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Abstract: Motivated by the three-dimensional topological field theory/two-dimensional
conformal field theory (CFT) correspondence, we study a broad class of one-dimensional
quantum mechanical models, known as anyonic chains, which can give rise to an enor-
mously rich (and largely unexplored) space of two-dimensional critical theories in the
thermodynamic limit. One remarkable feature of these systems is the appearance of
non-local microscopic “topological symmetries” that descend to topological defects of
the resulting CFTs. We derive various model-independent properties of these theories
and of this topological symmetry/topological defect correspondence. For example, by
studying precursors of certain twist and defect fields directly in the anyonic chains, we
argue that (under mild assumptions) the two-dimensional CFTs correspond to particular
modular invariants with respect to their maximal chiral algebras and that the topological
defects descending from topological symmetries commute with these maximal chiral
algebras. Using this map, we apply properties of defect Hilbert spaces to show how
topological symmetries give a handle on the set of allowed relevant deformations of
these theories. Throughout, we give a unified perspective that treats the constraints from
discrete symmetries on the same footing as the constraints from topological ones.
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1. Introduction

Quantum systems in three space-time dimensions allow for a well-known generalization
of the usual bosonic/fermionic exchange statistics of identical particles called “anyonic”
statistics [1,2]. When anyons are interchanged, the resulting quantum state may pick
up exotic phases different from 0 and m (the abelian case) or may be acted upon by
non-commuting unitary matrices (the non-abelian case).

Anyons have deep connections to many areas of current interest in theoretical physics.
One of their simplest non-abelian incarnations, the so-called “Fibonacci” anyons, can be
harnessed to construct models of universal quantum computation (see [3] and references
therein).! More generally, anyons are excitations of theories exhibiting topological order
(i.e., gapped systems lacking a local order parameter) like discrete gauge theories and
systems that exhibit the fractional quantum Hall effect (FQHE).

Apart from being interesting experimental realizations of strongly coupled physics,
FQHE models are thought to be real-world examples [4] of the three-dimensional topo-
logical field theory (TFT)/two-dimensional conformal field theory (CFT) correspon-
dence originally discussed in [5—7]. Under this correspondence, the FQHE groundstates
are described by conformal blocks of boundary CFTs, and anyonic particles are described
by chiral vertex operators of these boundary theories.

In this paper, we study a vast set of models that exhibit anyonic relations between
TFTs and CFTs and that can potentially be used to better understand the above systems
(as well as to explore the space of two-dimensional CFTs). Our starting point is a
generalization of certain quantum mechanical models called “anyonic chains” [8]. The
basic idea is to treat the anyons as elements of an input fusion category, Ciy, that satisfy
a multiplication rule generalizing the usual multiplication of spins. One then constructs
fusion trees by specifying a lattice of external anyonic states of length L while allowing
the labels of internal links (i.e., the interactions) to take on any values in Cj, consistent
with the fusion rules. The resulting Hilbert spaces are somewhat reminiscent of those

! In the language of high-energy theoretical physics, one can think of these anyons as arising in Gy Chern—
Simons theory at level one.
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encountered in the construction of simple spin chains like the Heisenberg model, but,
in general, the spaces of anyonic states do not factorize into tensor products of local
Hilbert spaces.

In order to move beyond topology and introduce a notion of energy that allows us to
make closer contact with CFT, we will specify a Hamiltonian, H, for the anyonic system
[8]. Quite remarkably, in the thermodynamic limit (i.e., in the limit that L — o0), one
often finds an effective two-dimensional CFT description of the one-dimensional chain
(which we will refer to as the “output” CFT). While similar behavior is known to occur
in spin chains like the Heisenberg model, the mechanism that gives rise to this critical
effective behavior in anyonic chains is somewhat different. Indeed, we will see that
certain types of non-local operators (also known as “topological symmetries,”), Yy, play
a starring role [8,9]. Roughly speaking, the Y, are in one-to-one correspondence with
the simple elements of Cj,, and they can be used to rule out relevant terms in the effective
action if and only if these deformations are in “topologically non-trivial” sectors of the
theory. As a result, if there are sufficiently many of these symmetries, we can end up
with a critical effective theory that has no relevant perturbations invariant under the
topological symmetries.?

Given this construction, it is natural to ask which objects in the output CFT the
topological symmetries correspond to. As we will see, the Y, descend to topological
defects [10] of the effective theory. Basic aspects of this correspondence appeared in
[11]. These connections were then more generally and explicitly formulated in [12]. In
particular, a connection between the topological symmetries and the topological defects
of [10] was first discussed in [12]. A lattice realization of topological defects was also
given in [13]. One aspect of our work below will be to find additional evidence for
this correspondence. Moreover, since topological defects are rich objects in their own
right—with interesting Hilbert spaces of twist, defect, and junction fields localized on
them—we are able to gain new perspectives on the topological symmetries themselves
and the role they play in giving rise to critical behavior.

In what follows, we eschew a detailed study of specific examples of anyonic chains
in order to focus on general properties of this topological symmetry / topological defect
correspondence. Our main motivations for this approach are a desire to better understand
the role topological defects play in general FQHE and condensed matter systems, and
to determine to what extent anyonic chains can be used to further explore the space
of two-dimensional CFTs (perhaps as an alternative to more conventional conformal
bootstrap techniques).

Implementing this general approach, we find the following model-independent results

e The topological symmetries, Y, realize the input fusion algebra, Aj,, of Ci, (which
we will take to be modular), while—up to some important caveats we discuss in
Sect. 3—the corresponding topological defects, Dy, in the output CFT, 7oy, realize a
fusion sub-algebra, A’, of the output fusion algebra, Aqy, that is isomorphic to Ajp,
ie.’

inZA/ngut- (1.1)
Moreover, topological symmetry operators have the same eigenvalues as the corre-
sponding topological defects
Yelm, @) = hemlm, @) & Del® ) =hreml®, 3). (1.2)
2 Otherwise, we may end up with a gapped theory.

