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Abstract: We apply the technique of convex integration to obtain non-uniqueness and
existence results for power-law fluids, in dimension d ≥ 3. For the power index q
below the compactness threshold, i.e. q ∈ (1, 2d

d+2 ), we show ill-posedness of Leray–
Hopf solutions. For a wider class of indices q ∈ (1, 3d+2

d+2 ) we show ill-posedness of
distributional (non-Leray–Hopf) solutions, extending the seminal paper of Buckmaster
& Vicol [10]. In this wider class we also construct non-unique solutions for every datum
in L2.

1. Introduction

This paper studies non-uniqueness and existence of solutions of the following model of
non-Newtonian flows in d dimensions, d ≥ 3

∂tv + div (v ⊗ v)− divA(Dv) + ∇π̃ = 0,

div v = 0,

vt=0 = v0,

(1)

where the velocity field v and and the pressure π̃ are the unknowns, Dv = 1
2 (∇v+∇T v),

and the non-Newtonian tensor A is given by the following power law

A(Q) = (ν0 + ν1|Q|)q−2Q, (2)
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for some ν0, ν1 ≥ 0 and q ∈ (1,∞). A natural energy associated with the system (1) is

e(t) =
∫
|v(t)|2 + 2

∫ t

0

∫
A

(
Dv(s)

)
Dv(s)ds. (3)

Let us consider a distributional solution v to (1), (2) with spatial mean zero, on a d-
dimensional flat torus. The formula (3) together withA(Q)Q ∼ |Q|q explains why v ∈
L∞(L2) ∩ Lq(W 1,q) is called an energy solution. If such solution satisfies additionally
the energy inequality e(t) ≤ e(0) (t-a.e.), then it is called a Leray–Hopf solution.

For the problem (1) we show two non-uniqueness and one existence result. In short:

(A) In the regime 1 < q < 2d/(d + 2): There are non-unique Leray–Hopf solutions.
(B) In the regime 1 < q < (3d+2)/(d+2): There are non-unique distributional solutions

dissipating the kinetic part of the energy.
(C) In the regime 1 < q < (3d + 2)/(d + 2): For any initial datum a ∈ L2 there are

infinitely many distributional solutions of the Cauchy problem.

Our results are sharp concerning the power-law index q. The regime 1 < q <

(3d + 2)/(d + 2) includes the case of the incompressible Navier–Stokes equation in
d ≥ 3. The precise formulations can be found in Sect. 1.3.

1.1. Background of power-law flows. Model (1)with a slightly different choice ofA(Q),
namely

A(Q) = (ν0 + ν1|Q|q−2)Q, (4)

with q ≥ 2 was introduced to wide mathematical community by Ladyzhenskaya at her
1966Moscow ICM speech; her formula (30) in [24] corresponds exactly to (1), (4).With
q = 2, both models (1), (2) and (1), (4) reduce to the (incompressible) Navier–Stokes
equations.

The Ladyzhenskaya’s choice: (4) with q ≥ 2 and our (2) with q ≥ 2 are analytically
equivalent. In particular, the non-Newtonian tensor A(Q) is in both cases nonsingular
at Q = 0, and distributional solutions are well-defined for velocity fields in the class

v ∈ L2
loc, Dv ∈ Lq

loc. (5)

The difference between (4) and (2) plays a role for q < 2. Firstly, ν0 + ν1|Q|q−2 of (4)
is singular at |Q| = 0, while our (ν0 + ν1|Q|)q−2 for ν0 > 0 is not. More importantly, in
(4) a linear dissipation is present. Thus, distributional solutions to (1)–(4) make sense
provided Dv ∈ L2

loc. So the choice (2) isolates the ‘pure Lq -dissipation’ behaviour,
while (4) involves ‘L2-Lq dissipation’.

Ladyzhenskaya’s rationale for analysing (1) was twofold: on the one hand, relaxation
q ≥ 2 helps to avoid the traps of the Navier–Stokes case q = 2. At the same time, the
choice of power-laws for the tensorA is both consistentwith first principles of continuum
mechanics and widely used in applications. Let us elaborate on each of these points.

The model (1) with power-law for A of type (2) or (4) agrees with the constitutive
relations for incompressible, viscous fluids. Recall that in deriving the Navier–Stokes
equation one restricts the admissible relations between the Cauchy stress tensor T and D
(dictated by thematerial frame indifference) by theAnsatz of linear dependence between
T and D (i.e. by the Stokes law), cf. [22]. The power law model relaxes this Ansatz, but
remains well within the frame indifference principle.
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Of course studying an arbitrarymodel that ismerely consistentwith the first principles
may be applicationally void. This is not the case of (1) however. The power-laws have
been proposed independently in 1920’s by Norton [33] in metallurgy and by de Waele
[19] and Ostwald [34] in polymer chemistry. The related timeline can be found in section
1 of [36]. For details, the interested readermay consult also themonographs [3,28,37,38]
and the recent survey [4] with its references. Just in order to fix the hydrodynamical
intuition, let us observe that q < 2 in (1) models the case when the fluid is more viscous
(roughly, ‘solid-like’) for small shears (‘external forces’) and less viscous (‘liquid-like’)
for large shears e.g. ice pack, ketchup, emulsion paints, hair gel, whereas q > 2 means
reverse behavior e.g. cornstarch-water solution, silicone-based solutions.

Let us note that, despite the mathematical interest in q ≥ 2 in context of gaining
regularity compared toNavier–Stokes equations, the ‘shear-thinning’ case q ≤ 2 appears
to be more meaningful for applications, where models of type (1) with ν0 > 0 appear
as Bird-Carreau-Yasuda models (or called by a subset of those names). In particular,
experimental fits for the threshold value 6/5 and above can be found on p. 174 of [3].
Furthermore, even parameter choices well-into our Leray–Hopf non-uniqueness regime
are suggested, cf. p.18 of [39]. (In both [3] and [39] n = q − 1, d = 3. A discrepancy
between appearing there a and our model is insignificant for our results.)

From the applicational perspective, our result may be seen as invalidating certain
choices of parameters and data.

1.2. Essential analytical results for power-law fluids. Consider the system (1), (2). For
q > 2d

d+2 the spaceW 1,q of system’s energy embeds compactly into L2
loc of the convective

term div (v ⊗ v). Hence one may expect an existence proof of Leray–Hopf solutions
via compactness methods. Indeed, a relevant statement can be found in [20], which is
itself the final step in a chain of attempts of many authors, including Frehse and Nečas
with collaborators [21,29] to improve the lower bound on q. To be precise, the energy
inequality e(t) ≤ e(0) is not stated explicitly in [20]; however it can be proven e.g. along
the lines of proof of Theorem 3.3 of [4].

Observe that (1) with ν0 = 0 is invariant under the scaling

vλ := λαv(λx, λα+1t) with α = q − 1

3− q
. (6)

Consequently, the energy of vλ vanishes on small scales iff q < 3d+2
d+2 . This suggests

that the case q ≥ 3d+2
d+2 of (1) is a perturbation of the problem (1) without the convective

term. Indeed, for q ≥ 3d+2
d+2 uniqueness in the energy class (at least for tame initial data)

holds, cf. [28], section 5.4.1; see also [11].
What is known about existence and uniqueness of solutions to (1) can be thus sketched

as follows

1.3. Our contribution. The short version of our results presented at the very beginning
of the paper, recast graphically to facilitate comparison with Fig. 1, reads

Observe that Fig. 2 complements Fig. 1 sharply with respect to q.
Let us now present the detailed statements of our results. We always consider system

(1) on the d-dimensional flat torusTd , with v having its spatial mean zero, and we define
the notion of distributional solution in the usual way.
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Fig. 1. Known results

Fig. 2. Our results

Definition 1. Let q ∈ (1,∞). A vector field v ∈ L2
loc(T

d × (0, 1)) with Dv ∈
Lmax{1,q−1}

loc (Td× (0, 1)) is a distributional solution to (1), (2) on the space-time domain
T

d × (0, 1) if

∫ 1

0

∫
Td
−v · ∂tϕ − v ⊗ v∇ϕ +A(Dv)∇ϕ = 0, ∀t∈[0,1]

∫
Td

v(t) · ∇ψ = 0

for any divergence-free ϕ ∈ C1(Td × [0, 1]) vanishing at t = 0 and t = 1, and any
ψ ∈ C1(Td).

The condition Dv ∈ Lmax{1,q−1}
loc guarantees that A(Dv) ∈ L1

loc.

1.3.1. Non-uniqueness in the Leray–Hopf class Our first theorem and its corollary show
that below the compactness exponent, i.e. for q < 2d

d+2 , multiple Leray–Hopf solutions
may emanate from the same L2 initial data. In fact, we produce solutions v ∈ C(L2) ∩
C(W 1,q) with quite arbitrary pre-determined profile e of the (total) energy (3).



Non Uniqueness of Power-Law Flows 203

Theorem A. Consider (1), (2) on the space-time domain T
d × (0, 1). Let q < 2d

d+2 .
Fix an arbitrary e ∈ C∞([0, 1]; [1/2, 1]). There exists v ∈ C([0, 1]; L2(Td)) ∩
C([0, 1];W 1,q(Td)) such that

(1) v solves (1) distributionally;
(2) the total energy equals e, i.e.

∫
Td
|v|2(t) + 2

∫ t

0

∫
Td

A(Dv)Dv = e(t). (7)

Moreover, fix 0 ≤ T1 < T ≤ 1 and two energy profiles e1, e2 as above, such that e1(t) =
e2(t) for t ∈ [0, T ]. There exists v1, v2 satisfying (1), (2) and such that v1(t) = v2(t)
for t ∈ [0, T1]. In particular, choosing T1 = 0, T = 1/2 and e1, e2 to be as above, non-
increasing and e1 �≡ e2, the corresponding v1, v2 are two distinct Leray–Hopf solutions
with the same initial datum.

Analysing the proof of Theorem A one realises that choosing an infinite family of non-
increasing energy profiles {eα}α∈A with a common C1 bound, one can produce infinitely
many distinct Leray–Hopf solutions with the same initial datum.

1.3.2. Non-uniqueness of distributional solutions If we drop the ambition to control the
energy and require only to pre-determine the profile of the kinetic part of the energy∫
Td |v|2(t), then we produce non-unique solutions for exponents below the scaling-
critical one, i.e. for q < 3d+2

d+2 . Moreover, they enjoy the regularity v ∈ C(L2)∩C(W 1,r )

for any r < 2d
d+2 . This is our second result.

Theorem B. Consider (1), (2) on T
d × (0, 1). Let q < 3d+2

d+2 . Fix any e ∈
C∞([0, 1]; [1/2, 1]) and r ∈ (max{1, q − 1}, 2d

d+2 ). There exists null-mean v ∈
C([0, 1]; L2(Td)) ∩ C([0, 1];W 1,r (Td)) such that

1) v solves (1) distributionally;
2) the kinetic energy equals e, i.e.

∫
Td
|v|2(t) = e(t). (8)

Moreover, fix 0 ≤ T1 < T ≤ 1 and two energy profiles e1, e2 as above, such that
e1(t) = e2(t) for t ∈ [0, T ]. There exists v1, v2 satisfying 1), 2) and such that v1(t) =
v2(t) for t ∈ [0, T1]. In particular, choosing T1 = 0, T = 1/2 and e1, e2 to be as above,
non-increasing and e1 �≡ e2, the corresponding v1, v2 are two distinct distributional
solutions, which belong to C(L2)∩C(W 1,r ), dissipate the kinetic energy, and share the
same initial datum.

1.3.3. Existence of multiple solutions for any L2 data In Theorems A, B the initial
data are attained strongly (in particular we can add initial values to the distributional
formulas for solutions, extending test functions to non-vanishing ones at t = 0), but they
are constructed in the convex integration scheme, thus possibly non-generic. This issue
is addressed in our third theorem. It shows existence of energy solution emanating from
any solenoidal vector field in L2, for power laws below the scaling exponent.
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Theorem C. Consider (1), (2) on T
d × (0, 1). Let q < 3d+2

d+2 , r ∈ (max{1, q − 1}, 2d
d+2 ).

Fix an arbitrary nonzero v0 ∈ L2(Td), div v0 = 0. There exist continuum of v ∈
C((0, 1]; L2(Td)) ∩ Lr ((0, 1);W 1,r (Td)) such that

(1) v solves (1) distributionally;
(2) v|t=0 = v0, in the sense that as t → 0+, v(t)→ v0 weakly in L2 and strongly in

Lq0 , any q0 < 2.

Remark 1. Theorems A, B, C hold for Ladyzhenskaya’s choice (4) instead of our choice
(2), in the case q ≥ 2. On the contrary, for q < 2, they do not hold for (4), since (4)
contains also linear dissipation (see Sect. 1.1). However, Ladyzhenskaya’s interest was
limited to q ≥ 2 (as a vehicle to mitigate Navier–Stokes difficulties), and in this range
the theorems hold both for (2) and for (4), whereas, for q < 2, our choice (2) is more
common in applications than (4).

1.4. Differences between our non-uniqueness and existence results. Thenon-uniqueness
TheoremsA,B, focus on possibly strongest notions of solutions: they allow, respectively,
for full- or kinetic energy inequality and strong attainment of a (constructed) initial
datum, but they do not produce non-unique solutions for any initial datum. Conversely,
Theorem C provides existence of many weak solutions for an arbitrary solenoidal initial
datum in L2. In particular, this is the first existence proof for the case of q ≤ 2d

d+2 . The
obtained solutions are, however, much weaker than that of Theorems A, B : they do not
allow for any kind of energy inequality (in fact, even their kinetic energies are in a sense
pathologically large) and the initial datum is attained merely in a weak sense.

For the Euler equations a result similar to our Theorem C (existence of distributional
solutions for any initial datum,with unnaturally high energy)was first proven in [40]. The
difference with our Theorem C is that, in the case of the Euler equations (no dissipation),
the problem of controlling higher order derivatives is completely absent.

1.5. The 3d Navier–Stokes case. Theorems B, C cover also the case of non-unique
weak solutions of three-dimensional Navier–Stokes equations, first proven in [10]. Our
Theorem B shows that ∇v ∈ L6/5−. This probably holds for solutions constructed in
[10] as well, though the best regularity claimed there is curl v ∈ L1. TheoremC produces
infinitelymanyweak solutions for any divergence-free datum in L2 (but with unnaturally
high energies).

1.6. Methodology and plan. Our approach follows the convex integrationmethods intro-
duced to inviscid fluid dynamics in [18,25], culminating in [7,23], and extended to the
Navier–Stokes case in the important paper [10]. Results on a system involving frac-
tional laplacian can be found in [16,26,35]. Other related interesting results include
[2,8,9,12–15].

