.
In addition, (1.50) obeys the ‘RLL-relations’, thus turning H into a representation of Û.

We recall the proof from [BGHP93] and give the corresponding Chevalley generators
in Sect. 3.2.2.

There are a couple of ways to understand (1.50). We take the following viewpoint.
Theorem1.6 guarantees that each vector is determined by a polynomial as in (1.43). Thus
one can work with (1.50) by letting the Y ◦

i act on the polynomials prior to evaluation.
That is, we really define (1.50) to mean (cf. (3.39) in Sect. 3.2.1)

La(u) |�〉 = evω

(
L̃◦

a(u)

N∑

i1<···<iM

T pol
{i1,...,iM }�̃(z) |i1, . . . , iM 〉〉

)
. (1.51)
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Remark. The approach taken in [BGHP93] is essentially as follows. One can check that
any vector of the form described in Theorem 1.6 has the property that prior to evaluation
the coordinate transposition si : zi ↔ zi+1, acts in the sameway as Ři,i+1(zi/zi+1). (This
is no coincidence: see Sect. 1.3.2.) This property, which is well-known in the context
of the quantum Knizhnik–Zamolodchikov (qKZ) equation [FR92,Che92b], enables one
to translate the Y-operators in (1.50) into an action on spins. Indeed, decompose (1.49)
into simple transpositions si , and move these all the way to right to exchange them one
by one for R-matrices. In [BGHP93] this procedure was called the projection onto the
physical space. This shows that it is possible to turn (1.50) into an operator that acts
on spins only, up to some rational factor in the z j as for other operators encountered
so far. The resulting monodromy matrix will still obey the RLL-relations and commute
with the abelian symmetries (Sect. 3.1.3). This procedure is feasible in the isotropic
case (where Ř(u) → P); this is how the Yangian generators (1.9) of [HHT+92] can be
obtained from themonodromymatrix of [BGHP93]. In the q-deformed setting, however,
it is much more cumbersome, cf. [Ugl95]. In Sect. 3 we will use various tricks to
do this efficiently, yielding the expressions for the abelian symmetries (Sect. 3.1.2)—
or to avoid it altogether, as in our proof of the highest-weight property (Sect. 3.2.4).
Unfortunately we have not yet been able to get a ‘projected’ (spin-only) form of the
nonabelian symmetries.

As usual themonodromymatrix (1.50), viewed as amatrix in auxiliary space, contains
four ‘quantum’ operators

La(u) =
(

A(u) B(u)

C(u) D(u)

)

a
(1.52)

that generate the Û-action onH. Unlike for theHeisenbergxxz spin chain these commute
with the Hamiltonian, so the commutation relations between the four quantum operators
is not important for us. Since La(u) commutes with the abelian symmetries, it follows
that the joint eigenspace Hμ is a Û-module as announced in Sect. 1.2.2. It has highest
weight in the following sense, which q-deforms the notion of Yangian highest weight.

Definition. A Û-module has pseudo highest weight [CP94, §12.2] if it contains a vector
|μ〉 that is an eigenvector for A(u) and D(u), and annihilated by C(u), for all u. (In
[Nak01] this is called l-highest weight.)

TheDrinfeld polynomial characterises the eigenvalues of a pseudo highest-weight vector
for the diagonal entries in (1.52) up to a common normalisation [CP91,JKK+95b]:6

A(u) |μ〉 = αμ(u) |μ〉,
D(u) |μ〉 = δμ(u) |μ〉,

αμ(u)

δμ(u)
= q−deg Pμ Pμ(q2 u)

Pμ(u)
,

C(u) |μ〉 = 0.

(1.53)

Thus B(u) acts as a lowering operator, generating from |μ〉 all other vectors in Hμ.
The derivation of our eigenvectors in Sect. 3.2.3 in fact shows that �̃ν from (1.44)

yields an eigenvector for any partition ν with �(ν) ≤ M . In Sect. 3.2.4 we will follow
[BPS95] to prove

Theorem 1.9. The condition �(ν) = M for the partition in (1.44) ensures that the eigen-
vector from Theorem 1.7 has pseudo highest weight with Drinfeld polynomial (1.38).

6 This differs from [CP91] by inverting q on the right-hand side. In [JKK+95b] that is accounted for via
αμ(u−1)/δμ(u−1) = qdeg Pμ

Pμ(q−2 u)/Pμ(u). That convention would require inverting q in (1.38).
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The partitions with �(ν) < M account for all (non-affine) U-descendants of |μ〉. We do
not yet have direct expressions for its affine descendants.

1.2.5. Crystal limit Let us explore the freedom of having a new parameter to play with
and consider the crystal limitq → ∞ [Kas90]; see also [Jim92].7 In this extreme case the
spin chain simplifies drastically and we obtain a simple combinatorial model. Since the
R-matrix and potential depend continuously on the deformation parameter this provides
a useful toy model to understand the structure of the Haldane–Shastry model, in the
q-deformed case as well as at the isotropic point.

As q → ∞ the potential (1.22) diverges, with constant leading term: ([4]/[2])
V (zi , z j ) → 1. For the spin interactionsweneed todetermine the limits of theTemperley–
Lieb generator and R-matrix. Rescaling the former to be a projector we get

esp

[2] → χ := |↓↑〉〈↓↑| = diag(0, 0, 1, 0),

Ř(u) → u−χ = diag
(
1, 1, u−1, 1

)
,

q → ∞,

One can check that [2]−1 Sl[i, j] → χi,i+1 (and [2]−1 Sr[i, j] → χ j−1, j ) concentrate at
the left (right) to become diagonal nearest-neighbour operators independent of j (i ,
respectively). TheHamiltonians (1.20) and (1.29) thus become simple diagonalmatrices:

Lemma 1.10. In the crystal limit the Hamiltonians count domain walls · · · ↓↑ · · · ,
weighted by their distance from the last (first) site for H̄l (H̄r):

[4]N
[2]2[N ] Hl → H̄l :=

N−1∑

i=1

(N − i) χi,i+1,

[4]N
[2]2[N ] Hr → H̄r :=

N∑

j=2

( j − 1) χ j−1, j ,

q → ∞. (1.54)

It is instructive to work out the representation theory, cf. §0 of [Ugl95]. Recall
from (1.13) our notation | · 〉〉 for the coordinate basis. At M = 0 there are no domain
walls, so |∅〉〉 = |↑ · · · ↑〉 has eigenvalue zero. We can flip spins without affecting the
energy as long as we do not create any domain wall ↓↑. The joint kernel of the crystal
Hamiltonians thus consists of the N + 1 vectors

|↑ · · · ↑↑↑↑〉, |↑ · · · ↑↑↑↓〉, |↑ · · · ↑↑↓↓〉, . . . , |↓ · · · ↓↓↓↓〉.
For M = 1 the coordinate basis |n〉〉 = σ−

n |∅〉〉 gives N −1 new eigenvectors (excluding
|N 〉〉 ∈ ker H̄l = ker H̄r), with linear energy

H̄l |n〉〉 = (N − n) |n〉〉, H̄r |n〉〉 = n |n〉〉, n < N . (1.55)

7 One can also let q → 0. By ‘cpt’ from Footnote 1 the resulting limits differ by inverting the argument (for
the R-matrix) and spin reversal |↑〉 ↔ |↓〉. The corresponding crystal Hamiltonians thus are as in (1.54) but
now count domain walls of the form · · ·↑↓· · · . The energy thus stays the same when domains are extended to
the right, and all eigenvectors are effectively left-right flipped. The crystal dispersions in (1.55) are swapped;
cf. the relations in (1.30). One is led to the same notion of motifs.
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This is consistent with the crystal limit of (1.28)–(1.30). Again the energy is unchanged
if we flip spins avoiding ↓↑, giving the n (N − n) vectors

|↑ · · · ↑↑↓
n
↑↑ · · · ↑↑〉, |↑ · · · ↑↑↓

n
↑↑ · · · ↑↓〉, . . . , |↑ · · · ↑↑↓

n
↑↓ · · · ↓↓〉,

|↑ · · · ↑↓↓
n
↑↑ · · · ↑↑〉, |↑ · · · ↑↓↓

n
↑↑ · · · ↑↓〉, . . . , |↑ · · · ↑↓↓

n
↑↓ · · · ↓↓〉,

...
...

. . .
...

|↓ · · · ↓↓↓
n
↑↑ · · · ↑↑〉, |↓ · · · ↓↓↓

n
↑↑ · · · ↑↓〉, . . . , |↓ · · · ↓↓↓

n
↑↓ · · · ↓↓〉.

(1.56)
At M = 2 the new (highest-weight) vectors have two ↓↑ s, so they are of the form
|μ1, μ2〉〉 where the two excited spins are at least one apart and μ2 < N . Each of these
has descendants with the same energy, obtained by extending the domains of ↓s—or
starting a new domain all the way at the right—to the left without merging any domains
like in (1.56). Continuing in this way naturally leads to the notion of motifs given in
(1.5).

In terms of the spectrum of the crystal Hamiltonians the motif μ ∈ MN corresponds
to the (highest-weight) vector |μ〉〉 = ∏

i∈μ σ−
i |∅〉〉 ∈ HM with M = �(μ). The motif

condition ensures that the pattern ↓↑ occurs exactly M times; in other words, that it has
M domains (of size one) with spin ↓. In the crystal limit |μ〉〉 thus has ‘crystal energy’
eigenvalues

Ēl(μ) = M N − |μ|, Ēr(μ) = |μ|, (1.57)

where we recall the notation |μ| := ∑
m μm . As before these eigenvalues stay the same

if we extend the domains to the left without merging. Let H̄μ denote the linear span
of all vectors obtained from |μ〉〉 in this way. Its dimension clearly is as in (1.39). Any
coordinate basis vector lies in H̄μ withμ ∈ MN recording the locations of its ↓↑s. This
yields the crystal analogue of the decomposition (1.37):

Proposition 1.11 ([Ugl95]). In the crystal limit the decomposition of the Hilbert space
into joint eigenspaces for H̄l and H̄r from (1.54) is labelled by motifs as

H =
⊕

μ∈MN

H̄μ, q → ∞. (1.58)

The pseudo highest-weight vector in H̄μ is |μ〉〉, with eigenvalues (1.57), and multiplicity
(1.39).

The q-translation operator (1.34) also becomes a simple domain-wall counting op-
erator in the crystal limit:

Lemma 1.12. In the crystal limit the q-translation operator reduces to

G → Ḡ := evω (z1/z2)
−χ12 · · · (z1/zN )−χN−1,N = exp

(
2π i

N

N−1∑

k=1

k χk,k+1

)
, q → ∞.

(1.59)

We can directly read off the ‘crystal momentum’ of |μ〉〉 and its descendants:

p̄(μ) := 2π

N
|μ| mod 2π. (1.60)



84 J. Lamers, V. Pasquier, D. Serban

This is one way of computing the eigenvalue (1.35).
To conclude the discussion of the crystal limit let us verify that |μ〉〉 is indeed obtained

fromour pseudohighest-weight eigenvectors asq → ∞. The polynomial �̃ν from (1.44)
becomes a Schur polynomial:

q−M(M−1) �̃ν → (−1)M(M−1)/2 (z1 . . . zM )M−1 sν, q → ∞ . (1.61)

(The definition of sν is recalled in (1.67) below.) Indeed, P�
ν = sν + O(q−1); cf. the

examples inTables 1, 2 and3 inSect. 1.2.6. TheHeckegeneratorsT pol
i = q

(
π̄i+O(q−1)

)

give rise to (idempotent) 0-Hecke generators π̄i = (zi − zi+1)
−1 (zi si − zi+1). Thus the

leading components of the resulting eigenvectors are those that maximise the length
�({i1, . . . , iM }) = ∑

m im − M(M + 1)/2 while surviving the action of 0-Hecke. It
can be shown that a single component dominates the crystal limit, reproducing the
eigenvectors described above up to a phase on shell:

Proposition 1.13. The crystal limit of the eigenvectors from Theorem 1.7 is given by

q−|μ|−M(M−3)/2
N∑

i1<···<iM

T pol
{i1,...,iM }�̃ν(z) |i1, . . . , iM 〉〉 → (−1)|μ|−M zλ |μ〉〉, q → ∞,

(1.62)
where λ is the partition conjugate to μ+,

λ := (M, . . . , M
μ1

, M−1, . . . , M−1
μ2

, . . . , 1
μM

, 0, . . . , 0), λ′ = μ+. (1.63)

The latter is the partition associated to μ ∈ MN in [Ugl95] following [JKK+95b]; see
also Sect. 3.2.1. The monomial zλ in (1.62) certainly survives evaluation:

evω zλ = evω

M∏

m=1

μm∏

i=1

zi =
M∏

m=1

ωμm (μm+1)/2 = ω
∑

m μm (μm+1)/2,

reproducing (0.0.58) of [Ugl95], derived in §4.4 therein. This moreover means that our
eigenvectors survive evaluation away from the crystal limit too:

Corollary. (cf. [Ugl95]) Each of the eigenvectors from Theorem 1.7 survives the eval-
uation in Theorem 1.6 for generic values of q ∈ C

×.

We leave the proofs and detailed description of the crystal limit, including the represen-
tation theory, for a separate publication.

1.2.6. Examples Let us give some concrete examples of our pseudo highest-weight
eigenvectors.

We start from the ferromagnetic ground state. Here M = 0 with the empty motif,
μ = 0, and vanishing energy and q-momentum. The partition is the same, with P�

0 = 1
trivial. This eigenspace (multiplet) has dimension N + 1. Next, for M = 1 the motif
and partition coincide as well, μ = ν = (n) for 1 ≤ n < N , with P�

(n)(z1) = zn
1.

In fact, as for any translationally invariant model, the one-particle sector H1 is already
diagonalised by q-homogeneity.
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Table 1. The quantum zonal spherical polynomials (with parameters p� = q� = q2, i.e. q� = t� 1/2 = t in
the notation of [Mac95]) needed to construct all highest-weight vectors for N ≤ 8, given in terms of Schurs

M motif μ partition ν P�
ν (z1, . . . , zM )

0 0 0 1
1 (n) (n) s(n) = en

1
2 (n, n + 2) (n, n) s(n,n) = en

2
(n, n + 3) (n + 1, n) s(n+1,n) = en

2 e1

(n, n + 4) (n + 2, n) s(n+2,n) +
1
[3] s(n+1,n+1)

(n, n + 5) (n + 3, n) s(n+3,n) +
[2]
[4] s(n+2,n+1)

(n, n + 6) (n + 4, n) s(n+4,n) +
[3]
[5] s(n+3,n+1) +

1
[5] s(n+2,n+2)

3 (n, n + 2, n + 4) (n, n, n) s(n,n,n) = en
3

(n, n + 2, n + 5) (n + 1, n, n) s(n+1,n,n) = en
3 e1

(n, n + 3, n + 5) (n + 1, n + 1, n) s(n+2,n,n) = en
3 e2

(n, n + 2, n + 6) (n + 2, n, n) s(n+2,n,n) +
1
[3] s(n+1,n+1,n)

(n, n + 3, n + 6) (n + 2, n + 1, n) s(n+2,n+1,n) +
[4]

[5][2] s(n+1,n+1,n+1)

(n, n + 4, n + 6) (n + 2, n + 2, n) s(n+2,n+2,n) +
1
[3] s(n+2,n+1,n+1)

4 (n, n + 2, n + 4, n + 6) (n, n, n, n) s(n,n,n,n) = en
4

Table 2. Continuation of Table 1 required for N = 9

M ‘reduced’ partition ν̄ P�
ν̄
(z1, . . . , zM )

2 (5, 0) s(5,0) +
[4]
[6] s(4,1) +

[2]
[6] s(3,2)

3 (3, 0, 0) s(3,0,0) +
[2]
[4] s(2,1,0)

(3, 1, 0) s(3,1,0) +
1
[3] s(2,2,0) +

[5][2]
[6][3] s(2,1,1)

(3, 2, 0) s(3,2,0) +
1
[3] s(3,1,1) +

[5][2]
[6][3] s(2,2,1)

(3, 3, 0) s(3,3,0) +
[2]
[4] s(3,2,1)

4 (1, 0, 0, 0) s(1,0,0,0) = e1

(1, 1, 0, 0) s(1,1,0,0) = e2
(1, 1, 1, 0) s(1,1,1,0) = e3

We use (1.45) to set n = 0. The particularly simple polynomials correspond to q-spinons

Lemma 1.14. By construction the ‘q-magnons’

N∑

j=1

ωn j G1− j |1〉〉 = evω

N∑

j=1

zn
j G̃1− j |1〉〉, 0 ≤ n < N , (1.64)

have G-eigenvalue ωn, i.e. q-momentum p = 2πn/N.

The proof is a direct verification. On shell (1.64) matches our general eigenvectors:
by a somewhat tedious calculation one can verify that

evω 〈〈1|
N∑

j=1

zn
j G̃1− j |1〉〉 = t (N−2n+1)/2 N

[N ] evω zn
1 .
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Table 3. Continuation of Table 2 needed for N = 10

M ν̄ P�
ν̄
(z1, . . . , zM )

2 (6, 0) s(6,0) +
[5]
[7] s(5,1) +

[3]
[7] s(4,2) +

1
[7] s(3,3)

3 (4, 0, 0) s(4,0,0) +
[3]
[5] s(3,1,0) +

1
[5] s(2,2,0)

(4, 1, 0) s(4,1,0) +
[2]
[4] s(3,2,0) +

[6][3]
[7][4] s(3,1,1) +

[6]
[7][4] s(2,2,1)

(4, 2, 0) s(4,2,0) +
1
[3] s(3,3,0) +

1
[3] s(4,1,1) +

[6][2]3
[7][3]2 s(3,2,1) +

[5]
[7][3] s(2,2,2)

(4, 3, 0) s(4,3,0) +
[2]
[4] s(4,2,1) +

[6][3]
[7][4] s(3,3,1) +

[6]
[7][4] s(3,2,2)

(4, 4, 0) s(4,4,0) +
[3]
[5] s(4,3,1) +

1
[5] s(4,2,2)

4 (2, 0, 0, 0) s(2,0,0,0) +
1
[3] s(1,1,0,0)

(2, 1, 0, 0) s(2,1,0,0) +
[4]

[5][2] s(1,1,1,0)

(2, 1, 1, 0) s(2,1,1,0) +
[6]

[7][2] s(1,1,1,1)

(2, 2, 0, 0) s(2,2,0,0) +
1
[3] s(2,1,1,0) +

1
[5] s(1,1,1,1)

(2, 2, 1, 0) s(2,2,1,0) +
[4]

[5][2] s(2,1,1,1)

(2, 2, 2, 0) s(2,2,2,0) +
1
[3] s(2,2,1,1)

We omit P
(05) = 1

This yields N linearly independent vectors (orthogonal for q ∈ R) that span H1. One
can check that n = 0 gives N/[N ] times the U-descendant of the M = 0 eigenvector.
For each 1 ≤ n < N the associated partition has �(ν) = M , giving a highest-weight
vector. According to (1.39) the corresponding eigenspaceH(n) has dimension n (N −n),
cf. (1.56). Viewed as a module for U its tensor-product decomposition is

n ⊗ (N − n) =
min(n,N−n)⊕

k=1

(N − 2 k + 1) = (N − 1) ⊕ (N − 3) ⊕ · · · ⊕ (|N − 2 n| + 1) ,

which is irreducible as a Û-representation. (One could call these ‘affine magnons’; the
U-irrep of dimension N − 1, which occurs for any n, then is the ordinary magnon.)
The q-momentum is p = 2π n/N . For even N there is one magnon with n = N/2,
so p = π . All other magnons come in parity-conjugate pairs with mirror-image motifs
μ = (n), (N − n), opposite momentum (mod 2π ) and energy differing by q �→ q−1,
cf. (1.30).

If N is even another particularly simple case occurs at the other side of the spec-
trum, M = N/2 (‘half filling’). Here the motif μaf = (1, 3, . . . , 2M − 1) corre-
sponds to partition νaf = (1M ). By (1.45) we have P�

(1M )
(z1, . . . , zM ) = z1 . . . zM . The

simple component (1.44) has an additional squared q-Vandermonde factor: this is the
q-deformed Jastrow wave function in multiplicative notation. This is the antiferromag-
netic ground state of −Hl. The eigenspace is one dimensional. The q-momentum is
p = N π/2mod 2π , so p = 0 for N = 4n and p = π if N = 4n + 2: these are the only
two values invariant under parity reversal p �→ −p mod 2π .

The lowest excitations around the antiferromagnetic singlet occurwhen N is odd,with
(N +1)/2 motifs of length M = (N −1)/2 (as close as possible to half filling) differing
from (1, 3, . . . , N − 2) in that the last s parts are increased by one, 0 ≤ s ≤ M , where
s = 0 means that nothing is changed. The corresponding partition is ν = (2s, 1M−s),
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Fig. 5. The parameter space of theMacdonald polynomial Pλ(q, t), where the dependence on z is suppressed.
Special cases include elementary symmetric (for the conjugate partition) when q = 1, monomial symmetric
for t = 1, Schur on the diagonal t = q as well as the origin (and infinity) approached from any direction,
Hall–Littlewood at q = 0, and q-Whittaker at t = 0. The quantum spherical zonal polynomial, which we

denote by P�
λ and features in our wave function (1.44), lives on the parabola t = q2. Jack polynomials P(α)

λ ,

in the (monic) ‘P-normalisation’, are associated to tangent lines at t = q = 1 with slope α−1 = k. This

includes P(1)
λ = sλ, the spherical zonal polynomial P(1/2)

λ from (1.16), and the zonal polynomial P(2)
λ = Zλ.

Adapted from [Mac98]

with associated polynomial P�
(2s ,1M−s )

(z1, . . . , zM ) = e(M,s)(z1, . . . , zM ) a product of
elementary symmetric polynomials, see just below. Each such eigenspace has dimension
two. Its physical interpretation is a (q-)spinon, a quasiparticle with spin 1/2, cf. [Hal91a].

Here and below we use the following bases for C[z1, . . . , zM ]SM , cf. Sect. I of
[Mac95]. Each of these bases is labelled by partitions λwith �(λ) ≤ M , viewed as having
M parts by appending zeros if necessary. The elementary symmetric polynomials are

er (z1, . . . , zM ) =
∑

m1<···<mr

zm1 . . . zmr , eλ(z1, . . . , zM ) =
∏

r∈λ

er (z1, . . . , zM ).

(1.65)
The monomial symmetric polynomials are ‘minimal symmetrisations’ of zλ:

mλ(z1, . . . , zM ) =
∑

α∈SM λ

zα, (1.66)

summed over all distinct rearrangements of λ. For example, m(1r )(z1, . . . , zM ) =
er (z1, . . . , zM ). The most efficient basis for our examples is given by Schur polyno-
mials

sλ(z1, . . . , zM ) =
M∏

m<n

(zm − zn)−1 det
1≤m,n≤M

zλn+M−n
m , (1.67)

where the determinant is totally antisymmetric whence divisible by the Vandermonde
factor. Each of the preceding symmetric polynomials obeys (1.45), and they are all
limiting cases of Macdonald polynomials, cf. Fig. 5.

So far the examples of P�
ν were independent of q. (Each of these simple instances

can be recognised as eν′(z1, . . . , zM ) as well as mν(z1, . . . , zM ) and sν(z1, . . . , zM ).)
This covers all polynomials needed for N ≤ 5. The first q-dependent quantum zonal
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polynomial appears when N = 6, for μ = (1, 5) so ν = (3, 1):

P�
(3,1)(z1, z2) = e2(z1, z2)

(
e1(z1, z2)

2 − [4]
[3][2] e2(z1, z2)

)

= m(3,1)(z1, z2) +
[2]2
[3] m(2,2)(z1, z2)

= s(3,1)(z1, z2) +
1

[3] s(2,2)(z1, z2).

The reason is that this is the first time that there is a partition of length M that is smaller
than ν in the dominance ordering (2.30) fromSect. 2.1.2: (3, 1) > (2, 2). The coefficients
in the expansion over Schur polynomials are known as Kostka–Macdonald coefficients.
More generally for M = 2 we can use (1.45) to write P�

(ν1,ν2)
= (z1 z2)ν2 P�

(ν1−ν2,0)
,

where

P�
(n,0)(z1, z2) =

�n/2 ∑

i=0

[n − 2 i + 1]
[n + 1] s(n−i,i)(z1, z2),

with �n/2 the integer part of n/2. Tables 1, 2 and 3 contain all polynomials re-
quired to construct the complete spectrum for N ≤ 10. Note the stability property
Pν̄ (z1, . . . , zM−1, 0) = Pν̄ (z1, . . . , zM−1) for Macdonald polynomials with �(ν̄) < M
as well as the symmetry between polynomials with mirror-image motifs.