3 A similar result is independently obtained in the upcoming work [14]. We thank the authors of [14] for
sharing their work with us prior to publication.
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where |m, & ) is a state in the Hilbert space of the anyonic chain that has topological
quantum numbers corresponding to an element ¢, € Ciy (the set of quantum numbers,
“& ,” distinguishes between the many states that have the same topologlcal quantum

numbers), and |<I>m 1—4>) is a state in Zgy that descends from |m, &) (note that all CET

states can be written in this way).*
e If A, o is the eigenvalue of the ground state, |0), under the action of Dy (or, equiva-
lently, of Y;), we have

him = o, Ve A & [D@, ® 7] —0, Ve, (1.3)

where d>m v is the CFT operator corresponding to the state | 71)) Note that (1.3)

is the CFT version of the topological protection mechanism dlscussed in [8,9]. In
particular, the vanishing of the microscopic commutators

[Ye, Hl =0, V¢ € Ain, (1.4)

ensures that if a putative deformation of the effective theory, § Heer = A 99 o -

m,A’
does not satisfy (1.3), then it cannot be generated upon coarse graining.

e The “«<” direction of (1.3) is a straightforward application of the CFT state-operator
correspondance as well as of basic properties of fusion algebras and topological
defects (see Theorem 4.1 below). On the other hand, the “=>"" direction is non-trivial.
Indeed, we first prove a partial converse of Theorem 4.1, that depends on properties of
defect Hilbert spaces, in Theorem 4.4. Then, by combining the quantum mechanical
constraint in (1.2) with unitarity (in the guise of Theorem 4.5) we complete the proof
of (1.3) (in Theorem 4.6).

e Our proof of the “=>" direction of (1.3) uses unitarity (see Theorem 4.5). Therefore, it
is possible that there are some non-unitary anyonic chains (see [ 15] for basic examples

of non-unitary chains) that have [D@, <I> —>] # O0eventhough Ag , = Ago Ve € A'.

If such examples do exist, then these non-unitary chains may exhibit an enhanced
topological protection of critical behavior in the thermodynamic limit (since relevant
deformations in the topological sector of the identity might still be ruled out).

e Under relatively mild assumptions, the subset of topological defects of 7oy that
descend from topological symmetries of the anyonic chain commute with the full
left and right chiral algebras of 7. For example, if the output theory is the 3-state
Potts model, then these topological defects not only commute with the left and right
Virasoro algebras but also commute with the full left and right W5 algebras.

e We find quantum mechanical ancestors of some of the twist and defect fields of the
Dy in the anyonic chain itself.> As we will see, the spectrum of these ancestors shows
that the anyonic chain contains seeds of the modular properties of 7oy even though
Cin itself need not be modular in general (although, to prove the “=" direction of
(1.3), we will assume modularity of Ci,).

e Discrete symmetries can be treated on a similar footing. Operators generating these
symmetries correspond to group-like defects that have group-like fusion rules. Dis-
crete symmetries of the microscopic theory can be enforced macroscopically via
commutators similar to those in (1.3). These symmetries are often crucial for ensur-
ing critical behavior in the L — oo limit (see the examples in Sect. 5).

4 Although, in general, only certain <1>m e CFT operators “directly descend” from ¢, in the sense of

realizing the corresponding fusion rules in A’.
5 Similar results are independently obtained in the upcoming article [14].
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o Inorderto set the stage for studying the potential implications of our work on the space
of two-dimensional CFTs, we find simple constraints on the possible Ci, that can give
rise to a particular output unitary modular tensor category (UMTC), Coue (Where we
assume that Coy is the UMTC of some rational CFT, 7). As an illustrative example
of these constraints, we note that (up to the caveats of Sect. 3) if Coyy = D(S3),
where D(S3) is the quantum double of S3, then the only possible input modular
fusion category is Ciy = D(S3) as well.0

Let us now briefly summarize the plan of this paper. In the next section, we introduce
anyonic chains in much greater detail. In order to motivate the various possible inter-
actions present in these theories, we remind the reader of analogous interactions in the
Heisenberg spin chain. We then discuss the various topological symmetries of anyonic
chains and explain how they differ from the global symmetries of the Heisenberg chain.
We move on to study the thermodynamic limit of the anyonic chains and the effective
CFT description while placing special emphasis on further explaining the map between
topological symmetries and topological defects. In the following section, we discuss the
more detailed properties of topological defects, including how to compute the Hilbert
spaces of fields localized on defects. By relating some of these defect fields to precursors
in the anyonic chains, we argue that the defects descending from topological symme-
tries commute with the left and right maximal chiral algebras of Zqy¢. We then use facts
about defect Hilbert spaces combined with constraints from unitarity and the quantum
mechanical inputs of our theories to prove (1.3). We conclude with a brief discussion of
examples and applications as well as a list of open problems and future directions.

2. Anyonic Chains

In order to introduce basic aspects of the correspondence between 1D quantum mechan-
ical systems and 2D CFTs, we begin this section by discussing the Heisenberg spin—%
chain. After briefly mentioning its generalizations, we move on to discuss anyonic chains
[8,9,15,17-19], and we review the construction of the resulting Hilbert spaces, Hamil-
tonians, and topological symmetries.

However, several words of caution are in order: while the Heisenberg chain allows
for various interactions that are closely related to those found in anyonic chains, these
latter chains are not simple generalizations of the spin-% Heisenberg chain. Instead,
they are qualitatively different in several respects. For example, anyonic chains have
non-local symmetries that are in one-to-one correspondence with elements of the fusion
algebra that the chain is built from. On the other hand, the spin-% Heisenberg model
has global symmetries that are in one-to-one correspondence with its symmetry group
elements. These facts have profound implications for the resulting effective CFTs (when
they exist): in the anyonic chain case, the non-local symmetries are related to defects
that (under relatively mild assumptions) commute with the full chiral algebra. On the
other hand, in the spin-% Heisenberg case, the global symmetries are related to defects
that do not commute with the full chiral algebra (and, moreover, are defined in terms of
exponentials of CFT Noether charges).

Another important difference between the Heisenberg chain and the anyonic chains
is that the Hilbert space of the Heisenberg chain factorizes while the Hilbert space of

6 A similar statement holds for the Ising model fusion category. Note that in making this statement, we do
not distinguish between input data that differs by Frobenius—Schur indicators [ 16], so the input fusion category
can be Cj, = Rep [su(2)>] (where Rep [g] are the representations of the algebra g). In fact, such a case arises
in [9].
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Fig. 1. a The usual graphical representation of thef Heisenberg chain. Each arrow indicates a state in the local
Hilbert space, H;. b The graphical representation of the ferromagnetic ground state. Every spin pair forms a
spin-1 representation. ¢ The graphical representation of the anti-ferromagnetic groundstate. Every spin pair

forms a spin—% representation
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the typical anyonic chain does not (this statement is, in turn, related to a richer structure
of quantum dimensions in the anyonic case). In Sect. 5.2, we describe various explicit
examples of anyonic chains and comment on the extent to which one can view these
models as deformations of the Heisenberg spin-% chain.