We stay close to the concentration-oscillation method developed for the transport
equation in [31,32], and localised to avoid dimension loss in [30], see also [5].

The basic picture of the construction, as in any convex integration scheme applied
to the equations of fluid dynamics, is the following. Given an exact flow (v, π), i.e. a
solution to (1), one tries to distinguish the good (‘laminar’, ‘averaged’) component of
v, i.e. 〈v〉 and the remainder, thought to be responsible for turbulence (interestingly, the
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case q = 3 in (2), where scaling (6) fails, is the Smagorinsky model for turbulence). A
typical averaging process 〈·〉 does not commute with nonlinear quantities, thus applying
〈·〉 to (1) yields for u = 〈v〉

∂t u + div (u ⊗ u)− divA(Du) + ∇〈π〉
= div

(
u ⊗ u − 〈v ⊗ v〉)− div

(
A(Du)− 〈A(Dv)〉) =: div R.

Above, u is a well-behaved flow and the Reynolds stress R encodes the difference
between u = 〈v〉 and the exact v itself. The rough idea behind producing non-unique
solutions to (1) is to reverse-engineer the above picture. We can thus consider the fol-
lowing relaxation of (1)

∂t u + div (u ⊗ u)− divA(Du) + ∇π = −div R,

div u = 0.
(9)

Assume we have identity (9) with certain (u0, π0, R0). It is easy to find at least one
smooth solution of (10), since R0 is at our disposal. If one can produce another u1, q1
such that (u1, q1, R1) solves (9) and R1 is strictly smaller than R0, there is a hope to
iteratively diminish the Reynolds part Rn to 0 with n →∞. Consequently, in the limit
one produces an exact solution v, π . Non uniqueness in the above procedure may be
specified in at least two ways:

• either by enforcing v to be equal at some times, say for t ∈ [0, 1/3], to a given
regular solution v1 and for t ∈ [2/3, 1] to another regular solution v2, as for instance
in [6] or [31].
• or by specifying a kinetic energy profile, see e.g. [10,18], or the present work.

1.7. Organisation of proofs. In Sect. 2, we state the main proposition of the paper, i.e.
Proposition 1, which contains the inductive step described above, from (u0, π0, R0) to
(u1, π1, R1), with R1 “much smaller” than R0. Section 3 gathers preliminary material.
In Sect. 4 we introduce a generalisation of Mikado flows that serves as a building block
for u1 given u0. Next, in Sect. 5, assuming a solution (u0, π0, R0) to (9) is given, we
define (u1, π1, R1). Estimates for (u1− u0) and R1 occupy Sect. 6. Section 7 concludes
the proof of the main Proposition 1. Having it in hand, we prove Theorem A in Sect.
8. The proofs of Theorems B–C follow similar lines and therefore are only sketched in
Sects. 9–10.

1.8. Notation. Weusemostly standard notation, e.g.Td denotes the d-dimensional torus
[0, 1]d , Ẇ 1,q is a homogenous Sobolev space, C∞0 (Td; B) are smooth functions with
mean zero, domain T

d and values in set B (the target set will be sometimes omitted).
We take N = {1, 2, . . . }.

We suppress the variables and the spatial domain of integration, if no confusion arises.
We use | · |. instead of ‖ · ‖. for norms. For L p-norms on the torus Td , we will abbreviate
| · |L p(Td ) to | · |L p or even to | · |p. In other cases, e.g. when taking the L p-norm on
R

d , we will explicitly write the underlying domain, where the norm is calculated, e.g.
| · |L p(Rd ). The finite-dimensional norm is | · |. The projection onto null-mean functions
is P�=0 f := f − −∫

Td f .
We will call d × d (symmetric) matrices (symmetric) tensor. For a tensor T , we

denote its traceless part by T̊ := T − 1
d tr (T )Id. The space of symmetric tensors will
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be denoted by S, its open subset of positive definite tensors by S+. If R is a symmetric
tensor, div R is the usual row-wise divergence.

We use two types of constants M’s, which are uniform over iterations, and C’s which
are not (both possibly with subscripts), for details see Sect. 6.1. All constants may vary
between lines.

Further notation is introduced locally when needed.

2. Main Proposition: An Iteration Step

Recall that S is the space of symmetric tensors.

Definition 2. A solution to the Non-Newtonian-Reynolds system is a triple (u, π, R)

where

u ∈ C∞([0, 1] × T
d;Rd), π ∈ C([0, 1] × T

d;R) R ∈ C([0, 1] × T
d;S)

with spatial null-mean u, π , satisfying

∂t u + div (u ⊗ u)− divA(Du) + ∇π = −div R̊,

div u = 0.
(10)

in the sense of distributions.

Remark 2. Despite smoothness of u, we can not require that (10) is satisfied in the
classical sense or π, R are smooth (in space), because of non-smoothness of A(Du).

Remark 3. (R vs R̊) Use of the trace-free Reynolds stress simplifies computation, in
particular proof of the energy iterate Proposition 14. The difference between R to R̊ is
facilitated by the ambiguity of pressure: (u, π, R) solves (10) ⇐⇒ (u, π − 1

d tr R, R̊)

solves (10).

As observed in the introduction, the crucial point in the convex integration scheme is,
given (u0, q0, R0), to produce an appropriate correction (u1, q1, R1) which decreases
Ri , improves the energy gap, and retains as much regularity as possible. This single
iteration step is given by

Proposition 1. Let ν0, ν1 ≥ 0 and q < 2d
d+2 be fixed. Fix an arbitrary e ∈

C∞([0, 1]; [ 12 , 1]). There exist a constant M such that the following holds.
Let (u0, π0, R0) be a solution to the Non-Newtonian-Reynolds system (10), as in

Definition 2. Let us choose any δ, η, ε ∈ (0, 1]. Assume that

3

4
δe(t) ≤ e(t)−

(∫
Td
|u0|2(t) + 2

∫ t

0

∫
Td

A(Du0)Du0

)
≤ 5

4
δe(t) (11)

and

|R̊0(t)|L1 ≤ δ

27d
. (12)

Then, there is another solution (u1, π1, R1) to (10) (as in Definition 2) such that

|(u1 − u0)(t)|L2 ≤ Mδ
1
2 (13a)

|(u1 − u0)(t)|W 1,q ≤ η (13b)

|R1(t)|L1 ≤ η. (13c)
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Furthermore

3

8
δe(t) ≤ e(t)−

(∫
Td
|u1|2(t) + 2

∫ t

0

∫
Td

A(Du1)Du1

)
≤ 5

8
δe(t). (14)

3. Preliminaries

3.1. Control of A. We collect the needed growth estimates for A(Q) and for A(Q)Q.

Lemma 1 (Growth estimates forA). Let A := (ν0 +ν1|Q|)q−2Q, with ν0, ν1 ≥ 0. Then

|A(Q)−A(P)| ≤

⎧⎪⎪⎨
⎪⎪⎩

Cν1 |Q − P|q−1 for ν0 = 0, q ≤ 2

Cν0 |Q − P| for ν0 > 0, q ≤ 2

Cq,ν0,ν1 |Q − P|
(
1 + |Q|q−2 + |P|q−2

)
for q ≥ 2

(15)

|A(Q)Q −A(P)P| ≤ Cq,ν0,ν1

(
1 + |Q|q−1 + |P|q−1)|Q − P|. (16)

The proof is standard. For convenience of the reader, we added it in Appendix.

Remark 4. Lemma 1 extends to other tensorsA, e.g. (ν0 +ν1|Q|2) q−2
2 Q, or to ones given

by an appropriate N -function. Consequently, our result extends to such tensors.

3.2. Nash-type decomposition. Let us denote the set of positive-definite d×d symmetric
tensors by S+. We recall Lemma 2.4 in [17]

Lemma 2. For any compact set N ⊂ S+ there exists a finite set K ⊂ Z
d and smooth

functions �k : N → [0, 1], such that any R ∈ N has the following representation:

R =
∑
k∈K

�2
k (R)k ⊗ k.

3.3. The role of oscillations. The convex integration paradigm is to use fast oscillations
of corrector functions (correcting ui to ui+1 in our case, roughly speaking) to inductively
diminish error terms (in our case Reynolds stresses Ri ). Thus for a function f and λ ∈ N

let us define

fλ(x) := f (λx).

Observe that fλ has the same L p norms as f since we work onTd , and a factor λ appears
for each derivative, i.e.

|∇s fλ|p = λs |∇s f |p, s ∈ N ∪ {0}.
It holds

Proposition 2 (Mean value). Let a ∈ C∞(Td;R), v ∈ C∞0 (Td;R). Then for any
r ∈ [1,∞] ∣∣∣

∫
Td

avλ

∣∣∣ ≤ λ−1Cr |∇a|r |v|r ′ (17)
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Proof. The case r = ∞ follows the proof of Lemma 2.6 in [31]. For the case r < ∞,
since v is null-mean, let us solve the Laplace equation div∇h = v and define G := ∇h.
It holds (div G)λ = λ−1div (Gλ) and thus, integrating by parts and using Hölder

∣∣∣
∫
Td

avλ

∣∣∣ = λ−1
∣∣∣
∫
Td

adiv Gλ

∣∣∣ ≤ λ−1|∇a|r |Gλ|r ′ = λ−1|∇a|r |G|r ′

The Sobolev embedding for the null-mean G yields |G|r ′ ≤ C |∇G|Lmin(r ′,d+1) =
C |∇2h|Lmin(r ′,d+1) . This is controlled thanks toCalderón-Zygmund theory by |v|Lmin(r ′,d+1) .

��
Even when the l.h.s. of (17) is replaced with

∫
Td |avλ|, the decorrelation between

frequencies of a and vλ allows to improve the generic Hölder inequality to (for the proof
cf. Lemma 2.1 of [31]):

Proposition 3 (Improved Hölder). Let f, g be smooth maps on T
d . Let r ∈ [1,∞].

Then
| f gλ|r ≤ | f |r |g|r + Crλ

− 1
r | f |C1 |g|r . (18)

3.4. Antidivergence operators. We provide now various inverse divergence operators,
needed for construction of R1 in Proposition 1, with appropriate estimates. The purpose
of the bilinear inverse divergences below is to extract oscillations of one function, say
gλ, out of the product f gλ. The last of them, R2

N , is an operator with symmetric tensor
values, such that div divR2

N f = f for every null-mean real function f ; it facilitates
construction of the Rlin term of R1, cf. (60).

Proposition 4. Let p, r, s ∈ [1,∞] and 1
p = 1

s + 1
r .

(i) (div−1: symmetric antidivergence) There exists div−1 : C∞0 (Td;Rd)→ C∞0 (Td;S)

such that div div−1u = u and for i ≥ 0 one has

|∇ idiv−1u|p ≤ Ck,p|∇ i u|p, (19)

and for the fast oscillating uλ

|∇ idiv−1uλ|p ≤ Ck,pλ
i−1|∇ i u|p. (20)

(ii) (RN : improved symmetric bilinear antidivergence) For any N ≥ 1 there exists
a bilinear operator RN : C∞(Td;R) × C∞0 (Td;Rd) → C∞0 (Td;S) such that
divRN ( f, u) = f u − −∫ f u and

|RN ( f, uλ)|p ≤ Cd,p,s,r,N |u|s
(
1

λ
| f |r + 1

λN
|∇N f |r

)
. (21)

(iii) (R̃N : improved symmetric bilinear antidivergence on tensors) For any N ≥ 1 there
exists a bilinear operator R̃N : C∞(Td;Rd)×C∞0 (Td;Rd×d)→ C∞0 (Td;S) such
that div R̃N (v, T ) = T v − −∫ T v and

|R̃N (v, Tλ)|p ≤ Cd,p,s,r,N |T |s
(
1

λ
|v|r + 1

λN
|∇N v|r

)
. (22)
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(iv) (R2
N : improved symmetric bilinear double antidivergence) For any N ≥ 1 there

exists a bilinear operator R2
N : C∞(Td;R)×C∞0 (Td;R)→ C∞0 (Td;S) such that

div divR2
N ( f, g) = f g − −∫ f g and for any j ∈ N ∪ {0}

|∇ jR2
N ( f, gλ)|p ≤ C j,d,p,s,r,N λ j |g|W j,s

(
1

λ2
| f |r +

1

λN
|∇N f |r +

1

λ2N+ j
|∇2N+ j f |r

)
.

(23)

The proof is standard, cf. [18,30,31] and can be found in Appendix.

Remark 5. (R2
N �= RN ◦RN ) For the operator defined in (iv), we use the notationR2

N to
denote that this operator acts as a double antidivergence. It does not coincide in general
withRN ◦RN .

Remark 6. (R∞) The above bilinear antidivergences may be thought of as approxima-
tions of ‘ideal antidivergence’ operators R∞, R2∞ satisfying

|R∞( f, uλ)|p � 1

λ
|u|s | f |r , |∇ jR2∞( f, gλ)|p � λ j−2|g|W j,s | f |r , (24)

where the gap between RN and R∞ closes as N →∞, similarly for R2
N and R2∞.

4. Mikado Flows

In this section we introduce the building blocks of our construction, namely the concen-
trated localized traveling Mikado flows. This section is essentially a rearrangement of
knownmaterial:Mikado flows were first introduced in [17] in the framework of the Euler
equations; the concentrated Mikado flows (or fields) were defined in [31], inspired by
the intermittent Beltrami waves of [10]; the traveling version of concentrated Mikados
we present here is close in spirit to the intermittent jets introduced for the first time in
[6], and resemble the construction in [30].

The originalMikado flows of [17] are fast oscillating pressureless stationary solutions
to Euler equations having the form

k
λ(x)k = k(λx)k, (25)

where k ∈ Z
d is a direction. For a finite set of directions K (given by the decomposition

Lemma 2) one can choose functions k ∈ C∞0 (Td ,R) so that the following holds for
any k, k′ ∈ K and λ ∈ N

(i) divk
λk = 0,

(i i) div (k
λk ⊗k

λk) = 0,

(i i i) −
∫
Td

(k)2 = 1 thus −
∫
Td

k
λk ⊗k

λk = k ⊗ k,

(iv) k
λk and k′

λ k′ have disjoint supports for k �= k′. (26)

Satisfying property (i) is equivalent to choosing k so that ∇k · k ≡ 0, then also
(ii) follows. Having (iii) is a normalisation of −

∫
Td (

k)2. Disjointness of supports (iv)
is ensured in d ≥ 3 via an appropriate choice of an anchor point ζk for the cylinder
Bρ(0) + {ζk + sk}s∈R + Z

d (which is the periodisation of the cylinder Bρ(ζk) + {sk}s∈R
with radius ρ and axis being the line passing through ζk with direction k). Such choice
is possible in view of the first part of the following lemma.
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Lemma 3. (Disjoint periodic tubes and blobs) There exist {ζk}k∈K ⊆ R
d and ρ > 0

such that for all k, k′ ∈ K , k �= k′:
(i) if d ≥ 3, (

Bρ(ζk) + sk + Z
d) ∩ (

Bρ(ζk′) + s′k′ + Z
d) = ∅ (27)

for every s, s′ ∈ R;
(ii) if d = 2, (

Bρ(ζk) + sk + Z
2
)
∩ (

Bρ(ζk′) + sk′ + Z
2
)
= ∅ (28)

for every s ∈ R.