1.3. Plan of proofs: spin-Ruijsenaars and freezing. Theorigin of theq-deformedHaldane–
Shastry spin chain with all its remarkable properties is once again an integrable quan-
tummany-body system [Pol93,BGHP93,TH95,Ugl95]: the spin-version of the trigono-
metric Ruijsenaars model [Rui87]. The Ruijsenaars model is the q-deformation of the
Calogero–Sutherland model from Sect. 1.1.4, parametrised by q and p = q2�/k with k
as in (1.19). The spin-Ruijsenaars model was studied in [BGHP93,Che94a,JKK+95a,
JKK+95b] and more explicitly in [Kon96]. Like in the isotropic case, this model already

i. (abelian symmetries) belongs to a family of commutingoperators [BGHP93,Che94a],
each of which

ii. (nonabelian symmetries) commutes with an action of the quantum-loop algebra
[BGHP93], cf. [CP96];

iii. (explicit eigenvectors) has eigenvectors that are determined by a suitably symmetric
polynomial,which for pseudohighest-weight eigenvectors canbedescribed explicitly
in terms of a Macdonald polynomial.

1.3.1. Physical (q-bosonic) space Consider N relativistic spin-1/2 particles of equal
mass moving on a circle. The particles are ‘q-bosons’ in that they are invariant under
simultaneous q-exchange of spins and coordinates. More precisely,

Definition ([FR92,BGHP93]). We call an element of (C2[z])⊗N ∼= (C2)⊗N ⊗
C[z1, . . . , zN ] on which Ři,i+1(zi/zi+1) = si a physical vector. The subspace consist-
ing of all such vectors is the physical space, denoted by H̃. The simple component of a
physical vector |�̃〉 in the M-particle sector is defined to be 〈〈1 . . . M |�̃〉, the component
with all ↓s on the left.
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Note that the property defining physical vectors already appeared in the remark of
Sect. 1.2.4. For more about the physical space, including a characterisation via the
Hecke algebra, see Sect. 3.1.1.

Any vector in the M-particle sector of H̃ is determined by a single polynomial.
Several explicit descriptions are available in the literature, cf. e.g. [DZ05a,DZ05b,KP07,
dGP10]. We will use the following characterisation in terms of the coordinate basis,
which explains the significance of the simple component.

Proposition 1.15 (cf. [RSZ07]). Let C[z1, . . . , zN ]SM×SN−M denote the ring of poly-
nomials that are symmetric in z1, . . . , zM and in zM+1, . . . , zN separately. Any physical
vector in the M-particle sector is determined by such a polynomial: with the notation
(1.42),

N∑

i1<···<iM

T pol
{i1,...,iM }�̃(z) |i1, . . . , iM 〉〉, �̃(z) ∈ C[z1, . . . , zN ]SM×SN−M . (1.68)

The recursion leading to (3.11) was already given in [RSZ07], see the unnumbered
equation after (14) therein. We will give a proof of Proposition 1.15 in Sect. 3.1.1.

Since physical vectors are determined by their simple component, any operator that
preserves the physical space can be reconstructed from its action on the simple compo-
nent:

Corollary. Let Õ be an operator on H̃. Let 0 ≤ M ≤ N and assume that Õ maps the M-
particle sector into some M ′-particle sector. Then the restriction of Õ to the M-particle
sector is completely determined by the assignment 〈〈1, . . . , M |�̃〉 �→ 〈〈1, . . . , M ′| Õ |�̃〉.
This trick, which is described in more detail in Sect. 3.1.1 and exploited in Sect. 3.1.3,
provides an efficient tool for computations. To the best of our knowledge it is new.

1.3.2. Abelian symmetries (spin-Macdonald operators) Let p ∈ C
× set the speed of

light c via p = ei�/mc, with m the rest mass of the particles. The spin-Ruijsenaars model
is quantum integrable, with a hierarchy of commuting Hamiltonians. In Sect. 3.1.2 we
obtain explicit expressions for these spin-Macdonald operators governing the dynamics.8

Our expressions are as follows.
Consider the j th momentum (translation) operator in multiplicative notation

(Sect. 2.1.1),

(1.69)

with p-deformed canonical commutation relations p̂ j zi = pδi j zi p̂ j .

8 Another type of matrix-valued Macdonald operators were constructed in [EV00].
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Definition. Using the graphical notation (1.25), (1.69) the (first) spin-Macdonald op-
erator is

(1.70)

This operator was also found by Cherednik [Che94a].9 For N = 3 it becomes

D̃1 = A1(z1, z2, z3) p̂1 + A2(z1, z2, z3) Ř12(z2/z1) p̂2 Ř12(z1/z2)

+ A3(z1, z2, z3) Ř23(z3/z2) Ř12(z3/z1) p̂3 Ř12(z1/z3) Ř23(z2/z3)

= A1(z1, z2, z3) p̂1 + A2(z1, z2, z3) Ř12(z2/z1) Ř12(p−1z1/z2) p̂2

+ A3(z1, z2, z3) Ř23(z3/z2) Ř12(z3/z1) Ř12(p−1 z1/z3) Ř23(p−1 z2/z3) p̂3 .
(1.71)

The difference with the spinless case (Sect. 2.1.2) is that the p̂ j are ‘dressed’ by R-
matrices. In the nonrelativistic limit c → ∞, taken by setting p = q2�/k and Taylor
expanding at q = 1, (1.70) reduces to the effective Hamiltonian H̃ eff,nr of the spin-
Calogero–Sutherland model, related to (1.19) by a ‘gauge transformation’. This limit is
reviewed in Appendix A.

The higher spin-Macdonald operators D̃r , 1 ≤ r ≤ N , involve more and more
‘layers’ of R-matrices, see (3.17). For example,

(1.72)

When N = 3 this gives

D̃2 = A12(z1, z2, z3) p̂1 p̂2 + A13(z1, z2, z3) Ř23(z3/z2) p̂1 p̂3 Ř23(z2/z3)

+ A23(z1, z2, z3) Ř12(z2/z1) Ř23(z3/z1) p̂2 p̂3 Ř23(z1/z3) Ř12(z1/z2).

9 Equation (4.15) in [Che94a] can be recognised as the last form in (1.71). See also Footnote 2 in [Che94a].
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Beyond the ‘equator’ r = �N/2 the expressions become simpler again. In particular,
the (multiplicative) translation operator is the same as in the spinless case,

D̃N = p̂1 . . . p̂N , (1.73)

and the counterpart of (1.70) with opposite chirality is

(1.74)

The key property of these operators is

Theorem 1.16 (cf. [BGHP93,Che94a]). The spin-Macdonald operators (1.70), (1.72)–
(1.74) are part of a commuting family of operators on the physical space H̃.

The existence of this family of commuting operators on H̃ was shown in [BGHP93].
Their expressions were found by [Che94a], albeit in a less explicit form. We will prove
Theorem in 1.16 in Sect. 3.1.2, see Theorem 3.3 therein.

Remark. i. See (3.17) for a general expression for D̃r . ii. The eigenvalues of the D̃r
are, by construction (Sect. 3.1.2), as in the spinless case (Sect. 2.1.2). iii. The ‘full’, or
physical, spin-Ruijsenaars Hamiltonian is (D̃1 + D̃−1)/2, while the physical momentum
operator is (D̃1− D̃−1)/2. By a conjugation (‘gauge transformation’) one can pass to the
spin-generalisation of Ruijsenaars’s manifestly Hermitian form [Rui87], see Sect. 2.1.3.

1.3.3. Nonabelian symmetries One reason for going through the spin-Ruijsenaarsmodel
is that the latter already enjoys quantum-loop symmetry. Recalling (1.48) let

Yi := xi,i+1 xi,i+2 . . . xi N p̂i xi1 . . . xi,i−2 xi,i−1 (1.75)

be the q-deformed Dunkl operators of the affine Hecke algebra, see Sect. 2.1.1.

Theorem 1.17 ([BGHP93], cf. [CP96]). The physical space H̃ carries an action of Û,
given by the monodromy matrix

L̃a(u) := RaN (u YN ) . . . Ra1(u Y1) (1.76)

on Va ⊗ H̃. This operator commutes with the spin-Macdonald operators.

In Sect. 3.1.3 we recall the proof from [BGHP93], which uses all relations of the affine
Hecke algebra, and give the action in terms of Chevalley generators, which is due to
[CP96].

The Corollary of Proposition 1.15 provides a convenient way for working with the
Û-action on H̃, as we will show in Sect. 3.1.1. For U⊂Û the result is quite simple,
see (3.27) and (3.29): up to a prefactor these are partial (Hecke) q-symmetrisers that
ensure the resulting polynomials have the correct symmetry. Likewise, the affine gener-
ators are essentially partial q−1-symmetrisers, besides a simple factor depending on the
parameter p from the Yi , see (3.28) and (3.30).
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1.3.4. Abelian spin-chain symmetries from freezing The q-deformed Haldane–Shastry
spin chain arises from the spin-Ruijsenaars model by freezing. This is the topic of
Sect. 3.2. As we mentioned in Sect. 1.1.4, the idea of freezing is due to Polychron-
akos [Pol93] and was further developed in [BGHP93,TH95]. In the q-case it is due to
[BGHP93,Ugl95]. In the limit10 p → 1 the kinetic energy is negligible compared to
the potential energy and the particles slow down to come to a halt at their (equispaced)
classical equilibrium positions evω z j , which are the same as for Calogero–Sutherland
(Sect. 1.1), to give rise to the spin chain.

More precisely, as in the spinless case, the D̃r become trivial at p = 1. The spin-
chain Hamiltonians thus arise as the ‘semiclassical’ limit of the spin-Macdonald op-

erators, by linearising at p = 1. We denote this operation by ∂/∂p
∣∣
p=1. Let

[
N
r

]
=

[N ] [N − 1] · · · [N − r + 1]
[r ] [r − 1] · · · [2] be the q-binomial coefficients.

Theorem 1.18 (cf. [Ugl95]). i. The spin-chain Hamiltonians, for 1 ≤ r ≤ N − 1, arise
from the spin-Macdonald operators as

Hr = evω H̃r , H̃r = 1

q− q−1

∂

∂p

∣∣∣∣
p=1

(
D̃r − r

N

[
N
r

]
D̃N

)
. (1.77)

In particular we recover Hl = H1 and Hr = HN−1.
ii.The eigenvalue of (1.77)on the joint eigenspaceHμ, labelled by the motifμ ∈ MN ,

is

Er (μ) =
M∑

m=1

εr (μm),

εr (μm) = 1

q− q−1

( r∑

s=1

(−1)s−1
[

N
r − s

]
qs (N−μm ) [s μm]

[s] − r

N

[
N
r

]
μm

)
.

(1.78)
In particular we retrieve the dispersions εl(μm) = ε1(μm) and εr(μm) = εN−1(μm).

For r = 1 this result is due to Uglov [Ugl95]. We prove Theorem 1.18 in Sect. 3.2.1.
We discuss the two parts of Theorem 1.18 in turn. The subtraction involving D̃N in

(1.77) is to get rid of the differential operators z j ∂z j coming from the linearisation of
the p̂ j in D̃r . Concretely this subtraction amounts to moving the p̂s in D̃r to the right as
in (1.71) and then discarding them. Let us illustrate this with a

10 The limit p → 1 (at fixed q) should not be confused with the (Jack) limit p = q2α → 1 at fixed α.
Physically, p = q2�/k = ei�/mc so p → 1 corresponds to α = �/k → 0. This can be interpreted either as
a classical limit (� → 0) or as letting k → ∞, cf. Sect. 1.1.4. (The semiclassical limit is the next order in
�.) Instead, p = q2α → 1 can be interpreted as the non-relativistic limit c → ∞, see Appendix A, or the
isotropic limit from the spin-chain perspective.
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Example of (1.77) for r = 1 (sketch) Note that evω A j (z) = [N ]/N . We compute

Discard the derivative and observe that

zN

zN

z j

z j

· · ·

· · ·

zi

zi

· · ·

· · ·

· · · =

zN

zN

z j

z j

· · ·

· · ·

zi

zi

· · ·

· · ·

· · · = (
q− q−1) V (zi , z j ) ×

zN

zN

z j

z j

· · ·

· · ·

zi

zi

· · ·

· · ·

· · · .

We thus get Hl from (1.20) at r = 1, where we remove the prefactor q− q−1 to ensure
that the limit q → 1 is nontrivial. A detailed proof will be given in Sect. 3.2.1. ��

Likewise, (1.74) yields HN−1 = Hr, as we will also show in Sect. 3.2.1. Explicit
expressions for the higher spin-chainHamiltonians are similarly computed. For instance,
(1.72) gives rise to

H̃2 = 1

q− q−1

N∑

j< j ′
A j j ′(z)

∂

∂p

∣∣∣∣
p=1

Ř j−1, j (z j/z j−1) · · · Ř12(z j/z1)

× Ř j ′−1, j ′(z j ′/z j ′−1) · · · Ř j+1, j+2(z j ′/z j+1)

× Ř j, j+1(z j ′/z j−1) · · · Ř23(z j ′/z1)

× Ř23(z1/p z j ′) · · · Ř j, j+1(z j−1/p z j ′)

× Ř j+1, j+2(z j+1/p z j ′) · · · Ř j ′−1, j ′(z j ′−1/p z j ′)

× Ř12(z1/p z j ) · · · Ř j−1, j (z j−1/p z j ).
(1.79)

Here the linearisation can be explicitly evaluated as for r = 1. Notice that HN = 0.
As for the second part of Theorem 1.18 we conclude with some

Remark. i. Note the symmetries εN−r (μm) = εr (μm)|q �→q−1 = εr (N − μm).
ii. The isotropic limit of these eigenvalues is conveniently computed from those of

H full
r := (Hr + HN−r )/2, which are determined from the dispersion

εfullr (μm) = 1

2

r∑

s=1

(−1)s−1
[

N
r − s

]
[s (N − μm)] [s μm]

[s]

→ 1

2

r∑

s=1

(−1)s−1
(

N

r − s

)
s (N − μm) μm =

(
N − 2

r − 1

)
εhs(μm), q → 1.

(1.80)
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Table 4. Summary of the abelian symmetries: the spin-Macdonald operators, their leading terms near p = 1,
and the derived symmetries of the spin chain. (Recall that in Sects. 2–3 we write q = p)

Spin-Ruijsenaars model
(Sect. 3.1)

Classical (p = 1) Semiclass.(
∂
∂p

∣∣
p=1

) q-deformed Haldane–Shastry
(Sect. 3.2)

D̃0 = D0 = 1 1 0 0
D̃1 (1.70), (3.20) [N ] (3.35) Hl = H1 (1.20), (3.41)
D̃2 (1.72) H2 (1.79).
.
.

.

.

.

D̃r (3.17), (3.15) (3.33) Hr (1.77), Sect. 3.2.1.
.
.

.

.

.

D̃N−1 = D̃N D̃−1 (1.74), (3.18) [N ] (3.43) Hr = HN−1 (1.29), (3.44)
D̃N = DN (1.73), (2.25) 1 (3.38) G (1.34), Sect. 3.2.1

As the very weak dependence on r in the result signals, the higher spin-chain Hamiltoni-
ans all becomedependent in the isotropic limit. It should be possible to extract the explicit
expressions for the first few higher Hamiltonians of the ordinary Haldane–Shastry chain
[Ino90,HHT+92,TH95] from the above by carefully taking the isotropic limit.

iii. Observe that the q-deformed spin-chain Hamiltonians are obtained by linearising
at p = 1 and give the ordinary Haldane–Shastry spin chain by setting q = 1. Instead,
the quantum-affine symmetries (1.50) are obtained from (1.76) for the spin-Ruijsenaars
model by putting p = 1 (Sect. 3.2.2) but, as usual, have to be linearised in at q = 1 to
get the (double) Yangian symmetry of the Haldane–Shastry model. Both specialisations
involve linearising once.

Table 4 gives an overview of the abelian symmetries.

1.3.5. Explicit spin-chain eigenvectors from freezing To find the eigenvectors of the
spin chain we exploit the algebraic structure available prior to evaluation.11 This is the
topic of Sect. 3.2.3, where we derive the pseudo highest-weight eigenvectors that we
presented in Sect. 1.2.3. In a nutshell we proceed as follows.

Asusualweworkper M-particle sector. TheCorollary ofProposition1.15 allowsus to
pass to theworld of polynomials by focussing on the simple component 〈〈1, . . . , M |�̃〉 =
�̃(z), symmetric in z1, . . . , zM and in zM+1, . . . , zN . Evaluation helps selecting a suit-
able subspace of polynomials: it does not just tell us to restrict to degree at most N − 1
in each variable, but allows us to consider polynomials that depend only on the first M
variables. In Sect. 3.2.3 we will show that this is how we get from Proposition 1.15 to
Theorem 1.6.

The simple componentmay thus be taken to be a symmetric polynomial in z1, . . . , zM .
Like in [BGHP93] we determine it by passing through the non-symmetric theory: the
spin-chain Hamiltonians can be diagonalised along with the Y -operators with ‘classical’
parameters

p◦ = 1, q◦ = q,

Indeed, before evaluation the spin-chain Hamiltonians (1.77) commute with Y ◦
i =

Yi |p=1 from (1.49). We may therefore look for simultaneous eigenfunctions of these
classical Y -operators. The restriction to polynomials in z1, . . . , zM suggests focussing

11 Note that we do not derive the explicit spin-chain eigenvectors by freezing those of the spin-Ruijsenaars
model. A reason is that the procedure of freezing is highly surjective; many vectors simplify significantly
or are killed in the process. We briefly comment on the exact eigenvectors of the spin-Ruijsenaars model in
Sect. 3.1.4.
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on Y ◦
m for 1 ≤ m ≤ M . These operators still depend on all N variables; although they

don’t preserve the subspace of polynomials in z1, . . . , zM in general, they do so on shell,
i.e. upon evaluation:

Theorem 1.19. The classical (p = 1) representation of the affine Hecke algebra on
C[z1, . . . , zN ] contains a finite-dimensional subspace (though not submodule) that is
on shell preserved by Y ◦

1 , . . . , Y ◦
M . On this subspace the latter are on shell conjugate to

(a multiple of) Y-operators that act on polynomials in only M variables and have their
parameters shifted to

p′ = q′ 2 = q−2.

This is the main technical result of Sect. 3.2.3. For Y ◦
1 a part of our derivation is closely

related to a result of [NS17] and proof of [Cha19], see our Lemma 3.15 and Proposi-
tion 3.17 plus ensuing discussion.

The parameters of the Y -operators are shifted further when we pass from the joint
eigenfunctions of the Y -operators (nonsymmetricMacdonald polynomials) back to sym-
metricMacdonald polynomials. At the end of the daywe obtain thewave functions (1.43)
from Theorem 1.7 involving Macdonald polynomials with parameters at the quantum
zonal spherical point

p� = q� = q2.

The precise steps are summarised at the end of Sect. 3.2.3. These results suggest
that it should be possible to relate the (polynomial) action of the spin chain on the
M-particle sector to that of the quantum zonal spherical case of Macdonald operators,
D�

r . We have not yet managed to find such a relation, which would also allow for a
direct way of computing the energy eigenvalues from Sect. 1.2.1. At the moment our
derivation is computational; it would be desirable to understand it from amore structural
(representation-theoretic, or perhaps geometric) point of view.

We finally prove that the condition �(μ) = M in Theorem 1.7 from Sect. 1.2.3 is a
pseudo highest-weight condition in the sense of Sect. 1.2.4, and compute the Drinfeld
polynomial (1.38) from Sect. 1.2.2 with the help of the trick described at the end of
Sect. 1.3.1.

1.4. Outline. The main text is organised as follows. In Sect. 2 we review the algebraic
preliminaries. The polynomial representation of the affine Hecke algebra and its relation
toMacdonald polynomials and the Ruijsenaars model are discussed in Sect. 2.1 in a way
that will readily extend to the spin-Ruijsenaars setting. The spin representation of the
(finite) Hecke algebra, the quantumgroupsU and Û, and their relation toHeisenberg-type
spin chains is the topic of Sect. 2.2.

The core of thiswork is Sect. 3,whereweprove the results described above. Following
[BGHP93,TH95,Ugl95] we derive the Hamiltonian of the q-deformedHaldane–Shastry
spin chain in pairwise form [Lam18] from the trigonometric spin-Ruijsenaars model
(Sect. 3.1) by freezing (Sect. 3.2). In Sect. 3.2.3 we construct the exact spin-chain
eigenvectors and prove their on-shell pseudo highest-weight property.

There are three appendices. Appendix C contains a glossary of our notation. In Ap-
pendix A we evaluate the istropic/nonrelativistic limit to facilitate comparison with the
literature on the Haldane–Shastry model. Finally, in Sect. B.1 we discuss the stochastic
version of the q-deformed Haldane–Shastry model in Sect. B.2 we derive the Chevalley
generators of the Drinfeld–Jimbo presentation of Û from the monodromy matrix of the
Faddeev–Reshetikhin–Takhtajan presentation.
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2. Algebraic Setup

In this section we recall various notions from the q-world to fix our notation and con-
ventions and pave the way for the algebraic framework that we will use in Sect. 3. One
might wish to skip this section; we will refer to the relevant parts when we need them
in Sect. 3.

From now onwe follow [Mac95,Mac98] andworkwith parameters t1/2 = q and q =
p. (The latter is denoted by ρ in [BGHP93] and p in [JKK+95a,JKK+95b,Ugl95].) We
will keep using the terminology ‘q-deformed’. One can either fix t1/4 ∈ C\{−1, 0, 1}—
with exponent 1/4 in view of e.g. (2.41)—or work over the ring C((t1/4)) of formal
Laurent polynomials in t1/4; to keep the notation light we use the former point of view.
We work with the symmetric definition of the q-analogues of integers, factorials and
binomial coefficients (Gaussian polynomials),

[n] := [n]t1/2 = tn/2 − t−n/2

t1/2 − t−1/2 , [n]! := [n] [n − 1] · · · [2],
[

n
k

]
:= [n]!

[k]! [n − k]! .
(2.1)

We’ll often factor out fractional powers of t but all normalisations remain as in Sect. 1.

2.1. Polynomial side. Consider the algebra C[z] := C[z1, . . . , zN ] ∼= C[z]⊗N of poly-
nomials in N variables. This space naturally is a module of the symmetric groupSN by
permuting variables, generated by simple transpositions s1, . . . , sN−1 acting as si zi =
zi+1 si , so w ∈ SN acts by (w F)(z) = F(zw) where (zw)i := zw i . As the notation
suggests the latter is a right action on z, yielding a left action on F ∈ C[z]. We use the
cycle notation for permutations.WewriteC[z]SN for the ring of symmetric polynomials
in N variables.

2.1.1. Hecke algebras The following q-deformation of (the group algebra C[SN ] of)
the symmetric group plays a central role in this work.

Definition. The (Iwahori–)Hecke algebra HN := HN
(
t1/2

)
of type AN−1 is the unital

associative algebra with generators T1, . . . , TN−1 obeying

braid relations: Ti Ti+1 Ti = Ti+1 Ti Ti+1, Ti Tj = Tj Ti if |i − j | > 1,

Hecke condition:
(
Ti − t1/2

)(
Ti + t−1/2) = 0.

(2.2)

The Hecke condition means that Ti is invertible, with t1/2 − t−1/2 measuring the
extent by which Ti fails to be an involution:

T −1
i = Ti − (t1/2 − t−1/2). (2.3)

The Hecke algebra has dimension dimHN = N ! for generic t1/2 ∈ C
×, with a basis

{Tw}w∈SN indexed by the symmetric group, Tw = Ti1 · · · Tir for any reduced decom-
position w = si1 · · · sir ; e.g. Te = 1, Tsi = Ti and (1.42).

The Hecke condition fixes the possible eigenvalues of any representation of Ti to
t1/2 and −t−1/2. Although (2.2) is invariant under replacing t1/2 � −t−1/2, this sym-
metry might be broken when picking a representation, cf. the dimensions in (2.41)
(Appendix B.1). We will work with representations where eigenvectors with eigenvalue
t1/2 (−t−1/2) become (anti)symmetric at t = 1, see (2.8) and (2.41).