2.1. The Heisenberg spin—% chain and its generalizations. The Heisenberg spin chain
is an integrable model of a 1D magnet [20]. Let us first define the Hilbert space: we take
a 1D lattice and attach to every node of the lattice a local Hilbert space, H; ~ C. The
total Hilbert space is then the tensor product of the local Hilbert spaces

H=HI®OH®---®Hp, 2.1)

where L is the number of nodes (Fig. 1). The traditional Heisenberg Hamiltonian is
given by a sum of local terms

H==J)"5 S, 2.2)

where the spin operator, S7, acts as S = %o“ on H; and as the identity everywhere

else. The commutation relations of spin operators are the usual ones for su(2) at each
site, and the Hamiltonian in (2.2) has a global su(2) symmetry.

While the absolute value of the coupling constant has no physical significance and
can be rescaled away, the sign of J plays an important role. To illustrate this point (and
for future reference when discussing anyonic chains) weﬁwill rexvritei the Hamiltonian in
a more intuitive form. To that end, consider the quantity S}O‘ = S; + Si+1. The magnitude
|.§'}"t |? can either be equal to 0 or 1 (i.e., in the language we will use below, the fusion of
two spins has two channels), which follows from representation theory of su(2). It is a
matter of elementary algebra to check that |S’}°t|2 =0- I'Ifo) +2- 1'[51), where I'IES) isa
projector onto spin-s states, and the coefficient is given by s(s + 1). Thus, the local term
S; - Si+1 can be written as

I 1
S S =-11+ il 2.3)

and the Hamiltonian (2.2) can therefore be re-written (up to a constant) as
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L
0)
H=7Y 1. (2.4)
i=1

Now the physical meaning of J should be very clear. If / > 0, then the neighboring

spins prefer to align and form spin-1 combinations, so that HEO) acting on each pair is
0 (as in Fig. 1b). This scenario is called the ferromagnetic (F) case. When J < 0, spins
prefer to maximize 1'[50) by aligning in opposite directions and forming spin-0 singlets
(as in Fig. 1c¢). This situation is known as the anti-ferromagnetic (AF) case. When we
introduce anyonic chains, we will write the Hamiltonian in terms of certain projectors
onto fusion channels conceptually similar to those appearing in (2.4).

In the thermodynamic limit, L — oo, the chain becomes critical (i.e., there is no
energy gap between the excitations). When J < 0, this theory is the compact free boson
CFT at the self-dual radius, which s just the su(2) ;| Wess—Zumino—Witten (WZW) theory
[20]. The reason for the appearance of the su(2) symmetry group is not accidental and
is due to the presence of the global su(2) of the microscopic Hamiltonian (2.2). When
J > 0, the situation is dramatically different. The theory remains gapless, but it has
dynamical critical exponent z = 2, and, consequently, is scale invariant, but not Lorentz
invariant.

We want to emphasize that in the AF case, the global su(2) symmetry can be seen in
the thermodynamic limit as a set of charges with corresponding Noether currents (which,
in turn, appear in the spectrum of local CFT operators). Moreover, these symmetries map
to the only topological defects appearing in the theory: exponentials of the corresponding
Noether charges [21].7 Since these charges are non-abelian, they do not commute with the
full affine-Kac-Moody (AKM) chiral algebra of the output CFT. We will see, however,
that the situation is quite different in the case of anyonic chains.

Before concluding the introduction, let us note that the Heisenberg model also admits
many generalizations, the most famous of which is to allow for spin-s operators. In this
case, the Hamiltonian can take a more complicated form. For example, for spin-1, we
can have

N
HO =Y (cos 035 - Sivy +5in6 (S; - §,~+1)2). (2.5)
i=1

The phase diagram of this model is quite complicated (see [9] for an overview). One
important handle on the behavior of the chain is a general result (due to Haldane [23])
that states that in the AF Heisenberg case, if the spin s is half-integer, then the spin chain
is gapless (and conformal). On the other hand, if s is integer, the Heisenberg spin chain is
gapped (although, for example, one finds various gapless phases by moving away from
the Heisenberg point and adjusting 6 in (2.5)). In the gapless case, the critical theory is
the su(2); WZW theory [24]. In the gapped regime, the Lieb—Schultz—Mattis theorem
[25] guarantees that the ground state is degenerate.

Another possible generalization is the inclusion of local, but not “nearest neighbor,”
couplings (so-called “Majumdar—Ghosh” couplings [26]) of the form

L
SHp=Jc Y Si+ Siax. (2.6)
i=1

7 See [22] for a recent discussion of the topological nature of charges.
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Zo -1 T = Xo

Fig. 2. Fusion trees label states in the Hilbert space. For every collection of {x;} allowed by the fusion rules,
there is a state in the Hilbert space. This chain wraps a topologically non-trivial cycle

These couplings can dramatically change the behavior of the chain in the thermodynamic
limit. For example, the AF spin-% chain becomes gapped when J, = %Jl and all other
Ji vanish [26].

In general, one can construct an arbitrarily complicated Hamiltonian by combining
higher spin with the interaction of k-nearest neighbors. In this case, the full phase dia-
gram is unknown; however, it was recently argued that in the AF case, no matter how
complicated the interactions are, if the microscopic Hamiltonian is translation invariant
and the chain is gapless in the thermodynamic limit then it is generically described by
an su(2)1 WZW theory [27].

In the next subsection, we will introduce anyonic chains and interactions that are
similar in spirit to the arbitrarily complicated ones we introduced in this section. Con-
sequently, it is interesting to characterize the critical theories that can appear in the
thermodynamic limit.

2.2. Anyonic chains. In a certain limited sense, anyonic chains are generalizations of
the Heisenberg model, where interacting spins are replaced by interacting anyons [8]
(see above for some caveats to this statement). To define these models, we need a fusion
category, C;, (see [3,28] for more detailed reviews). For our purposes below, we merely
note that C;, consists of a set of simple objects® satisfying a fusion algebra, Aj,, that
generalizes the multiplication of spins. We will also use the fact that Ci, contains a set
of isomorphisms, called “F-symbols”, that allow us to move between different fusion
channels of the objects in an associative way. The case C;, = Rep [su(2);] was studied
in [8,9,15,17-19], but we will be more general.