Notice the difference between (27) and (28): in (27) there are two free parameters s, s′,
whereas in (28) there is only one free parameter s.

Part (ii) of the statement is not strictly needed for our proof (because we are always
assuming d ≥ 3). We think however that Part (ii) could be of interest in view of future
applications to two dimensional problems, and thus we decided to include it in the
statement. Proof of the Lemma can be found in Appendix.

The convex integration approach uses the properties (i)-(iv) to diminish a given
Reynolds stress R0 of a given solution (u0, π0, R0) to the Non-Newtonian-Reynolds
system (10) by correcting u0 roughly as follows. Thanks to (iii), we can decompose R0
via the Nash Lemma 2 into

∑
k

�2
k (R0)k ⊗ k =

∑
k

�2
k (R0)−

∫
Td

k
λk ⊗k

λk. (29)

Let us add to u0 the corrector ũ = �k(R0)
k
λk. Recall the notation P�=0 f := f −−∫

Td f .
Thanks to (iv) and (ii)

div
(
ũ ⊗ ũ − R0

) =∑
k

P�=0
(
k

λk ⊗k
λk

)
∇�2

k (R0).

Since the term P�=0
(
k

λk ⊗k
λk

)
is λ-periodic and null mean, applyingR∞ of (24) to

the r.h.s. above yields R1 of order λ−1, such that div R1 = div (ũ⊗ ũ− R0). So picking
λ large, i.e. letting k

λ oscillate fast, allows to deal with the error R0. The property (i)
allows to control div ũ.

4.1. Concentrated Mikado flows. Since

|∇ ik
λk|L p(Td ) = λi |∇ ikk|L p(Td ) = Cλi →∞ as λ→∞,

fast oscillations, in general, blow up derivatives of the corrector ũ. Thus controlling
Sobolev norms of velocity fields appearing over convex integration steps seems prob-
lematic. This issue may be circumvented by a concentration mechanism, introduced in
[31] and critically inspired by [10].

Let us briefly explain it. For n ≤ d, take a compactly supported smooth function
f : Rn → R, rescale it to fμ(x) = μa f (μx), μ ≥ 1, and periodize without renaming
to fμ : Td → R. This is concentrating and results in

|∇i fμ|L p(Td ) = μ
a+i− n

p |∇i f |L p(Rn) = Cμ
a+i− n

p and |∇i fμ,λ|L p(Tn) = Cλi μ
a+i− n

p .
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This procedure yields the ‘concentrated Mikado’ k
μk satisfying

|∇ ik
μk|L p(Td ) = Cλiμ

a+i− n
p .

Having now an interplay between λ and μ one can expect to control certain Sobolev
norms by choosing a, p appropriately. However, to preserve the properties (i) and (ii)
of (26), i.e. ∇ fμ · k ≡ 0 (or in other words: k

μk being the Euler flow), the underlying
function fμ cannot depend on the direction k. It means that the underlying real function
is not compactly supported in Rd , but at best in Rd−1. Thus at best n = d − 1, but then

|∇ ik
μk|L p(Td ) = Cλiμ

a+i− d−1
p .

The quantity −
∫
Td k

μk⊗k
μk shall be of order k⊗ k, cf. (29). Therefore −

∫ |k
μ|2 should

be λ- and μ-independent, cf. (iii) of (26). This leads to the choice a = d−1
2 above and

consequently to

(v) |∇ ik
μk|L p(Td ) = Cλiμ

d−1
2 +i− d−1

p . (30)

Scaling (30) would force us to prove our results with d substituted by d − 1, so that e.g.
q could vary only in the interval 1 < q <

2(d−1)
(d−1)+2 (which in particular requires d ≥ 4,

as in [27]).
Summing up, the concentrated Mikado k

μk satisfies properties (26) (i)–(iv) of the
original Mikado, but has unsatisfactory scaling (v).

4.2. Concentrated localized Mikado flows. Anatural idea to dealwith the ‘loss of dimen-
sion’ in (30) is to localise theAnsatz (25). Let us thus take a smooth radial cutoff function
φ and define � : Rd → R via �(x) = φ(|x |). We want to retain gains stemming from
concentrating, and since now � : Rd → R, while  of (25) allowed merely for d − 1
concentrations, it is better to concentrate in �, thus producing �μ. We periodize this
function without renaming it and allow to oscillate at an independent frequency λ1.
Hence our new Ansatz reads

k
λ2

�μ,λ1k. (31)

Let us now state and prove a result gathering needed properties of the cutoff �μ,λ1 .

Lemma 4. Let K ⊂ Z
d be a fixed finite set of directions. There exists ρ > 0 such that

for every λ1 ∈ N, μ ∈ N, μ ≥ ρ−1 there is �k
μ,λ1

∈ C∞(Td;R) with the following
properties

−
∫
Td

(�k
μ,λ1

)2dx = 1, |�k
μ,λ1
|W i,r (Td ) ≤ Mi,r,kλ

i
1μ

i+ d
2− d

r , (32)

supp�k
μ,λ1

( · − sk) ∩ supp�k′
μ,λ1

( · − sk′) = ∅ for all k, k′ ∈ K , k �= k′, s ∈ R.

(33)

Proof. Take � ∈ C∞c (Rd), with supp� ⊆ B1(0) ⊆ R
d such that

∫
Rd �2 = 1. Let us

concentrate � to �μ : Td → R, hence −
∫
Td (�μ)2 = μa− d

2 . Choosing a = d
2 yields

the desired −
∫
Td �2

μdx = 1 and |�μ|W i,r (Td ) ≤ Ci,rμ
i+ d

2− d
r . Concentration gives also

supp�μ ⊆ B1/μ(0) + Z
d .
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Let ρ > 0 and {ζk}k∈K be given by Lemma 3. We now set for every k ∈ K and
λ1 ∈ N,

�k
μ,λ1

(x) := �μ(λ1(x − ζk)).

Property (32) now follows from the scaling properties of �μ, whereas (33) from
supp�μ ⊆ B1/μ(0) + Z

d , (27), and assumed μ ≥ ρ−1 . ��

4.3. Concentrated localized traveling Mikado flow. Unsurprisingly, introducing d-
dimensional cutoff � destroys the properties (i)–(iii) of standard Mikados. The most
severe loss, due to its critical scaling, is not having (ii) anymore. A crucial idea how to
handle this issue, introduced in [10], is to let the cutoff function � travel in time along
lk with speed ω. This leads to a corrector term Y k (see below), whose time derivative
compensates lack of (ii). At the same time Y k is of order 1

ω
, so it can be controlled by

choosing ω large.
The concentrated localized traveling Mikado flow is our final Ansatz. It will be

denoted by W k , but it is important to bear in mind that it is determined by the parameters

μ, λ1, λ2, ω ∈ N.

The next proposition concerns our final Mikado flows W k and Mikado correctors Y k .

Proposition 5. Let K ⊂ Z
d be a fixed finite set of directions. Let k

λ2
be the function

used to produce the standard Mikado (25) with its properties (i)–(iv). Let �μ,λ1 be the
localisation provided by Lemma 4.

Define the functions W k : Td × [0, 1] → R
d , Y k : Td × [0, 1] → R

d by

W k(x, t) :=
(
k

λ2
�k

μ,λ1
k
)

(x−ωtk), Y k(x, t) :=
(
1

ω
(k

λ2
)2(�k

μ,λ1
)2k

)
(x−ωtk).

(34)
There exists ρ > 0 such that for every μ, λ1, λ2, ω ∈ N satisfying

μ ≥ 1

ρ
,

λ2

λ1
∈ N and

λ1μ

λ2
<

1

2
(35)

the functions W k, Y k are spatially λ1-periodic are have the following properties:

(v′) |W k(t)|W i,r (Td ) ≤ Mi,rλ2
iμ

d
2− d

r , |Y k(t)|W i,r (Td ) ≤ Mi,r
λ2

iμd− d
r

ω
; (36)

(i i i ′)
∣∣∣−
∫

W k(t)⊗W k(t)− k ⊗ k
∣∣∣ ≤ M1

λ1μ

λ2
; (37)

(iv′) for k, k′ ∈ K , k �= k′supp W k ∩ supp W k′ = ∅;
(i i ′) ∂t Y

k + div (W k ⊗W k) = 0. (38)

Proof. The spatial λ1-periodicity of W k, Y k follows from the assumption λ2/λ1 ∈ N.
Since W k, Y k are obtained from stationary functions by means of a Galilean shift, for
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(36) and (37) it suffices to estimate the respective stationary functions.

|k
λ2

�k
μ,λ1

k|W i,r (Td ) ≤ Mk

i∑
j=0
|λ2 |W i− j,∞(Td )|�μ,λ1 |W j,r (Td )

≤ Mi,r,k

i∑
j=0

λ
j
1μ

j+ d
2− d

r λ2
i− j (39)

with the second inequality due to (25) and (32). Since by assumption λ1μ < λ2, we
obtain (36) estimate for W k . A similar computation yields the estimate for Y k . For (37)
we compute

∣∣∣∣−
∫

(k
λ2

)2(�k
μ,λ1

)2(k ⊗ k)− (k ⊗ k)

∣∣∣∣ =
∣∣∣∣(k ⊗ k)−

∫
(�k

μ,λ1
)2

(
(k

λ2
)2 − 1

)∣∣∣∣ =: I

with the equality valid because the normalisation of (32) holds. Since the normalisation
(iii) of the standard Mikado k implies that (k

λ2
)2− 1 is null-mean, and it oscillates at

the frequency λ2, by Proposition 2 we have

I ≤ Mk

λ2

∣∣∣∇
(
(�k

μ,λ1
)2

)∣∣∣
1
|(k)2 − 1|∞ ≤ Mk

λ1μ

λ2

via (32). We reached (37).
Disjointness of supports of follows from (33): Assume that for some (x, t) ∈ T

d ×
[0, 1] and k, k′ ∈ K , k �= k′, W k(x, t)W k′(x, t) �= 0. Hence in view of the definition
(34)

x − ωtk ∈ supp�k
μ,λ1

, x − ωtk′ ∈ supp�k′
μ,λ1

,

thus contradicting (33).
The Mikado functions have the form

W k(x, t) = F(x − ωtk)k, Y k(x, t) = 1

ω
G(x − ωtk)k,

with F2 = G. Therefore div (W k ⊗ W k) = (∇G(x − ωtk) · k
)
k, whereas ∂t Y k =

−(∇G(x − ωtk) · k)k. Hence (38). ��
Remark 7. Let us compare our W k with the concentrated Mikado.

(a) W k is not divergence free, i.e. (i) does not hold. Furthermore W k is now time depen-
dent.

(b) W k does not satisfy (ii). There appears Mikado corrector Y k to compensates this
deficiency, see (38). This means however that the new term Y k must be appropriately
estimated.

(c) Property (iii) holds approximately, see (37).
(d) Supports are pairwise disjoint (now in space-time).
(e) The scaling with a dimension loss (30) is now improved to (36), which is our main

gain.
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Proposition 5 yields the following estimates in relation to (b), (c), (e):

∣∣∣Y k(t)
∣∣∣
L2(Td )

∼ μd/2

ω
,

∣∣∣∇Y k(t)
∣∣∣
Lq (Td )

∼ λ2
μ

d− d
q

ω
,

∣∣∣∣−
∫

W k(t)⊗W k(t)− k ⊗ k

∣∣∣∣ ∼ λ1μ

λ2
, |∇W k(t)|Lq (Td ) ∼ λ2μ

d
2− d

q .

In order to deal with (a), let us recall the heuristics of an ideal antidivergence operator
R∞ of Remark 6. A short computation involving (34), (36), and (32) yields

∣∣∣R∞(div W k)

∣∣∣
L2(Td )

∼ λ1μ

λ2
,

∣∣∣R∞∂t W
k
∣∣∣
L1(Td )

∼ λ1μ

λ2
· ω

μd/2

Therefore, seeking smallness of

μd/2

ω
,

λ1μ

λ2
, λ2μ

d
2− d

q ,
λ1μ

λ2
· ω

μd/2 (40)

will motivate the choice of the relations between the parameters μ, λ1, λ2, ω in Sect. 7.

Notice that we did not add the term λ2
μ

d− d
q

ω
to the list (40), as it is the product of the

first and the third term in (40), and thus its smallness is implied by smallness of these
terms. ��

5. Definition of (u1, π1, R1)

Let (u0, π0, R0) be a solution to the Non-Newtonian-Reynolds system (10), and δ, η ∈
(0, 1] as in Proposition 1. We define

u1 := u0 + u p + uc, π1 := π0 + πp,

where

• u p is a perturbation based on the Mikado flows of Sect. 4, aimed at decreasing R0,
• uc is a corrector restoring solenoidality of u1 and compensating for our Mikado
flows not solving Euler equations.