Spin-Ruijsenaars, q-Deformed Haldane–Shastry and Macdonald Polynomials 97

The Hecke algebra has two well-known representations: one on polynomials, and
one on spins (Sect. 2.2.1). On C[z] the action of SN is deformed to (1.42), i.e. to the
Demazure–Lusztig operator

T pol
i := −t−1/2 (t zi − zi+1) ∂i + t1/2, (2.4)

where the (Newton) divided difference is defined as

∂i := (zi − zi+1)
−1 (1− si ). (2.5)

Since 1− si antisymmetrises, ∂i preserves polynomials despite its denominator, so (2.4)
does indeed act on C[z]. The divided differences obey the braid relations and ∂2i = 0,
yielding a representation of the nil-Hecke algebra. In terms of the rational functions

a(u) := t−1/2 t u − 1

u − 1
, ai j := a(zi/z j ),

b(u) := −t−1/2 t − 1

u − 1
, bi j := b(zi/z j ),

(2.6)

we have
T pol

i = ai,i+1 si + bi,i+1, T pol−1
i = ai,i+1 si − bi+1,i . (2.7)

For N = 2 the decomposition into t1/2- and −t−1/2-eigenspaces of (2.4) is

C[z1, z2] ∼= C[z1, z2 ]S2 ⊕ (t z1 − z2) C[z1, z2 ]S2 , (2.8)

In general the HN -irreps in C[z] are classified by Young diagrams, just as for SN . We
will be interested in the totally q-(anti)symmetric cases. Denote the q-Vandermonde
polynomial by

�t (z1, . . . , zN ) := t−N (N−1)/4
N∏

i< j

(t zi − z j ), (2.9)

and write �(w) for the length of w ∈ SN . The total q-(anti)symmetrisers are [Jim86]

�± := t∓N (N−1)/4

[N ]!
∑

w∈SN

(±t±1/2)�(w) Tw, (2.10)

The exponent in theprefactor is N (N−1)/2 = �(w0),withw0 := (1 · · · N ) · · · (123)(12)
the longest permutation inSN , reversing the order of the coordinates (zi ↔ zN−i+1 for
all i). In the polynomial case an efficient implementation uses the associated divided
difference ∂w0 = (∂1 · · · ∂N−1) · · · (∂1∂2) ∂1, see Theorem 3.1 in [DKL+95]:

�
pol
+ = 1

[N ]! ∂w0

(
�1/t (z) ·

)
, �

pol
+ C[z] = C[z]SN ,

�
pol
− = 1

[N ]! �t (z) ∂w0 , �
pol
− C[z] = �t (z) C[z]SN .

(2.11)

Note that HN -symmetric polynomials are SN -symmetric, yet HN -skew (totally anti-
symmetric) polynomials are not SN -skew.
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Definition. The (extended) affine Hecke algebra, or aha, ĤN := ĤN
(
t1/2

)
of type

ÂN−1 (or more precisely glN ) [Lus83,Lus89] is a unital associative algebra that extends
the (‘finite’) Hecke algebra HN by C[Y ] = C[Y1, . . . , YN ]—this notation means that
the additional (Jucys–Murphy) generators Yi commute—with cross relations

T −1
i Yi T −1

i = Yi+1, Ti Y j = Y j Ti if j �= i, i + 1. (2.12)

Observe that this ‘chiral’ setting may be extended to the ‘full’ aha by including the
inverses of Yi . These will play a role in Sect. 2.1.2 and 3.1.2.

The basic representation of ĤN is an extension, depending on a parameter q, of
the polynomial representation (2.4) of HN . To keep the notation light we’ll think of
q ∈ C

× as fixed. Since we will only work with the polynomial representation of the
aha we omit the superscript ‘pol’ for the following operators. Define the q-dilatation,
or (multiplicative) difference, operator q̂i on C[z] by

(q̂i F)(z) := F(z1, . . . , zi−1, q zi , zi+1, . . . , zN ). (2.13a)

It formally shifts the position of the i th coordinate, and can be expressed as

q̂i =
∑

n≥0

1

n! (q − 1)n zn
i ∂n

zi
= qzi ∂zi , (2.13b)

Here zi ∂zi counts the degree in zi , and is the i th (continuum) momentum operator−i ∂xi

(� ≡ 1) in multiplicative notation, cf. Sect. A.1. (The partial derivatives ∂zi , etc., should
not be confused with divided differences ∂i .)

There are twoways to express the affine generators, found independently in [Che92b,
BGHP93]. One features the twisted cyclic shift operator π acting on C[z] by

(π F)(z) := F(q zN , z1, . . . , zN−1), (2.14)

In this notation the q-deformed (difference) Dunkl operators are [Che92b, §A]

Yi := T pol
i · · · T pol

N−1 π T pol−1
1 · · · T pol−1

i−1 . (2.15)

In view of (2.12) the first affine generator Y1 = T pol
1 · · · T pol

N−1π determines Y2, · · · , YN .
In terms of the braid diagrams (1.42) supplemented with the graphical notation (1.69)

the expression (2.15) may be depicted as in the first diagram in

Yi =

1 i

q

N

=

1 i

q

N

.

This is compatiblewith the relations satisfied by theY s. The second diagram corresponds
to the following way of rewriting these difference operators, cf. (1.49).

For calculations it’s convenient (Sect. 2.1.2) to use a manifestly triangular form of Yi .
It is obtained from (2.15) by distributing the simple transpositions in π = sN−1 · · · s1 q̂1
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over the Hecke generators. Write si j for the transposition zi ↔ z j (so si,i+1 = si ) and
set

xi j :=

⎧
⎪⎪⎨

⎪⎪⎩

t−1/2 (t − 1) z j

zi − z j
(1− si j ) + t1/2 = ai j + bi j si j , i < j,

−t−1/2 (t − 1) zi

z j − zi
(1− s ji ) + t−1/2 = ai j − b ji s ji , i > j.

(2.16)

These are defined so that xi,i+1 = T pol
i si , cf. (2.7), and xi j x ji = 1. These operators

obey the Yang–Baxter equation xi j xik x jk = x jk xik xi j , while xi j and xkl commute if
{i, j} ∩ {k, l} = ∅. In terms of this notation [BGHP93, §4], cf. [Pas96],

Yi = xi,i+1 xi,i+2 · · · xi N q̂i xi1 · · · xi,i−2 xi,i−1. (2.17)

As an aside note that multiplication by z−1
i also obeys the relations (2.12), though

it does not preserve the space of polynomials. One can avoid the passage to Laurent
polynomials by considering operators Zi that act on C[z] by multiplying by zi , at the
price that the relations (2.12) are inverted to

Ti Zi Ti = Zi+1, Ti Z j = Z j Ti if j �= i, i + 1. (2.18)

The Zi can be combined with (2.15) into a polynomial representation of the double
affine Hecke algebra (daha) [Che92a], [Che05, §1.4.3]. This unital associative algebra
extends the aha by C[Z], where the (mutually commuting) affine generators Zi obey
the cross relations (2.18) along with [Che92a]

Yi Z1 · · · Z N = q Z1 · · · Z N Yi , Zi Y1 · · · YN = q−1 Y1 · · · YN Zi ,

Y−1
2 Z1 Y2 Z−1

1 = T 2
1 .

In particular q is a parameter of the daha itself, just as t already is for the Hecke algebra,
whereas for the aha the parameter q is associated to the representation (2.15). The daha
has a graphical representation in terms of ribbon diagrams [BWPV13].

2.1.2. Macdonald theory Bernstein [Lus83,Lus89] noticed that the centre of the aha
consists of symmetric polynomials in the Yi :

Z
(
ĤN

) = C[Y ]SN . (2.19)

This is also known as the spherical aha. As generators of (2.19) we choose elementary
symmetric polynomials in the Yi , which are packaged together in the generating function

�(u) :=
N∏

i=1

(1 + u Yi ) =
N∑

r=0

ur er (Y), er (Y) =
N∑

i1<···<ir

Yi1 · · · Yir . (2.20a)

(The notation �(u) should not be confused with the q-Vandermonde (2.9).) So this
operator commutes with all generators of the aha, and of course

[
�(u),�(v)

] = 0. (2.20b)

From the viewpoint of integrability the latter says that �(u) is a good candidate for a
generating function of commuting charges for an integrable model: see Sect. 2.1.3.
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Consider the subspace of (completely) symmetric polynomials,

C[z]SN =
N−1⋂

i=1

ker(si − 1) =
N−1⋂

i=1

ker
(
T pol

i − t1/2
)
, (2.21)

where the second equality uses (2.4), cf. (2.8). The description in terms of Hecke gen-
erators makes clear that the generating function (2.20) preserves (2.21).

Proposition 2.1 ([Che92a]). Write

Dr = er (Y) on C[z]SN , 0 ≤ r ≤ N . (2.22)

Then Dr are Macdonald operators [Mac95,Mac98,Mac03],

Dr =
∑

J : #J=r

AJ (z) q̂J , AJ (z) :=
∏

j∈J /#j̄

a j j̄ , q̂J :=
∏

j∈J

q̂ j , (2.23)

where the sum ranges over all r-element subsets J ⊆ {1, . . . , N }.
For example,

D1 :=
N∑

j=1

A j (z) q̂ j , A j (z) =
N∏

j̄ ( �= j)

a j j̄ = t−(N−1)/2
N∏

j̄ ( �= j)

t z j − zj̄

z j − zj̄

. (2.24)

In particular we get the multiplicative translation operator, cf. (2.13), which counts the
total degree:

DN = Y1 · · · YN = π N = q̂1 · · · q̂N . (2.25)

The following proof of these well-known facts will be useful in Sect. 3.1.2. After we
obtained this proof ourselves we came across it in Appendix B of [JKK+95b].
Proof of Proposition 2.1 ([JKK+95b]) We start with r = 1. Let us consider the contribu-
tion due to Yi written as in (2.17). On C[z]SN we can replace x ji = t−1/2 to the right of
q̂i . Since the individual Yi do not preserveC[z]SN the xi j to the left have to be commuted
through q̂i before we can replace xi j = t1/2. The result is a linear combination of terms
with q̂ j for j ≥ i . It follows that D1 can be written in the (‘normal’) form

∑
j A j (z) q̂ j

for some rational function A j (z) that we have to find.
Note that A j (z) receives contributions from the Yi with i ≤ j . One of the coefficients

is therefore easy to determine: for j = 1 we only need to consider

Y1 = x12 x13 · · · x1N q̂1
= (a12 + b12 s12) (a13 + b13 s13) · · · (a1N + b1N s1N ) q̂1
= a12 · · · a1N q̂1 + contributions to all other A j q̂ j ( j > 1).

(2.26)

Thus A1(z) = a12 · · · a1N . To find the other coefficients we exploiting the fact that�(u)

preserves (2.21). Since permutations act trivially on symmetric polynomials we have12

e1(Y) = s j−1 · · · s1︸ ︷︷ ︸
= s( j ···21)

e1(Y) s1 · · · s j−1︸ ︷︷ ︸
= s(12··· j)

on C[z]SN .

12 Here we could equally well conjugate by s1 j . However, s( j ···21) is the shortest permutation such that
1 �→ j , which will be the prudent choice in Sect. 3.1.2. (A similar remark applies to higher r .)
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But on the right-hand side the term with i = 1 is the only to contribute to A j (z). By
(2.26) we have s( j ···21) Y1 s(12··· j) = s( j ···21)

(
A1(z) q̂1 + . . . ) s(12··· j) = A j (z) q̂ j + . . .

for A j (z) as in (2.24) and with final ellipsis denoting terms with q̂i for i �= j . This
proves (2.24).

To see how to adapt the argument to the general case we turn to r = 2. Like before on
symmetric polynomials the result can be written in normal form

∑
j< j ′ A j j ′(z) q̂ j q̂ j ′ ,

where A j j ′(z) receives contributions from Yi Yi ′ for all i < i ′ with i ≥ j and i ′ ≥ j ′.
We compute the simple term like in (2.26):

Y1 Y2 = Y2 Y1 = x23 · · · x2N q̂2 x21 x12 x13 · · · x1N q̂1
= x23 · · · x2N q̂2 x13 · · · x1N q̂1
= x23 · · · x2N x13 · · · x1N q̂1 q̂2
= (a23 + . . . ) · · · (a2N + . . . ) (a13 + . . . ) · · · (a1N + . . . ) q̂1 q̂2
= A12(z) q̂1 q̂2 + contributions to all other A j j ′(z) q̂ j q̂ j ′ ,

where in the middle equality we commuted q̂2 through operators independent of z2. The
computation is similar for higher r :

Y1 · · · Yr = Yr · · · Y1 = xr,r+1 · · · xr N · · · x1,r+1 · · · x1N q̂1 · · · q̂r

= A1···r (z) q̂1 · · · q̂r + contrib. to all other A j1··· jr (z) q̂ j1 · · · q̂ jr ,
(2.27)

from which we read off A1···r (z) = ∏
j (≤r)

∏
j̄ (>r) a j j̄ . If r = N there are no xi j left

and we already get (2.25). The remaining A j1··· jr (z) can again readily be obtained by a
suitable conjugation. Indeed, in terms of the notation (1.40) we have

er (Y) = s{ j1,..., jr } er (Y) s−1
{ j1,..., jr } on C[z]SN .

Applying the same conjugation to (2.27) we conclude (2.23). ��
The expression (2.23) becomes more complicated as r increases to �N/2 , but starts

to simplify again beyond the ‘equator’, cf. (2.25). By (2.22) we have for all 0 ≤ r ≤ N

DN−r = DN D−r , D−r = er (Y
−1
1 , . . . , Y−1

N ) on C[z]SN . (2.28)

Note that the affine generators are indeed invertible: (2.15) and (2.17) imply

Y−1
i = T pol

i−1 · · · T pol
1 π−1 T pol−1

N−1 · · · T pol−1
i

= xi−1,i · · · x1i q̂−1
i xNi · · · xi+1,i .

Proposition 2.2. The operators defined in (2.28) are given by

D−r =
∑

I : #I=r

A−I (z) q̂−1
I , A−I (z) :=

∏

i∈I /#ı̄

aı̄ i . (2.29)

Note that the arguments in the definition of A−I (z) are the inverse of those in (2.24).
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Proof. We proceed as in the proof of Proposition 2.1. Consider r = 1. On C[z]SN the
result will have normal form

∑
i Ỹ−i where Ỹ−i = A−i (z) q̂−1

i . This time the rational
function A−i (z) receives contributions from all Y−1

j with j ≥ i . The simple term thus

is Ỹ−N , with sole contribution coming from

Y−1
N = xN−1,N · · · x1N q̂−1

N

= (aN−1,N + bN−1,N sN−1,N ) · · · (a1N + b1N s1N ) q̂−1
N

= a1N · · · aN−1,N q̂−1
N + contributions to all other Ỹ−i .

The remaining terms are found from this like before, now conjugating by si · · · sN−1.
Higher r are treated analogously. ��

Since the Yi commute they can be simultaneously diagonalised. Their joint eigen-
functions are labelled by (weak) compositions α with at most N parts. Let α+ be the
corresponding partition of length �(α+) ≤ N , viewed as a weak partition by append-
ing zeros if necessary. Write wα for the shortest permutation such that αi = α+

wα(i).

The monomial basis zα := zα1
1 · · · zαN

N of C[z] has a (partial) ordering induced by the
dominance (partial) order on compositions. Define

λ ≥ ν iff
n∑

i=1

λi ≥
n∑

i=1

νi for all 1 ≤ n ≤ N , (2.30a)

andwriteλ > ν ifλ ≥ ν butλ �= ν. This is refined to compositions as [BGHP93,Opd95]

α $ β iff either α+ > β+ or α+ = β+, α > β. (2.30b)

We will say that zβ is lower than zα if α $ β.

Definition. The nonsymmetric Macdonald polynomial Eα(z) := Eα(z; q, t) [Mac03]
is the unique polynomial such that

Eα(z) = zα + lower monomials,

Yi Eα(z) = t (N−2wα(i)+1)/2 qαi Eα(z), 1 ≤ i ≤ N .
(2.31)

Proof of uniqueness (sketch). To show that the Y s are triangular it suffices by (2.17) to
verify that the xi j are already triangular. The eigenvalue in (2.31) can then be read off
as the coefficient in Yi zα = coeff× zα + lower. The uniqueness follows since the joint
spectrum of the Yi is simple (multiplicity free). ��

By (q-)symmetrising one obtains (symmetric) Macdonald polynomials:

Pλ(z) =
∑

α :α+=λ

Eα(z) = cst× �
pol
+ Eα(z), (2.32)

where �
pol
+ is the projector from (2.11) and the constant is such that Pλ is monic. These

are joint eigenfunctions of the Macdonald operators (2.23),

Dr Pλ(z) = �r (λ) Pλ(z), �r (λ) :=
∑

I : #I=r

∏

i∈I

t (N−2 i+1)/2 qλi . (2.33)
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Macdonald polynomials are orthogonal, cf. e.g. [Mac98, §3.4], [Mac95, §VI.9]. Set

μq,t (z) :=
N∏

i �= j

(zi/z j ; q)∞
(t zi/z j ; q)∞

, (z; q)∞ :=
∞∏

k=0

(1− z qk), (2.34)

where the infinite products truncate if t = qk for k ∈ N. Define the scalar product
[Mac00]

(F, G) := constant term
(
μq,t F∗ G

)
, F∗(z) := F(z−1

1 , . . . , z−1
N ).

Then the Macdonald polynomials (2.32) can also be uniquely characterised as

Pλ(z) = mλ(z) + lower terms,

(Pλ, Pν) = 0 if λ �= ν,
(2.35)

where mλ is a monomial symmetric polynomial, see (1.66).

2.1.3. Ruijsenaars model From a physical point of view (2.21) describes N indistin-
guishable (q-)bosons moving on a circle with coordinates z j . Macdonald operators can
be understood as ‘effective’ (gauge-transformed) Hamiltonians. Namely, Koornwinder
observed [vD95] that conjugation by the square root of the measure (2.34) turns (2.23)
and (2.29) into Ruijsenaars’s hermitian operators [Rui87]. Indeed,

(t zi/z j ; q)∞
(zi/z j ; q)∞

q̂i
(zi/z j ; q)∞
(t zi/z j ; q)∞

= t zi − z j

zi − z j
q̂i

zi − z j

t zi − z j
,

whence

μq,t (z)−1/2 D±r μq,t (z)1/2 = DRui±r , DRui±r :=
∑

J : #J=r

A1/2
±J q̂±1

J A1/2
∓J . (2.36)

The physical Hamiltonian andmomentum operator [Rui87] are H rel := (DRui
1 +DRui−1 )/2

and P rel := (DRui
1 − DRui−1 )/2, cf. Sect. A.1. The model is relativistic in the sense that it

enjoys two-dimensional Poincaré invariance with ‘boost’ Brel := log(z1 · · · zN )/ log q,

[P rel, H rel] = 0, [H rel, Brel] = P rel, [P rel, Brel] = H rel.

The square root of (2.34) can be interpreted as the ground-state wave function, with
energy ε0 = [N ], as follows from (2.36) and the identity

∑

J :#J=r

AJ = Dr
∣∣
q=1 =

[
N
r

]
, (2.37)

which is a consequence of (2.33) as the eigenvalues become independent of λ at q = 1,
whence Dr diagonal. The other eigenfunctions now follow from Sect. 2.1.2.

In the q-fermionic case (2.21) is replaced by

�t (z) C[z]SN =
N−1⋂

i=1

ker
(
T pol

i + t−1/2) . (2.38)

Though we will not explicitly use it, the spin-generalisation of this space plays an
important role in the background in Sect. 3.2.3. We plan to return to this in the future.
The corresponding hierarchy is obtained from (2.22) using
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Lemma 2.3. (cf. (5.8.12) in [Mac03])Conjugation with the q-Vandermonde factor gives

er (Y)�t (z) = qr(N−1)/2 �t (z) er (Y ′) on C[z]SN , (2.39)

where Y ′
i denotes the affine generator (2.15) with parameters q ′ = q and t ′ = q t,

shifting k′ = k + 1 for t = qk and likewise with primes.

Proof. Since er (Y) preserves (2.38), �t (z)−1 er (Y)�t (z) does so for C[z]SN . We can
thus proceed like in Sect. 2.1.2. Write �t (z)−1 er (Y)�t (z) = ∑

I A′
I (z) q̂I in normal

form. By symmetry it suffices to find A′
1···r (z), with only contribution due to

�t (z)−1 er (Y)�t (z) = �t (z)−1 (A1···r (z) q̂1···r + · · · )�t (z)

= A1···r (z)
(

qr (r−1)/2
r∏

j=1

N∏

j̄ (>r)

q t z j − zj̄

t z j − zj̄

)
q̂1···r + · · · .

Hence A′
1···r (z) equals qr(N−1)/2 times A1···r (z) with t replaced by q t . ��

In the nonrelativistic limit q = tα (so α = k−1), t → 1, the Y -operators reduce
to Dunkl(–Cherednik) operators, Macdonald polynomials to Jack polynomials, and the
Ruijsenaarsmodel to the trigonometric Calogero–Sutherlandmodel. This is summarised
in Appendix A.

2.2. Spin side. The spin-chain Hilbert space is H := V ⊗N , where V = C |↑〉 ⊕ C |↓〉
is the spin-1/2 (defining, or vector) one-particle Hilbert space. A good introduction to
quantum sl2 and the quantum-loop algebra of sl2 can be found in [Jim92].

2.2.1. Hecke, Temperley–Lieb and quantum sl2 The second well-known representation
of the Hecke algebra HN (Sect. 2.1.1) q-deforms the natural action of SN on H:

T sp
i := 1⊗(i−1) ⊗ T sp ⊗ 1⊗(N−i−1), T sp :=

⎛

⎜⎜⎝

t1/2 0 0 0
0 t1/2 − t−1/2 1 0
0 1 0 0
0 0 0 t1/2

⎞

⎟⎟⎠ . (2.40)

Here the matrix is given with respect to the standard basis |↑↑〉, |↑↓〉, |↓↑〉, |↓↓〉 of
V ⊗2.

The spin analogue of the eigenspace decomposition (2.8) is (see also Sect. B.1)

V ⊗ V ∼= Sym2
t (V ) ⊕ �2

t (V ), (2.41a)

where we write

Sym2
t (V ) := C |↑↑〉 ⊕ C

(
t1/4 |↑↓〉 + t−1/4 |↓↑〉) ⊕ C |↓↓〉,

�2
t (V ) := C

(
t−1/4 |↑↓〉 − t1/4 |↓↑〉) (2.41b)

for the (q-symmetric) t1/2- and (q-antisymmetric) −t−1/2-eigenspaces, respectively.
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A close cousin is the Temperley–Lieb algebra TN (β) of type AN−1, with ‘loop
fugacity’ β ∈ C

×. This is the unital associative algebra with generators e1, . . . , eN−1
(not to be confused with elementary symmetric polynomials) and defining relations

ei ei±1 ei = ei , ei e j = e j ei if |i − j | > 1,

e2i = β ei .
(2.42)

It can be obtained as a quotient of HN if [2] = t1/2 + t−1/2 �= 0. Indeed, consider the
shifted generator e′i := t1/2 − Ti . By the Hecke condition e′i is, up to normalisation, the
projector onto the−t−1/2-eigenspace of Ti . In fact, (2.2) implies that the e′i obey (2.42)
with β = [2], except that the first relation in (2.42) is replaced by the weaker condition
e′i e′i+1 e′i − e′i = e′i+1 e′i e′i+1 − e′i+1. Requiring both sides to vanish one arrives at (2.42).
The relevance for us is that all of these relations are satisfied by

espi := t1/2 − T sp
i

= 1⊗(i−1) ⊗ esp ⊗ 1⊗(N−i−1),
esp =

⎛

⎜⎝

0 0 0 0
0 t−1/2 −1 0
0 −1 t1/2 0
0 0 0 0

⎞

⎟⎠ . (2.43)

That is, the spin representation (2.40) of HN on H factors through TN
([2]). Up to

normalisation esp is the projector onto �2
t (V ) in (2.41).

Next,

Definition. The quantum group U := Ut1/2(sl2) is the unital associative algebra gener-
ated by E, F, K , K−1 with relations K K−1 = K−1 K = 1 and

K E K−1 = t E,

K F K−1 = t−1 F,
[E, F] = K − K−1

t1/2 − t−1/2 . (2.44)

It comes equipped with a coproduct � : U −→ U⊗ U,

�E := E ⊗ 1 + K ⊗ E,

�F := F ⊗ K−1 + 1⊗ F,
�K±1 := K±1 ⊗ K±1, (2.45)

as well as a counit and antipode. It is the q-deformation of (1.8).

For generic t the representation theory parallels that of sl2 (except that, due to the
Hopf-algebra automorphism K �→ −K , E �→ −E , there are two non-isomorphic ir-
reps for each dimension). As in Sect. 1.1 σ x , σ y, σ z are the Pauli matrices on V . The
vector (�) representation of U is given by σ± = σ x ± i σ y for E, F and k := tσ

z/2 =
diag(t1/2, t−1/2) for K . Repeated application of the coproduct yields a (reducible) rep-
resentation on H,

E sp
1 =

N∑

i=1

k1 · · · ki−1 σ +
i ,

F sp
1 =

N∑

i=1

σ−
i k−1

i+1 · · · k−1
N ,

K sp
1 = k1 · · · kN = t Sz

. (2.46)
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The reason for the subscript ‘1’ on the left-hand sides, not to be confused with the
‘tensor-leg’ subscripts on the right-hand sides, will become clear soon (Sect. 2.2.2). Of
course (1.12) is also a weight decomposition for U, withHM = ker(K sp

1 − t (N−2M)/2).
Jimbo noted that the R-matrix for U is essentially a Hecke generator: Ř = P R =

t−1/2 T sp. Since Ř commutes with the case N = 2 of (2.46) it follows that the T sp
i

commute with (2.46) for general N , whence so do the Temperley–Lieb generators espi :
this is the q-analogue of Schur–Weyl duality [Jim86], see also [CP94]. A concrete
example is (2.41), where the T sp-eigenspaces are U-irreps under the case N = 2 of
(2.46).