To proceed with our construction, let {{1, ¢», €3, ...} be the simple objects in Cj,
satisfying the fusion algebra Aj,

0 x 0y = ZNMZQ, (2.7)

where the positive integers, Nf% , are the fusion coefficients. Given this data, we can
describe the Hilbert space of the problem. First, fix an integer L, and take L ob-
jects {€1,05,...,€1} € Cin. Next, consider a per10d1c fusion diagram (wrapping a
non- contractlble cycle in the ambient spacetime) as in Fig. 2. Every admissible fusion
diagram corresponds to a state in the Hilbert space, | xg, X1, . .., x—1). The Hamiltonian—
as well as the other operators—act on the Hilbert space of admissible fusion trees. In
what follows, we will also assume translational invariance:

b=b=--.=0; =4. (2.8)

8 These are the objects that we can use to build all the other objects in Cjp,.



Anyonic Chains, Topological Defects, and Conformal Field Theory 1025
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Fig. 3. It is more convenient to define the action of the Hamiltonian in a different basis, related by an F-move
to the original one

~=\ T ~~\ T4
Ti_— 1“ Project on ,el Ti— ol *
PO I (ST A f

£/

Zi1 Tit1 T;—1 Tit1

Fig. 4. We choose the projector that forces the fusion outcome of nearest neighbors to be equal to ¢’

It is crucial to note that this Hilbert space does not generally have the direct product
structure of (2.1). For example, in the case of the Rep [su(2)x] chain with k finite, the
Hilbert space is actually smaller (in the limit L >> 1) than the Hilbert space of the spin-f
chain since this scaling is controlled by the quantum dimension of £ (which is strictly
smaller than 27 + 1) [9].

Next, following [8], let us define the Hamiltonian by studying the possible fusion
outcomes of the external anyons

ixi=)Y" leée/. 2.9)
(/

In analogy with the Heisenberg chain, we introduce a projector, Pl.(e)([), that allows us
to assign higher or lower energy for the fusion of neighboring anyons into channel ¢’

H=7) PO, (2.10)
i

To derive an explicit expression for this projector, we need the F-symbols mentioned
above.

Consider a fusion diagram with two external legs as in Fig. 3. First, we switch
fusion chanels via the application of an F-symbol. In the new basis, the fusion diagram

represents the fusion of two l anyons with outcome Xx;. The projector, Pi(é)(i/)’ is defined
in such a way that the fusion outcome ¢’ is energetically favored or disfavored depending
on the sign of J (corresponding to the F case or the AF case).

Next, consider Fig. 4. We apply the projector on the fusion channel X; = ¢'. Finally,
we make the transformation back to the original basis using the inverse F—symbol as
in Fig. 5.

Thus, the action on a state |x;_1, x;, Xj+1) 18

- S\ X N\
POy xixi) = ) (Fii;ﬁ“) (F‘%;J“) ot X xi), (211)
x

el

/
X
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’ T, 7 ,
f Li—1 . x
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Fig. 5. An F-move back to the original basis gives an explicit formula for the Hamiltonian

Fig. 6. The action of the topological symmetry. The circles labeled by the x; wrap topologically non-trivial
cycles

and the Hamiltonian is given by (2.10).

Several comments are in order. First, the name “anyon” usually indicates extra braid-
ing structure in addition to fusion. Strictly speaking, all we really needed so far is the
fusion structure.” Thus, it would be more appropriate to call the above construction
a “fusion chain.” Second, not at any point did we need to enforce unitarity (as noted
in the introduction, and as will be discussed further below, some non-unitary chains
may exhibit stronger topological protection of gaplessness). Indeed, non-unitary models
have been considered previously [15]. The models in [15] are described by non-unitary
F-symbols with non-Hermitian Hamiltonians, and the critical theories are non-unitary
RCFTs. Finally, just as in the Heisenberg case, the Hamiltonians we study can be made
more complicated by introducing k-nearest neighbor interactions or terms that corre-
spond to the fusion of several anyons [18]. In order to understand the general structure
of the thermodynamic limit, it is then useful to understand the essential features that
must be present in any emergent critical theory.

2.3. Non-local symmetries. To get a handle on the emergent theory, it turns out to be
useful to understand the role played by certain non-local operators that commute with
the anyonic chain Hamiltonian [8,9]. More precisely, for every object £ € C;,, there
exists a non-local operator, Y, that commutes with the Hamiltonian (although, as we
will discuss further below, some of the Y, may not be independent). These operators are
referred to as “topological symmetries” in [8,9].

To define such an operator, we consider a process of fusing an anyonic line, £, into
the chain as shown in Fig. 6.

The matrix elements of the Y, operator are given by [§]

Lol oo\ Xitl
‘?‘f‘f) . (2.12)

(X, X7 xp [ Yelxo, x1, . oxeon) = [ ] (FX

i=

i+l /x]
All operators Y, can be diagonalized simultaneously with the Hamiltonian' (2.10). We
will denote the eigenvalues of Y, as A¢ ,, and refer to these eigenvalues as “topological

9 In order for these models to capture aspects of FQHE physics, we need to assume a braiding structure.

10 This statement was claimed in [9], shown to hold numerically in many concrete examples, and argued
for at a heuristic level; however, we are not aware of a published proof. A graphical calculus proof exists, but
it is unpublished [14].
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L3
ZNelez
£3

£3
:Z lefz )‘fs,w
43

ey, Aty

Fig. 7. We show that eigenvalues of the topological symmetry operators satisfy the fusion rules as polynomial
equations. We pick an eigenstate of a Hamiltonian and nucleate a pair of anyons ¢; and ¢; inside the spine
of the fusion diagram. There are two ways to evaluate this diagram. First, we fuse £ and ¢, to get the

sum 253 lefﬁz £3. Then we fuse £3 into the chain. Since we picked an eigenstate of the Hamiltonian and

topological symmetry operators, fusing £3 leads to multiplication by the eigenvalue Ay, . Alternatively, we
could have fused first 1 and then £; into the chain to get the product Ay, y A¢, y - Note that the circles in the
fusion trees wrap non-trivial cycles

quantum numbers.” In what follows, we will assume that the “topological symmetries”
are exact symmetries of the microscopic model and study the consequences of this
assumption (our work below is independent of other microscopic details).

As can be seen in the finite length quantum mechanical chain, the operators Y, do not
generally form a group; instead, they form a fusion algebra. To understand this statement,
we nucleate a pair of anyonic lines, £ 7, inside of the chain as shown in Fig. 7. We can
then evaluate the action of this pair on the states in two different ways.