Since (u0, π0, R0) solves (10), it holds in the sense of distributions

∂t u1 + div (u1 ⊗ u1)− divA(Du1) + ∇π1

= ∂t (u p + uc) + div (u0 ⊗ u p + u p ⊗ u0)

+div (u0 ⊗ uc + uc ⊗ u0 + u p ⊗ uc + uc ⊗ u p + uc ⊗ uc)

+div (u p ⊗ u p − R̊0)

−div (
A

(
D(u0 + u p + uc)

)−A(Du0)
)
+ ∇πp. (41)
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5.1. Decomposition of R0 and energy control. In general, R0 is only continuous (recall
Definition 2 and Remark 2). Since it is convenient to work with smooth objects, we
regularize R0 (extended for times outside [0, 1] by R0(x, 0) and R0(x, 1), respectively)
with the standard mollifier φε in space and time. Thus

R̊ε
0 := R̊0 ∗ φε. (42)

Now Rε
0 is smooth and (12) implies

|R̊ε
0(t)|1 ≤

δ

27d
, for every t ∈ [0, 1]. (43)

Next, we decompose R̊ε
0 into basic directions. In order to stay within S+ of Lemma 2,

we shift and normalise R̊ε
0 via

Id +
R̊ε
0(x, t)

�(x, t)
, with

�(x, t) := 2
√

ε2 + |R̊ε
0(x, t)|2 + γ0(t), (44)

γ0(t) :=
e(t)

(
1− δ

2

)− (∫
Td |u0|2(t) + 2

∫ t
0

∫
Td A(Du0)Du0

)

d
. (45)

The role of
√

ε2 + .. is to avoid the degeneracy |R̊0(x, t)| = 0, whereas the role of γ0
is to pump energy into the system, thus facilitating the step (11)→ (14). Observe that
γ0 > 0 because of (11). The choice (44) yields in particular � ≥ 2|R̊ε

0(x, t)| and hence

1

2
Id ≤ Id +

R̊ε
0

�
≤ 3

2
Id. (46)

Remark 8. The set N ⊂ S+ of Lemma 2 is fixed by (46) uniformly over the convex
integration iterations.

Define

ak(x, t) := �
1
2 (x, t)�k

(
Id +

R̊ε
0(x, t)

�(x, t)

)
. (47)

Thanks to Lemma 2 it holds

�Id + R̊ε
0 =

∑
k∈K

��2
k

(
Id +

R̊ε
0

�

)
k ⊗ k =

∑
k∈K

a2
k k ⊗ k. (48)
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5.2. Choice of u p. Now we choose the principal corrector, motivated by the corrector
ũ that appeared in the initial part of Sect. 4. Let W k be the Mikado flow of Proposition
5 with ak defined by (47). Let

u p(x, t) :=
∑
k∈K

ak(x, t)W k(x, t). (49)

The disjoint supports of W k(t), W k′(t), k �= k′ imply

u p ⊗ u p =
∑
k∈K

a2
k W k ⊗W k . (50)

Recall the notation P�=0 f := f − −∫
Td f . Use (48) and (50) to write

u p ⊗ u p − R̊ε
0 = �Id +

∑
k∈K

a2
k

(
W k ⊗W k − k ⊗ k

)

= �Id +
∑
k∈K

a2
k P�=0(W k ⊗W k) + a2

k

(
−
∫

W k ⊗W k − k ⊗ k

) (51)

We therefore have

div (u p ⊗ u p − R̊ε
0) =∇� +

∑
k∈K

P�=0(W k ⊗W k)∇a2
k

+
∑
k∈K

(
−
∫

W k ⊗W k − k ⊗ k

)
∇a2

k +
∑
k∈K

a2
kdiv (W k ⊗W k).

(52)

Remark 9. Observe that for the original Mikados, or their concentrated version, the
second line of (52) vanishes. These additional terms will be taken care of by (37) and
(38).

In order to avoid troublesome solenoidality correctors of the last � in (52), let us
(Helmholtz) project it onto divergence free vectors by PH = I d − ∇�−1div and
balance the identity by incorporating ∇�−1div into the pressure, with the new pressure

�̃ := � + �−1div
∑
k∈K

a2
k div

(
W k ⊗W k

)
.

Applying P�=0 to both sides of the resulting identity, we arrive at

div (u p ⊗ u p − R̊ε
0) = ∇�̃ + P�=0

∑
k∈K

P�=0(W k ⊗W k)∇a2
k

+ P�=0
∑
k∈K

(
−
∫

W k ⊗W k − k ⊗ k

)
∇a2

k + P�=0PH

∑
k∈K

a2
kdiv (W k ⊗W k).

(53)
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5.3. Choice of uc. The corrector term uc has the following roles: (i) to cancel the highest-
order bad term ‘div (W k ⊗ W k)’ of (53) via (38), (ii) to render the entire perturbation
u p + uc solenoidal and (iii) null-mean.

For (i), observe that (38) implies

P�=0PH

∑
k∈K

a2
k ∂t Y

k + P�=0PH

∑
k∈K

a2
kdiv (W k ⊗W k) = 0. (54)

Thus taking

uI
c := P�=0PH

∑
k∈K

a2
k Y k (55)

will allow to cancel, with a part of the time derivative of uI
c , the bad term ‘div (W k⊗W k)’

of (53).
For (ii), observe that thanks to PH , uI

c is already solenoidal. Therefore it suffices to
compensate lack of solenoidality of u p. We will now define uI I

c accordingly. By the
definition (49) of u p, the definition (34) of W k , and since divk

λ2
k = 0 (cf. the property

(i) of (26)) we have

div u p(x, t) =
∑
k∈K

div
(

ak(x, t)
(
k

λ2
�k

μ,λ1
k
)

(x − ωtk)
)

=
∑
k∈K

k
λ2

(x) k · ∇(
ak�

k
μ,λ1

(x − ωtk)
)
.

Therefore we define

uI I
c (t, ·) := −div

∑
k∈K

R2
N

(
k · ∇

(
ak(t)�

k
μ,λ1

( · − ωtk)
)

, k
λ2

)
, (56)

whereR2
N is the double antidivergence given by Proposition 4, and N will be fixed later

(see the discussion at the beginning of Sect. 6).
Since div divR2

N = Id P�=0, div uI I
c + div u p = 0.

As uI
c , uI I

c are null-mean, to take into account the condition (iii), it suffices to define

uc := (uI
c + uI I

c )−−
∫

u p. (57)

5.4. Reynolds stresses. Let us distribute ∂t (uI
c + uI I

c ) and R̊ε
0 in (41) as follows

∂t u1 + div (u1 ⊗ u1)− divA(Du1) + ∇π1

= ∂t

(
P�=0u p + uI I

c

)
+ div (u0 ⊗ u p + u p ⊗ u0)

+ div (u0 ⊗ uc + uc ⊗ u0 + u p ⊗ uc + uc ⊗ u p + uc ⊗ uc)

+ ∂t u
I
c + div (u p ⊗ u p − R̊ε

0)

+ div (R̊ε
0 − R̊0)

− div
(
A

(
D(u0 + u p + uc)

)−A(Du0)
)−∇πp

(58)
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We rewrite the r.h.s. of (58) further, recasting it into a divergence form.
(i). First line of r.h.s. of (58)) The definition (49) of u p, the definition (34) of W k ,

and 0 = k · ∇k
λ2

(x) via property (i) of (26), give together

∂t u p(t) =
∑
k∈K

k
λ2

k ∂t

(
ak(·, t)�k

μ,λ1
(· − ωkt)

)
. (59)

Using the above formula and the definition (56) of uI I
c , we define the antidivergence of

the first line of r.h.s. of (58)

Rlin :=
∑
k∈K

RN

(
∂t

(
ak(·, t)�k

μ,λ1
(· − ωkt)

)
, k

λ2
k
)

−R2
N

(
k · ∇∂t

(
ak(·, t)�k

μ,λ1
(· − ωkt

)
, k

λ2

)

+ (u0 ⊗ u p + u p ⊗ u0).

(60)

(ii). Second line of r.h.s. of (58))

Rcorr := u0 ⊗ uc + uc ⊗ u0 + u p ⊗ uc + uc ⊗ u p + uc ⊗ uc. (61)

(iii). Third line of r.h.s. of (58)) Here we use an important idea of [10]. Via the
definition (55) of uI

c and the property (54) we have

∂t u
I
c = −P�=0PH

∑
k∈K

a2
k div

(
W k ⊗W k

)
+ P�=0PH

∑
k∈K

(∂t a
2
k )Y k .

Adding the above identity to (53) that expresses div (u p⊗u p− R̊ε
0), the ‘div (W k⊗W k)’

term cancel out and one has

∂t u
I
c + div (u p ⊗ u p − R̊ε

0)−∇�̃

=
∑
k∈K

(
W k ⊗W k − k ⊗ k

)
∇a2

k + P�=0PH

∑
k∈K

(∂t a
2
k )Y k .

Let us thus define, leaving out ∇�̃ since it will be accounted for by the pressure pertur-
bation qp,

Rquadr :=∑
k∈K R̃1

(∇a2
k , P�=0

(
W k ⊗W k

))
+ a2

k

(
−
∫

W k ⊗W k− k ⊗ k
)

(62)

+div−1P�=0PH
(
(∂t a2

k )Y k
)
, (63)

so that div Rquadr = ∂t u I
c + div (u p ⊗ u p − R̊ε

0)− ∇�̃.

(iv. Fourth line on r.h.s. of (58)) Let

Rmoll := R̊ε
0 − R̊0. (64)

(v. Last line of r.h.s. of (58)) Let

RA := −
(
A

(
D(u0 + u p + uc)

)−A(Du0)
)
. (65)
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5.5. Pressure. In order to balance for ∇�̃ and ensure null-trace of R̊1, we choose πp
such that

∇πp = ∇�̃ + div
1

d
tr(Rlin + Rcorr + Rquadr + RA)Id, i.e.

πp(x, t) + c(t) := �̃ +
1

d
tr(Rlin + Rcorr + Rquadr + RA),

having freedom in choosing c(t), we set it so that πp(x, t) is null-mean.

5.6. Conclusion. Comparing our choices (60), (61), (62), (64) and (65) for r.h.s. of (58)
with its l.h.s. we have reached

∂t u1 + div (u1 ⊗ u1)− divA(Du1) + ∇π1 = −div R̊1 (66)

with

R1 := −(Rlin + Rcorr + Rquadr + Rmoll + RA). (67)

Notice that tensor R1 is symmetric, since its components are symmetric (cf. respective
definitions and Proposition 4).

6. Estimates

We continue the proof of the main Proposition 1. In the previous section, given
(u0, π0, R0) solving the non-Newtonian-Reynolds system, we defined u1 = u0+u p+uc,
π1, and the new Reynolds stress R1, required by Proposition 1. The perturbation u p, the
corrector uc and the error R1 depend on the six parameters

ε > 0, μ, λ1, λ2, ω ∈ N, N ∈ N, (68)

which satisfy the condition (35). The mollification parameter ε helps to avoid degenera-
cies or singularities of A. Let us immediately fix it so that

ε ≤ δ

27d
, |R̊ε

0(t)− R̊0(t)|1 ≤ η

2
for every t ∈ [0, 1], (69)

where η > 0 is the parameter appearing in the statement of the main Proposition 1.
In this section we estimate u p, uc, R1 and the energy gap of the new solution u1 in

terms of the remaining five parameters μ, λ1, λ2, ω, N . They will be appropriately cho-
sen in Sect. 7 so that (13a)–(14) hold, thus concluding the proof of the main Proposition
1.

Remark 10. (Silent assumptions) For results of this section, we assumewithout writing it
explicitly at each occasion: (u1, π1, R1) is the triple constructed in the previous section,
the set of directions K is fixed by Remark 8, the relations (35) hold, the assumptions of
Proposition 1 hold, the choice (69) holds.
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6.1. Constants. We distinguish two types of constants: the uniform ones (M’s) and the
usual ones (C’s). None depend on μ, λ1, λ2, ω.

More precisely, we denote by M any constant depending only on the following
parameters

ν0, ν1 the parameters entering in the definition of the non-Newtonian tensor fieldA
q the exponent entering in the definition of the non-Newtonian tensor field A
e the energy profile fixed in the assumptions of Proposition 1

�, the profiles used in the definition of the Mikado functions in Sect. 4

K the fixed set of directions, cf. Remark 8.
(70)

Consequently, any universal constant M remains uniform over the convex integration
iteration. We will not explicitly write the dependence of M’s on the objects in (70).

On the other side,wewill denote byC (possiblywith subscripts) any constant depend-
ing not only on the universal quantities (70), but also on

(u0, π0, R0), δ, η given in the assumptions of Proposition 1, (71)

i, r if we are estimating the W i,r norm

N the (not yet fixed) parameter in (67),
(72)

Constants C will be controlled within each iteration step (i.e. in the proof of Proposition
1) by appropriate choices μ, λ1, λ2, ω.

6.2. Preliminary estimates: control of ak .

Proposition 6. Coefficients ak defined via (47) satisfy

|ak(t)|2 ≤ 2δ
1
2 , (73)

|ak |Ci
x,t
≤ Ci for i ≥ 0 (74)

Proof. The definition (45) of γ0, assumption (11), and the assumed bounds on the energy
profile e ∈ [ 12 , 1] yield γ0(t) ∈ [ δ

8d , δ]. This and the choice (69) of ε give, via the
definition (44) of �,

�(x, t) ≤ 2ε + 2|R̊ε
0(x, t)| + γ0(t) ≤ 3(|R̊ε

0(x, t)| + δ).

Therefore, since a2
k = ��2

k by its definition (47), whereas �k ≤ 1 by Lemma 2,

|ak(t)|22 =
∫
Td

��2
k ≤ 3(δ + |R̊ε

0(t)|1),

The last inequality together with (43) yields (73).
Using smoothness of �k supported in the compact set (46) and that � ≥ γ0 ≥ δ

8d ,
one has (74). ��
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6.3. Estimates for velocity increments. Wewill use now the improved Hölder inequality
(18) and the preliminary estimates to control u p, uc.

Proposition 7 (Estimates for the principal increment u p). For every r ∈ [1,∞]
|u p(t)|r ≤ Crμ

d
2− d

r , (75)

|u p(t)|W 1,r ≤ Crλ2μ
d
2− d

r . (76)

Moreover, there is a universal constant M > 0 such that

|u p(t)|2 ≤ Mδ1/2 + Cλ
− 1

2
1 . (77)

Proof. The definition (49) of u p yields

|u p(t)|r ≤
∑
k∈K

|ak(t)W k(t)|r . (78)

Using (74) to control |ak |∞ and (36) to control |W k(t)|r , we obtain (75). An analogous
computation gives (76).

Notice that for r = 2 the power of μ in (75) is 0: for this reason, to reach (77), one
needs more care. Recall from Proposition 5 that W k is λ1-periodic. Therefore we may
apply improved Hölder inequality (Proposition 3) to the r.h.s. of (78) and use (36) for
|W k(t)|2 to obtain

|u p(t)|2 ≤ M
∑
k∈K

|ak(t)|2 + λ1
− 1

2 |ak(t)|C1
x

Let us now use (73), (74) to control ak , reaching (77). ��
Now we deal with the corrector uc. In order to shorten the related formulas, let us

introduce

L(r) := μd− d
r

ω
+

λ1μ

λ2
μ

d
2− d

r

[
1 + λ22

(
λ1μ

λ2

)N
]

(79)

Observe that r �→ L(r) is a non-decreasing map.