2.2.2. Quantum-loop algebra of sl2 We will use two descriptions. The first is

Definition (Drinfeld–Jimbo presentation). The quantum-loop algebra Û13 is the unital
associative algebra generated by two copies of the Chevalley generators of U, which we
denote by Eb, Fb, Kb (b = 0, 1), each obeying (2.44) with cross relations K0 K1 = 1
(i.e. the ‘level’ c = 0 condition), [Eb, Fb′ ] = 0 if b �= b′, while

E3
b Eb′ − [3] E2

b Eb′ Eb + [3] Eb Eb′ E2
b − Eb′ E3

b = 0

F3
b Fb′ − [3] F2

b Fb′ Fb + [3] Fb Fb′ F2
b − Fb′ F3

b = 0
(b �= b′).

In these final (q-Serre) relations [3] = t + 1 + t−1.

By U⊂Û we will mean the copy of U generated by E1, F1, K1. The representa-
tion (2.46) of U on H can be ‘affinised’ [Jim86] to get a module of Û. (We use the
homogeneous, rather than principal, gradation [JM95].) Namely, given N parameters zi ,
supplement (2.46) by14

E inh
0 =

N∑

i=1

zi k−1
1 · · · k−1

i−1 σ−
i ,

F inh
0 =

N∑

i=1

z−1
i σ +

i ki+1 · · · kN ,

K inh
0 = k−1

1 · · · k−1
N = t−Sz

. (2.47)

Then the relations of Û hold. The superscript is for ‘inhomogeneous’, see Sect. 2.2.3.

Definition. In the affine case one can make different choices of Borel subalgebra. Note
that even for N = 1 the usual highest-weight condition E inh

0 |�〉 = E sp
1 |�〉 = 0 implies

|�〉 = 0, cf. e.g. [Jim92, §2.3]. We will take a pseudo highest-weight vector for Û to
mean a vector that is an eigenvector of both Kb and annihilated by E0 and F1 (rather

13 The quantum-loop algebra is denoted by Ut1/2 (L gl2) = U ′
t1/2 (ĝl2)c=0 in [CP94] and [JM95] respec-

tively. We don’t require the quantum determinant to be unity. The prime indicates the absence of the degree
operator. As we only deal with finite-dimensional modules we focus on ‘level’ c = 0, which is why we get a
quantum loop algebra rather than quantum-affine algebra.
14 This is compatible with the coproduct (2.45), cf. [JM95], and matches [Jim92, §2.3]. Notice that [CP96,

§2.1] uses the opposite coproduct; thus, the expression from [CP96, §4.2] is the opposite (left-right reverse)
of (2.47). Besides a difference in normalisation the monodromy matrix of [BGHP93] is built from R̄(u) :=
Ř(u) P as L̄a(u) = R̄a1(u) · · · R̄aN (u), cf. (2.54); this yields (2.47) with zi inverted if one proceeds as in
Sect. B.2. The monodromy matrix of [JKK+95b, §2.3–2.4] differs in several aspects from (2.54); the resulting
Chevalley generators [JKK+95a, §4.1], [JKK+95b, §2.4] are again the opposite of (2.46)–(2.47), matching
[CP96].
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than both Eb). This property is called ‘pseudo highest weight’ in [CP94] and ‘l-highest
weight’ in [Nak01]. It is the usual notion for quantum-integrable spin chains: both E inh

0
and F sp

1 flip one spin up, mapping HM to HM−1, while F inh
0 and E sp

1 act from HM to
HM+1.

For N = 1 (2.47) is the evaluation representation of Û on V (z1) = V ⊗C[z±1
1 ]. For

N = 2 we get a tensor product of two such modules; for generic values of the parame-
ters it is irreducible, and V (z1)⊗ V (z2) and V (z2)⊗ V (z1) are isomorphic as Û-irreps.
Thus there exists an intertwiner Ř(z1, z2) : V (z1) ⊗ V (z2) −→ V (z2) ⊗ V (z1) that is
generically invertible. Following Jimbo [Jim85,Jim86] one can write Ř as a linear com-
bination of U-invariants and determine the coefficients (up to a common normalisation)
from the intertwining property. The result only depends on the ratio u = z1/z2: this is
the ‘difference property’ in multiplicative notation. This gives Jimbo’s quantum-affine
sl2 R-matrix (in the ‘homogeneous grading’, cf. §5.4 in [JM95]) from (1.23):

Ř(u) = t1/2
u T sp − T sp−1

t u − 1
= f (u) T sp + g(u) = 1− f (u) esp, (2.48)

where as in Sect. 1 we switch from the rational functions a, b defined in (2.6) to

f (u) = t1/2
u − 1

t u − 1
= 1

a(u)
, g(u) = t − 1

t u − 1
= −b(u)

a(u)
, (2.49)

obeying t1/2 f (u) + g(u) = t−1/2 f (u) + u g(u) = 1. The usual symmetry property of
the R-matrix (from the ‘principal gradation’) is broken, P Ř(u) P �= Ř(u) for t �= 1.
Note that the final expression in (2.48), together with (2.43), implies the relation (1.26).
Since det Ř(u) = (t − u)/(t u − 1) the R-matrix is invertible unless u = t (u = t−1),
where it becomes proportional to the q-(anti)symmetriser.

The Hecke-algebra relations (2.2) guarantee [Jon90] that on V ⊗V ⊗V the R-matrix
obeys the Yang–Baxter equation in the braid-like form:

Ř12(u/v) Ř23(u) Ř12(v) = Ř23(v) Ř12(u) Ř23(u/v), (2.50a)

where Ř12(u) = Ř(u) ⊗ 1 and Ř23(u) = 1⊗ Ř(u). The normalisation in (2.48) is
chosen such that the (braiding) unitarity and ‘initial’ conditions read

Ř(u) Ř(1/u) = 1⊗1, Ř(1) = 1⊗1 . (2.50b)

Together, these properties imply that we can depict the R-matrix as in (1.25), where
by unitarity we do not have to distinguish between under- and overcrossings. Setting
w = u v we may then translate (2.50) to

v

v

v

u

u

u

w

w

w

=

v

v

v

u

u

u

w

w

w

,

v

v

v

w

w

w

=

v

v

w

w

,

u

u

u

u

=
u

u

u

u

(2.51)

The R-matrix is key for the second characterisation.
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Definition (Faddeev–Reshetikhin–Takhtajan presentation). Consider an auxiliary space
Va ∼= V with spectral (affine) parameter u and a monodromy matrix

La(u) =
(

A(u) B(u)

C(u) D(u)

)

a
(2.51)

which should be understood as a matrix on Va with noncommutative entries. Introduce
another copy Vb ∼= V of the auxiliary space. Then Û is the unital associative algebra
generated by the four operators in (2.51), or more precisely by the operator-valued
coefficients (‘modes’) in expansions as a formal power series in u±1, with defining
relations expressed on Va ⊗ Vb as

Rab(u/v) La(u) Lb(v) = Lb(v) La(u) Rab(u/v), R(u) := P Ř(u). (2.52)

The coproduct is La(u) �→ La(u) ⊗ La(u) = La1(u) La2(u), and the antipode the
inverse of (2.51) as a 2× 2 matrix with noncommutative entries.

The centre of Û is generated by the quantum determinant of the monodromy matrix,
which is obtained by fusion in the auxiliary space. Indeed, remove the denominators
of R in (2.52) and take u = t−1 v to get (t1/2 − t−1/2) espab, i.e. essentially the q-
antisymmetriser on Va ⊗ Vb, times

qdeta La(u) = A(t u) D(u) − t1/2 B(t u) C(u) = D(t u) A(u) − t−1/2 C(t u) B(u)

= A(u) D(t u) − t1/2 C(u) B(t u) = D(u) A(t u) − t−1/2 B(u) C(t u).

(2.53)
Representations of Û can be directly constructed from theR-matrix,which itself obeys

(2.52) for N = 1. Repeated application of the (opposite) coproduct yields a (‘global’)
representation on H:15

L inh
a (u; z) := RaN (u/zN ) · · · Ra2(u/z2) Ra1(u/z1)

= P(a12···N ) ŘN−1,N (u/zN ) · · · Ř12(u/z2) Řa1(u/z1).
(2.54)

The Drinfeld–Jimbo presentation by (2.46)–(2.47) is recovered by expanding in u±1, as
we show Sect. B.2. In particular a pseudo highest-weight vector now is as in (1.53). The
quantum determinant is multiplicative, yielding a multiple of the identity

qdeta L inh
a (u; z) =

N∏

i=1

qdeta Rai (u/zi ) = t N/2
N∏

i=1

u − zi

t u − zi
. (2.55)

2.2.3. Integrable spin chains The RLL-relations (2.52) yield a one-parameter family of
commuting operators via the transfer matrix

τ(u) := tra La(u) = A(u) + D(u),
[
τ(u), τ (v)

] = 0.

This is the generating function for an abelian subalgebra of Û, sometimes called theBethe
subalgebra,whose elements are commuting charges of quantum-integrablemodels. Con-
sider the representation (2.54) in the ‘homogeneous limit’ τxxz(u) := ev1 τ inh(u; z),
15 Note that the order in R(u) = P Ř(u), see (2.52), and the order of the R-matrices in (2.54) are reversed

compared to [BGHP93,JKK+95b,Ugl95]; cf. Footnote 14. The normalisation of (2.54) differs from [BGHP93,
Ugl95] to avoid a pole at u = 1, cf. (2.57).
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where ev1 : z j �−→ 1 for all j . This is the transfer matrix of the six-vertex model. It
generates the symmetries of the (spin-1/2) Heisenberg xxz spin chain. Indeed,

τxxz(1) = tra P(a12···N ) = P(12···N ) (2.56)

is the (right) translation operator, while the logarithmic derivative

Hxxz = −(t1/2 − t−1/2)
∂

∂u

∣∣∣∣
u=1

log τxxz(u)

= −
∑

i∈ZN

hxxz
i,i+1 =

N−1∑

i=1

espi + P−1
(1...N ) esp1 P(1...N ),

hxxz
i,i+1 := [2]

2

σ z
i σ z

i+1 − 1

2
+ σ +

i σ−
i+1 + σ−

i σ +
i+1,

(2.57)

is the spin-chain Hamiltonian with anisotropy parameter � = [2]/2 = (t1/2 + t−1/2)/2.
Here we used [TL71]

−(t1/2 − t−1/2) Ř′
i,i+1(1) = espi = −hxxz

i,i+1 − t1/2 − t−1/2

2

σ z
i − σ z

i+1

2
. (2.58)

The periodic boundary conditions, visible in the term P−1
(1...N ) esp1 P(1...N ) in (2.57), break

theU-invariance of themonodromymatrix.We stress that, although Û plays an important
role in its exact solution, this Hamiltonian does not have quantum-affine symmetries:
this is the whole point of the algebraic Bethe ansatz, where Bxxz(u) is used to construct
the model’s (highest-weight) eigenvectors; its action changes the energy.

There are also Heisenberg-type spin chains for which the U-symmetry is preserved.
One of these is the open Temperley–Lieb spin chain [PS90], with Hamiltonian

N−1∑

i=1

espi = −
N−1∑

i=1

hxxz
i,i+1 − t1/2 − t−1/2

2

σ z
1 − σ z

N

2
.

The final term can be interpreted as carefully adjusted boundary magnetic fields. This
Hamiltonian can be obtained from a double-row transfer matrix [Skl88,KS91].

In general (2.54) yields an ‘inhomogeneous’ version of the Heisenberg spin chain,
with inhomogeneities z j . These inhomogeneities are natural from the six-vertex model’s
perspective. Although they are often considered a mere computational tool for the spin
chain one can view the inhomogeneous Heisenberg spin chain as a bona fide spin
chain in its own right. It has N commuting ‘inhomogeneous translation operators’
G inh

i = τ inh(zi ; z), including G inh
1 = P(1···N ) G̃ where the latter is as in (1.34), that

obey G inh
1 · · · G inh

N = 1. Interestingly, the Hamiltonian at u = z1 features long-range
interactions, with N − 1 terms that are very similar to the (unevaluated) summands
of (1.29) along with a truly cyclic term. We will return to this connection in the future.

3. Derivations

With these preliminaries in place we are all set to combine the polynomial and spin sides
to get the setting in which the q-deformed Haldane–Shastry model is best understood.
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3.1. Spin-Ruijsenaars model. Consider the tensor product—over C but see (3.3) and
(3.9)—of H = V ⊗N and the ring of polynomials in the coordinates,

H[z] := H[z1, . . . , zN ] = H⊗ C[z1, . . . , zN ] ∼= V [z]⊗N . (3.1)

The physical picture is that of N particles with spin 1/2 and coordinates z j .
More mathematically the picture seems to be that the parameter z of the evaluation

module V (z) = V ⊗ C[z, z−1] is reinterpreted as a coordinate (cf. the definition of
loop algebras). We only consider the positive modes V [z]⊂V (z), which will eventually
be justified by the evaluation (1.2) of the z j for the spin chain; it is also in accordance
with Sect. 2.1.2. We should also point out that in this sectionH may be replaced by the
Hecke algebra itself, viewed as a HN -module in the obvious way. The present setting is
recovered when picking the spin representation, the gln-case arises if instead V = C

n ,
and the (spinless) setting from Sects. 2.1.2–2.1.3 corresponds to V = C the trivial
representation Ti �→ t1/2. We will elaborate on this elsewhere.

In [BGHP93] it was shown that, analogously to the spinless case from Sect. 2.1.2
the big vector space (3.1) has a ‘physical’ subspace on which the action of the centre
of the affine Hecke algebra gives rise to a spin-version of the Ruijsenaars model. (The
connection with the latter was made more explicit in [Kon96].) Importantly, as we will
see, this model has quantum-affine symmetry.

3.1.1. Physical (q-bosonic) space We want to think of elements of (3.1) as indistin-
guishable particles with spin 1/2 and coordinates z j . Ordinary bosons (fermions) are
defined by their (anti)symmetry under the exchange operators, si Pi,i+1 = ±1. In the
form Pi,i+1 = ±si this is a relation between the spin and polynomial representation of
the symmetric group SN acting on either factor of (3.1). This is the relevant setting
for the spin-Calogero–Sutherland model and isotropic Haldane–Shastry, but breaks the
structure from Sect. 2. The appropriate generalisation to the q-case can be described in
terms of HN and in terms of SN . We begin with the former characterisation.

Morally the q-bosonic Fock space or physical space, which we will denote by H̃, is
the subspace of (3.1) on which the spin and polynomial representations of the Hecke
algebra coincide [BGHP93]. This couples the two Hecke-representations from Sect. 2.
To motivate the precise definition consider a vector |�̃〉 = |�̃(z)〉 ∈ H[z] on which
T pol

i |�̃〉 = T sp
i |�̃〉 for all i . (We retain the notation T sp

i , T pol
i for the actions from

Sect. 2.1.1 and Sect. 2.2.1 extended to H[z] by acting by the identity on the other
factor.) To ensure that this extends from the generators to all of HN we more precisely
have to ask for the two actions to anticoincide. Indeed, in

T pol
i T pol

j |�̃〉 = T pol
i T sp

j |�̃〉 = T sp
j T pol

i |�̃〉 = T sp
j T sp

i |�̃〉 (3.2)

the order of the generators is reversed, so we should treat one representation as a left
and the other as a right action. (See Sect. B.1 for another incarnation of this.) In more
mathematical language:

Definition ([BGHP93]). The physical space is a tensor product over the Hecke algebra

H̃ := H ⊗
HN

C[z] = H[z]/N N :=
N−1∑

i=1

im
(
T sp

i − T pol
i

)⊂H[z]

∼= B :=
N−1⋂

i=1

ker
(
T sp

i − T pol
i

) = H[z]HN .

(3.3)
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Table 5. The eigenvalues of T
sp
i ∓ T

pol±1
i on the four direct summands of V⊗2 ⊗ C[zi , zi+1] ∼= V [z]⊗2

decomposed according to (2.8) and (2.41)

Subspace T
sp
i − T

pol
i T

sp
i + T

pol−1
i = T

sp−1
i + T

pol
i

Sym2
t (V ) ⊗ C[zi , zi+1]S2 0 [2]

Sym2
t (V ) ⊗ (t zi − zi+1) C[zi , zi+1]S2 [2] 0

�2
t (V ) ⊗ C[zi , zi+1]S2 −[2] 0

�2
t (V ) ⊗ (t zi − zi+1) C[zi , zi+1]S2 0 −[2]

The first line is the quotient of (3.1) by the (vector, not direct) sum of the images
im(T sp

i − T pol
i ). In the second line we instead view H̃ as a subspace of (3.1).

These two descriptions are isomorphic (as vector spaces; neither is an HN -module).
Before we explain the final equality in (3.3), describing B as the HN -invariants inH[z],
let us demonstrate that H̃ ∼= B.
Proof of isomorphism in (3.3). First consider the case N = 2. From Table 5 we read off
that

im(T sp
1 − T pol

1 ) = Sym2
t (V ) ⊗ (t z1 − z2) C[z1, z2]S2 ⊕ �2

t (V ) ⊗ C[z1, z2]S2 ,

and that killing this subspace yields the q-bosonic space

H̃(N=2) = V ⊗2 ⊗ C[z1, z2]
/
im(T sp

1 − T pol
1 )

∼= ker(T sp
1 − T pol

1 )

= Sym2
t (V ) ⊗ C[z1, z2]S2 ⊕ �2

t (V ) ⊗ (t z1 − z2) C[z1, z2]S2 .

For general N consider a vector in the complement of B in H[z]. This means there
is some 1 ≤ i ≤ N − 1 for which that vector does not lie in the kernel of T sp

i − T pol
i .

By the preceding argument it therefore lies in the image of T sp
i − T pol

i , i.e. it belongs to
N . Hence H[z] = B ⊕N , which implies the isomorphism. ��

The final equality in (3.3) gives a more intrinsic characterisation of B⊂H[z]. Rather
than coupling two commuting Hecke actions define [GRV94] (cf. [TU98] and the refer-
ences therein)

T tot
i := si (T sp

i − T pol
i ) + t1/2. (3.5)

This generates a diagonal action of HN on H[z] that q-deforms si Pi,i+1 in a nontrivial
way. (The obvious guess T sp±1

i T pol∓1
i fails the Hecke condition.) It clearly commutes

with the action of U on the spin factor. The presence of si makes direct verification
of the Hecke-algebra relations (2.2) rather tedious. For the Hecke condition one can
use si T pol

i si = [2] si − T pol−1
i . The explicit decomposition of V ⊗2 ⊗ C[zi , zi+1] ∼=

V [z]⊗2 into T tot
i -eigenspaces is given in Table 6. Comparing this with Table 5 shows

that ker(T sp
i − T pol

i ) = ker(T tot
i − t1/2). Since T tot

i = t1/2 is as close as it gets to
invariance under the Hecke algebra given our normalisation of the Hecke generators,
with the Hecke condition as in (2.2), we identify

B =
N−1⋂

i=1

ker(T sp
i − T pol

i ) =
N−1⋂

i=1

ker(T tot
i − t1/2) =: H[z]HN . (3.6)
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Table 6. Eigenvalues of (3.5) on four direct summands of V⊗2 ⊗ C[zi , zi+1] ∼= V [z]⊗2

Subspace T tot
i

Sym2
t (V ) ⊗ C[zi , zi+1]S2 t1/2

Sym2
t (V ) ⊗ (t zi+1 − zi ) C[zi , zi+1]S2 −t−1/2

�2
t (V ) ⊗ C[zi , zi+1]S2 −t−1/2

�2
t (V ) ⊗ (t zi − zi+1) C[zi , zi+1]S2 t1/2

The first, third and fourth rows are immediate from Table 5, while the second row requires a computation. This
time both decompositions C[zi , zi+1] ∼= C[zi , zi+1]S2 ⊕ (t zi − zi+1) C[zi , zi+1]S2 ∼= C[zi , zi+1]S2 ⊕
(t zi+1 − zi ) C[zi , zi+1]S2 appear

This allows us to describe B as the totally q-symmetric subspace, obtained by projecting
with the total q-symmetriser �tot

+ , cf. (2.10).
For generic t ∈ C

× we have HN ∼= C[SN ] (as algebras), where the latter is the
group algebra of the symmetric group. Accordingly the physical space also admits a
characterisation in terms of a (t-dependent) representation of SN . Using the functions
f, g from (2.49) and the ‘Baxterisation’ formula (2.48) we can recast

T sp
i − T pol

i = T sp
i − (ai,i+1 si + bi,i+1)

= ai,i+1
(

fi,i+1 T sp
i + gi,i+1 − si

)

= ai,i+1
(
Ři,i+1(zi/zi+1) − si

)

= ai,i+1 si (stoti − 1),

(3.7)

where in the last line we defined (cf. §10.2 in [Gau83]), Prop. 6.2 in [FR92])

stoti := si Ři,i+1(zi/zi+1). (3.8)

Thanks to (2.50) the latter obeys the braid relations and is an involution, (stoti )2 = 1,
yielding a representation of SN on H[z] that depends on t and deforms si Pi,i+1 too.
We’ll write stotw for the operator representing w ∈ SN in this way. This gives

Proposition 3.1. The physical space may also be characterised as

H̃ = H ⊗
SN

C[z] = H[z]/N N =
N−1∑

i=1

im
(
stoti − 1

)

∼= B = H[z]SN =
N−1⋂

i=1

ker(stoti − 1).

(3.9)

Here stoti = 1 is the ‘local condition’ from the quantumKnizhnik–Zamolodchikov (qKZ)
system (reduced qKZ equation) [Smi86,FR92,Che92b].

Next we turn to the elements of H̃. Physical vectors have a rather nice form with
respect to the coordinate basis. Since the weight decomposition (1.12) is preserved by
the T sp

i the physical space decomposes into M-particle sectors

H̃ =
N⊕

M=0

H̃M , H̃M := HM ⊗
HN

C[z] ∼= B ∩ (HM ⊗ C[z]). (3.10)

Vectors in this M-particle sector have the explicit form given in Proposition 1.15 from
Sect. 1.3.1:
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Proposition 3.2 (cf. [RSZ07]). A vector in HM ⊗ C[z] is physical, i.e. lies in H̃M⊂H̃,
iff with respect to the coordinate basis (1.13) it has the form16

|�̃(z)〉 :=
N∑

i1<···<iM

T pol
{i1,...,iM }�̃(z) |i1, . . . , iM 〉〉

=
∑

w∈SN /(SM×SN−M )

T pol
w �̃(z) |w 1, . . . , w M〉〉,

�̃(z) ∈ C[z]SM×SN−M ,

(3.11)
where in the equality we recognise the (Grassmannian) permutations w = {i1, . . . , iM }
as representatives for the coset SN /(SM × SN−M ). In other words, each M-particle
sector in (3.10) has a ‘polynomial avatar’ consisting of polynomials with definite sym-
metry: we have a bijection

H̃M
∼−−−→ C[z]M := C[z]SM×SN−M ,

∈ ∈

|�̃(z)〉 �−−−→ �̃(z) = 〈〈1, . . . , M |�̃(z)〉.
(3.12)

We will call �̃(z) the simple component of |�̃(z)〉.
Proof. A straightforward, if tedious, check shows that the generators of the two Hecke
actions coincide on any vector of the form (3.11), so the latter lies in B ∼= H̃. It remains
to show that any |�̃〉 ∈ H̃M is of this form.

By (2.40) we have 〈↓↑| T sp = 〈↑↓| whence 〈〈i − 1| T sp
i−1 = 〈〈i |. Iterating this yields

〈〈i | = 〈〈1| T sp
1 · · · T sp

i−1. The physical condition (3.3) thus interrelates the components of
vectors in H̃ with respect to the coordinate basis. Let us show this in detail for M = 1:

〈〈i |�̃〉 = 〈〈1| T sp
1 · · · T sp

i−2 T sp
i−1 |�̃〉

= 〈〈1| T sp
1 · · · T sp

i−2 T pol
i−1 |�̃〉

= T pol
i−1 〈〈1| T sp

1 · · · T sp
i−2 |�̃〉

= · · ·
= T pol

i−1 T pol
i−2 · · · T pol

1 〈〈1|�̃〉
= T pol

(i,...,1) �̃(z).

For general M we just repeat this:

〈〈i1, i2, . . . , iM |�̃〉 = T pol
(i1,...,1)

〈〈1, i2, . . . , iM |�̃〉
= · · ·
= T pol

(i1,...,1)
· · · T pol

(iM ,...,M)〈〈1, . . . , M |�̃〉
= T pol

{i1,...,iM } �̃(z) .