One way is to first fuse £ into the chain and then do the same with ¢, thus giving
us an operator Yy, o Yy,. Another way is to first fuse £, with £ and then fuse the result
into the chain. Since £ and ¢, form a fusion algebra

b b= N7, ls, (2.13)
43

then Yy, and Y, form a representation of this algebra on the Hilbert space of the anyonic
chain

Y, 0¥, =Y Niy Yoy (2.14)
L3

Therefore, as emphasized in [12], the Y, are not required to form a group. To make this
statement more explicit, we note that in general the Y, need not be invertible as matrices
(i.e., they may, as in the case of the Y, topological symmetry of the Ising model, have
zero eigenvalues). Moreover, even if such inverses do exist, they are not necessarily part
of the fusion algebra. Indeed, if Y[l does not represent a simple element of Ci, or an
element that can be written as a positive semi-definite integer linear combination of the
representations of simple elements, then Y[l does not exist in the fusion algebra. In
most of the examples we will consider, this situation will occur for at least one ¢ € Cjj.
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3. The Topological Symmetry/Topological Defect Correspondence

In this section, we would like to discuss the transition from the quantum mechanical pic-
ture presented above to the CFT description discussed in the sections below. As discussed
in [11,12], the topological symmetries give crucial constraints on this transition.

To understand why the topological symmetries play such an important role, note
that the algebra in (2.14) holds independently of the length of the chain, L (as long
as the length L chain exists). In particular, this algebra is a property of both the finite
length chain and of the theory in the thermodynamic limit. Moreover, the set of allowed
topological quantum numbers is determined entirely by A, and is independent of the
details of the Hamiltonian.

Indeed, we need only assume that the Y, are some operators on the Hilbert space of
the chain and that there exists a suitable Hamiltonian commuting with the Y,. Let |)
be any eigenstate of this Hamiltonian. Applying the operator Eq. (2.14) to v we get an
overconstrained system of polynomial equations'!

L
bkt =D Nphes v (3.1)
43

where Ag y is the eigenvalue of Y, on the state [y). In general, this system does not
have solutions since there are more equations than unknowns. However, due to the
properties of fusion tensor categories, the system (3.1) has several solutions. Since
we have not specified anything about the state |1) there will be as many solutions as
there are topological sectors. We define a topological sector to be a set of states which
have identical eigenvalues under all the topological symmetries of the theory. If the
input fusion category, Cin, is modular (meaning the corresponding S-matrix, S™, is non-
degenerate and can be taken to be unitary), then it is a simple exercise in the application
of Verlinde’s formula [29,30] to see that the A, are given (up to the action of an
automorphism) by

Ao = —L2°, (3.2)

This expression coincides with (225) of [28] (here m™ is the representation of the fusion
category that is conjugate to m, i.e., the representation whose fusion with m contains the
identity; note that m denotes the topological sector).

Note that our discussion does not imply that the Y, are necessarily independent
operators since there could be non-trivial relations between them (we will discuss such
an example in Sect. 5.3). However, if the input theory is modular, then the Y, will be
independent if all topological sectors are present in the theory. One quick way to count
the number of topological sectors in this case is to perform a sequence of F-moves that
transform the diagram in Fig. 6 into the one in Fig. 8. If X takes on all values in Ci,, then
we expect the topological symmetries to be independent, since the number of different
flux sectors through the loop doesn’t change after applying an F-transformation. This
argument does not require eigenvectors of Y, to have definite %o.'2

A sufficient condition for this situation to occur is if there exists an integer N such
that fusion product ZN contains the identity (we will see this condition is satisfied in the

1A similar approach has been used independently in [14].

12 Ty make the previous paragraph more rigorous, we can study the “inside” and “outside” bases in section
IIB.5 of [11] and note that we work in the “inside” basis. On the other hand, the identical diagram to Fig. 8

written in the “outside” basis gives a one-to-one relation between the values of the resulting )ng and topological
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Fig. 8. The number of flux sectors through the loop is invariant under the F moves that take us from the
configuration in Fig. 6 to the present one. The circle labeled by X( represents a topologically non-trivial cycle

Cin = Rep [su(2);] examples below). Indeed, in this case, we find an infinite number of
diagrams with x; = 0 and so X can take on any value in Cj,, since Ngoi* = 1. Another
0

sufficient condition is if Cj, is simple (in the sense that it doesn’t contain any subsets
of elements that are closed under fusion) so that x; (and therefore x() can take on any
value in Cj, (alternatively, we can assume that, as in the subset of the Cj;, = Rep [su(2)x]
examples we study below, £ is not part of a closed sub-algebra of Ajp).

Therefore, in what follows, we will assume

e Our systems have independent Y;.!3
e The input fusion category, Ciy, is modular.'*

Footnote 12 continued
flux sectors via a relation of the form
Sin

Zoutx
Exo

Sin

Foutk
0%

}‘E,i(‘;“[ = (33)

Therefore, since the fusion rules do not change when we go from “inside” to “outside,” the “outside” basis
gives a proof of our claim that if X takes on any value in Cj, and Cj, is modular, we have all topological
sectors present and the Yy are independent.

13 One reason for caution if there are relations between the Yy it that, in general, the remaining Y, may
satisfy fusion rules with non-integer coefficients. In this case, we are not sure if the map Yy — D, will lead to
well-defined defect Hilbert spaces. Another subtlety is that the algebra the Y, satisfy (modulo relations) need
not be equivalent to A;,. We hope to study such theories in greater detail soon.

14 our argument above uses modularity. In the non-modular case, we would need a different argument than
the one given above to understand when the Y, are independent. For example, even though the non-modular

Cip = Rep[su(Z)Lm] chain has g—éf = 1 for all the simple elements labeled by the spins i = 0, 1, 2, it is not
I
true that Y, = Y.
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e The Y; do not map us between different Hilbert spaces'> (examples of such situa-
tions include the topological symmetries corresponding to half-integer spins in the
Rep[su(2)4] spin-1 chains of [9]).

Given this discussion, we would like to understand which objects the Y, map to in
the thermodynamic limit. We will assume that this limit can be described in terms of the
variables of some CFT (possibly with various relevant terms turned on)—i.e., that we
are in conformal perturbation theory.'© In particular, we get the following map

H—>L0+ZO—1C—2+A’§£<I>,, (3.4)

where the A/ are possible relevant deformations of the critical theory.