Proposition 8 (Estimates for the corrector uc). For every r ∈ (1,∞) it holds

|uc(t)|Ẇ i,r ≤ Ci,d,r,N λi
2L(r). (80)

Proof. Recall that uc = (uI
c + uI I

c ) − −∫
Td u p by its definition (57), with uI

c defined by
(55) and uI I

c defined by (56).
The Calderón-Zygmund estimate, (74), and (36) give

|uI
c (t)|Ẇ i,r ≤ Cr

λi
2μ

d− d
r

ω
(81)

For the estimate of uI I
c in Ẇ i,r we use the inequality (23) for j = i + 1, s = ∞, which

yields

|uI I
c |Ẇ i,r ≤ C j,d,r,N λi+1

2

×
(

1

λ22
|∇(ak�

k
μ,λ1

)|r + 1

λN
2

|∇N+1(ak�
k
μ,λ1

)|r + 1

λ2N+i+1
2

|∇2N+i+2(ak�
k
μ,λ1

)|r
)

.
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Now we estimate ak by (74) and k
μ,λ1

by (32). Using the assumption (35), we arrive at

|uI I
c |Ẇ i,r ≤ Ci,d,r,N λi

2
λ1μ

λ2
μ

d
2− d

r

[
1 + λ22

(
λ1μ

λ2

)N
]

. (82)

Recall uc = (uI
c + uI I

c )−−∫
Td u p by its definition (57). Therefore, putting together (81),

(82), and
∣∣∣−
∫

u p

∣∣∣ ≤ λ1μ

λ2
μ−

d
2 ≤ λ1μ

λ2
μ

d
2− d

r

valid via (17) with r = 1 and v = k , yields (80). ��

6.4. Estimates on the Reynolds stress. Recall (67)

R1 := −(Rlin + Rcorr + Rquadr + Rmoll + RA).

In this sectionwe estimate each term of R1. For our further purposes L1 estimates suffice,
but due to using Calderón-Zygmund theory, some estimates are phrased as Lr ones.

Proposition 9 (Estimates on the principal Reynolds Rquadr ). For every r ∈ (1,∞), it
holds

|Rquadr (t)|r ≤ Cr

(
(ω−1 + λ−11 )μd− d

r + λ−12 λ1μ
)

(83)

Proof. Recall the definition (62) of Rquadr . Let us estimate its three terms in order of
their appearance.

(i) The first term of Rquadr is the sum over k of R̃1(∇a2
k , P�=0(W k ⊗ W k)). The

term P�=0(W k ⊗W k)) is null mean and it oscillates at the frequency λ1, since W k does.
Therefore (21) with (74) and (36) give

|R̃1(∇a2
k , P�=0(W k ⊗W k))|r ≤ Crλ

−1
1 |P�=0(W k ⊗W k))|r |∇2(a2

k )|∞ ≤ Crλ
−1
1 μd− d

r .

(84)
(ii) The second term of Rquadr is the sum over k of a2

k (−
∫

W k ⊗W k − k⊗ k). We use
estimate (74) to control ak terms and (37) to control the Mikado terms

∣∣∣a2
k

(
−
∫

W k ⊗W k − k ⊗ k
)∣∣∣

r
≤ |a2

k |r
∣∣∣−
∫

W k ⊗W k − k ⊗ k
∣∣∣ ≤ Cr

λ1μ

λ2
. (85)

(iii) The last term is the sum over k of div−1PH
(
P�=0(∂t a2

k )Y k
)
. We deal with div−1

via (19) and with PH via Calderón-Zygmund, control ∂t ak using (74), and use (36) to
estimate Y k . Hence

∣∣∣div−1PH

(
P�=0(∂t a

2
k )Y k

)∣∣∣
r
(t) ≤ Cr

∣∣∣P�=0(∂t a
2
k )Y k

∣∣∣
r
(t) ≤ Cr |Y k(t)|r ≤ Cr

μd− d
r

ω
.

(86)
Together, (84), (85), (86) yield (83). ��
Proposition 10 (Estimate on Rlin). It holds

|Rlin|1(t) ≤ CN

[
μ−

d
2 +

λ1μ
1− d

2 ω

λ2

(
1 + λ22

(λ1μ

λ2

)N)]
. (87)
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Proof. Recall the definition (60) of Rlin . It involves three terms, which we estimate in
order of their appearance.

(i) The first term of Rlin is the sum over k of

RN
(
(∂t ak)�

k
μ,λ1

+ ωakk · ∇�k
μ,λ1

, k
λ2

k
)
.

Using (21) with |u|s = |k |∞, the assumption (35), and disposing of ak as usual, one
has

|RN

(
∂t

(
ak(·, t)�k

μ,λ1
(· − ωkt)

)
, k

λ2
k
)
|1(t) ≤ Cd,N

ωλ1μ
1−d/2

λ2

[
1 + λ2

(λ1μ

λ2

)N]
.

(88)
(ii) The second term of Rlin is the sum over k of

R2
N (k · ∇∂t (ak�

k
μ,λ1

( · − ωkt),k
λ2

).

We observe that

|∇ i+1∂t

(
ak�

k
μ,λ1

( · − ωkt)
)
|1 ≤ |∂t ak�

k
μ,λ1
|W i+1,1 + ω|k||ak∇�k

μ,λ1
|W i+1,1

≤ Cωλi+2
1 μi+2− d

2 . (89)

Using the computation (89) in (23) with j = 0 and |u|s = |k |∞, we get
∣∣R2

N

(
k · ∇∂t

(
ak�

k
μ,λ1

( · − ωkt)
)

, k
λ2

) ∣∣
1 ≤ Cd,N ωμ−

d
2

(
λ1μ

λ2

)2 [
1 + λ22

(λ1μ

λ2

)N
]

.

s(90)

(iii) The third term of Rlin equals u0 ⊗ u p + u p ⊗ u0, so we write using (75)

|u0|∞|u p|1 ≤ Cμ−
d
2 . (91)

Putting together (88), (90), (91), and observing that the right-hand sides of both (88)

and (90) are estimated by Cd,N ωμ− d
2

λ1μ
λ2
[1+λ22(

λ1μ
λ2

)N ] thanks to (35), one has (87). ��
Proposition 11 (Estimates on Rcorr ). Let L(2) be given by (79). It holds

|Rcorr (t)|1 ≤ CN
(
L(2) + L2(2)

)
. (92)

Proof. By the definition (61) of Rcorr we have

|Rcorr |1(t) ≤ C(|u0|2|uc|2 + |u p|2|uc|2 + |uc|22)(t),
since |u p|2 ≤ C via (75) and |uc|2 ≤ CN L(2) via (80), we have (92). ��
Proposition 12 (Estimates on the dissipative Reynolds RA). For q ∈ (1,∞) being the
growth parameter of A it holds

|RA(t)|r ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

C
(
(λ2μ

d
2− d

r )q−1 + (λ2L(r))q−1) for ν0 = 0, q≤2, any r > 1,

C
(
λ2μ

d
2− d

r + λ2L(r)
)

for ν0 > 0, q≤2, any r > 1,

C
(
λ2μ

d
2− d

r(q−1) +
(
λ2μ

d
2− d

r(q−1)
)q−1

+ λ2L(r(q − 1)) + (λ2L(r(q − 1)))q−1) for q ≥ 2, any r(q − 1) > 1.

(93)
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Proof. By definition (65), we have

|RA| = |A(Du0 + Du p + Duc)−A(Du0)|.
Therefore the inequality (15) gives the pointwise estimate

|RA| ≤

⎧⎪⎪⎨
⎪⎪⎩

Cν1 |Du p + Duc|q−1 for ν0 = 0, q ≤ 2

Cν0 |Du p + Duc| for ν0 > 0, q ≤ 2

Cq,ν0,ν1 |Du p + Duc|
(
1 + |Du0|q−2 + |Du1|q−2

)
for q ≥ 2

Using Jensen inequality and 1
q−1≥1 in the first case, and Hölder inequality with q − 1,

q−1
q−2 in the last case, one has

|RA|r ≤

⎧⎪⎪⎨
⎪⎪⎩

C |Du p + Duc|q−1r for ν0 = 0, q≤2
C |Du p + Duc|r for ν0 > 0, q≤2
C |Du p + Duc|r(q−1)

(
1 + |Du0|q−2r(q−1) + |Du1|q−2r(q−1)

)
for q ≥ 2

For any s ∈ (1,∞) the estimate (80) controls |Duc|s via λ2L(s), whereas λ2μ
d/2−d/s

controls |Du p|s thanks to (76). This closes the case q < 2 of (93). Recalling that
u1 = u0 + u p + uc and that C may contain norms of u0, we obtain the case q ≥ 2. ��
Remark 11. For the current purpose of proving Proposition 1 and thus Theorem A, the
case q ≤ 2 of (93) suffices. We included already the case q ≥ 2, because it is needed to
prove Theorem B.

Immediately from the definition of Rmoll in (64) and the choice of ε in (69) we have

Proposition 13 (Estimate on Rmoll ). It holds

|Rmoll(t)|1 ≤ η/2 (94)

where η is the parameter appearing in the assumptions of Proposition 1.

6.5. Estimates on the energy increment. We intend to approach the desired energy profile
e(t), i.e. perform the step (11)→ (14). Let us thence define δE as follows

δE(t) :=
∣∣∣∣e(t)

(
1− δ

2

)
−

(∫
|u1|2(t) + 2

∫ t

0

∫
A(Du1)Du1

) ∣∣∣∣. (95)

Recall quantities L of (79). We will show

Proposition 14 (energy iterate). For q ∈ (1,∞) being the growth parameter of A it
holds

δE(t) ≤ δ

16
e(t) + CN

(
λ−11 + μ−

d
2 + L(2) + L(2)2 + λ2μ

d
2− d

q +
(
λ2μ

d
2− d

q

)q

+λ2L(q) +
(
λ2L(q)

)q)
. (96)
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Proof. Recall (51). Taking its trace and recalling that R̊ε
0 is traceless we have

|u p|2 = d� +
∑
k∈K

a2
k P�=0|W k |2 + a2

k

(
−
∫
|W k |2 − |k|2

)
. (97)

By the definition (44) it holds d� = 2d
√

ε2 + |R̊ε
0|2 + dγ0, therefore

|u p|2 − dγ0 = 2d
√

ε2 + |R̊ε
0|2 +

∑
k∈K

a2
k P�=0|W k |2 + a2

k

(
−
∫
|W k |2 − |k|2

)

Integrating and using
√

ε2 + |x |2 ≤ ε + |x |, we have
∣∣∣∣
∫
|u p|2 − dγ0

∣∣∣∣ ≤ 2dε + 2d|R̊ε
0(t)|1 +

∑
k∈K

∣∣∣∣
∫

a2
k P�=0|W k |2

∣∣∣∣ + |ak |22
∣∣∣∣−
∫
|W k |2 − |k|2

∣∣∣∣
(98)

We estimate the first two terms of the r.h.s. of (98) using (69) and (43) as follows

2dε + 2d|R̊ε
0(t)|1 ≤

δ

26
+

δ

26
≤ δ

24
e(t),

where in the second inequality we used the assumption e(t) ≥ 1
2 . This in (98) yields

∣∣∣∣
∫
|u p|2 − dγ0

∣∣∣∣ ≤ δ

24
e(t) +

∑
k∈K

∣∣∣∣
∫

a2
k P�=0|W k |2

∣∣∣∣ + |ak |22
∣∣∣∣−
∫
|W k |2 − |k|2

∣∣∣∣ (99)

The first integral of r.h.s. of (99) involves a λ1-oscillating function P�=0|W k |2, recall
Proposition 5. Therefore, using (17), then (74) to control ak and (36) for W k , we have

∣∣∣∣
∫

a2
k P�=0|W k |2

∣∣∣∣ ≤ Cλ−11 |a2
k |∞|(P�=0|W k |)|22 ≤ Cλ−11 . (100)

For the integral following the second sum in (99), we use (37) and (74) to get

|ak |22
∣∣∣∣−
∫
|W k |2 − |k|2

∣∣∣∣ ≤ C
λ1μ

λ2
. (101)

We plug (100) and (101) to (99) and obtain
∣∣∣∣
∫
|u p|2 − dγ0

∣∣∣∣ ≤ δ

24
e(t) + C

(
1

λ1
+

λ1μ

λ2

)
. (102)

Use u1 = u0 + u p + uc in the definition (95) of E to write for the time instant t

δE(t) ≤
∣∣∣∣
∫
|u p|2 − dγ0

∣∣∣∣ +
∣∣∣∣
∫
|uc|2 + 2(u0uc + u0u p + u puc)

∣∣∣∣
+2

∣∣∣∣
∫ t

0

∫
A(Du1)Du1 −A(Du0)Du0

∣∣∣∣,
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where a cancellation occurs, thanks to the definition (45) of γ0. Inequality (102) allows
to control the first term of the r.h.s. above. For the last term we use (16), next Hölder
inequality with q, q

q−1 , and finally u1 = u0 + u p + uc to get

∫
|A(Du1)Du1 −A(Du0)Du0| ≤ C

(|Du p + Duc|q + |Du p + Duc|qq
)
.

Thus, integrating in time over [0, t] ⊆ [0, 1],
∫ t

0

∫
|A(Du1)Du1 −A(Du0)Du0|

≤ C sup
τ∈[0,1]

(|Du p(τ ) + Duc(τ )|q + |Du p(τ ) + Duc(τ )|qq
)
.

Consequently

δE(t) ≤ δ

24
e(t) + C

(
1

λ1
+

λ1μ

λ2

)

+ C
(
|uc|22 + |u0|2|uc|2 + |u0|∞|u p|1 + |uc|2|u p|2

)
(t)

+ C sup
τ∈[0,1]

(|Du p(τ ) + Duc(τ )|q + |Du p(τ ) + Duc(τ )|qq
)
.

The terms in the second line above are estimated, using (80) for uc and (75) for u p, by
CN (L(2)2 + L(2) + μ−d/2). Observe that L(2) of this term can absorb λ−12 λ1μ of the

first line. The terms in the last line are estimated by λ2μ
d
2− d

q +
(
λ2μ

d
2− d

q
)q + λ2L(q) +

(λ2L(q))q , using (76) for Du p, (80) for Duc. We thus arrived at (96). ��

7. Proof of the Main Proposition 1

Having at hand the estimates of the previous section, we are ready to show that
(u1, q1, R1) constructed in Sect. 5 satisfy the inequalities (13a)–(14).