16 Note that this ‘Hecke form’ of physical vectors is closely related to the characterisation of the physical
space in terms of the Hecke algebra HN . It has an analogue corresponding to the characterisation of H̃ via
SN , which gives an ‘R-matrix form’ for physical vectors. Surprisingly, we find that we then have to replace
�t �1/t � �2

1 in (1.44). We will get back to this in the future.
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Moreover, the simple component inherits the symmetry of 〈〈1, . . . , M |,

(T pol
i − t1/2) 〈〈1, . . . , M |�̃〉 = 〈〈1, . . . , M | (T sp

i − t1/2) |�̃〉 = 0, i �= M.

��
This proves Proposition 1.15.

An operator on the big vector spaceH[z] descends to the physical space if it preserves
N in (3.3), or equivalently if it preserves H̃ ∼= B⊂H[z]. That is,
Definition. An operator Õ on H[z] is called physical if for any �̃ ∈ H̃ we have
T sp

i Õ �̃ = T pol
i Õ �̃ for all 1 ≤ i ≤ N − 1.

Since a physical vector is completely determined by a single component with definite
symmetry we may forget about the spin part and pass to the world of polynomials. In
particular any physical operator is completely determined by its action on the simple
component, inducing an action on polynomials. That is, any linear operator Õsp on H̃
is equivalent to some Õpol acting on polynomials such that

Õsp |�̃(z)〉 = |Õpol �̃(z)〉.
More specifically,

Definition. Assume that Õsp H̃M⊂H̃M ′ for some M ′ (typically depending on M); this
holds for all physical operators that we will consider with M ′ ∈ {M −1, M, M +1}. Tak-
ing the simple component of the preceding equality leads us to define Õpol

M,M ′ : C[z]M −→
C[z]M ′ by

Õpol
M,M ′ �̃(z) := 〈〈1, . . . , M ′| Õsp |�̃(z)〉

=
N∑

i1<···<iM

〈〈1, . . . , M ′| Õsp |i1, . . . , iM 〉〉 T pol
{i1,...,iM }�̃(z).

(3.13)

We set C[z]−1 = C[z]N+1 = {0}.
This trick will be particularly useful for dealing with the nonabelian symmetries in
Sect. 3.1.3.

3.1.2. Abelian symmetries (spin-Macdonald operators) The Hecke action on the poly-
nomial factor of the big vector space (3.1) readily extends to an action of the aha as in
Sect. 2.1. We retain the notation Yi for the operators Y pol

i = 1⊗Yi acting nontrivially
on polynomials.

In [BGHP93] it was realised that elements of the centre of the polynomial action of
the aha are physical operators, and so is generating function (2.20). (See Sect. 3.1.3 for
another, more subtle example of a physical operator.)

We can now derive a hierarchy of commuting difference operators on the physical
space proceeding like in Sect. 2.1.2. The spin analogues of the Macdonald operators
arise as

D̃r := er (Y) on H̃, 0 ≤ r ≤ N . (3.14)
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Note that D̃N = q̂1 · · · q̂N = DN is the same as in the scalar case. As in (2.28) we have

D̃N−r = D̃N D̃−r , D̃−r :=
N∑

i1<···<ir

Y−1
i1

· · · Y−1
ir

on H̃, 0 ≤ r ≤ N . (3.15)

Using the physical condition (3.3) we obtain explicit expressions for these operators,
which by construction commute. This yields Theorem 1.16 from Sect. 1.3.2 in terms of
the convenient shorthand (cf. Proposition 6.3 in [FR92])

Řw := sw−1 stotw so that stotw = Ř−1
w−1 sw = sw Řw, w ∈ SN . (3.16)

Theorem 3.3 (cf. [Che94a]). The spin analogue (3.14) of the Macdonald operators are

D̃r =
∑

J : #J=r

AJ (z) Ř−1
{ j1,..., jM }−1 q̂J Ř{ j1,..., jM }−1 , (3.17)

with AJ (z) from (2.23). In particular D̃N−1 = q̂1 · · · q̂N D̃−1 = D̃−1 q̂1 · · · q̂N , where

D̃−1 =
N∑

i=1

A−i (z) Ř−1
(N ,N−1···i) q̂−1

i Ř(N ,N−1···i), A−i (z) =
N∏

ı̄( �=i)

aı̄i . (3.18)

The other D̃−r are similarly obtained by conjugating with more layers of R-matrices.

Before we get to the proof let us illustrate this formula. The coefficient A j (z) is
just as in the scalar case, see (2.24). Let us illustrate the notation (3.16) with some
examples. To start with, Ři := Řsi = Ři,i+1(zi/zi+1). In general Řw is obtained by
drawing the braid diagram for a reduced decomposition of w and reinterpreting it in
terms of graphical notation (1.25) for the R-matrix. (The sw ensures that all z j , which
are moved around by the R-matrices, end up at their original positions.) Observe that
(3.16) is not a representation of SN ; for example Ř(321) = Ř23(z1/z3) Ř12(z1/z2) is
not the inverse of Ř(123) = Ř12(z1/z3) Ř23(z2/z3). Now recall that { j1, . . . , jM } ∈ SN
was defined in (1.40), so that

Ř{ j1,..., jM }−1 = Ř(M,..., jM ) · · · Ř(1,..., j1) =

zN

zN

· · ·

z1

z1

z jM

z jM

· · ·

· · ·

z j1

z j1

. (3.19)

For r = 1 Theorem 3.3 gives (1.70):

D̃1 =
N∑

j=1

A j (z) Ř−1
(12··· j) q̂ j Ř(12··· j), A j (z) =

N∏

j̄ ( �= j)

a j j̄ . (3.20)

The expression for r = 2 is given in (1.72).
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Proof of Theorem 3.3. Our proof of Proposition 2.1 in Sect. 2.1.2 readily adapts to the
spin case. As in the scalar case the Hamiltonian can be written in normal form D̃1 =∑

j Ã j (z), where Ã j (z) acts on polynomials only by a rational factor times q̂ j . The

computation of Ã1(z) = A1(z) q̂1 is as before. The only new feature in the spin case is
that the trick for getting the other Ã j (z) now involves conjugation by the t-dependent
SN -action (3.8):

D̃1 = stot( j ···21) D̃1 stot(12··· j) on H̃.

On the right-hand side the contribution to the term with q̂ j is easy to compute, whence
Ã j (z) = stot( j ···21) Ã1(z) stot(12··· j) = Ř−1

(12··· j) s( j ···21) A1(z) q̂1 s(12··· j) Ř(12··· j) = A j (z)

Ř−1
(12··· j) q̂ j Ř(12··· j).
The higher spin-Macdonald operators (3.17) are found analogously. Finally, for r =

−1 the proof of Proposition 2.2 in Sect. 2.1.2 readily adapts to the spin-case as well. We
obtain (3.18) from

D̃−1 = stot(i ···N−1,N ) D̃−1 stot(N ,N−1···i) on H̃.

��
We will denote the generating function of the spin-Macdonald operators by

�̃(u) :=
N∏

i=1

(1 + u Yi ) =
N∑

r=0

ur D̃r on H̃. (3.21)

3.1.3. Nonabelian symmetries The interesting new feature of the spin version of the
Ruijsenaars model is the presence of Û-symmetry [BGHP93], cf. [CP96]. We begin
with the frt presentation (Theorem 1.17 from Sect. 1.3.3):

Theorem 3.4 ([BGHP93]). Introduce an auxiliary space Va ∼= V with spectral param-
eter u and define on Va ⊗H[z] the monodromy matrix

L̃a(u) := RaN (u YN ) · · · Ra2(u Y2) Ra1(u Y1)

= (−t1/2)N

�(−t u)
P(a1···N )

(
u T sp

N−1 YN − T sp−1
N−1

) · · · (u T sp
0 Y1 − T sp−1

0

)
.

(3.22)

This endows H̃ with an action of Û that commutes with the spin-Macdonald operators.

The appearance of some sort of inhomogeneities in (3.22) is not surprising from the
Heisenberg point of view, whose nearest-neighbour interactions (2.57) are deformed to
long-ranged ones away from the homogeneous point. In the more algebraic language of
the daha (3.22) is the dual, Yi ↔ Z−1

i (if we allow for Laurent polynomials in the zi ),
of the inhomogeneous xxz monodromy matrix (2.54). Since the following proof only
relies on the aha relations it follows that themonodromymatrix (2.54), and therefore the
inhomogeneous xxz spin chain, act on the physical space too. This played an important
role in e.g. [DZ05a,Pas06,DZ05b].

Proof of Theorem 3.4. As Rab(u/v) commutes with the Yi the (level c = 0) RLL-
relations (2.52) are verified as usual. As �̃(u) is central it is furthermore clear that

[
L̃a(u), �̃(v)

] = 0, (3.23)
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which entails commutativity with the spin-Macdonald operators.
The crucial step is to prove that (3.22) descends to the physical space. Viewing

H̃ ∼= B as a subspace ofH[z] this amounts to showing that L̃a(u) preserves B. We will
demonstrate that for any1 ≤ i ≤ N−1wehave L̃a(u) ker(T sp

i −T pol
i )⊂ ker(T sp

i −T pol
i ),

i.e. that T sp
i and T pol

i coincide on L̃a(u) ker(T sp
i − T pol

i ).
The equality in (3.22) uses the ‘Baxterisation’ formula (2.48). Together, T sp

0 := T sp
a1

and the other T sp
i form a representation of HN+1 on Va ⊗H ∼= V ⊗(N+1). Let us remove

the (central) denominator of (3.22). Since

T sp
i P(a1···N ) = P(a1···N ) T sp

i−1

we have to show that T sp
i−1 and T pol

i act in the same way on the factors

(
u T sp

i Yi+1 − T sp−1
i

)(
u T sp

i−1 Yi − T sp−1
i−1

)

= u2 T sp
i T sp

i−1 Yi Yi+1 − u (T sp
i T sp−1

i−1 Yi+1 + T sp−1
i T sp

i−1 Yi ) + T sp−1
i T sp−1

i−1

where on the right we can use the physical condition. We proceed order by order in u.
Quadratic order in u just uses the braid relation and the fact that T pol

i commutes with
Yi Yi+1. Order u0 is straightforward too as the Hecke condition and the braid relation for
the inverse Hecke generators imply

T sp
i−1 T sp−1

i T sp−1
i−1 = T sp−1

i T sp−1
i−1 T sp

i .

Finally, for the part linear in u we rewrite

T sp
i T sp−1

i−1 Yi+1+T sp−1
i T sp

i−1 Yi = T sp
i T sp

i−1 (Yi+Yi+1)−(t1/2−t−1/2)(T sp
i Yi+1+T sp

i−1 Yi ).

Commutation with the part featuring Yi + Yi+1 is again simple. For the remainder use
T sp

i Yi+1 = Yi+1 T sp
i = Yi+1 T pol

i = T pol−1
i Yi to see that on T pol−1

i +T sp
i−1 = T pol

i +T sp−1
i−1

the actions of T pol
i and T sp

i−1 coincide too. ��
Replacing z j � Y−1

j in (2.55) yields the quantum determinant [BGHP93]

qdeta L̃a(u) = t N/2 �(−u)

�(−t u)
. (3.24)

This is a scalar as far as the spins are concerned, but still acts nontrivially on polynomials.

Proposition 3.5 ([CP96,JKK+95b], cf. Footnote 14). The Chevalley generators ob-
tained from L̃a(u) are (2.46), together with (2.47) where zi � Y−1

i , i.e.

Ẽ sp
0 =

N∑

i=1

Y−1
i k−1

1 · · · k−1
i−1 σ−

i ,

F̃ sp
0 =

N∑

i=1

Yi σ +
i ki+1 · · · kN ,

K̃
sp
0 = K sp−1

1 . (3.25)

Since L̃a(u) preserves the physical space all Chevalley generators do so too.
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For practical purposes the preceding description of the Û-action on the physical space
is rather cumbersome. It will be much more convenient to work with the polynomial
action it induces using the trick from the end of Sect. 3.1.1. First we consider the
presentation by Chevalley generators from Proposition 3.5. To avoid a proliferation of
subscripts let us write

Epol
M := (E1)

pol
M,M−1, Êpol

M := (Ẽ0)
pol
M,M+1,

Fpol
M := (F1)

pol
M,M+1, F̂pol

M := (F̃0)
pol
M,M−1,

K pol
M := (K1)

pol
M,M , K̂

pol
M := (K̃ 0)

pol
M,M .

(3.26)

Proposition 3.6. These Chevalley generators induce the following action on polynomi-
als:

K pol
M = t (N−2M)/2,

Epol
0 = 0, Epol

M = t (1−M)/2
N∑

j=M

t ( j−M)/2 T pol
( j, j−1···M),

Fpol
M = t (M+1−N )/2

M+1∑

i=1

t (M+1−i)/2 T pol
(i,i+1···M+1), Fpol

N = 0,

(3.27)

and

K̂
pol
M = t−(N−2M)/2,

Êpol
M = t M/2

(M+1∑

i=1

t−(M+1−i)/2 T pol−1
i · · · T pol−1

M

)
Y−1

M+1, Êpol
N = 0,

F̂pol
0 = 0, F̂pol

M = t (N−M)/2
( N∑

j=M

t−( j−M)/2 T pol−1
j−1 · · · T pol−1

M

)
YM .

(3.28)

Up tonormalisation thegenerators ofU⊂Û, are just partialHecke symmetrisers, cf. (2.10),
ensuring that the resulting polynomial has the correct symmetry type. (Note that j−M =
�( j, j − 1, . . . , M) and M + 1− i = �(i, i + 1, . . . , M + 1).)

The affine generators also involve projectors onto the right symmetry type, now by
t−1-symmetrising. Indeed, the sums in Êpol

M and Fpol
M , and those in F̂pol

M and Epol
M , are

related by the bar involution t �→ t−1 and Tw �→ T −1
w−1 of the Hecke algebra [KL79].

Proof of Proposition 3.6. The diagonal operators immediately follow from the defini-
tion (1.12) of the M-particle sector and the ‘level-zero’ condition K pol

M K̂
pol
M = 1.

The matrix element 〈〈1, . . . , M − 1| E sp
1 |i1, . . . , iM 〉〉 can only be nonzero if im = m

for all m < M . Denoting j = iM we find from (2.46)

〈〈1, . . . , M − 1| E sp
1 |1, . . . , M − 1, j〉〉 = t ( j−2M+1)/2, j ≥ M.

This gives the expression for Epol
M since T pol

{1,...,M−1, j} = T pol
( j, j−1···M).
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Next, 〈〈1, . . . , M + 1| F sp
1 |i1, . . . , iM 〉〉 survives precisely if {i1, . . . , iM }⊂{1, . . . , M+

1}. Writing i for the element in {1, . . . , M + 1} \ {i1, . . . , iM } we obtain
〈〈1, . . . , M + 1| F sp

1 |1, . . . ı̂ . . . , M + 1〉〉 = t−(N−2(M+1)+i))/2, i ≤ M + 1,

where the caret denotes omission. But T pol
{1,... ı̂ ...,M+1} = T pol

i · · · T pol
M = T pol

(i,i+1,...,M+1).

With the help of the aha relations (2.12) one likewise obtains (3.28). ��
By construction these polynomial operators obey the relations of Û, though direct

verification of most relations is tedious. The expressions (3.27)–(3.28) can be simplified
drastically using the symmetry of C[z]M .

Proposition 3.7. The nontrivial Chevalley generators from Proposition 3.6 reduce to

Epol
M = t (N−2M+1)/2

( N∑

j=M

A− j (z) sM j

) M−1∏

m=1

fm M ,

Fpol
M = t−(N−2(M+1)+1)/2

( M∑

i=1

si,M+1

) M∏

m=1

fM+1,m ,

(3.29)

with A− j as in (3.18) and fi j = 1/a(zi/z j ) from (2.49), along with

Êpol
M = t−(N−2(M+1)+1)/2

( M∑

i=1

si,M+1

)( M∏

m=1

fm,M+1

)
q̂−1

M+1,

F̂pol
M = t (N−2M+1)/2

( N∑

j=M

A j (z) sM j

)( M−1∏

m=1

fMm

)
q̂M .

(3.30)

where A j (z) is as in (3.20).

Proof. We use a symmetry argument like in Sect. 2.1.2. By (2.7) we can write

Epol
M =

N∑

j=M

c j (z) sM j

for some coefficients c j (z) that we wish to determine. It is easy to find the coefficient
with j = N , for which the only contribution comes from the term j = N in (3.29).
Since

T pol
(N ,N−1,...,M) = (aN−1,N sN−1 + bN−1,N ) · · · (aM,M+1 sM + bM,M+1)

= aN−1,N sN−1 · · · aM,M+1 sM + · · ·
= aN−1,N · · · aM,N sM,N + contributions to other terms

we find cN (z) = t (N−2M+1)/2 A−N (z) f1N · · · fM−1,N . By symmetry in the range
C[z]M−1 of Epol

M this determines the other coefficients via ck(z) = sk N cN (z) sk N .
One likewise determines the coefficients in

Fpol
M =

M+1∑

i=1

c′i (z) si,M+1
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from the case i = 1. This establishes (3.29).
For the affine generators we first use (2.15) to compute

Êpol
M =

(M+1∑

i=1

t (i−1)/2 T pol
i−1 · · · T pol

1

)
π−1 T pol−1

N−1 · · · T pol−1
M+1

= t−(N−(M+1))/2
(M+1∑

i=1

t (i−1)/2 T pol
i−1 · · · T pol

1

)
s1 · · · sM q̂−1

M+1,

where we use that T pol−1
i = t−1/2 and si = 1 for i > M on �̃(z) ∈ C[z]M . At this

point we can proceed as before, where the coefficient of si,M+1 with i = M + 1 is easily
found.

We similarly rewrite

F̂pol
M =

( N∑

j=M

t (N− j)/2 T pol
j · · · T pol

N−1

)
π T pol−1

1 · · · T pol−1
M−1

= t (1−M)/2
( N∑

j=M

t (N− j)/2 T pol
j · · · T pol

N−1

)
sN−1 · · · sM q̂M .

Here the simple coefficient is that of sM j with j = M . ��
Next we turn to the generators of Û by the ‘quantum operators’ obtained from L̃a(u)

as in (2.51). To highlight the origin of the following expressions let us denote the entries
of the R-matrix as the weights of the asymmetric six-vertex model,

R(u) = P Ř(u) =
⎛

⎜⎝

1 0 0 0
0 b+(u) c−(u) 0
0 c+(u) b−(u) 0
0 0 0 1

⎞

⎟⎠ ,

b±(u) = f (u),

c+(u) = u g(u),

c−(u) = g(u).

(3.31)

Proposition 3.8. The polynomial action induced by the quantum operators is

Ãpol
M,M (u) =

M∏

m=1

b+(u Ym),

B̃pol
M,M+1(u) =

M+1∑

i=1

c−(u Yi )

( M+1∏

j (>i)

b+(u Y j )

)
T pol

(i,i+1...M+1),

C̃pol
M,M−1(u) =

N∑

j=M

(M−1∏

m=1

b+(u Ym)

)
c+(u Y j )

( N∏

k(> j)

b−(u Yk)

)
T pol

( j, j−1...M),

D̃pol
M,M (u) =

N∏

i(>M)

b−(u Yi ) +
M∑

m=1

N∑

j (>M)

c−(u Ym)

( M∏

m′(>m)

b+(u Ym′)

)

× c+(u Y j )

( N∏

k(> j)

b−(u Yk)

)
T pol
{1,... m̂ ...,M−1, j}.

(3.32)
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Proof (sketch). The proof of the expression for Ã is easy: since 〈↑↑| R(u) = 〈↑↑| we
have

〈〈1, . . . , M | Ã(u) = 〈↑
a
↓
1

. . . ↓
M
↑ . . . ↑

N
| RaN (u YN ) · · · RaM (u YM ) · · · Ra1(u Y1) |↑

a
〉

= 〈↑
a
↓
1

. . . ↓
M
↑ . . . ↑

N
| RaM (u YM ) · · · Ra1(u Y1) |↑

a
〉

= 〈↓
1

. . . ↓
M
↑ . . . ↑

N
|

M∏

m=1

b+(u Ym),

where the last equality again follows from the ice rule (weight conservation) for the R-
matrix and from the presence of |↑〉. The computation for B̃, C̃ parallels the computation
yielding (3.27). As the result attests there are various contributions to take into account
for D̃. Since we will only use Ã later we omit the details; all of these expressions are
readily obtained using standard graphical notation for R(u), cf. e.g. [Lam14]. ��

3.1.4. Explicit eigenvectors The spin-Ruijsenaars model can be diagonalised following
[TU97]. Since this is not our main topic we suffice with an example of some simple
eigenspaces. For M = 0 the space C[z]0 = C[z]SN consists of (completely) sym-
metric polynomials. Consider the basis of Macdonald polynomials Pλ indexed by par-
titions λ of length �(λ) ≤ N . Each |Pλ(z)〉 = Pλ(z) |∅〉〉 is an eigenvector of the
spin-Macdonald operators (abelian symmetries) with eigenvalues as in (2.33). It further-
more has pseudo highest weight (nonabelian symmetries). Indeed, C̃(u) acts by zero,
while e.g. from (3.32) Ã(u) acts by 1 and D̃(u) by t N/2 �(−u)/�(−t u), whose value
on Pλ follows from (2.31) or (2.33). As a consistency check we note that (2.53) yields
(3.24). The Drinfeld polynomial is�(−u) = ∏N

i=1(1−t (N−2i+1)/2 qλi u), cf. (1.53); for
generic q the number of t-strings—whence in particular the dimension, cf. the paragraph
following (1.38)—depends on the number of repetitions in λ.

3.2. Freezing. The spin-Macdonald operators (3.17) still act nontrivially onpolynomials
through the difference operators q̂i . To extract a spin chain we proceed along the lines
of Uglov [Ugl95], who in turn followed Talstra and Haldane [TH95]. In the ‘static limit’
q → 1 the kinetic (q-difference) part of the Hamiltonian is suppressed with respect
to the potential energy. By Appendix A.1 we have q = t�/k in terms of the physical
interpretation as a quantum many body system. The limit q → 1 can thus be viewed
either as letting k → ∞ or as the classical limit � → 0. The dynamical (polynomial)
and spin parts are treated differently, however; the latter will remain fully quantum
mechanical. The physical picture is that the particles moving on the circle come to a halt
and ‘freeze’, so that only the spin interactions remain. The idea of freezing can already
be found in [Sha88], and was worked out more concretely in [Pol93].

At the point q = 1 the spin-Macdonald operators become trivial: by (2.37), the ‘clas-
sical’ spin-Macdonald operators just are (Gaussian binomial) multiples of the identity,

�̃(u)
∣∣
q=1 = �(u)

∣∣
q=1 =

N∏

i=1

(
1 + t (N−2i+1)/2 u

) =
N∑

r=0

[
N
r

]
ur . (3.33)

We therefore have to consider a neighbourhood of the classical point and linearise in q,
i.e. take the semiclassical limit.
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Definition. We will write

Õ◦ := Õ
∣∣
q=1, δÕ := ∂ Õ

∂q

∣∣∣∣
q=1

so Õ = Õ◦ + (q −1) δÕ +O(q −1)2. (3.34)

The physical condition is independent of q so both Õ◦ and δÕ are physical operators.

3.2.1. Abelian spin-chain symmetries To start let us focus on the spin-Macdonald op-
erator D̃1 from (3.20). Taylor expanding at q = 1 gives

D̃1 = [N ] + (q − 1) δ D̃1 +O(q − 1)2.

Lemma 3.9. The semiclassical limit of the first spin-Macdonald operator takes the form

δ D̃1 =
N∑

j=1

A j (z) z j ∂z j + (t1/2 − t−1/2)

N∑

j=1

A j (z)
j−1∑

i=1

V (zi , z j ) Sl[i, j], (3.35)

where the spin part features the potential (1.22) and long-range interactions (1.24),

Sl[i, j] = Ř−1
(i+1,..., j−1, j) espi Ř(i+1,..., j−1, j).

The decoupling between kinetic and spin terms in (3.35) was observed in [TH95,Ugl95].

Proof. The decoupling is a simple consequence of our expression (3.20) for D̃1; cf. the
sketch of the proof in Sect. 1.3.4 in terms of the graphical notation. Write the summand
of (3.20) as

A j (z) Ř j−1, j (z j/z j−1) · · · Ř12(z j/z1) Ř12(z1/q z j ) · · · Ř j−1, j (z j−1/q z j ) q̂ j .

We’ll show that its linearisation in q is the summand of (3.35).
When the derivative hits q̂ j = 1 + (q − 1) z j ∂z j +O(q − 1)2 all R-matrices, now at

q = 1, cancel pairwise by unitarity (2.50). This yields the first term in (3.35).
By the Leibniz rule the derivative of the spin part produces a sum over i(< j).

Consider the term where δ hits the i th R-matrix that was affected by q̂ j ,

δ Ři,i+1(zi/q z j ) = − zi

z j
Ř′

i,i+1(zi/z j ).