Since the Y, are operators and not states in the quantum mechanical chain, we do not
expect them to correspond to local operators in the thermodynamic limit. Instead, they
should correspond to non-local operators, D,. Moreover, since the ¥, commute with the
Hamiltonian and rotations of the spatial circle, we expect that, at the critical point

[Dg, Lo+ I_J()] = [Dg, Ly — [_Jo] =0=[Dy, Lo] = [Dg, I:()] =0. (3.5)

Furthermore, as we have argued above, the fact that the Yy satisfy the Aj, fusion algebra
for any L for which the chain is well-defined tells us that the corresponding defects also
satisfy the Aj, fusion algebra

14 4
YooYy, = Z NEEZZY& = Dy, Dy, = Z N£13£2D53. (3.6)
{3 {3

The fact that these operator multiplications are well-defined and independent of position
strongly suggests that the D, are in fact topological defects [10]—i.e., operators that
can be freely deformed in correlation functions as long as they don’t cross local operator
insertions (besides insertions of operators in the identity module) or other defect lines.
Moreover, this argument suggests that the D, form a representation of the closed sub-
algebra A" >~ Ay, discussed in the introduction.

From a physical perspective, our main question is to understand when the microscopic
symmetries of the chain force the relevant perturbations in (3.4) to vanish (i.e., when we
musthave A/ = 0). Since the quantum mechanical model has the topological symmetries
Yy, the allowed perturbations in (3.4) must be invariant under the corresponding D,. In
other words

[De, ®;1=0, VeeA. 3.7)

The above equations turn out to be quite subtle for the most general topological defects.
In the next section, we will show (Theorem 4.1) that (3.7) implies that ®; is in the same
topological sector as the identity operator, i.e.

her =Moo, Vle A, (3.8)

where the A¢ o are the topological quantum numbers of the ground state (the ground state

corresponds to the conformal vacuum and, therefore, to the identity operator).
Previous works used the criterion (3.8) to rule out certain perturbations [8] of the

CFT that emerge in the thermodynamic limit (and to argue that the chain is stable to

15 We thank D. Aasen for a discussion of this point.
16 We will also assume that the CFT has a unique vacuum sector.
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perturbations). In the next section, we will prove that (3.8) implies (3.7) for topological
defects implementing discrete symmetries (like the Z, spin-reflection symmetry in the
Ising model). In the case of more general topological defects, (3.8) is only a neces-
sary condition for (3.7) to hold. In the sequel we will formulate the conditions (arising
from Theorem 4.4, unitarity in the form of Theorem 4.5, and the quantum mechanical
constraints discussed in the introduction) under which (3.8) is also a sufficient condi-
tion. This logic has a loophole: for some non-unitary chains (or even for some unitary
chains coming from non-modular Cj,), it might be possible to find theories for which
[D¢, @7] # Oeventhough Ay = Ap0 VL € A

Finally, let us note that, in addition to the topological symmetries, it is interesting
to consider the translational symmetry of the chain. It is often the case that transla-
tional symmetry corresponds to a discrete symmetry of the critical theory. Since discrete
symmetries can also be generated by topological defects, our approach gives a uniform
way to understand the consequences of microscopic symmetries on the effective theory
(see [12,14] for further details on the link between translational symmetry and discrete
symmetries of the critical theory).

4. Topological Defects and the Effective CFT Description

In this section, we explore some of the consequences that follow from the identification
of topological symmetries with topological defects in the L — oo limit of the anyonic
chain (see also [12, 14] for further consequences and applications). In the first subsection,
we prove that the commutator of a defect with a bulk field is non-vanishing if the bulk
field has defect eigenvalue different from that of the identity, and, in the process, we
give a CFT argument for half the topological protection mechanism discussed in [8]
(throughout we will assume that the output CFT, 7y, has a single identity sector, i.e.,
Tout 1s not a direct product of different CFTs).

The converse of this theorem is much more non-trivial. Indeed, we first formulate
a partial converse that depends not just on the defect eigenvalue of the bulk operator
in question but also on the spectrum of defect fields. We then mention an example that
shows this second condition need not be implied by the first. Furthermore, we are not
aware of a general CFT proof showing that the defect commutator with a bulk field
is determined by the field’s defect eigenvalue (and we leave the task of proving this
statement or finding a counterexample as an open problem).

However, we argue that if 7,y is unitary, then, for any defects descending from
topological symmetries of an anyonic chain, the vanishing of the defect commutator
with a bulk field is determined by the topological sector of the bulk field. In order
to prove this latter statement, we first argue that, under relatively mild assumptions,
topological symmetries are mapped to defects that preserve the full chiral algebra of
Tout (to demonstrate this claim, we will show that certain twist and defect fields of the
CFT can be understood directly in the anyonic chain).

We then conclude by proving a theorem that constrains the possible modular input
fusion algebras giving rise to a CFT via the anyonic chain mechanism. We leave further
explorations of the space of such CFTs to future work.

4.1. Defining the defect commutator and a theorem on the non-trivial defect eigenvalue
sector. Before explaining how to evaluate the commutators in (3.7), we should make
the notion of a topological defect more precise. Following [10] (see also [31]), we define
a topological defect, D4, to be a non-local operator commuting with the full left and
right Virasoro algebras of 7oy
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[Ly, Dal =Ly, D] =0, VneZ 4.1)
This definition implies that the defect is “transparent” to the CFT stress tensor'’: we are
free to deform the tensionless D4 inside a correlation function of local operators without
changing the correlator as long as we don’t cross local operator insertions (besides the
stress tensor and other elements of the Virasoro vacuum character).!8
An extension of Schur’s lemma then implies that the defect takes the form

Da=)_ Aap-|B)(BI, (4.3)
B

where the sum is taken over (pairs of left and right) representations of Virasoro, and D 4
acts with the same eigenvalue on each element in the representation.'® We then see that
the independent D4 are in one-to-one correspondence with the (pairs of left and right)
Virasoro representations present in the theory (for simplicity, we are assuming here that
there is no degeneracy in the spectrum of Virasoro representations). In the next sections
we will see that modular covariance of the CFT in the presence of topological defects
implies further constraints on the coefficients, A 4 g, but for now we simply note that the
D 4 act like projectors.

If the sum in (4.3) is finite, then the theory is a Virasoro minimal model. More
generally, if we have an RCFT with extended left and right chiral algebras (e.g., W-
algebras), then the defects that commute with the full left and right chiral algebras satisfy
(4.3) with the sum taken over the finite number of (pairs of left and right) representations
of the extended chiral algebras (and the labels in (4.3) then refer to left and right pairs
of representations of these chiral algebras). For simplicity, we will assume that D4
commutes with the full left and right chiral algebras of the theory (the extension of
some of our results to more general topological defects is straightforward). Moreover,
as we mentioned above, under certain plausible assumptions, the defects we are most
interested in—those that come from topological symmetries of an anyonic chain—will
commute with the full left and right chiral algebras.