The estimates of the previous section have at their right-hand sides two type of terms:
ones where the parameters λ2, λ1, μ, ω are intertwined, and the remaining ones. These
remaining ones can be made small simply by choosing the relevant parameters large.
The terms with λ2, λ1, μ, ω interrelated need more care, so let us focus on them. They
contain two little technical nuisances: (i) appearance of N and (ii) estimates for some
parts of R not holding in L1. Let us ignore these nuisances for a moment, which is
easily acceptable after recalling (i) R∞ of Remark 6 (which heuristically cancels the
terms involving N ) and that (ii) estimates for R hold in Lr for any r > 1, whereas
an ε of room is assured by the assumed sharp inequality q < 2d

d+2 . So for a moment
let us consider estimates of Sect. 6 allowing for |R|1 and disregarding the terms with
N . After inspection, we see that smallness of their right-hand sides where λ2, λ1, μ, ω
are intertwined, needed for Proposition 1 is precisely the smallness of (40), Remark 7.
Therefore we will proceed as follows.

Firstly, guided by (40), we will choose relation between magnitudes of λ2, λ1, μ, ω.
To this end we postulate

λ1 := λ, μ := λa, ω := λb, λ2 := λc, (103)
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and choosing relation between magnitudes means picking a, b, c so that (40) are strictly
decreasing in λ.

Secondly, we will need to make sure that when r > 1 and N appear, the relations
between magnitudes do not change. This will be achieved by choosing N large and r
small in relation to a, b, c.

Finally, we will send λ→∞ to reach (13a)–(14).

7.1. Picking magnitudes a, b, c. The requirement that powers in (40) rewritten in terms
of (103) are negative reads

λ1μ

λ2
= λ1+a−c i.e. 1 + a − c < 0,

λ1μ

λ2
· ω

μd/2 = λ1+(1− d
2 )a−c+b i.e. 1 +

(
1− d

2

)
a − c + b < 0,

μd/2

ω
= λad/2−b i.e.

d

2
a − b < 0,

λ2μ
d
2− d

q = λ
c+( d

2− d
q )a i.e. c −

(d

q
− d

2

)
a < 0.

(104)

These conditions on a, b, c can be simultaneously achieved as follows.

(1) The conditions not involving b amount to the requirement

1 + a < c <
(d

q
− d

2

)
a. (105)

From the assumption q < 2d
d+2 of Proposition 1 it follows that d/q − d/2 > 1.

Therefore satisfying (105) is possible with a large. More precisely, let us pick

a >
3

d
( 1

q − d+2
2d

) . (106)

Then between 1 + a and (d/q − d/2)a there are at least two natural numbers. We
then fix c ∈ N as the largest natural number satisfying (105). Notice that there is still
at least one natural number between 1 + a and c.

(2) Let us fix b ∈ N so that

d

2
a < b <

(d

2
− 1

)
a + c − 1. (107)

This is possible, because, as observed in point (1), there is at least one natural number
between 1+a and c and thus also between ad/2 and (d/2−1)a+c−1. The condition
(107) automatically verifies the two conditions concerning b.

Let us denote by−ζ < 0 the largest power of those appearing in (104). We have just
showed

μd/2

ω
≤ λ−ζ , λ2

μ
d− d

q

ω
≤ λ−ζ ,

λ1μ

λ2
≤ λ−ζ , λ2μ

d
2− d

q ≤ λ−ζ ,
λ1μ

λ2
· ω

μd/2 ≤ λ−ζ .

(108)
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7.2. Fixing N and r0 > 1. Let us fix N ∈ N so that

c − ζ N ≤ 0. (109)

This choice yields

1 + λ22

(
λ1μ

λ2

)N

≤ 1 + λ2c−2ζ N ≤ 2. (110)

Using the definition (79) of L with (108) and (110), one has

L(q) ≤ Cλ−ζ , L(2) ≤ Cλ−ζ , λ2L(q) ≤ Cλ−ζ . (111)

Importantly, fixing the gauge N freezes all CN ’s in estimates to C .
Let us fix also an exponent r0 ∈ (1,∞) (close to 1) such that

(
d − d

r0

)
a ≤ 1

2
. (112)

This is possible because the l.h.s. above vanishes as r0 → 1.

7.3. Obtaining (13a)–(14). Recall that δ, η are given small numbers. Since u1 − u0 =
u p + uc, we have by (77) and (80)

|(u1 − u0)(t)|L2 ≤ Mδ
1
2 + C

(
λ
−1/2
1 + L(2)

) ≤ Mδ
1
2 + C

(
λ−1/2 + λ−ζ

)
, (113)

recalling for the latter inequality that λ1 = λ via (103), and (111). Choose λ ∈ N large
in relation to C we thus have

|(u1 − u0)(t)|L2 ≤ 2Mδ
1
2 = M0δ

1
2 ,

defining M0 := M
2 , hence (13a). Notice that M0 depends only on the universal constant

M . Thus M0 itself is universal, i.e. it may depend on the quantities (70), but not on the
quantities (71).

Similarly to obtaining (113), using (76), (79) and (80) we have

|u1 − u0|W 1,q ≤ C
(
λ2μ

d/2−d/q + L(q) + λ2L(q)
) ≤ Cλ−ζ , (114)

where for the term λ2μ
d/2−d/q we used (108). Estimate (13b) follows by choosing λ

big enough.
Recall that R1 = −(Rlin + Rcorr + Rquadr + Rmoll + RA) by its definition (67). By

(87) we have, with CN now fixed to C by the choice (109) of N

|Rlin|1(t) ≤ C

[
μ−

d
2 +

λ1μ
1− d

2 ω

λ2

(
1 + λ22

(λ1μ

λ2

)N)]
≤ C(λ−ad/2 + λ−ζ2), (115)

where for the second inequality we invoked μ = λa by (103), (108), and (110).
Similarly, using (92) and (111)

|Rcorr (t)|1 ≤ Cλ−ζ . (116)
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For the L1-estimate of Rquadr we need to switch to the Lr0 estimate, where r0 was
fixed in (112). We have, using (83)

|Rquadr (t)|1 ≤ |Rquadr (t)|r0 ≤ C(ω−1 + λ−11 )μ
d− d

r0 + Cλ−1λ1μ
≤ C(λ(d−d/r0)a−b + λ(d−d/r0)a−1) + Cλ−ζ .

Thanks to the choice of r0 in (112), we hence have

|Rquadr (t)|1 ≤ Cλ−
1
2 + Cλ−ζ . (117)

Similarly, for the estimate of RA we use (93) with q ∈ (1, 2), obtaining

|RA(t)|1 ≤ |RA(t)|q ≤
⎧⎨
⎩

C
((

λ2μ
d
2− d

q
)q−1 + λ2L(q)

)q−1
for ν0 = 0, q < 2,

C
(
λ2μ

d
2− d

q + λ2L(q)
)

for ν0 > 0, q < 2.

Therefore by (108), (111) and q − 1 ∈ (0, 1)

|RA(t)|1 ≤ Cλ−ζ(q−1). (118)

Together, the terms Rlin, Rcorr , Rquadr , RA are bounded in view of, respectively,
(115), (116), (117), and (118) by Cλ−ζ ′ with certain ζ ′ > 0:

|Rlin(t)|1 + |Rcorr (t)|1 + |Rquadr (t)|1 + |RA(t)|1 ≤ Cλ−ζ ′

Therefore, using for the remaining Rmoll the estimate (94), we have

|R1(t)|1 ≤ η

2
+ Cλ−ζ ′ . (119)

thus showing (13c) by taking λ large.
Let us show the last remaining inequality (14). By (96), with CN fixed to C by the

choice (109) of N , we have in view of (108) and (111)

δE(t) ≤ δ

16
e(t) + C

(
λ−1 + λ− ad

2 + λ−ζ + λ−2ζ + λ−ζ + λ−qζ
)
≤ δ

16
e(t) +

δ

32
≤ δ

8
e(t)

(120)
The proof of Proposition 1 is concluded.

8. Proof of Theorem A

We will iterate Proposition 1. Let us start at the trivial solution (u0, π0, R0) ≡ 0 with
δ0 = 1. At the nth step we take δn := 2−n and ηn := δn+1

28d
, hence |Rn+1(t)|L1 ≤ ηn+1 =

1
2

δn+1
27d

. This and | Å| ≤ |A| + 1
d |tr A||Id| ≤ |A| + 1

d

√
d|A|√d give |R̊n+1(t)|L1 ≤ δn+1

27d
,

which is the assumption (12) of the step n + 1. Similarly, for any t ∈ [0, 1] at the n-th
step we get, by (14)

3

8
δne(t) ≤ e(t)−

(∫
|un+1|2(t) + 2

∫ t

0

∫
A(Dun+1)Dun+1

)
≤ 5

8
δne(t)
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which is the assumption (11) of the step n + 1, since

3

8
δne(t) = 3

4
δn+1e(t),

5

8
δne(t) = 5

4
δn+1e(t).

Consequently we obtain iteratively, as ηn ≤ 2−n ,

sup
t∈[0,1]

|(un+1 − un)(t)|L2 ≤ M02
−n/2,

sup
t∈[0,1]

|(un+1 − un)(t)|W 1,q ≤ 2−(n+1),

sup
t∈[0,1]

|Rn+1(t)|L1 ≤ 2−(n+1)

(121)

Inequalities (121) mean that {un}∞n=0 is a Cauchy sequence in C(L2)∩C(W 1,q). Denote
its limit by v ∈ C(L2) ∩ C(W 1,q). Send n → ∞ in the distributional formulation of
(10). In particular, in order to pass to the limit in the dissipative term, take a test function
ϕ and use (15) for q < 2d

d+2 < 2 and the Hölder inequality to obtain
∣∣∣∣
∫ t

0

∫
[A(Dun)−A(Dv)]∇ϕdxdt

∣∣∣∣

≤ C

⎧⎪⎨
⎪⎩
|∇ϕ|L1

t Lq
x

sup
t∈[0,1]

|Dun − Dv|q−1Lq (t) for ν0 = 0,

|∇ϕ|
L1

t Lq′
x

sup
t∈[0,1]

|Dun − Dv|Lq (t) for ν0 > 0.

The right-hand sides tend to 0 as n →∞ thanks to (121). Consequently we see that v

satisfies the distributional formulation of (1).
For the 2

∫ t
0

∫
A(Dun)Dun term of energy we use (16) to write

∫ t

0

∫
|A(Dun)Dun −A(Dv)Dv| ≤ C

∫ t

0

∫ (
1 + |Dun|q−1 + |Dv|q−1)|Dun − Dv|.

which via Hölder inequality and (121) allows to pass with n → ∞. This and
limn→∞ |un − v|C(L2) = 0 provided by (121) yields (7).

Let us now focus on proving the last part of Theorem A, i.e. the non-uniqeness
statement. Let us take the twoenergyprofiles e1, e2 and the respective triples (u1

n, π1
n , R1

n)

and (u2
n, π2

n , R2
n) of our convex integration scheme (in what follows, superscripts denote

the cases of e1, e2, respectively). At each iteration step n → n + 1 one picks value of λi
n

(= λ of Sect. 7.3) that works for (ui
n, π i

n, Ri
n). Observe that choosing λ̄n = max (λ1n, λ

2
n)

works simultaneously for both triples. Thus, without renaming the triples, let us make
the choice λ̄n for both (ui

n, π i
n, Ri

n), i = 1, 2. It results in using identical Mikado flows
W k for both iterations.

Now we want to inductively argue that, thanks to the assumed e1(t) = e2(t) for
t ∈ [0, T ], it holds u1

n(t) = u2
n(t) for every n and t ∈ [0, T − 1

27d
]. Let us assume

thence that u1
n(t) = u2

n(t) and R̊1
n(t) = R̊2

n(t) for times t ∈ [0, T −∑n
i=0 2−i

27d
] (This

holds for n = 0, since we begin with the zero triple). Formula (47), with (44) and (45)
shows that ai

k,n+1(t) (i.e. every ai
k(t), k ∈ K at the step n → n + 1) depends on e(t),

R̊i,ε
n (t) and ui

n|[0,t], with ε ≤ 2−(n+1)

27d
being the mollification parameter, cf. (69) with the
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choice δn+1 := 2−(n+1), and the ui
n-dependence being nonlocal due to the dissipative

term in (45). So by our inductive assumption we see that a1
k,n+1(t) = a2

k,n+1(t) for times

t ∈ [0, T −∑n+1
i=0 2−i

27d
]. Consequently, via the definition (49), the principal perturbations

ui
p(t), i = 1, 2 at the step n → n + 1 are identical for times t ∈ [0, T −∑n+1

i=0 2−i

27d
].

Therefore u1
n+1(t) = u2

n+1(t) and R̊1
n+1(t) = R̊2

n+1(t) for t ∈ [0, T −∑n+1
i=0 2−i

27d
], since

the correctors and the new errors are defined pointwisely in time.
Under the assumption that e1, e2 are identical on [0, T ], we produced iteratively

u1
n(t), u2

n(t) that agree for t ∈ [0, T − 1
27d
] thus also their limits satisfy v1(t) ≡ v2(t)

for t ∈ [0, T − 1
27d
].

Replacing T − 1
27d

with any fixed number T1 strictly smaller than T requires only

mollifying at the scales below T − T1 instead of 1
27d

.

9. Sketch of the Proof of Theorem B

Let us indicate changes needed in proofs of Proposition 1 and Theorem A to reach
Theorem . Now, we extend the allowed range of growths of A to q ∈ (1, 3d+2

d+2 ) at the

cost of abandoning the control over the dissipative term 2
∫ t
0

∫
A(Dv)Dv of the energy.

Recall that r ∈ (max{1, q − 1}, 2d
d+2 ) is an additional exponent, fixed in the assumptions

of Theorem B. The main observation is that

q − 1 ≤ r <
2d

d + 2

is subcritical in the sense of choices made in Sect. 7.1.
Let us first consider modifications in proof Proposition 1. Replacing in Sects. 7.1,

7.2 q of Proposition 1 with r implies the following analogue of (111):

L(r) ≤ Cλ−ζ , L(2) ≤ Cλ−ζ , λ2L(r) ≤ Cλ−ζ .

for some positive ζ > 0. Consequently, (114) holds now also with r in place of q. Next,
since q now may exceed 2, to control |RA(t)|1 we use the entire (93) to write

|RA(t)|1 ≤

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

|RA(t)|r ≤ C
((

λ2μ
d
2− d

r
)q−1 + (λ2L(r))q−1) for ν0 = 0, q ≤ 2,

|RA(t)|r ≤ C
(
λ2μ

d
2− d

r + λ2L(r)
)

for ν0 > 0, q ≤ 2,

|RA(t)|1 ≤ C
(
λ2μ

d
2− d

q−1 +
(
λ2μ

d
2− d

q−1 )q−1

+ λ2L(q − 1) + (λ2L(q − 1))q−1) for q > 2.