The R-matrices to its left again cancel in pairs by unitarity. The derivate of the R-matrix
can be easily evaluated using (2.48) (cf. the ‘change of variables’ in [Lam18]):

Ř′
i,i+1(zi/z j ) = − f ′(zi/z j ) espi ,

which allows us to recognise espi = − f ′(1)−1 Ř′
i,i+1(1) = −(t1/2 − t−1/2) Ř′

i,i+1(1)
from (1.26). By (2.48) and the Temperley–Lieb relation (2.42) we moreover have

Ři,i+1(z j/zi ) espi = (1− [2] f j i ) espi = − f j i

fi j
espi .

Hence

Ři,i+1(z j/zi ) δ Ři,i+1(zi/q z j ) = (−zi/z j ) (− f ′
i j ) (− fi j/ f j i ) espi

= (t1/2 − t−1/2) V (zi , z j ) espi .
(3.36)

The remaining R-matrices combine to give the long-range spin interaction (1.24). ��
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Note that the physical space (3.3) is not affected by the limit q → 1; in particular
Proposition 3.2 remains valid.

It remains to get rid of the kinetic term in (3.35) to get an operator that can be viewed
as acting on the spin-chain Hilbert space H. Uglov argued as follows. Consider the
abelian symmetries, i.e. the tower of higher Hamiltonians generated by �̃(u). Following
[TH95,Ugl95] we expand the commutation relation (2.20) around q = 1. Dropping all
commutators with the constants (3.33) the first nontrivial relations appear at quadratic
order [Ugl95]:

0 = [�̃(u), �̃(v)] = (q − 1)2 [δ�̃(u), δ�̃(v)] +O(q − 1)3. (3.37)

That is, the abelian symmetries (3.17) survive at the semiclassical level. In Sect. 3.1.2
we already noted that one of these is particularly simple: the total degree operator

D̃N = q̂1 · · · q̂N = 1 + (q − 1)
N∑

j=1

z j ∂z j +O(q − 1)2. (3.38)

Happily, the commutation (3.37) implies that wemaymodify δ D̃1 from (3.35) by adding
any multiple of the total degree operator δ D̃N . The result still acts on the physical space
H̃ and commutes with all other operators in the expansion of �̃(u). In this way we can
get rid of the derivates in δ D̃1 provided we can make all their coefficients A j (z) equal.

This is where the evaluation comes in: we need to find a value for z where the A j (z)
become independent of the value of j [Ugl95]. Solving A1(z) = · · · = AN (z) for the co-
ordinates yields z = z1 (1, ω, · · · , ωN−1), or any permutation thereof, for ω := e2π i/N .
These are precisely the stationary (equilibrium) positions, cf. e.g. §5.2 in [Rui95], of the
trigonometric classical Ruijsenaars–Schneider model [RS86], with constant centre-of-
mass (angular) momentum. Omitting the latter we come to the following

Definition. Define the evaluation (specialisation) map evω : H̃ −→ H as in (1.2), and
for a physical operator Õ by

evω(Õ) evω = evω ◦ Õ. (3.39)

Let us denote equality upon evaluation, or on-shell equality, by

Õ1
ev= Õ2 as shorthand for evω Õ1 = evω Õ2.

Since
∑

j A j (z) = D̃◦
1 the common value is

A j (z)
ev= D̃◦

1

N
= [N ]

N
. (3.40)

Thus we are finally led to the Hamiltonian (1.20): by construction,

1

t1/2 − t−1/2

(
δ D̃1 − [N ]

N
δ D̃N

)
ev=

N∑

j=1

A j (z)
j−1∑

i=1

V (zi , z j ) Sl[i, j]

ev= [N ]
N

N∑

i< j

V (zi , z j ) Sl[i, j] = H̃l

(3.41)
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acts nontrivially on spins only while preserving the physical space. Here we removed a
factor of t1/2 − t−1/2 to ensure the isotropic limit t → 1 is nontrivial. We have arrived
at the q-deformed Haldane–Shastry spin chain.

As a corollary we readily obtain the possible eigenvalues of (3.41) from those of the
(spin-)Macdonald operators. This gives Theorem 1.1 (i):

Proposition 3.10 ([Ugl95]). Any eigenvalue of (3.41) can be written as El(μ) from
(1.28).

Proof. We use the expression (3.41) in terms of the Hamiltonian in terms of (symmetric
combinations of) the Y-operators, whose eigenvalues we know (Sect. 2.1.2). Let λ be
any partition with �(λ) ≤ N . By adding a string of zeros at the end if necessary we can
view λ as a weak partition with N parts. By (2.33) the eigenvalues of D̃1 and D̃N are
given by

�1(λ) =
N∑

i=1

t (N−2 i+1)/2 qλi , �N (λ) = q |λ|, |λ| :=
N∑

i=1

λi .

The eigenvalues of the frozen Hamiltonian (3.41) follow by linearisation. The crucial
step is to recognise contributions of M := λ1 separate magnons. This goes as follows
[Ugl95]. The linear part in q of the eigenvalue of D̃1 is

δ�1(λ) =
N∑

i=1

λi t (N−2 i+1)/2 =
N∑

i=1

λi∑

m=1

t (N−2 i+1)/2

=
M∑

m=1

λ′
m∑

i=1

t (N−2 i+1)/2 =
M∑

m=1

t (N−λ′
m )/2 [λ′

m].
(3.42)

In the second equality we reinterpret the sum on the first line as a double sum with one
term for each box in the Young diagram of λ, contributing t (N−2 i+1)/2 for each of the λi
boxes in row i . In the second line we perform the sum per column instead to pass to the
conjugate partition λ′, with �

(
λ′) = M . In the final equality we summed a geometric

progression. Combining this with δ�N (λ) = |λ| = |λ′| we obtain

1

t1/2 − t−1/2

(
δ�1(λ)− [N ]

N
δ�N (λ)

)
= 1

t1/2 − t−1/2

M∑

m=1

(
t (N−λ′

m )/2 [λ′
m]− [N ]

N
λ′

m

)
.

Upon renaming μm := λ′
M−m+1 we arrive at Uglov’s expression for El(μ). ��

It remains to showwhichof the abovepossible eigenvalues actually occur. InSect. 3.2.3
we will prove that the eigenspace Hμ is nontrivial if μ ∈ MN is a motif by explicitly
constructing the corresponding pseudo highest-weight vector. The result will be thewave
functions from Sect. 1.2.3. We have not yet found a satisfactory way to verify that its
energy is given by El(μ) by direct computation, except in special cases; cf. the remarks.

Next we turn to the higher spin-chain Hamiltonians from Theorem 1.18. First of all
we observe that continuing the expansion (3.37) gives two nontrivial commutators at
cubic order in q − 1, and so on, so we are not guaranteed to get any further symmetries
of D̃1 at higher order in the expansion. The abelian symmetries of the spin chain instead
just arise by freezing the higher spin-Macdonald operators.
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Proof of Theorem 1.2. The simplest higher spin-Macdonaldoperator is D̃−1 = D̃−1
N D̃N−1

from (1.74).Note thatwhenwe push q̂−1
i to the right the q again appears in the denomina-

tor of the arguments of the R-matrices it has passed. The semiclassical limit is computed
just as for (3.35). The result is

δ D̃−1 = −
N∑

i=1

A−i (z) zi ∂zi + (t1/2 − t−1/2)

N∑

i=1

A−i (z)
N∑

j=i+1

V (zi , z j ) Sr[i, j], (3.43)

where
Sr[i, j] = Ř−1

( j−1,...,i+1,i) espj−1 Ř( j−1,...,i+1,i).

As A−i (z)
ev= [N ]t−1/2/N = [N ]t1/2/N we find the spin-chain Hamiltonian (1.29),

1

t1/2 − t−1/2

(
δ D̃−1 +

[N ]
N

δ D̃N

)
ev=

N∑

i=1

A−i (z)
N∑

j=i+1

V (zi , z j ) Sr[i, j]

ev= [N ]
N

N∑

i< j

V (zi , z j ) Sr[i, j] = H̃r.

(3.44)

Here we note that this is consistent with (1.77) as [N ] − A−i (z)
ev= [N ] (N − 1)/N :

δ D̃N−1 = D̃◦−1 δDN + D̃◦
N δ D̃−1 = [N ] δDN + δ D̃−1

=
N∑

i=1

([N ] − A−i (z)
)

zi ∂zi + (t1/2 − t−1/2)

N∑

i=1

A−i (z)
N∑

j=i+1

V (zi , z j ) Sr[i, j].

The eigenvalues of Hr follow from (2.33) using (3.15):

�−1(λ) = �N−1(λ)

�N (λ)
=

N∑

i=1

t−(N−2i+1)/2 q−λi so δ�−1(λ) = −δ�1(λ)
∣∣
t �→t−1 .

Since D̃◦−1 = [N ] = D̃◦
1

∣∣
t �→t−1 while t1/2 − t−1/2 changes sign under inverting t it

follows that Er(μ) = El(μ)
∣∣
t �→t−1 . ��

The other spin-chain Hamiltonians are similarly obtained from (3.17):

Proof of Theorem 1.18. It is clear that the kinetic and spin part decouple for any r . To
find the required multiple of δ D̃N needed to remove the kinetic part we compute

∑

J : #J=r

AJ (z) δq̂J =
∑

J : #J=r

(
AJ (z)

∑

j∈J

z j ∂z j

)
=

N∑

j=1

( ∑

J : #J=r
J# j

AJ (z)
)

z j ∂z j .

The prudent generalisation of (3.40) is the identity, valid for any j ,

∑

J :#J=r
J# j

AJ (z)
ev= r

N
D̃◦

r = r

N

[
N
r

]
, 1 ≤ r ≤ N . (3.45)
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In this way we obtain (1.77).
For the eigenvalues of these higher spin-chain Hamiltonians we use the following

generalisation of (3.42), valid for any partition λ with �(λ) ≤ N ,

δ�r (λ) =
N∑

j1<···< jr

(λ j1 + · · · + λ jr )

r∏

s=1

t (N−2 js+1)/2

=
λ1∑

m=1

r∑

s=1

(−1)s−1
[

N
r − s

]
t s (N−λ′

m )/2 [s λ′
m]

[s] .

This yields the additive form (1.78). ��
The only spin-Macdonald operator that does not give rise to a spin-chain symmetry

in this way is the (multiplicative) translation operator D̃N = q̂1 · · · q̂N from (3.38). Let
us show that it nevertheless gives q-homogeneity on H in return, establishing Proposi-
tion 1.4 (i) from Sect. 1.2.1:

Proposition 3.11. If Õ is an operator on H̃ that commutes with D̃N then the evaluation
O = evω Õ isq-homogeneous: O = G O G−1 with G theq-translation operator (1.34).

Proof. For any Õ acting on H̃ we have, cf. the proof of (3.17),

Õ = stot(N ···21) Õ stot(12···N ) = s(N ···21) G̃ Õ G̃−1 s(12···N ) on H̃,

where we used Ř(N ···21) = G̃. Note that the conjugation by s(12···N ) just cyclically per-
mutes the z j in G̃ Õ G̃−1.However, commutationwith the total degree operator q̂1 · · · q̂N

means that Õ is homogeneous of total degree zero in z, i.e. depends only on ratios of
coordinates. The same holds for G̃. Thus the cyclic permutation is invisible upon eval-
uation, and we conclude that Õ

ev= G̃ Õ G̃−1. ��
We recall that the second part of Proposition 1.4 was already demonstrated in Sect. 1.2.1.

Besides allHamiltonians obtained from �̃(u) it follows that L̃a(u) isq-homogeneous.
The abelian symmetries are summarised in Table 4.

3.2.2. Nonabelian spin-chain symmetries Finallywe turn to the nonabelian symmetries,
which are generated by the monodromy matrix (3.22).

Proof of Theorem 1.8. This time we don’t have to go far in the expansion [TH95] as the
zeroth order already gives a nontrivial operator:

L̃a(u) = L̃◦
a(u) +O(q − 1)1, L̃◦

a(u) = RaN (u Y ◦
N ) · · · Ra1(u Y ◦

1 ). (3.46a)

It is clear that this operator still obeys the RLL-relations (2.52). To check that it also
remains a symmetry of the spin chain we expand (3.23) like in (3.37):

0 = [
L̃a(u), �̃(v)

] = (q − 1)
[
L̃◦

a(u), δ�̃(v)
]
+O(q − 1)2. (3.46b)

where use (3.33). So the abelian symmetries remain Û-invariant semiclassically. ��
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The Chevalley generators are (2.46) and (3.25) with Yi �→ Y ◦
i . The induced poly-

nomial action acquires a neat symmetric form: at q = 1 (3.30) is related to (3.29) by

Êpol, ◦
M ∝ Fpol

M

∣∣
t �→t−1,

F̂pol, ◦
M ∝ Epol

M

∣∣
t �→t−1,

(3.47)

where the proportionality signs just mean that we ignore the prefactors in (3.29)–(3.30).
By (3.33) the quantum determinant (3.24) now becomes a true, z-independent scalar:

qdeta L̃◦
a(u) = t N/2 �◦(−u)

�◦(−t u)
= t N/2 t (1−N )/2 u − 1

t (1+N )/2 u − 1
.

This is one way to justify our detour through the dynamical model [TH95]: the quan-
tum determinant of L̃a(u) was nontrivial from the polynomial perspective, making it a
suitable candidate for generating nontrivial abelian symmetries.

3.2.3. Explicit spin-chain eigenvectors Our final task is to construct eigenvectors of the
spin-chain Hamiltonian. As usual we proceed per M-particle sector HM , cf. (1.12). As
in [BGHP93] we will exploit the rich algebraic structure available off shell, i.e. prior to
evaluation.

General considerations. By Proposition 3.2 from Sect. 3.1.1 we may pass to the poly-
nomial world and work with �̃(z) ∈ C[z]M = C[z]SM×SN−M to diagonalise the
Hamiltonian (3.41), viewed prior to evaluation as acting on polynomials. Then we em-
bed the eigenfunctions in the physical space via (3.11), and finally evaluate to land in
the M-particle sector of the spin chain.

The origin of Theorem 1.6 is the following.

Proposition 3.12. Any M-particle spin-chain eigenvector obtained by freezing is deter-
mined by a symmetric polynomial in just M variables, �̃(z1, . . . , zM ) ∈
C[z1, . . . , zM ]SM ⊂C[z]M , as

N∑

i1<···<iM

evω

(
T pol
{i1,...,iM }�̃(z1, . . . , zM )

)
|i1, . . . , iM 〉〉. (3.48)

Proof. Our starting point is Proposition 3.2; we have to show that the polynomial
may be taken to be independent of zM+1, . . . , zN . Consider the power-sum basis for
C[z]M , which is given by pλ(1) (z1, . . . , zM ) pλ(2) (zM+1, . . . , zN ) for two partitions with
�(λ(1)) ≤ M and �(λ(2)) ≤ N − M . Here pλ = ∏

r∈λ pr and pr (z) = ∑
i zr

i as usual.
Notice that

evω pr (z1, . . . , zN ) =
N∑

i=1

ωi r = N δr,0mod N , (3.49)

so pr (zM+1, . . . , zN ) = pr (z1, . . . , zN ) − pr (z1, . . . , zM )
ev= −pr (z1, . . . , zM ) for

0 < r < N . Hence on shell pλ(2) (zM+1, . . . , zN )
ev= (−1)�(λ

(2)) pλ(2) (z1, . . . , zM ) since
λ

(2)
1 < N . In this way we land in C[z1, . . . , zM ]SM . ��
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Our ansatz will be that sufficiently many spin-chain eigenvectors are obtained in this
way. The goal of this section will be to show that this is indeed the case and prove
Theorem 1.7. Theorem 1.6 then follows from the nonabelian symmetries and the proof
in Sect. 3.2.4.

By (3.41) and (3.44) we will seek joint δ D̃r -eigenvectors in H̃M . To this end we may
in fact work at the classical level: the operators Y ◦

i = Yi |q=1, which didn’t play a role in
Sect. 3.2.1 due to (3.33), will be pivotal for our diagonalisation. Indeed, although the sum∑

i Y ◦
i = [N ] is trivial, the individual terms certainly are not. The Y ◦

i do not preserve
H̃, but as in Sect. 2.1.2 we can first view the magnons as distinguishable particles to
develop the nonsymmetric theory, and then (q-)symmetrise at the end. Crucially, at the
intermediate step the Y ◦

i commute with the Hamiltonians: just as in (3.46) we have

0 = [
Yi , �̃(u)

] = (q − 1)
[
Y ◦

i , δ�̃(u)
]
+O(q − 1)2.

The Y ◦
i still form a commuting family of operators, and can be jointly diagonalised. At

q = 1 a part of the dependence on the partition drops out of (2.31), but the joint spectrum
remains multiplicity free when taking into account δ�̃(u). This passage to a classical
spinless model is quite a simplification!

The evaluation further facilitates our task. Firstly, it gave us Proposition 3.12. Sec-
ondly, it allows us to restrict ourselves to polynomials with degree< N in each variable.
(Of course ωN = 1 will already play a role for lower powers of z j as j increases, but
since the generators of the aha preserve the total degree we should allow the maximal
degree in any variable to equal to that for z1, which by evaluation is N − 1.)

The corresponding nonsymmetric theory ought to take place inC[z1, . . . , zM ]⊂C[z]
(with degree < N in each variable) and therefore involve the Y ◦

m with 1 ≤ m ≤ M .
However, the latter are associated to ĤN and depend on all N variables, so do not preserve
the subspace C[z1, . . . , zM ]⊂C[z]. They do, however, preserve the slightly larger space
C[z1, . . . , zM ] ⊗C[zM+1, . . . , zN ]SM−N ⊂C[z]. The key point of our derivation will be
that, moreover, an appropriate subspace ofC[z1, . . . , zM ] is on shell preserved by these
Y ◦

m , which reduce to the affine generators Y ′
m of Ĥ′

M with parameters q ′ = t ′ = t−1.

Kernel for the q-shift. As for any spin chain with some form of translational invari-
ance the Hamiltonian (1.20) is readily diagonalised for M = 1 by q-homogeneity, see
Sect. 1.2.6. As a warm-up for general M let us redo the derivation for M = 1 following
the strategy outlined above. Fist we need to develop a piece of technology.

By evaluation we may restrict ourselves to the subspace of polynomials of degree at
most N −1 in any variable, which we denote by C[z]<N⊂C[z]. This subspace is clearly
preserved by the q-shift operators q̂i , 1 ≤ i ≤ N . Define the replacement map

rmj := · |zm �→ z j . (3.50)

Lemma 3.13 (off-shell kernel for the q-shift). On polynomials of degree at most N − 1
in each variable the q-shift operator acts by a linear combination of replacements:

q̂i =
N∑

j=1

( N∏

k( �= j)

q zi − zk

z j − zk

)
ri j on C[z]<N . (3.51)

In particular the right-hand side preserves C[z]<N despite the denominators.
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Proof. Write z instead of zi . Let w1, . . . , wN ∈ C
× be pairwise distinct. Then the

N polynomials

ϕ j (z) :=
N∏

k( �= j)

(z − wk), ϕ j (wk) = δ jk

N∏

l( �= j)

(w j − wl),

form a basis forC[z]<N , with linear independence because only ϕr is nonzero at z = wk .
By Lagrange interpolation we can thus write any P(z) ∈ C[z]<N as

P(z) =
N∑

j=1

P(w j )

ϕ j (w j )
ϕ j (z) =

N∑

j=1

( N∏

k( �= j)

z − wk

w j − wk

)
P(w j ) on C[z]<N .

Thus the q-shift operator acts by

q̂ P(z) =
N∑

j=1

( N∏

k( �= j)

q z − wk

w j − wk

)
P(w j ) on C[z]<N .

Taking w = z and z = zi now gives a nontrivial expression, and we arrive at (3.51). ��
On shell the kernel (3.51) simplifies significantly.

Lemma 3.14 (on-shell kernel for the q-shift). On shell the q-shift operator can be ex-
pressed as

q̂i
ev= q N − 1

N

N∑

j=1

1

q ωi− j − 1
ri j on C[z]<N . (3.52)

Proof. Note that the elementary symmetric polynomials evaluate to

evω er = δr,0 + (−1)N−1 δr,N . (3.53)

Indeed, by Newton’s identity and (3.49) we have

evω er = 1

r

r∑

s=1

(−1)s−1 evω ps evω er−s = (−1)N−1 δr,N , r > 0.

Hence for any 1 ≤ i ≤ N

N∏

k=1

(q zi −zk) =
N∑

r=0

(−1)r (q zi )
N−r er (z)

ev= q N −1, zi

N∏

k( �=i)

(zi −zk)
ev= N . (3.54)

(Note that former implies the latter—take the semiclassical limit δ—and together they
yield (3.40).) By virtue of these relations the kernel (3.51) reduces to (3.52) on shell. ��

Equipped with this tool we return to the diagonalisation for M = 1. We wish to
find eigenfunctions in C[z1]⊂C[z1] ⊗ C[z2, . . . , zN ]SN−1 , which is preserved by first
affine generator since Y1 Ti = Ti Y1 for all i > 1. For the spin chain we focus on its
classical version Y ◦

1 . This operator simplifies in a way similar to what happened for the
polynomial action of Û in (3.29)–(3.30) at the end of Sect. 3.1.3:
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Lemma 3.15 ([NS17]). We have

Y ◦
1 =

N∑

j=1

A j (z)
b1 j

a j1
s1 j = A1(z)+

N∑

j=2

A j (z)
b1 j

a j1
s1 j on C[z1]⊗C[z2, . . . , zN ]SN−1 .

(3.55)
Here A j (z) was defined in (2.24) and bmj/a jm = (t − 1) z j/(t z j − zm) by (2.6).

This simplification was also found in [NS17] for general q; we will comment on this
after Proposition 3.17.

Proof. Although we obtained this argument independently our presentation follows the
proof of Lemma 3.4 in [Cha19]. From (2.26) it is clear that Y ◦

1 is of the form

Y ◦
1 =

N∑

j=1

c j (z) s1 j on C[z1] ⊗ C[z2, . . . , zN ]SN−1 .

Indeed, as soon as we pick up a permutation in (2.26) the remaining permutations act by
the identity due to symmetry in z2, . . . , zN . The coefficients are found as in the proof of
(2.24) in Sect. 2.1.2, now using the partial symmetry C[z1] ⊗ C[z2, . . . , zN ]SN−1 . Two
coefficients are easy to get. In (2.26) we already read off c1(z) = a12 · · · a1N = A1(z).
For j = 2 the only contribution is b12 s12 a13 · · · a1N , so c2(z) = b12 a23 · · · a2N =
A2(z) b21/a12. The remaining coefficients follow by symmetry: on C[z1] ⊗ C[z2, . . . ,
zN ]SN−1 we have Y ◦

1 = s2 j Y ◦
1 s2 j , whence c j (z) = s2 j c2(z) s2 j for all j ≥ 2. ��

Because of the evaluation we restrict ourselves to degree at most N − 1 in z1.

Proposition 3.16. On the subspace of polynomials of degree at most N − 1 in z1 we
have

Y ◦
1

ev= t (N−1)/2 q̂ ′
1, q ′ := t−1, on C[z1]<N⊂C[z1] ⊗ C[z2, . . . , zN ]SN−1 .

(3.56)

Proof. On polynomials independent of z2, . . . , zN we may replace s1 j = r1 j . Further
using (3.40) we thus find that (3.55) implies

Y ◦
1

ev= t (N−1)/2 t−N − 1

N

N∑

j=1

1

t−1 ω1− j − 1
r1 j on C[z1] .

The result now follows from Lemma 3.14. ��
Theactionof the remaining affinegeneratorsY ◦

j , j > 1, onC[z1]⊗C[z2, . . . , zN ]SN−1

is more complicated, but we can do without them: in the one-particle sector the D̃r
can already be diagonalised together with just Y ◦

1 . Indeed, Y ◦
1 ∝ Y ′

1 has eigenfunctions
P(n)(z1) = zn

1 ∈ C[z1]. The (orthogonal) planewaves evω zn
1 = ωn give all N = dimH1

(orthogonal) eigenvectors in the one-particle sector. Like for (1.64) the case n = 0 is a
multiple of the U-descendant F sp

1 |∅〉〉 coming from H0. For 1 ≤ n < N we get N − 1
vectors that have highest weight, at least for U. In Sect. 3.2.4 we will show that these
have pseudo highest weight for Û too. This establishes (1.44) for M = 1 with ν = (n).
(In this case the dependence of Pν on the parameters drops out.)

General M. Now we turn to the proof of Theorem 1.7. We seek joint M-particle eigen-
vectors of the δ D̃r by simultaneously diagonalising Y ◦

m for 1 ≤ m ≤ M on the subspace
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C[z1, . . . , zM ]⊗C[zM+1, . . . , zN ]SN−M ⊂C[z] in accordance with Sect. 3.1.1. In phys-
ical terms we think of z1, . . . , zM as the coordinates of the magnons, which we treat as
distinguishable particles for the moment. Let us try to proceed as for M = 1. The start
is easy: the analogue of Lemma 3.15 for general M , 1 ≤ m ≤ M , is

Proposition 3.17. We have

Y ◦
m = xm,m+1 · · · xm M

(
Am(z) +

N∑

j (>M)

A j (z)
bmj

a jm
smj

)( M∏

m̄( �=m)

fmm̄

)
xm1 · · · xm,m−1

on C[z1, . . . , zM ] ⊗ C[zM+1, . . . , zN ]SN−M ,

(3.57)
where we recall that fmm̄ = 1/amm̄.