We are now in a position to study the commutator, [D 4, ® 5 (z, 7)]. For simplicity, we
will take @ p to be a chiral algebra primary (the extension to the case of descendants is
trivial). Since we are particularly interested in the commutator of the defect with possible
deformations of the Hamiltonian, we evaluate

[DA, fde%(z, 2)} - fde (D, D5z, D)1, (4.4)

where the integral is over a spatial circle in radial quantization. We evaluate the com-
mutator by demanding that when we insert it in correlation functions, there are no local
fields (or other defects) located radially between D4 and ® p(z, 7). Moreover, to define

17" At least for the theories we will be interested in below, these operators can also be thought of as Verlinde
loop operators (see [29] for a definition and [32,33] for a discussion of the relation). The process of looping
the anyon, £, through the ring is then the discrete version of the operation performed in [29].

I8 Note that, when there is an extended chiral algebra (e.g., a super Virasoro or W-algebra), the defect may
or may not satisfy

[W,;', DA} - [W,i, DA] =0, VneZz i 42)

where the W), and W} are the modes of this extended algebra.

19 Our notation in (4.3) is somewhat schematic. Indeed, | B) stands for a full Virasoro representation—the
primary and its descendants.
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Fig. 9. Our definition of the commutator, [D 4, § ® ], acting on the state |C). In the second diagram on the
RHS we have acted on the field ® ¢ using the defect

the commutator, it suffices to determine its action on a complete set of states inserted at
the origin, |Cy) = P¢, (0, 0)|0) (by construction, we require that there are no additional
local operators or other defects located between the commutator and the origin). Here
Co = C is the primary, and the k 7% 0 label the descendants.

We can then evaluate the commutator as in Fig. 9: using the topological nature of the
defect, we are free to shrink it to within a small distance of the origin, as in the second
diagram on the LHS and then act on the state at the origin as in the second diagram on
the RHS. In the first diagram on the RHS, we act with ®p on the state at the origin.2?
Altogether, we obtain the following expression

?€d9 (D, ®5(z. 11Cr)

_ fde [Da. ®5(z. 2)] e, (0)]0)

E, E,
E, K 5k
= fde Y (Aae = Aac) Nje - dge, 2Pz, (0) | [0)
E k'
) E 4 Ev 2055
=27 Y (Aag — Aac) Nje - Mg r P @, [0)
E. k'
E  Ev 2048
=21 Y (Aag — Aac) Nje - Mg P | Ep), (4.5)
E. k'

. 1/ . E.
where the index “k”” runs over the chiral algebra descendants of @, p Bka = hg, —

hp — hc,,and ﬁg’fc/k = EEk, —hp— }_zck. By definition of the fusion numbers, Ngc, we
have that

Ek/
NE#0 & 3kst. Y agh rfadp, = (0p) #0, (4.6)
k/

and so
[DA, y{dQCDB(z,Z)} #0& 3C, Est (Asg — AAC)NgC #0. 4.7

20 Note that the topological nature of the commutator allows us to evaluate (4.5) in various topologically
equivalent ways (see, for example, the equivalent limit defined in [34]).
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Given this groundwork, we can prove the following elementary theorem for CFT
operators that have defect eigenvalues different from those of the identity

Theorem 4.1. Consider an operator, ®p, in an RCFT, Ty, and consider the set of
topological defects, D4, of Tow. If 3 A such that Agp # A a0 (where “0” refers to the
vacuum), then it follows that [DA, § o B] £ 0.

Proof. Let us prove the contrapositive: suppose that [D A f P B] =0V A, and let us
show that Agp = Aso V A. To that end, we see from (4.7) that the vanishing of the
commutator implies that

(Apg — Aac) Nf- =0, YC,E. (4.8)

Take C = 0. Then, by the rules of fusion categories, N 50 =4 g. Therefore, we have that
Aap = Ao as desired. O

As we will see below, the converse of this theorem is non-trivial and requires addi-
tional conditions for general defects because of the existence of certain fields localized
on these defects. However, for group-like defects (i.e., those defects whose product law
is that of a discrete group and whose actions on local operators implement internal sym-
metries of the CFT), the converse is always true since the A 4p are genuine charges of
the theory and Asp = A4o = 1 means that ®p is neutral under the corresponding
symmetry. At the level of defect fields, we will argue this statement follows from the
fact that group-like defects have at most one such field with the quantum numbers of
Dp.

Let us conclude this subsection by noting the implications for our anyonic chain
discussion: we see that if Dy is a topological defect descending from an ancestor topo-
logical symmetry, Y, and if ® 5 comes from some state in the chain that has Y, eigenvalue
different from that of the identity, then the deformation

S Hep ~ 1B 55 dodp, (4.9)

is forbidden in the effective theory (similar results hold if the deformation is charged
under a discrete symmetry of the chain). The reason is that the relation Y, — D, implies
that

Ae,B = Ayp, (4.10)

and therefore Theorem 4.1 rules out (4.9) by the state-operator map in the CFT.

As we have mentioned above, we would like to understand the converse of this
statement: suppose that ® p comes from a quantum mechanical state that is in the topo-
logically trivial sector of all the Y, acting on the chain (and is uncharged under any
discrete symmetries). Then, we would like to know whether the deformation in (4.9) is
ruled out or not.

4.2. A theorem on fields in the trivial defect eigenvalue sector. In this section, we will
prove a partial converse for Theorem 4.1 and explore its consequences for anyonic chains.
However, in order to set the stage for this theorem, we will first need to introduce the
constraints that modular covariance of 7 in the presence of topological defects places
on the D4 [10].
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To that end, consider the torus partition function of 7y

Z=3Z;0@%5@: @.11)
1,J

where g = exp (2wit), g = exp (—2mwit), and t is the modular parameter of the torus.
This partition function is a trace over the Hilbert space

H=@,;Z,jRI ® R;, (4.12)

where R; and R 7 are representations of the left and right chiral algebras.?!
We will argue below that the RCFTs we are most interested in are those that are
diagonal with respect to some maximal chiral algebra, i.e., those theories that have

Z17 =817, (4.13)

where I* denotes the representation conjugate to I, or those theories that are related
to diagonal ones by an automorphism of the theory that preserves the form of defects
commuting with the full chiral algebra. We will call this case the “Cardy case” or say
that such RCFTs are “Cardy-like.”