In any of these cases, right-hand sides are controlled by powers of λ2μ
d
2− d

r and λ2L(r),
therefore we can reach (119). Finally, since we abandon the control over the dissipative
term in the energy inequality, (45) and δE of (95) (let us rename it to δ Ẽ) loose their
dissipative terms. The consequence of the latter is that (96) simplifies to

δ Ẽ(t) ≤ δ

16
e(t) + CN

(
λ−11 + μ−

d
2 + L(2) + L(2)2

)
. (122)

Inequality (122) allows to prove (120) for δ Ẽ as in Sect. 7.
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The above modifications allow to prove Theorem B along Sect. 8 with the difference
that now {un}∞n=0 forms a Cauchy sequence in C(L2)∩C(W 1,r ) and, in the case q > 2,
we pass to the limit in the dissipative term via (15) for q ≥ 2 and the Hölder inequality
that give
∣∣∣∣
∫ t

0

∫
[A(Dun)−A(Dv)]∇ϕ

∣∣∣∣ ≤ C |Dun − Dv|Lq−1

(
1 + |Dun|q−2Lq−1 + |Dv|q−2

Lq−1

)
.

10. Sketch of the Proof of Theorem C

Let us first introduce the following modification of Definition 2

Definition 3. Fix a ∈ L2(Td). A solution to the Non-Newtonian-Reynolds Cauchy prob-
lem is a triple (u, π, R) where

u ∈ L∞(L2) ∩ Lq(W 1,q), π ∈ D, R ∈ L1

with spatial null-mean u, solving the Cauchy problem

∂t u + div (u ⊗ u)− divA(Du) + ∇π = −div R̊,

div u = 0,

u(0) = a,

(123)

in the sense of distributions, where the data are attained in the weak L2-sense.

The drop of regularity between objects of Definition 3 and objects of Definition 2
stems from a different starting point for our iterations. To prove Theorems A, B, we
started the iteration at the smooth triple (u0, π0, R0) = (0, 0, 0) and added smooth
perturbations in each iteration. To prove Theorem C we will start iterations with
(va, π̃a,−va⊗va), where va, π̃a solves the Cauchy problem of a non-Newtonian-Stokes
system:

∂tva − divA(Dva) + ∇π̃a = 0

div va = 0

va(0) = a

(124)

The smoothness of such va, π̃s is in general false, so even though at each step we
again add smooth perturbations, the regularity at each step cannot be better than that of
va, π̃a solving (124).

The starting point of our iterations is given by

Proposition 15 (Leray–Hopf solutions for non-Newtonian Stokes). Fix a ∈ L2(Td).
There is

va ∈ L∞(L2) ∩ Lq(W 1,q), π̃a ∈ D

solving the Cauchy problem (124) in the sense of distributions, so that limt→0 |va(t)−
a|2 = 0 and

∫
Td
|va |2(t) + 2

∫ t

0

∫
Td

A(Dva)Dva ≤
∫
Td
|a|2.
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The proof uses monotonicity ofA and for strong attainment of the initial datum, the
energy inequality.

The main ingredient of proof of Theorem C is a version of Proposition 1 tailored to
deal with the Cauchy problem.

Roughly speaking, given a solution to the Non-Newtonian-Reynolds system (123),
which assume the given initial datum, we construct another solution to (123) with the
same initial datum, and with a well-controlled Reynolds stress. The price we pay to keep
the initial datum intact is growth of energy. More precisely, energy of the ultimately
produced solution to the Cauchy problem with datum a for (1) is much above an energy
of a non-Newtonian Stokes emanating from the same a. Hence we cannot reach energy
inequality, even for merely the kinetic energy in the range q < 2d

d+2 . This is why we do
not distinguish the subcompact range q < 2d

d+2 in Theorem C.
We are ready to state

Proposition 16. Let ν0, ν1 ≥ 0 and q < 3d+2
d+2 , r ∈ (max{1, q−1}, 2d

d+2 ) be fixed. Fix an
arbitrary nonzero initial datum a ∈ L2(Td), div a = 0. There exist a constant M such
the following holds.

Let (u0, π0, R0) be a solution to the Non-Newtonian-Reynolds Cauchy problem with
datum a. Let us choose any δ, η, σ ∈ (0, 1] and γ > 0. Assume that

|R̊0(t)|L1 ≤ δ

27d
for all t ∈ [2σ, 1]. (125)

Then, there is a solution (u1, π1, R1) to Non-Newtonian-Reynolds Cauchy problem with
same datum a such that

|(u1 − u0)(t)|L2 ≤

⎧⎪⎨
⎪⎩

Mδ
1
2 + Mγ

1
2 t ∈ [4σ, 1],

M(δ + supτ∈(t−σ/4,t+σ/4) |R̊0(τ )|1 + γ )
1
2 t ∈ [σ/2, 4σ ] ,

0 t ∈ [0, σ/2],
(126a)

|(u1 − u0)(t)|W 1,r ≤
{

η for all t ∈ [0, 1],
0 t ∈ [0, σ

2 ].
(126b)

|R1(t)|L1 ≤

⎧⎪⎨
⎪⎩

η, t ∈ [σ, 1],
|R0(t)|L1 + η, t ∈ [σ/2, σ ],
|R0(t)|L1, t ∈ [0, σ/2].

(126c)

and ∣∣∣|u1|22 − |u0|22 − dγ

∣∣∣ (t) ≤ δ

24
t ∈ [4σ, 1], (127)

Proof. (Sketch of the proof of Proposition 16) Let us indicate the changes we need to
make in the proof of Proposition 1.

The constant γ will be used instead of the energy pump γ0(t) of (45). This changes
(44) and gives

�(x, t) ≤ 2ε + 2|R̊ε
0(x, t)| + γ

and thus alters (73) to
|ak(t)|2 ≤ 2(δ + |R̊0(t)|1 + γ )

1
2 . (128)
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Define u p, uc by (49), (57) respectively (with the new �). Let us introduce a smooth
cutoff

χ(t)

⎧⎪⎨
⎪⎩
= 0 t ≤ σ/2,
∈ [0, 1] t ∈ (σ/2, σ )

= 1, t ≥ σ.

and define the perturbations ũ p, ũc as follows

ũ p(t) := χ(t)u p(t), ũc(t) := χ2(t)uc(t).

Due to (128), the new version of (77) reads

|u p(t)|2 ≤ M(δ + |R̊0(t)|1 + γ )1/2 + λ
− 1

2
1 C. (129)

Since (125) holds only on [2σ, 1], and recalling the fact that R̊ε
0 is the mollification in

space and time of R̊0, we can follow the lines of Proposition 1 only on [4σ, 1]. This
gives the first line of (126a). Concerning the case [σ/2, 4σ ] of (126a) let us compute,
using (128)

|ũ p(t)|2L2 ≤ |u p(t)|2L2 ≤ M(δ + |R̊0(t)|1 + γ )

Our assumption now does not control R̊ε
0(t) for t ≤ 2σ , but we can always write,

choosing ε  σ

|ũ p(t)|2L2 ≤ M
(
δ + sup

τ∈(t−σ/4,t+σ/4)
|R̊0(τ )|1 + γ

)
,

which, together with the smallness of |ũc(t)|L2 , cf. (80), gives the case [σ/2, 4σ ] of
(126a). On [0, σ/2], it holds u1 = u0, as there χ ≡ 0, thence the respective part of
(126a).

The estimate (126b) holds on the whole time interval, because the Mikado flows are
small in W 1,r for r < 2d

d+2 by construction.
The estimate on the new Reynolds stress (126c) on [σ, 1] is analogue to the cor-

responding estimate (13c) of Proposition 1, as on [σ, 1] the time cutoff χ ≡ 1. The
estimate on [0, σ/2] is trivially satisfied, as on this time interval the cutoff χ ≡ 0 (here
u0 = u1, so R0 = R1). On the intermediate time interval [σ/2, σ ], R0 is decomposed
as R0 = R0(1− χ2) + R0χ

2. The term R0χ
2 is canceled by ũ p ⊗ ũ p = χ2(u p ⊗ u p),

as in the proof of Proposition 1, thus giving the η in the second line of (126c), whereas
the term R0(1 − χ2) is responsible for |R0(t)|L1 in the second line of (126c). There
is, however, in the new Reynolds stress R1 an additional term coming from the time
derivative of the cutoff:

div Rcutof f (t) := χ ′(t)u p(t) + (χ2)′(t)uc(t). (130)

For the first term in (130) we just use (75) with r = 1:

|div−1(χ ′(t)u p(t)
)|1 ≤ |χ ′(t)u p(t)|1 ≤ C

σ
μ−d/2 ≤ C

σ
λ−ad/2,
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where we used the choice μ = λa , as in Sect. 7. For the second term in (130) we have,
invoking (19)

|div−1((χ2)′(t)uc(t)
)|1 ≤ |div−1((χ2)′(t)uc(t)

)|2 ≤ |(χ2)′(t)uc(t)|2 ≤ C

σ
L(2)

Since by (111) L(2) ≤ Cλ−ζ , both terms of (130) are estimated by negative powers of
λ. Thus they can be made as small as we wish by picking λ big enough.

Let us now justify (127) along the proof of Proposition 14. In (98) γ0 changes to
γ . Now we do not control |R̊ε

0(t)|1 on the entire time interval [0, 1], only on [4σ, 1]
via (125). On this interval χ = 1 and hence for any t ∈ [4σ, 1] one has the following
counterpart of (102) ∣∣∣|ũ p|22 − dγ

∣∣∣ ≤ δ

25
+ C

( 1

λ1
+

λ1μ

λ2

)
. (131)

We use now u1 = u0 + ũ p + ũc to write for any t ∈ [4σ, 1]
∣∣∣|u1|22 − |u0|22 − dγ

∣∣∣ ≤ δ

25
+C

( 1

λ1
+

λ1μ

λ2

)
+
∣∣∣|ũc|22+2

∫
(u0ũc+u0ũ p+ ũ pũc)

∣∣∣. (132)

The r.h.s. above can be made arbitrarily small in view of (131) and arguments analogous
to that leading to Proposition 1, which yields (127). ��

Iterating Proposition 16, we can now complete the proof of TheoremC. Let us choose
σn := 2−n along the iteration. We will choose δn = 2−n and ηn = 2−(n+9)d−1 as in
proofs of Theorems A, B. There are two main differences between the current iterations
and the iterations leading to Theorems A, B. Firstly, we initiate the iterations with
the triple (va, π̃a,−va ⊗ va), where va, π̃a are given by Proposition 15. Secondly, we
will choose the now additional free parameter γ just to distinguish between different
solutions. Namely, let us choose γn = d−1δn except for γ3, which we require it to be a
large constant, say K .

The condition (125) for the initial triple is void (empty interval where it shall hold)
and over iterations it is satisfied thanks to the first case of (126c) and our choices for
ηn, δn, σn . The third iteration produces u3 out of u2 such that

∣∣∣|u3|22 − |u2|22 − d K
∣∣∣ (t) ≤ 2−7 t ∈ [1/2, 1].

At this step the energies of the iteratively produced solutions branch: choosing two K ’s
that considerably differ, we will see that the kinetic energies on t ∈ [1/2, 1] of the finally
produced solutions differ considerably.

From step n = 4 onwards γn = δn , thus the first line of (126a) is analogous to (13a).
Iterating Proposition 16 we thus obtain convergence of the sequence {un−va}n to some

v∞ ∈ C((0, 1]; L2(Td)) ∩ C([0, 1];W 1,r (Td)).

Note the open side of an interval above. Taking into account the regularity class of va
and r < q, we thus have

un → va + v∞ := v strongly in L∞((0, 1); L2(Td)) ∩ Lr ((0, 1);W 1,r (Td)),

which allows to pass to the limit in the distributional formulation of (124), since by
choice r > max (1, q − 1).
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Concerning the attainment of the initial datum a, for any q0 < 2 the estimate (126b)
yields |v∞|q0(t) → 0 as t → 0. Therefore v = v∞ + va satisfies |v − a|q0(t) → 0 as
t → 0. From this and the fact that the L2 norm of v(t) is uniformly bounded in time on
[0, 1], it follows that v(t) ⇀ a weakly in L2 as t → 0+.

Let us finally argue for multiplicity of solutions. At the step n = 3 let us choose two
different K , K ′. Let us distinguish the resulting un’s and their limits v by, respectively,
un and u′n , and v and v′. On t ∈ [1/2, 1] (127) yields for n ≥ 4∣∣∣|un|22 − |un−1|22

∣∣∣ (t) ≤ 2−(4+n) + 2−n
∣∣∣|u′n|22 − |u′n−1|22

∣∣∣ (t) ≤ 2−(4+n) + 2−n,

whereas ∣∣∣|u3|22 − |u2|22 − d K
∣∣∣ (t) ≤ 2−7

∣∣∣|u′3|22 − |u′2|22 − d K ′
∣∣∣ (t) ≤ 2−7

So, since u2 = u′2∣∣∣|un|22 − |u2|22 − d K
∣∣∣ (t) ≤ 1/2

∣∣∣|u′n|22 − |u2|22 − d K ′
∣∣∣ (t) ≤ 1/2.

The same inequalities hold for the strong limits v, v′. Therefore, for d|K −K ′| > 1 they
must differ.
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11. Appendix

11.1. Proof of Lemma 1. Let us first consider a scalar function f : R→ R

f (t) := (ν0 + ν1|t |)q−2t.