Ifm = 1 arbitrary q is included by postmultiplicationwith q̂1. The resulting operatorwas
used in [NS17] to construct ‘covariant’ Y -operators (q-deformed Heckman operators).
For m ≥ 2, however, the q-shift acts after xm1 · · · xm,m−1, cf. (2.17), affecting those
xmm̄—unless q = 1, as for us.

Proof. As the xmm′ on the right preserve C[z1, . . . , zM ] ⊗ C[zM+1, . . . , zN ]SN−M it
suffices to show that on this space

xm,M+1 · · · xm N =
(

Am(z) +
N∑

j (>M)

A j (z)
b jm

amj
smj

) M∏

m̄( �=m)

fmm̄ . (3.58)

This can be shown by a symmetry argument as for (3.55). The result will be of the form

xm,M+1 · · · xm N = cm(z) +
N∑

j (>M)

c j (z) smj .

As before we read off cm(z) = am,M+1 · · · am N = Am(z)
∏M

m̄( �=m) fmm̄ , where the
fmm̄ compensate for the superfluous factors of amm̄ in the definition of Am(z). Next,
cM+1(z) = bm,M+1 aM+1,M+2 · · · aM+1,N = AM+1(z) (bm,M+1/aM+1,m)

∏M
m̄( �=m) fM+1,m̄ .

The remaining coefficients are obtained from this via conjugation by sM+1, j . ��
Motivated by our findings for M = 1 we would like to recognise the kernel for

the q-shift in (3.58). However, as the proof of (3.51) shows the latter is only valid
when acting on polynomials (of sufficiently low degree). We therefore have to get rid
of the denominator of the product of f s in (3.58), which is the q-Vandermonde-type
product

∏M
m̄( �=m)(t zm − zm̄). For M = 2 it is not hard to see that it suffices for the

polynomial to be divisible by t z1 − z2, where for Y ◦
2 one needs identity (3.62) below.

Let us show that in general we will need the polynomials that we act on to be divisible
by �t := �t (z1, . . . , zM ).

Theorem 1.19 from Sect. 1.3.5 can be stated more precisely as

Theorem 3.18. For 1 ≤ m ≤ M

Y ◦
m

ev= t (N−M)/2 �t Y ′
m �−1

t on �t C[z1, . . . , zM ]<N−M+1⊂C[z1, . . . , zM ] .
(3.59)
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Proof. The idea is to knead (3.58) into a form that allows us to use (3.51). We divide
the proof into four steps. It is instructive to keep the case M = 2 in mind; the extension
to arbitrary M is mostly a matter of bookkeeping.

Step i. Rewriting the coefficients.Let us first show that Am(z) and A j (z) in (3.57)may
on shell be replaced by (t (N−1)/2 times) the coefficients of (3.51) with q � q ′ = t−1.
Indeed, for j = m as well as j �= m

A j (z)
bmj

a jm
= t−(N−1)/2

t z j − zm

∏N
k=1(t z j − zk)∏N
k( �= j)(z j − zk)

ev= t−(N−1)/2

t (z j − t−1zm)

t N − 1

t−N − 1

∏N
k=1(t

−1 zm − zk)∏N
k( �= j)(z j − zk)

= t (N−1)/2
N∏

k( �= j)

t−1 zm − zk

z j − zk
.

(3.60)

Here the on-shell equality uses the first evaluation in (3.54). Importantly, the value of
the latter is independent of 1 ≤ j ≤ N . After all, by definition (3.39) evaluation takes
place after any permutation has acted. But permutations at most change the value of j
in (3.54), which doesn’t matter upon evaluation.

On shell (3.57) can therefore be rewritten as

Y ◦
m

ev= t (N−1)/2 xm,m+1 · · · xm M

( N∏

k( �=m)

t−1 zm − zk

zm − zk
+

N∑

j (>M)

N∏

k( �= j)

t−1 zm − zk

z j − zk
smj

)

×
( M∏

m̄( �=m)

fmm̄

)
xm1 · · · xm,m−1 on C[z1, . . . , zM ] ⊗ C[zM+1, . . . , zN ]SN−M .

(3.61)
Step ii. Pulling the q-Vandermonde through. Next we show that the q-Vandermonde

factor ensures the denominators of the fmm̄ are cancelled, so that we stay in the world
of polynomials. For m > 1 we first need to move xm,1 · · · xm,m−1 through �t . Note that
xm,m−1 commutes with �t/(t zm−1 − zm), which is symmetric in zm−1 ↔ zm , while

xm,m−1 (t zm−1 − zm) = (zm−1 − t zm) x ′
m,m−1 , t ′ := t−1, (3.62)

where x ′
i j denotes (2.16) with t � t ′. To verify (3.62) recall that xm,m−1 = x−1

m−1,m =
sm−1 T pol−1

m−1 and check (t zm−1 − zm)−1 T pol
m−1 (t zm−1 − zm) = −T ′ pol

m−1, which can be
conveniently done on C[zm−1, zm]S2 ⊕ (t ′ zm−1 − zm) C[zm−1, zm]S2 .

For m > 2 we next move xm,m−2 through �t (t ′ zm−1 − zm)/(t zm−1 − zm). But
besides a factor of t zm−2 − zm the latter is symmetric in zm−2 ↔ zm so we can argue
like before. Continuing in this way we see that

xm,1 · · · xm,m−1 �t = · · · = �t

m−1∏

k=1

zk − t zm

t zk − zm
x ′

m,1 · · · x ′
m,m−1.
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The denominator of
∏M

m̄( �=m) fmm̄ is now precisely cancelled by
∏m−1

k=1 (t ′ zk − zm) along
with the factors t zm − zl still contained in �t :

( M∏

m̄( �=m)

fmm̄

)
�t

m−1∏

k=1

zk − t zm

t zk − zm
=

m−1∏

k=1

(zk − zm)

M∏

l=m+1

(zm − zl) �t (z1, . . . ẑm . . . , zM ),

(3.63)
where the caret indicates that zm is to be omitted from the q-Vandermonde.

Step iii. Recognising the q-shift. On polynomials independent of zM+1, . . . , zN we
may, like for M = 1, replace the smj by rmj . Comparingwith (3.51)we justmiss the terms
with j ∈ {1, . . . , m−1, m+1, . . . , M}. We observe, however, that (3.63) vanishes when
zm = zk for any k �= m: the factor �t does not only ensure that the sum in (3.61) acts on
polynomials, but moreover allows us to complete the sum to all values of 1 ≤ j ≤ N ,
just as for the ordinary Haldane–Shastry model, see §3.3 in [BGHP93]. This allows us
to use (3.51) provided we act on polynomials of degree < N (including �t ). Therefore
on C[z1, . . . , zM ]<N−M+1⊂C[z1, . . . , zM ] ⊗ C[zM+1, . . . , zN ]SN−M we have

Y ◦
m �t

ev= t (N−1)/2 xm,m+1 · · · xm M q̂ ′
m

m−1∏

k=1

(zk − zm)

M∏

l=m+1

(zm − zl)

× �t (z1, . . . ẑm . . . , zM ) x ′
m1 · · · x ′

m,m−1.

Step iv. Pulling the q-Vandermonde through further. Since

q̂ ′
m

m−1∏

k=1

(zk − zm)

M∏

l=m+1

(zm − zl) = t1−M
m−1∏

k=1

(t zk − zm)

M∏

l=m+1

(zm − t zl) q̂ ′
m

it remains to move xm,m+1 · · · xm M through

�t (z1, . . . , ẑm, . . . , zM )

m−1∏

k=1

(t zk − zm)

M∏

l=m+1

(zm − t zl) = t (M−1)/2 �t

M∏

l=m+1

zm − t zl

t zm − zl
.

This is done like in step ii: except for the factor t zm − zM , the latter is symmetric in
zm ↔ zM , while xm M (zm − t zM ) = (t zm − zM ) x ′

m M . Hence

xm,m+1 · · · xm M �t

M∏

l=m+1

t ′ zm − zl

t zm − zl
= · · · = �t x ′

m,m+1 · · · x ′
m M .

Putting everything together we arrive at (3.59). ��
The Y ′

m are simultaneously diagonalised by the nonsymmetric Macdonald polyno-
mials E ′

α , q ′ = t ′ = t−1. However, to make contact with the M-particle Macdonald
operators we need to act on symmetric polynomials, requiring conjugation by �1/t . By
Lemma 2.3 this changes the parameters once more, see (2.39), where now N � M ,
q � q ′ = t−1, t � t ′ = t−1. The new parameters q ′′ = q ′ = t−1 and t ′′ = q ′ t ′ = t−2

are related as q ′′ = t ′′α for α = 1/2.

Upshot. On polynomials divisible by the symmetric square of the q-Vandermonde and
of degree less than N in each variable the operator er (Y ◦

1 , . . . , Y ◦
M ) — in N variables,
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so (2.37) does not apply for M < N — is transformed, on shell, to a quantum spherical
zonal Macdonald operator in M variables:

er (Y ◦
1 , . . . , Y ◦

M ) �t �1/t q◦ = 1, t◦ = t
ev= tr (N−M)/2 �t er (Y ′

1, . . . , Y ′
M ) �1/t on C[z1, . . . , zM ]<N−2M+2 q ′ = t ′ = t−1

= tr (N−2M+1)/2 �t �1/t er (Y ′′
1 , . . . , Y ′′

M ) on C[z1, . . . , zM ]SM q ′′ = t ′′1/2 = t−1

(3.64)

The joint eigenfunctions of the er (Y ′′
1 , . . . , Y ′′

M ) = D′′
r (on valid on C[z1, . . . , zM ]SM )

are Macdonald polynomials (Sect. 2.1.2). Using the latter’s invariance under simul-
taneous inversion of both parameters (§VI.4 (iv) in [Mac95]) we conclude that the
polynomials we set out to find are

�̃ν = �t �1/t P ′′
ν = �t �1/t P�

ν ∈ C[z1, . . . , zM ]SM , �(ν) ≤ M, (3.65)

where finally q� = t�α = t , still for the quantum spherical zonal case α = 1/2. This
proves Theorem 1.7 from Sect. 1.2.3. Our derivation is valid provided P�

ν has degree
ν1 ≤ N − 2 M + 1 in each variable. This reproduces the motif condition, cf. the line
below (1.15).

3.2.4. Pseudo highest-weight property Let us show that our eigenvectors are pseudo
highest weight for Û, i.e. that they are annihilated by the Chevalley generators E sp

1 and
F̃ sp,◦
0 that come from theC-operator (see Sect. B.2). In the polynomial setting we have to

show that their simple component is annihilated by Epol
M and F̂pol,◦

M from (3.29)–(3.30).
This is Theorem 1.9 from Sect. 1.2.4:

Theorem 3.19. The simple component of our eigenvectors have the pseudo highest-
weight property

Epol
M �̃ν

ev= F̂pol,◦
M �̃ν

ev= 0 iff �(ν) = M. (3.66)

Proof. The Chevalley operators (3.29) and (3.30) simplify further on shell: by (3.40)
we have

Epol
M

ev= t (N−2M+1)/2 [N ]
N

( N∑

j=M

sM j

) M−1∏

m=1

fm M ,

F̂pol,◦
M

ev= t (N−2M+1)/2 [N ]
N

( N∑

j=M

sM j

) M−1∏

m=1

fMm .

Note the symmetry from (3.47). As (3.65) is invariant under inverting t the proof for the
two operators is parallel; we will give it for Epol

M . We use various ingredients from the
proof in Sect. 3.2.3.

The denominator of
∏

m fm M cancels with some factors of�t in (3.65). On functions
independent of zM+1, . . . , zN we can replace sM j by rM j for j > M . Moreover, the
numerator of fm M vanishes if zM is replaced by zm with m ≤ M , so we can again
complete the sum:

Epol
M

ev= t (N−2M+1)/2 [N ]
N

( N∑

j=1

rM j

) M−1∏

m=1

fm M on C[z1, . . . , zM ]SM .
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When we act on polynomials that contain a factor of
∏M−1

m=1 (t zm − zM ) to cancel the
denominators of the fm M the result will again be a polynomial. Now take q = 0 in the
expressions (3.51) and (3.52) for the q-shift to get the ‘annihilator’

0̂i =
N∑

j=1

( N∏

k( �= j)

−zk

z j − zk

)
ri j on C[z1, . . . , zN ]<N

ev= 1

N

N∑

j=1

ri j .

Comparing this with our on-shell expression for Epol
M , and its analogue for F̂pol,◦

M , we
see that on the intersection

�t (z1, . . . , zM )�1/t (z1, . . . , zM ) C[z1, . . . , zM ]SM ∩ C[z1, . . . , zN ]<N

the action of both of these operators is proportional to the annihilator 0̂M . The latter can
be moved through (

∏
m(<M) fm M )�t �1/t and (

∏
m(<M) fMm)�t �1/t , which both

contain terms that do survive setting zM = 0.We conclude that on shell our eigenvectors
have pseudo highest weight for Û iff P�

ν has degree at least one in zM , i.e. iff �(ν) = M .
��

To conclude we prove that the Drinfeld polynomial of the Û-irrep determined by �̃ν

from (3.65) is given by (1.38).

Proof of Proposition 1.5. Wewill compute the ratio of eigenvalues of Ã◦(u) and D̃◦(u)

as in (1.53).Use the polynomial action (3.32) onour simple component (3.65) to calculate

Ãpol ◦
M (u) �̃ν = t M/2

M∏

m=1

1− u Y ◦
m

1− t u Y ◦
m

�t �1/t P�
ν

= t M/2 �t �1/t

M∏

m=1

1− t (N−2M+1)/2 u Y ′′
m

1− t (N−2M+3)/2 u Y ′′
m

P ′′
ν

= t M/2
M∏

m=1

1− t (N−4(M−m)−2νm−1)/2 u

1− t (N−4(M−m)−2νm+1)/2 u
�̃ν .

In the second equality we used (3.64) to move the symmetric combination of Y ◦
m through

the symmetric square of the q-Vandermonde factor, and in the second equality we used
(2.31) or (2.33) with N ′′ = M and q ′′ = t−1, t ′′ = t−2. With the help of the identifica-
tion (1.15) between the partition ν and motif μ we thus obtain the eigenvalue

αμ(u) = t M/2
M∏

m=1

1− t (N−2μm−1)/2 u

1− t (N−2μm+1)/2 u
.

Concerning D̃◦(u) we can avoid the complicated formula (3.32) by exploiting the
quantum determinant of L̃◦

a(u). By Û-invariance we may consider the pseudo highest-
weight vector |μ〉. On this vector (2.53) and (3.24) together imply

qdeta L̃◦
a(u) |μ〉 =

(
Ã◦(t u) D̃◦(u) − 0

)
|μ〉 = t N/2 �◦(−u)

�◦(−t u)
|μ〉 ,



136 J. Lamers, V. Pasquier, D. Serban

so the eigenvalue of D̃◦(u) is given by

δμ(u) = t N/2 �◦(−u)

�◦(−t u)
αμ(t u)−1.

Now compute the ratio in (1.53). First consider the empty motif, μ = 0. In this case
α0(u) = 1 and the only contribution comes from the quantum determinant,

α0(u)

δ0(u)
= t−N/2 �◦(−t u)

�◦(−u)
= t−N/2

N∏

i=1

1− t (N−2i+3)/2 u

1− t (N−2i+1)/2 u
.

Hence P0(u) = �◦(−u) = ∏N
i=1(1 − t (N−2i+1)/2 u). For any other motif we have to

correct the preceding by a factor of

αμ(u) αμ(t u) = t M
M∏

m=1

1− t (N−2μm−1)/2 u

1− t (N−2μm+1)/2 u

1− t (N−2μm+1)/2 u

1− t (N−2μm+3)/2 u
.

The numerator tells us which factors to delete from �◦(−u), yielding (1.38). ��
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A. Nonrelativistic/Isotropic Limit

A.1. Dunkl and Calogero–Sutherland limit. To facilitate comparison with the literature
on the Haldane–Shastry model let us review the nonrelativistic limit in some detail.
Setting q = tα and letting t → 1 the aha generators (2.4) and (2.17) behave as

T pol
i = si +

1

2
(t − 1)

(
1− zi + zi+1

zi − zi+1
(1− si )

)
+O(t − 1)2,

Yi = 1 + (t − 1) di +O(t − 1)2,

http://creativecommons.org/licenses/by/4.0/
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where the trigonometric Dunkl(–Cherednik) operators [Dun89,Che91] are

di := α zi ∂zi +
1

2

N∑

j ( �=i)

zi + z j

zi − z j
(1− si j ) − 1

2

i−1∑

j=1

si j +
1

2

N∑

j=i+1

si j

= α zi ∂zi +
1

2
(N − 2 i + 1) +

i−1∑

j=1

zi

zi − z j
(1− si j ) +

N∑

j=i+1

z j

zi − z j
(1− si j ).

(A.1)
This is the basic representation of the degenerate aha [Dri86,Lus89] whose relations
can be obtained by expanding (2.2) and (2.12) in t − 1. The si obey the relations ofSN ,
the di form an abelian subalgebra, while the cross relations read

si di − di+1 si = 1, si d j = d j si if j /∈ {i, i + 1}.

Note that shifts of the di by a common constant, which do not change the relations, occur
in the literature. In [BGHP93] the (A.1), which act on the space of polynomials, were
called ‘gauge transformed’ Dunkl operators.
The nonrelativistic limit of the Macdonald operators D±1 is obtained using

A±i (z) = 1± 1

2
(t − 1)

N∑

j ( �=i)

zi + z j

zi − z j

+
1

4
(t − 1)2

( N∑

j ( �=i)

(
∓ zi + z j

zi − z j
+
1

2

)
+

N∑

j �=k
( �=i)

zi + z j

zi − z j

zi + zk

zi − zk

)
+O(t − 1)3

along with (2.13) for q = tα , noting that z2i ∂2zi
= zi ∂zi (zi ∂zi − 1). The result is

D±1 = N ± (t − 1) α Pnr +
1

2
(t − 1)2 (α2 H eff,nr ∓ α Pnr) +O(t − 1)3. (A.2)

Here Pnr = ∑
j z j ∂z j is the nonrelativistic limit of (D1−D−1)/2, giving the usual total

momentum operator in multiplicative notation z j = e2π i x j /L . (This operator also arises
in the semiclassical limit of DN , cf. Sect. 3.2.1 and especially (3.38).) The combination
(D1 + D−1)/2 contains, besides the rest mass N (times m c2),

H eff,nr =
N∑

i=1

(
zi ∂zi

)2 + k
N∑

i< j

zi + z j

zi − z j
(zi ∂zi − z j ∂z j ) + εnr0

=
N∑

i=1

(
zi ∂zi

)2 − k
N∑

i=1

(N − 2 i + 1) zi ∂zi

+ 2 k
N∑

i< j

zi

zi − z j
(zi ∂zi − z j ∂z j ) + εnr0 ,

k = 1

α
, (A.3)
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where 2 εnr0 /k2 = (N
2

)
+
(N
3

) = N (N 2 − 1)/6 are tetrahedral numbers. We recognise
(A.3) as the effective (gauge-transformed) Hamiltonian of the trigonometric Calogero–
Sutherland model [Sut71,Sut72] in multiplicative notation. In terms of (A.1) we have

N∑

i=1

di = α Pnr,

N∑

i=1

d2
i = α2 H eff,nr on C[z]SN .

Joint eigenfunctions [Sut72] arise from Macdonald polynomials, cf. (2.35):

P(α)
λ (z) = lim

t→1
Pλ(z)|q=tα , P(α)

λ (z) = mλ(z) + lower. (A.4)

Here P(α)
λ are Jack polynomials in the (monic) ‘P-normalisation’ [Jac70,Mac95]. The

ground state is P(α)
0 (z) = 1 with energy εnr0 . Schur polynomials arise in the special case

α = k = 1, where the particles are free, as is clear from the following.
The physical nonrelativistic Hamiltonian Hnr is (1.19) with Pi j � 1. It is obtained
by either of expanding the Ruijsenaars operators (2.36) at t = 1 or conjugating (A.3)
by the square root of the nonrelativistic limit—use (z; q)∞/(qk z; q)∞ → (1 − z)k as
q → 1—of (2.34),

μnr
k (z) =

N∏

i �= j

(1− zi/z j )
k =

N∏

i< j

2
∣∣∣sin

xi − x j

2

∣∣∣
2k

, z j = ei x j . (A.5)

The square root of this measure is the ground-state wave function of Hnr, with energy
εnr0 = k2 N (N 2−1)/12. (Cf. Sect. 2.1.3: ε0 = [N ] = N + 1

2 (t −1)2 α2 εnr0 +O(t −1)3.)

A.2. Spin-Calogero–Sutherland limit. For the ‘nonrelativistic limit’ q = tα , t → 1, we
can use the results of Sect. A.1. We only need to determine the limit for the long-range
spin interactions from (3.20). This gives

Ř−1
(12··· j) t̂ α

j Ř(12··· j) = 1 +
1

2
(t − 1)2 2 α

j−1∑

i=1

−zi z j

(zi − z j )2
(1− Pi j ) +O(t − 1)3. (A.6)

The first nontrivial terms conveniently appear at order (t − 1)2, so we just have to
add these to (A.3) in order to get the effective Hamiltonian of the trigonometric spin-
Calogero–Sutherlandmodel. Conjugation by the ground-statewave function (A.5) yields
the physical Hamiltonian (1.19) derived in [BGHP93].
In this limit the physical space (3.3) describes bosons with spin-1/2 and coordinates z j :

H̃nr :=
N−1⋂

i=1

ker
(
Pi,i+1−si

) ∼= H ⊗
SN

C[z] = H/Nt=1 Nt=1 =
N−1∑

i=1

im(Pi,i+1−si ).