It is Lipschitz for ν1 = 0. In the range q ∈ (1, 2] f is (q − 1)-Hölder continuous for
ν0 = 0, ν1 > 0; and locally Lipschitz for ν0 > 0, ν1 > 0. By the last statement we mean
that

| f (t)− f (s)| ≤ Cq |t − s|(ν0 + ν1(|t | + |s|))q−2. (133)

It is proven by writing

| f (t)− f (s)| ≤ |q − 1||t − s|
∫ 1

0
(ν0 + ν1|s + x(t − s)|)q−2dx

≤ |q − 1||t − s|(ν0 + ν1(|t | + |s|))q−1−δ

∫ 1

0
(ν0 + ν1|s + x(t − s)|)δ−1dx,

(134)

http://creativecommons.org/licenses/by/4.0/
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with the second inequality given by splitting q − 2 = (q − 1 − δ) + (δ − 1) so that
q − 1 − δ > 0 and thus the function t → tq−1−δ is increasing. For the integral in the
second line of (134) we use that for γ ∈ (−1, 0] and |t | + |s| > 0 it holds

∫ 1

0
(ν0 + ν1|s + x(t − s)|)δ−1dx ≤ Cγ (ν0 + ν1(|t | + |s|))γ . (135)

Computation for (135) is contained in proof of Lemma 2.1 in [1]. Using (135) in (134)
we obtain (133).
In the range q ≥ 2 for f , the function t → tq−2 is increasing and integrable at 0, so
(133) holds for any ν0 ≥ 0, ν1 ≥ 0. Altogether

| f (t)− f (s)| ≤

⎧⎪⎪⎨
⎪⎪⎩

Cν1 |t − s|q−1 for ν0 = 0, q < 2

Cν0 |t − s| for ν0 > 0, q < 2

Cq,ν0,ν1 |t − s|
(
1 + |t |q−2 + |s|q−2

)
for q ≥ 2

(136)

Replacing scalars with tensors in (136) will give (15). Details follow.
Let us consider first the (global Hölder) case ν0 = 0, q < 2, i.e. the first line of (136).
We show the respective first line of (15) by considering two cases: (i) Q, P lie along a
line passing through the origin and (ii) Q, P lie on a sphere centered at the origin. The
case (i) is Q = t Q0, P = s Q0 for some s, t ∈ R and |Q0| = 1, thus (15) here follows
immediately from (136). The case (ii) is |Q| = |P| = l for some l > 0. Here

A(Q) = Q(ν1l)q−2, A(P) = P(ν1l)q−2,

so
|A(Q)−A(P)|
|Q − P|q−1 = |Q − P|

(ν1l)2−q |Q − P|q−1 =
( |Q − P|

ν1l

)2−q ≤
( 2l

ν1l

)2−q

and the latter is a l-independent constant. Both cases (i), (ii) yield for every nonzero
Q, P

|A(Q)−A(P)| ≤
∣∣∣A(Q)−A

( |Q|
|P| P

)∣∣∣
︸ ︷︷ ︸

arguments lie: on the sphere ∂ B|Q|(0)

+
∣∣∣A

( |Q|
|P| P

)
−A(P)

∣∣∣
︸ ︷︷ ︸

on the same line through origin

≤ Cν1

(∣∣∣Q − |Q||P| P
∣∣∣q−1 +

∣∣∣ |Q||P| P − P
∣∣∣q−1

)
≤ Cν1 |P − Q|q−1.

We have just proven the first ν0 = 0, q < 2 case of (15).
The second (global Lipschitz) case ν0 > 0, q < 2, i.e. the tensorial version of the second
line of (136), can be proven analogously. But in fact the computation leading to (133)
works well when applied immediately to tensor mappings both in the case ν0 > 0, q < 2
and q ≥ 2, giving the remainder of (15). Estimate (16) follows from an argument that
gave the case q ≥ 2 in (15), applied to f̃ (t) = (ν0 + ν1|t |)q−2t2.

11.2. Proof of Proposition 4 on antidivergence operators.
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(i). div−1 : C∞0 (Td;Rd) → C∞0 (Td;S)) Let �−1v denote the null-mean solution

u to �u = v on T
d . Recall that D f := ∇ f +∇T f

2 (symmetric gradient), and recall
PH f := f − ∇�−1div f (Helmholtz projector). Take

div−1v := D�−1v + D PH �−1v,

which is symmetric, because D is symmetric. (Compare div−1 with the inverse diver-
gence 3

2 D�−1v + 1
2 D PH �−1v − 1

2div�−1vId of Definition 4.2 [18], which is auto-
matically traceless. We use the simpler choice for div−1, since trace zero is provided by
a pressure shift.) Since 2div D = � + ∇div , we have for �u = v

div (Du + D PH u) = 1

2

(
�u + ∇div u + �(u −∇�−1div u) + ∇div (u − ∇�−1div u)

)

= �u = v.

Estimates (19), (20) follow from arguments analogous to that of [31], proof of Lemma
2.2, so we only sketch them. The estimate (19) for p > 1 follows from Calderón-
Zygmund theory, suboptimally, because div−1 is −1-homogenous. This suboptimality
yields the borderline cases. In particular p = ∞ holds, since ∇div−1 is 0-homogenous
thus, via Sobolev embedding and Calderón-Zygmund for∇div−1 one has |div−1 f |∞ ≤
C |∇div−1 f |d+1 ≤ C | f |d+1 ≤ C | f |∞. The other borderline case p = 1 follows from
the fact that the operator dual to div−1 is −1-homogenous and from duality argument.
The claim (20) uses (19), −1-homogeneity of div−1 that yields

div−1(uλ) = λ−1(div−1u)λ, (137)

and that we are on a torus, so the L p norms remain unchanged under oscillations.

(ii). RN : C∞(Td;R)×C∞0 (Td;Rd)→ C∞0 (Td;S)) (Compare [18], Proposition 5.2
and Corollary 5.3.) We construct the two-argument improved symmetric antidivergence
iteratively upon div−1. Let us commence with

R0( f, u) := div−1
(

f u −−
∫

f u

)
. (138)

Our aim is an antidivergence that extracts oscillations of uλ out of the product f uλ.
Therefore (137) suggests to apply div−1 to uλ, and correct the remainder. Let us thence
compute

div
(

f div−1u
)
= f u +

d∑
k=1

∂k f (div−1u)ek (139)

and define R1( f, u) := f div−1u −∑d
k=1R0

(
∂k f, (div−1u)ek

)
. The choice (138) of

R0 and (139) yield

divR1( f, u) = f u −−
∫

f u. (140)

Define inductivelyRN ( f, u) := f div−1u−∑d
k=1RN−1

(
∂k f, (div−1u)ek

)
, per analo-

giam with the construction R0 → R1. Using induction over N , one proves now that
RN is bilinear, symmetric, divRN ( f, u) = f u − −∫

Td f u, satisfies Leibniz rule:

∂kRN ( f, u) = RN ( f, ∂ku) +RN (∂k f, u)
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and estimates (21), similarly to proof of Lemma 3.5 of [30]. For instance, to
show divRN ( f, u) = f u − −∫

Td f u we have (140) as the initial step. Assuming
divRN−1( f, u) = f u − −∫

Td f u, one has

divRN ( f, u) = div ( f div−1u)−
d∑

k=1

(
∂k f (div−1u)ek −−

∫
∂k f

(
(div−1u)ek

) )

= f u −−
∫

f u

with the second equality due to (139).
The estimate (21) holds for N = 1 since (19) and Jensen imply |R0( f, u)|p ≤ C | f |r |u|s
and thus

|R1( f, uλ)|p ≤ C | f |r |div−1uλ|s +
d∑

k=1
|R0

(
∂k f, (div−1uλ)ek

)
|p

≤ C | f |r |div−1uλ|s + C |∇ f |r |(div−1uλ)|s ≤ C |u|s
(1
λ
| f |r + 1

λ
|∇ f |r

)
,

with the last inequality due to (20). For the inductive step N − 1→ N , let us compute,
using (137)

|RN ( f, uλ)|p ≤ C | f |r |div−1uλ|s + 1

λ

d∑
k=1
|RN−1

(
∂k f, ((div−1u)(λ·))ek

)
|p

≤ C |u|s 1
λ
| f |r + Cd,p,s,r,N−1

d∑
k=1
|div−1u|s 1

λ

(1
λ
|∂k f |r + 1

λN−1 |∇N−1∂k f |r
)
,

with the second inequality valid via the inductive assumption, i.e. (21) for N − 1. The
estimate (19) and interpolation yield the inductive thesis.

(iii). R̃N : C∞(Td;Rd)× C∞0 (Td;Rd×d)→ C∞0 (Td;S)) Take

R̃N (v, T ) :=
d∑

k=1
RN (vk, T ek).

Then div R̃N (v, T ) =∑d
k=1 vk T ek −−

∫
Td vk T ek = T v−−∫

Td T v and since it is a linear
combination of RN ’s, it retains all its properties.

(iv).R2
N : C∞(Td;R)×C∞0 (Td;R)→ C∞0 (Td;S)) We redo the reasoning of (i)–(iii),

starting from the following ‘standard double antidivergence’ div−2 : C∞0 (Td;R) →
C∞0 (Td;S)

div−2v := ∇2�−2v,

where ∇2 is the (symmetric) tensor of second derivatives, and thus div div div−2 f = f.
Analogously as for div−1 we have |div−2v|W 1,p ≤ |v|pC p. Since it is−2-homogenous,
it holds div−2(vλ) = λ−2(div−2v)λ, thus

|∇ idiv−2(vλ)|L p ≤ λi−2|∇ iv|L p Ck,p. (141)
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Upon div−2 we build now R2
N , starting with

R2
0(a, b) := div−2

(
ab −−

∫
ab

)
(142)

and the computation

div div
(

a div−2b
)
= ab +

d∑
k,l=1

2∂l(div
−2b)kl∂ka + (div−2b)kl∂2kla, (143)

where we used symmetry of div−2. Hence let us define by recursion

R2
N (a, b) := a div−2b −

d∑
k,l=1

[
2R2

N−1
(
∂ka, ∂l(div

−2b)kl
)
+R2

N−1
(
∂2kla, (div−2b)kl

) ]
.

Let us inductively prove that

div divR2
N (a, b) = ab −−

∫
ab. (144)

The initial statement for N = 0 is (142). Assuming (144) for N − 1, we use (143) to
compute

div divR2
N (a, b) = ab +−

∫ d∑
k,l=1

(
2∂ka ∂l(div

−2b)kl + ∂2kla(div−2b)kl
)

.

We see again via (143) that the mean value above equals −−∫ ab.
Via induction over N , one proves that R2

N is bilinear, symmetric, and satisfies Leibniz
rule. Concerning the estimate (23), let us first prove it for j = 0. The proof is by induction
on N . For N = 1, the estimate is true, since |R2

0(a, b)|p ≤ C |a|r |b|s and thus

|R2
1(a, bλ)|p ≤ C |a|r |div−2bλ|s + C |∇a|r |(∇div−2bλ)|s + C |∇2a|r |div−2bλ|s

≤ C |b|s
( 1

λ2
|a|r + 1

λ
|∇a|r + 1

λ2
|∇2a|r

)

with the last inequality due to (141). For the inductive step N − 1→ N , let us compute
using −2-homogeneity of div−2, −1-homogeneity of its derivatives, bililnearity ofR2

|R2
N (a, bλ)|p ≤ C |b|s 1

λ2
|a|r

+
d∑

k,l=1
2
1

λ
|R2

N−1
(
∂ka, ∂l(div

−2b)kl
λ

)
|p +

1

λ2
|R2

N−1
(
∂2kla, (div−2b)kl

λ

)
|p,

using to the r.h.s. above the j = 0 inductive assumption (23) for N −1 and interpolation
yields (23) for j = 0. Finally, estimate (23) for any j ∈ N is proven by induction on
j . We already know that (23) holds for j = 0. Assuming it is valid for j , one has by
Leibniz rule and linearity

∇ j+1R2
N (a, bλ) = ∇ jR2

N (∇a, bλ) + λ∇ jR2
N (a, (∇b)λ),

which via the inductive assumption yields (23) for j + 1.
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11.3. Proof of Lemma 3. The proof of part (i) is by induction on |K |. For |K | = 1
the proof is trivial. Let us now assume |K | ≥ 2. Let us write K = K ′ ∪ {k}, where
|K ′| = |K | − 1. By inductive assumption, {ζk′ }k′∈K ′ and ρ′ > 0 are already defined, so
that the periodization of the cylinders with radius ρ′ and axis {ζk′ + sk′}s∈R, for k′ ∈ K ′,
are pairwise disjoints. It is then enough to find ζk ∈ R

d and ρ ∈ (0, ρ′) such that (27)
holds for all k′ ∈ K ′. Notice that (27) is equivalent to

Bρ(ζk) ∩
(

Bρ(0) +
{
ζk′ + sk + sk′}s,s′∈R + Z

d
)
= ∅.

Since d ≥ 3, the countable union of planes {ζk′ + sk + s′k′}s,s′∈R +Zd has zero measure
and, since k, k′ ∈ Z

d , it is closed in Rd . Therefore, for any ρ ∈ (0, ρ′), also
⋃

k′∈K ′
Bρ(0) +

{
ζk′ + sk + s′k′}s,s′∈R + Z

d

is closed in Rd and, if ρ small enough, it is strictly contained in Rd . We can thus find ζk
and ρ ∈ (0, ρ′) such that

Bρ(ζk) ⊆ R
d \

( ⋃
k′∈K ′

Bρ(0) +
{
ζk′ + sk + s′k′ : s, s′ ∈ R

}
+ Z

d
)
,

with the superset being open, thus concluding the proof of part (i).
For part (ii), consider the set of directions in Z3 given by

K̃ := {(k, 1) : k ∈ K } ⊆ Z
3.

By part (i), we can find {ζ̃k}k∈K ⊆ R
3 and ρ > 0 such that (in R3),(

Bρ(ζ̃k) + s (k, 1)︸ ︷︷ ︸
∈K̃

+Z3
)
∩

(
Bρ(ζ̃k′) + s′ (k′, 1)︸ ︷︷ ︸

∈K̃

+Z3
)
= ∅ (145)

for all k, k′ ∈ K and s ∈ R (the balls above are inR3). Observe that, for every (k, 1) ∈ K̃ ,
the axis of the cylinder Bρ(ζ̃k)+ s(k, 1)+Z3 ⊆ R

3 is never lying on the horizontal plane
x1, x2. Therefore we can assume w.l.o.g. that each ζ̃k has the form

ζ̃k = (ζk, 0).

Let us now show (28), with such choice of {ζk}k∈K . Assume by contradiction that there
are two distinct directions k, k′ ∈ K and s ∈ R such that

(
Bρ(ζk) + sk + Z

2
)
∩ (

Bρ(ζk′) + sk′ + Z
2
)
�= ∅.

Then there are x ∈ Bρ(ζk) ⊆ R
2, y ∈ Bρ(ζk′) ⊆ R

2, l, l ′ ∈ Z
2, such that

x + sk + l = y + sk′ + l ′ ∈ R
2.

This implies that

(x, 0)︸ ︷︷ ︸
∈Bρ(ζ̃k )

+s(k, 1) + (l, 0)︸ ︷︷ ︸
∈Z3

= (y, 0)︸ ︷︷ ︸
∈Bρ(ζ̃k′ )

+s(k′, 1) + (l ′, 0)︸ ︷︷ ︸
∈Z3

∈ R
3,

contradicting (145).
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