(A.7)
Physical vectors in the M-particle sector acquire the simple form

N∑

i1<···<iM

s{i1,...,iM }�̃(z) |i1, . . . , iM 〉〉, �̃(z) ∈ C[z]SM×SN−M ,
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where s{i1,...,iM }�̃(z) = �̃(zi1, . . . , ziM ; z j1 , . . . , z jN−M ) with jn labelling the compo-
nents of z not among the zi1 , . . . , ziM . The eigenvectors are thus obtained by embedding
the eigenfunctions of the spinless (scalar) Calogero–Sutherland model, cf. Sect. A.1.
The spin-Calogero–Sutherland model inherits the quantum-affine symmetry of spin-
Ruijsenaars in the form of a (double) Yangian symmetry, which can be described more
explicitly than in the q-case, cf. [HHT+92]. The isotropic limit of theR-matrix, cf. (2.48),
is

R
(
u = tλ

) → λ + P

λ + 1
, t → 1. (A.8)

B. More About the Spin Side

B.1. Stochastic twist. In Sect. 2.2 we chose a particular representation of the Hecke
algebra on H = V ⊗N . Another, slightly different choice is often used too. Generalise
(2.40) to

T sp :=

⎛

⎜⎜⎝

t1/2 0 0 0
0 t1/2 − t−1/2 tε/2 0
0 t−ε/2 0 0
0 0 0 t1/2

⎞

⎟⎟⎠ . (B.1)

Though this yields an action of HN on H for any value of ε we will only consider
ε ∈ {0, 1}. If ε = 0, as in the main text, T sp is symmetric (and hermitian if further
t1/2 ∈ R

×) while for ε = 1 its column sums are fixed. The two conventions are related
by a ‘gauge transformation’ or ‘stochastic twist’. Indeed, on V ⊗ V we have

T sp|ε=1 = θ2 T sp|ε=0 θ−1
2 , θ2 := k1/41 k−1/4

2 = diag(1, t1/4, t−1/4, 1), (B.2a)

where we recall that k = tσ
z/2 = diag(t1/2, t−1/2). This extends to H as

T sp
i |ε=1 = θN T sp

i |ε=0 θ−1
N , θN :=

N∏

i=1

k(N−2i+1)/4
i . (B.2b)

For ε = 0 expressions are a bit simpler, yet ε = 1 is nice from the following viewpoint:
it can be obtained from the polynomial Hecke action (2.4), as follows.17 Let us identify
the subspace C ⊕ C z = C[z]<2⊂C[z] with V ∗ via 1 ↔ 〈↑| (‘empty’) and z ↔ 〈↓|
(‘occupied’); the reason for the dualwill become clearmomentarily. Likewise, for N = 2
the subspace C[z1, z2]<2⊂C[z1, z2] can be thought of as H∗ = V ∗ ⊗ V ∗ under the
identification 1 ↔ 〈↑↑|, z2 ↔ 〈↑↓|, z1 ↔ 〈↓↑|, z1 z2 ↔ 〈↓↓|. The operator T pol

1 from
(2.4) preserves the total degree and thus this subspace, on which it acts by (2.40) for
ε = 1.
If we had used V and V ⊗ V rather than their duals we would have obtained the
transpose of (2.40). This is related to the observation that the decomposition of V ⊗ V
into eigenspaces V ⊗ V ∼= Sym2

t (V ) ⊕ �2
t (V ),

Sym2
t (V ) = C |↑↑〉 ⊕ C

(
t (ε+1)/4 |↑↓〉 + t−(ε+1)/4 |↓↑〉) ⊕ C |↓↓〉,

�2
t (V ) = C

(
t (ε−1)/4 |↑↓〉 − t−(ε−1)/4 |↓↑〉),

17 We should point out xi j from (2.16) likewise yields P T sp, the R-matrix of U up to a factor of t−1/2, yet
the ‘physical condition’ from Sect. 3.1.1 does not imply that the two coincide on the physical space H̃.
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is somewhat unsatisfactory at ε = 1 in that ts feature in the q-symmetric (‘triplet’)
eigenspace, rather than the q-antisymmetric (‘singlet’) eigenspace as in the polynomial
case (2.8). However, the dual eigenspace decomposition is entirely analogous to (2.8)
when ε = 1:

Sym2
t (V ∗) = C 〈↑↑| ⊕ C

(
t−(ε−1)/4 〈↑↓| + t (ε−1)/4 〈↓↑|) ⊕ C 〈↓↓|,

�2
t (V ∗) = C

(
t−(ε+1)/4 〈↑↓| − t (ε+1)/4 〈↓↑|). (B.3)

In the remainder of this appendix we give the ε-generalisations of the spin expressions
from the main text. The Temperley–Lieb generators (2.43) now feature

esp =
⎛

⎜⎝

0 0 0 0
0 t−1/2−tε/2 0
0−t−ε/2 t1/2 0
0 0 0 0

⎞

⎟⎠ . (B.4)

For ε = 1 the column sums vanish: the matrix is stochastic. This plays an important
role in the connection with models in quantum-integrable stochastic models such as the
asymmetric exclusion process (asep) [GS92].
Inserting ε as in (B.2) the action (2.46) of U on H becomes

E sp
1 =

N∑

i=1

t+ε (N−2i+1)/4k1 · · · ki−1 σ +
i ,

F sp
1 =

N∑

i=1

t−ε (N−2i+1)/4 σ−
i k−1

i+1 · · · k−1
N ,

K sp
1 = k1 · · · kN . (B.5)

Any operator that is U-invariant and annihilates 〈〈∅| = 〈↑ · · · ↑| is stochastic. Indeed,

(1, 1, . . . , 1) = 〈↑ · · · ↑| exp(S+) = 〈↑ · · · ↑|
N∑

n=0

t−n (N−n)/4

[n]!
(
E sp
1 |ε=1

)n

then is a t-independent (left) eigenvector with eigenvalue zero. But acting on this vector
from the right is nothing but computing the column sums.
Now we move to the affine setting (Sect. 2.2.2). The (minimal) affinisation (2.47) be-
comes

E inh
0 =

N∑

i=1

t−ε (N−2i+1)/4 zi k−1
1 · · · k−1

i−1 σ−
i ,

F inh
0 =

N∑

i=1

t+ε (N−2i+1)/4 z−1
i σ +

i ki+1 · · · kN ,

K inh
0 = k−1

1 · · · k−1
N . (B.6)

Baxterisation (2.48) gives the R-matrix

Ř(u) = t1/2
u T sp − T sp−1

t u − 1
= f (u) T sp +g(u) =

⎛

⎜⎝

1 0 0 0
0 u g(u) tε/2 f (u) 0
0 t−ε/2 f (u) g(u) 0
0 0 0 1

⎞

⎟⎠ . (B.7)
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If ε = 0 the R-matrix is hermitian when t1/2 ∈ R
× and u ∈ S1⊂C; for ε = 1

its column sums equal unity. The monodromy matrix (2.54) is defined as before. Its
quantum determinant

qdeta L inh
a (u) = A(t u) D(u) − t(1−ε)/2 B(t u) C(u) = D(t u) A(u) − t−(1−ε)/2 C(t u) B(u)

= A(u) D(t u) − t(1+ε)/2 C(u) B(t u) = D(u) A(t u) − t−(1+ε)/2 B(u) C(t u)

is, perhaps somewhat surprisingly, proportional to K sp
1 when ε = 1:

qdeta L inh
a (u) =

N∏

i=1

qdeta Rai (u/zi ) = t N/2
N∏

i=1

u − zi

t u − zi
(K sp

1 )ε.

Indeed, (B.2) holds for Ř too. But P θ2 = θ−1
2 P so R(u) = P Ř(u) obeys R(u)|ε=0 =

θ2 R(u)|ε=1 θ2. Thus qdeta Rai (u)|ε=1 = ki qdeta Rai (u)|ε=0 since qdet θ2 = k1/2.
Now we move to the spin chain. As any operator built from the Hecke operators or R-
matrix the spin-chainHamiltonians inherit the property (B.2). For ε = 0 theHamiltonian
Hl|tε=0 = Hl|ε=0 is hermitian [Lam18] if t1/2 ∈ R

×. For ε = 1, instead, it is stochastic.
The entries of our Hamiltonian depend on the coordinates z j and are complex in general,
so it is less clear how they canbe interpreted as transition amplitudes; thoughprobabilistic
models with complex weights have been considered in the literature [PRV20].
The choice ε = 1 allows for a simple way to understand the very mild dependence of
the Hamiltonian on the sign of t1/2 = q, reflected in the dependence of (1.44) on t = q2

rather t1/2. Indeed, the potential (1.22) clearly depends on t . The same is true for the
R-matrix (B.7) when ε = 1. The Temperley–Lieb generator (B.4) for ε = 1 instead
acquires a sign if q �→ −q, while [N ] �→ (−1)N+1 [N ]. This proves that

Hl
∣∣
q �→−q = (−1)N Hl if ε = 1. (B.8)

Thephysical vectors (Sect. 3.1.1) change a little aswell.By (B.1)wenowhaveT sp |↓↑〉 =
tε/2 |↑↓〉 and 〈↓↑| T sp = t−ε/2〈↑↓|. Hence (3.11) becomes

∑

w∈SN /(SM×SN−M )

tε �(w)/2 T pol
w �̃(z) |w 1, . . . , w M〉〉

and ∑

w∈SN /(SM×SN−M )

t−ε �(w)/2 〈〈w 1, . . . , w M| T pol
w �̃(z)

where w = {i1, . . . , iM } from (1.40) has length �(w) = ∑M
m=1(im − m).

Finally consider the crystal limit (Sect. 1.2.5). For ε = 1 the limits

esp

[2] →
{(|↓↑〉 − ε |↑↓〉) 〈↓↑|, t → ∞,(|↑↓〉 − ε |↓↑〉) 〈↑↓|, t → 0,

are no longer diagonal to ensure stochasticity. This is inherited by the long-range spin
interactions, with a strictly triangular part when ε = 1 that depends on j for Sl[i, j] and
on i for Sr[i, j]. The Hamiltonians thus acquire off-diagonal corrections to (1.54).
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B.2. Relation between presentations. Consider the six-vertex R-matrix

R(u) = P Ř(u) = 1

t u − 1

⎛

⎜⎜⎝

t u − 1 0 0 0
0 t (1−ε)/2 (u − 1) t − 1 0
0 (t − 1) u t (1+ε)/2 (u − 1) 0
0 0 0 t u − 1

⎞

⎟⎟⎠ ,

where we included ε ∈ {0, 1} in accordance with Sect. B.1. In Sect. 2.2.2 we consider
the monodromy matrix (2.54) for N sites with inhomogeneities z1, . . . , zN ,

L inh
a (u) = L inh

a (u; z) = RaN (u/zN ) · · · Ra1(u/z1). (B.9)

This operator obeys the RLL-relations, yielding a finite-dimensional representation of Û
in the frt presentation.
The Chevalley generators of the Drinfeld–Jimbo presentation arise by expanding in u
around 0 and ∞. Viewed as a (formal) power series in u±1 the R-matrix has the form

R(u) =
(

t (1−ε)/4 k−(1−ε)/2 +O(u) (1− t) σ− +O(u)

(1− t) u σ + +O(u2) t (1+ε)/4 k(1+ε)/2 +O(u)

)

=
(

t−(1+ε)/4 k(1+ε)/2 +O(u−1) (1− t−1) u−1 σ− +O(u−2)

(1− t−1) σ + +O(u−1) t−(1−ε)/4 k−(1−ε)/2 +O(u−1)

)
,

(B.10)

where k = diag(t1/2, t−1/2). (If we had removed the denominator of the R-matrix
these would correspond to the highest and lowest orders in u.) Consider the Gauss
decomposition of the monodromy matrix likewise expanded in u±1 to get two operators

L±
a (u) =

(
A±(u) B±(u)

C±(u) D±(u)

)

a
=
(
1 f±(u)

0 1

)

a

(
k±0 (u) 0
0 k±1 (u)

)

a

(
1 0

e±(u) 1

)

a
.

For (B.9) use (B.10) to recover the Û-representation (B.5), (B.6) at the lowest order:

e+,sp(u) = −t−ε (N+1)/4 (t − 1) u K inh
0 F inh

0 +O(u2),

f+,sp(u) = −t−ε (N+1)/4 (t1/2 − t−1/2) F sp
1 +O(u),

k+,sp
0 (u) = t (1−ε) N/4 (K inh

0

)(1−ε)/2 +O(u),

k+,sp
1 (u) = t (1+ε) N/4 (K sp

1

)(1+ε)/2 +O(u),

and
e−,sp(u) = t−ε (N+1)/4 (t1/2 − t−1/2) E sp

1 +O(u−1),

f−,sp(u) = t−ε (N+1)/4 (1− t−1) u−1 E inh
0

(
K inh
0

)−1 +O(u−2),

k−,sp
0 (u) = t−(1+ε) N/4 (K inh

0

)−(1+ε)/2 +O(u−1),

k−,sp
1 (u) = t−(1−ε) N/4 (K sp

1

)−(1−ε)/2 +O(u−1).

See also Appendix A of [JKK+95b], which contains the Drinfeld presentation via cur-
rents as well.
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C. Glossary

The symbols in this glossary are ordered (approximately) alphabetically according to
the English spelling of its pronunciation; for example, ω can be found under ‘o’.

A(u) quantum operator (entry of La(u)): (1.53), (2.51), (3.32)
ai j := a(zi/z j ), a(u) = 1/ f (u) rational function: (2.6)
affine Hecke algebra (aha) ĤN = ĤN (t1/2): (2.12), (2.18)
AJ (z), A j (z), A−I (z), A−i (z) coefficients of Macdonald operators: Sects. 1.3.2,
2.1.2, 3.1.2
α = 1/k Jack parameter (p = q2α , q = tα): Sect. 1.1.4, Fig. 5, Appendix A
α, β compositions

α+ corresponding partition
αμ(u) eigenvalue of A(u): (1.38), Sect. 3.2.4

B ∼= H̃ physical (q-bosonic) space: Sect. 1.3.1, Sect. 3.1.1: (3.3), (3.6), (3.9)
B(u) quantum operator (entry of La(u)): (1.53), (2.51), (3.32)
bi j := b(zi/z j ), b(u) = −g(u)/ f (u) rational function: (2.6)

C(u) quantum operator (entry of La(u)): (1.53), (2.51), (3.32)
C[z] := C[z1, . . . , zN ] ring of polynomials: start of Sect. 2.1

C[z]M := C[z1, . . . , zN ]SM×SN−M polynomial analogue of HM : (3.12)
C[z]SN := C[z1, . . . , zN ]SN ring of symmetric polynomials: start of Sect. 2.1,
(2.11), (2.21)

χ := |↓↑〉〈↓↑| = diag(0, 0, 1, 0) : Sect. 1.2.5
Chevalley generators: (2.44)–(2.45), start of Sect. 2.2.2, Sect. B.2

E inh
0 , F inh

0 , K inh
0 minimal affinisation: (2.47), (B.6)

Ẽ sp
0 , F̃ sp

0 , K̃
sp
0 with Yi instead of 1/zi : (3.25)

Êpol
M , F̂pol

M , K̂
pol
M its induced action on polynomials: (3.26), (3.28), (3.30)

E sp
1 , F sp

1 , K sp
1 spin representation: (2.46), (B.5)

Epol
M , Fpol

M , K pol
M its induced action on polynomials: (3.26), (3.27), (3.29)

· ◦ := · |q=1 classical limit: (3.34): Sect. 1.2.4, start of Sect. 1.3.4, Table 4, (3.34)
coordinate basis |i1, . . . , iM 〉〉 = σ−

i1
· · · σ−

iM
|↑ · · · ↑〉: (1.13)

D(u) quantum operator (entry of La(u)): (1.53), (2.51), (3.32)
δM := (M − 1, M − 2, · · · ) staircase partition of length M − 1: (1.15)
�t (z) q-Vandermonde polynomial: (2.9)
�(u) generating function of Macdonald operators: (2.20)

�̃(u) its spin-generalisation: (3.21)
δ := ∂/∂q|q=1 semiclassical limit: start of Sect. 1.3.4, (3.34)
δμ(u) eigenvalue of A(u): (1.38), Sect. 3.2.4
di Dunkl operator (nonrelativistic limit of Yi ): (A.1)
dominance order: (2.30)

D±r Macdonald operators: Sect. 2.1.2
D̃±r their spin-generalisations: Sect. 1.3.2, Sect. 3.1.2
DRui±r Ruijsenaars’s hermitian form: (2.36), (A.3)
their eigenvalues �r (λ): (2.33), Sect. 3.2.1
their nonrelativistic limit: (A.3)

Drinfeld polynomial Pμ(u): (1.38), (1.53), Sect. 3.2.4
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Eα(z) := Eα(z; q, t) nonsymmetric Macdonald polynomial: (2.31)
E•(μ) spin-chain energy

E full(μ) for H full = (Hl + Hr)/2: Fig. 4, (1.32)
El(μ) for Hl = H1: (1.28), Fig. 4, Sect. 3.2.1
Ehs(μ) for Haldane–Shastry: (1.7)
Er (μ) for Hr : (1.78), cf. (1.80)
Er(μ) for Hr = HN−1: (1.30), Fig. 4, Sect. 3.2.1

E•• : see Chevalley generators
ei (e

sp
i ) (spin representation of) Temperley–Lieb generator: (1.26), (2.42)–(2.43),

(2.58)
eλ(z), er (z) elementary symmetric polynomials: (1.65)

er (Y) elementary symmetric polynomials in the Yi : (2.20)
its evaluation: (3.53)

ε ∈ {0, 1} parameter in Sect. B.1
ε•(μm) spin-chain dispersion: see E•
|∅〉〉 = |↑ · · · ↑〉 pseudovacuum: see |i1, . . . , iM 〉〉
evω : z j �→ ω j , ω = e2π i/N , evaluation: (1.2), (3.39), (3.53)–(3.54)

Õ1
ev= Õ2 on-shell equality

F•• : see Chevalley generators
fi j := f (zi/z j ), f (u) = 1/a(u) rational function: (1.23), (2.49)
G q-translation operator: (1.34), Proposition 3.11

Ḡ its crystal limit: (1.59)
gi j := g(zi/z j ), g(u) = −b(u)/a(u) rational function: (1.23), (2.49)

H := V ⊗N , V := C |↑〉 ⊕ C |↓〉, spin-chain Hilbert space: start of Sect. 1.1, start
of Sect. 2.2

HM := ker
[
Sz − ( 1

2 N − M
)]

its M-particle sector (weight space): (1.12)
Hμ joint eigenspace of abelian symmetries, irrep for nonabelian symmetries:
Sect. 1.2.2

H̃ ∼= B physical (q-bosonic) space: Sect. 1.3.1, Sect. 3.1.1: (3.3), (3.6), (3.9)
H̃M its M-particle sector (weight space): (3.10), (3.12)
H̃nr its nonrelativistic/isotropic limit: (A.7)
H̃[z] := H⊗ C[z1, . . . , zN ] its ambient vector space: (3.1)

H• Hamiltonian
H eff,nr effective Calogero–Sutherland: (A.3)
H full = (Hl + Hr)/2 q-deformed Haldane–Shastry (full Hamiltonian): (1.31)
Hl = H1 q-deformed Haldane–Shastry: (1.20), (3.41)

H̄l its crystal limit: (1.54), (1.55)
its braid limit: (1.33)
its stochastic version: Sect. B.1
its symmetry in q �→ −q: (B.8)

H̃nr spin-Calogero–Sutherland: (1.19)
Hhs (q = 1) Haldane–Shastry: (1.3)
Hr = HN−1 q-deformed Haldane–Shastry (opposite chirality): (1.29), (3.44)

H̄r its crystal limit: (1.54), (1.55)
Hr higher Hamiltonians: (1.77), (1.79)
Hxxz Heisenberg Hamiltonians: Sect. 2.2.3, cf. (1.33)

HN := HN (t1/2) Hecke algebra: (2.2)
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ĤN := ĤN (t1/2) affine Hecke algebra (aha): (2.12), (2.18)
|i1, . . . , iM 〉〉 := σ−

i1
· · · σ−

iM
|↑ · · · ↑〉 coordinate basis: (1.13)

{i1, . . . , iM } ∈ SN /(SM ×SN−M ) Grassmannian permutation: (1.40), (3.11)
induced action on polynomials: : Corollary to Proposition 1.15, (3.13)

Jack polynomial: see P(α)
λ (z)

K •• : see Chevalley generators
k = tσ

z/2 = diag(t1/2, t−1/2): Sect. 2.2.1
k = 1/α reduced coupling (p = q2/k , q = t1/k): (1.19), Appendix A
L-operator: Sect. 2.2.2, Sect. B.2

La(u) = evω L̃◦
a(u) for q-deformed Haldane–Shastry: (1.50), (1.51), (3.46)

L inh
a (u) = RaN (u/zN ) · · · Ra1(u/z1) for inhomogeneous xxz: (2.54), (B.9)

L̃a(u) = RaN (u YN ) · · · Ra1(u Y1) for spin-Ruijsenaars: (3.22), (3.32)
λ partition

λ′ = μ+ (conjugate) partition associated to μ ∈ MN : (1.63)
|λ| := ∑

λi its weight
λ ≥ ν dominance ordering: (2.30)

�r (λ) eigenvalues of Macdonald operators: (2.33), Sect. 3.2.1
�(μ), �(λ) length (number of nonzero parts)

M-particle sector (weight space)
of spin-chain Hilbert space HM := ker

[
Sz − ( 1

2 N − M
)]
: (1.12)

of physical space H̃M : (3.10), (3.12)
mλ(z) monomial symmetric polynomial: (1.66), cf. (2.35)
MN set of all motifs (for N sites): (1.5)
Macdonald operator: see Dr , Sect. 2.1.2
Macdonald polynomial: see Eα(z) (nonsymmetric), Pλ(z) (symmetric)
monodromy matrix: see L-operator
μ ∈ MN motif: (1.5)

μ+ = λ′ = ν + 2 δ�(μ) corresponding partition: (1.15), (1.63)
|μ| := ∑

μi its weight
|μ〉 our pseudo highest-weight eigenvectors: (1.43), (1.44)
|μ〉〉 crystal limit of |μ〉: (1.62)

μq,t (z) Macdonald measure: (2.34), (2.36)
μnr

k (z) its nonrelativistic limit: (A.5)

N number of sites/particles
[n] Gaussian integer: (1.21), (2.1)
ν partition associated to μ ∈ MN : (1.15)
ω = e2π i/N , primitive N th root of unity
Õ physical operator: Sect. 1.3.1, end of Sect. 3.1.1

Õ◦ := Õ|q=1 its classical limit: (3.34)
δÕ := ∂ Õ/∂q|q=1 its semiclassical limit: (3.34)

Õpol
M,M ′ its induced action on polynomials: Corollary to Proposition 1.15, (3.13)

on shell (upon evaluation): see evω

p(μ) q-momentum (setting the eigenvalue of G): (1.60)
p = q parameter: see q
Pi, j = (1 + 	σi · 	σ j )/2 spin representation of permutation: start of Sect. 1.1
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Pλ(z) := Pλ(z; q, t) (symmetric) Macdonald polynomial: (2.32), (2.33), (2.35),
Fig. 5

P(α)
λ (z) its Jack limit: (1.16), (A.4)

P�
λ (z) := Pλ(z; t, t2) its quantumzonal spherical special case: (1.44), Sect. 1.2.6,

(3.65)
pλ(z), pr (z) power sum: (3.49)
Pμ(u) Drinfeld polynomial: (1.38), (1.53), Sect. 3.2.4
physical (q-bosonic) space H̃ ∼= B: Sect. 1.3.1, Sect. 3.1.1: (3.3), (3.6), (3.9)

physical operator: Sect. 1.3.1, end of Sect. 3.1.1
physical vector: (1.68), (3.11)

pseudo highest weight (l-highest weight): Sect. 3.2.4
�ν(i1, . . . , iM ) := 〈〈i1, . . . , iM |μ〉 wave function for |μ〉: (1.43), cf. (1.47)
�̃ν(z1, . . . , zM ) polynomial determining pseudo highest-weight vectors: (1.44),
(3.65)
|�̃(z)〉 physical vector: (1.68), (3.11)

q = p parameter: start of Sect. 2
its physical interpretation: start of Sect. 1.3.2, start of Sect. 1.3.4, start of Sect. 3.2,
Appendix A
q◦ = 1 its classical value: Sect. 1.2.4, Sect. 1.3.5, (3.64)
q̂i : zi �→ q zi difference operator (q-shift): (1.69), (2.13), (3.51), (3.52)
q� = (t�)1/2 = t its quantum zonal spherical value: Theorem 1.7, Sect. 1.3.5,
Fig. 5, (3.65)

q = t1/2 deformation parameter: see t
q-deformed Dunkl operator: see Yi
q-momentum (setting the eigenvalue of G) p(μ): (1.60)
q-translation operator G: (1.34), Proposition 3.11
q-Vandermonde polynomial �t (z): (1.44), (2.9)
qdeta La(u) quantum determinant: (2.53), (2.55), (3.24),
rmj : zm �→ z j replacement map: (3.50)

Ř(u) R-matrix (braid-like form, homogeneous gradation): (1.23), (2.48), (B.7)
R(u) = P Ř(u) R-matrix: (1.50), (2.54), (B.9),
Řw = sw−1 stotw : (3.16), (3.17), Lemma 3.9, Proof of Proposition 3.11

semiclassical limit δ := ∂/∂q|q=1: start of Sect. 1.3.4, (3.34)
si = si,i+1 : zi ↔ zi+1 generator of SN in polynomial representation: start of
Sect. 2.1
σ±, σ z Pauli matrices: start of Sect. 1.1, (1.8)

stoti := si Ři,i+1(zi/zi+1) generator of SN in diagonal representation on H[z]:
(3.8)

Sl[i, j], Sr[i, j] q-deformed exchange interaction: (1.24), (1.27), (1.29)
sλ Schur polynomial: (1.61) , (1.67)
simple component 〈〈1, . . . , M |�〉: (3.12), Sect. 1.3.1
SN symmetric group: start of Sect. 2.1.1
S±, Sz (spin representation of) generators of sl2: (1.8)

t = q2 deformation parameter: start of Sect. 2
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its physical interpretation: start of Sect. 1.3.2, start of Sect. 1.3.4, start of Sect. 3.2,
Appendix A
t� = (q�)2 = t2 its quantum zonal spherical value: Theorem 1.7, Sect. 1.3.5,
Fig. 5, (3.65)

Ti Hecke generator: Sect. 2.2.1
T pol

i its polynomial (Demazure–Lusztig) representation: (1.41), (2.4), (2.7)
T sp

i its spin representation: (2.40), (B.1), (1.33)
T tot

i its diagonal representation (on H[z]): (3.5)

TN (β) Temperley–Lieb algebra: (2.42)
U := Uq(sl2) quantum sl2: (2.44)
Û := Uq(L gl2) = U ′

q(ĝl2)c=0 quantum-loop algebra of gl2: Sect. 1.2.2, Sect. 1.2.4,
Sect. 2.2.2

V = C |↑〉 ⊕ C |↓〉 one-site Hilbert space: start of Sect. 1.1, start of Sect. 2.2
V (zi , z j ) potential: (1.22), Fig. 3, proof, (3.36)
w ∈ SN permutation
xi j triangular building blocks of the Yi : (1.49), (2.16)
Yi q-deformed Dunkl operator (Y -operator): (1.75), (2.15), (2.17)

its eigenvalues: (2.31)
Y ◦

i its classical limit (no difference part): (1.49), Sect. 3.2.3

zα = zα1
1 · · · zαN

N monomial:
its (dominance) ordering: (2.30)

0̂i annihilator: Sect. 3.2.4
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