To compute the partition function in the presence of a series of defects wrapping the
spatial direction, we treat the defects as operators and insert them into (4.11)

Zaynhn = (]‘[ AM) x1(@) X+ (@). (4.14)
1 o

On the other hand, we can also imagine that the defects wrap the time direction and
hence modify the Hilbert space of the theory. We can obtain such a configuration by
applying a modular S-transformation to (4.11)

Zayhn = Zayn, = (l_[ AA(,I) X1@xr+(@)
o

I

- Z (H AAM) SikSrLxk(@xe(@),  (4.15)

ILK.L \ «

where g = exp (—@), and Sk is the modular S matrix. The consistency condition of

[10] requires that the transformed partition function in (4.15) has a suitable Hilbert space
interpretation, i.e., that the coefficients of the partition function are positive semi-definite
integers. This condition constrains the allowed eigenvalues, A 4, ;. Note that the Hilbert
space in the presence of the defects counts the fields that can live on these defects.

21 Note that the I, J may in general run over multiple copies of a given representation.
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¥B DA

Fig. 10. The twist field, ¢p, sits at the end of defect, D4, at 0 € C!. The annulus is the projection of a
torus onto the plane. Therefore, to compute the Hilbert space of twist fields, we should insert D 4 in the torus
partition sum and perform an S-transformation

4.2.1. Fields living on defects In this subsection, we discuss the different fields that can
live on defects by considering the transformations in (4.15) for differing numbers of
defect insertions. In the next subsection, we consider twist fields (i.e., fields living at
the end of defects), while in the following subsection we study defect fields (i.e., fields
living in the interior of defects), and in the subsequent subsection, we consider junction
fields (in our case, those that sit at the intersection of three defects).22

We will soon argue that the defects descending from topological symmetries preserve
the full left and right chiral algebras of Z,y. Therefore, in what follows, we will restrict
our attention to defects commuting with the full left and right chiral algebras. The
resulting defects have eigenvalues of the form

Sart _ Sar _ Sar
Sor« Sor  Sor’

(4.16)

where S denotes complex conjugation and we have used standard properties of modular
S-matrices (see, e.g., chapter 10 of [35]) in unitary theories (unitarity allows us to
conclude that So; > 0). In particular, we see that for defects descending from topological
symmetries, (4.16) has the same index structure as the expression in (3.2) and (225) of
[28] (this similarity is to be expected since we have a map from input objects to objects
satisfying the output fusion sub-algebra Ay, ~ A’ C A, and our arguments around (3.6)
suggested that the eigenvalues of Y, and D, should coincide).

Given this discussion, it is straightforward to check that (4.16) implies that the cor-
responding defects satisfy the usual Verlinde fusion algebra of 7y,

DDy =Y Nf Dk, 4.17)
K

where N IKJ are the full fusion coefficients of Zgy.2> In particular, we see that for the
subset of defects coming from the topological symmetries, we have an expression of the
form (3.6) and that these defects form a closed subalgebra.

Twist Fields
A twist field, ¢p, sits at the end of a defect, D 4. As mentioned above and described
further in Fig. 10, we can compute the Hilbert space of twist fields by inserting D4 in
the partition function and performing an S-transformation

22 Note that it is possible to consider more general junction fields that sit at the intersection of more than
three defects. However, we will not need such configurations in our analysis below.

23 More general topological defects satisfy a generalized algebra called the defect classifying algebra [36].
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DA* DA

Fig. 11. The defect field, ¢p, sits inside a defect, D 4, at0 € C!. The annulus is the projection of a torus onto

the plane. Therefore, to compute the Hilbert space of defect fields, we should insert D4 and its conjugate,

D; = D 4+ in the torus partition sum and perform an S-transformation

Za= Y Aar-xi@xr-(@ = Zy = > AarSikSrr - xk@Fe(q).  (4.18)
7 LK.L

In order for the twist fields to have a suitable Hilbert space interpretation, it must be the
case that [10]

> AarSikSi € Zzo. VK. L. (4.19)
1

In the case of our defects of interest, we have according to (4.16) that A 47 = Saz /Sor,
and so Verlinde’s formula implies that the multiplicity of defect fields is given by

Z AarSixSi = Nj, > 0. (4.20)
1

In particular, the Hilbert space of twist fields on D4 is

)GBNI?L 4.21)

Hiise = (R ® Ry

where the multiplicity is just the fusion number, N 1/3 Iz

Defect Fields
A defect field, gp, sits in the interior of a defect, D4. As described in Fig. 11,
to compute the space of such fields, we should insert D4 and D4+ into the partition
function and perform an S transformation (we can also consider inserting two non-
conjugate defects if we want to compute the spectrum of defect fields that change the
defect from one type to another)

Zaar=) AarDasrxi@ 5@ = Zhy ae= Y DarDasiSixSrr-xx @ XL(@)-
i LK,L

(4.22)

According to the manipulations in Fig. 12, the Hilbert space of defect fields is given by

_ NK  NE
H(?efect = (RP ® RQ) 2k N Po . 4.23)

Junction Fields
A junction field, gp, sits at the intersection of three defects, D4+ c g (by choosing
some of these defects to be the identity, we get defect fields and twist fields). According
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D p - Dk

= ZK N,{fA*

Fig. 12. The spectrum of defect fields, g5, can alternatively be gotten by deforming the RHS of the defect in
Fig. 11 and bringing it to overlap with the LHS. This produces the defect D 4 4

Dg

Fig. 13. The junction field, ¢p, sits at the intersection of three defects, D A*,C,E»> at the point 0 € C!. The
annulus is the projection of a torus onto the plane. Therefore, to compute the Hilbert space of junction fields,
we should insert D 4, D¢, and D in the torus partition sum and perform an S-transformation. Note that by
setting these various defects to the trivial defect, we can recover any of the other types of fields we discussed
before

to the discussion in Fig. 13, we compute the resulting Hilbert space of junction fields by
inserting D 4+ D¢ D into the torus partition sum

ZascE = ZAA*IACIAEI X @DHr(G) = Zye c.p
7

D AaaAciAerSikSrL - Xk (@) XL(@)- (4.24)
I,K,L

We can find the defect Hilbert space by performing two iterations of the move described
in Fig. 12. Doing so, we obtain

HELGE = (e @ Rg) 50 e

junction

F nF
NgpN

Po (4.25)

4.3. Precursors of defect fields in the anyonic chain and symmetries preserved by the Dy.
The results in the previous subsection apply to the Cardy case (i.e., the case in which Zgy¢
is diagonal with respect to some maximal chiral algebra or can be written as a diagonal
chiral algebra up to an automorphism that preserves the form of the topological defects
commuting with the full chiral algebra). In this section, we will argue that the output CFT
from the anyonic chain construction should be of this form and that the D, defects should
commute with the full output chiral algebra. Our argument follows from identifying and
counting quantum mechanical ancestors of some of the fields discussed in the previous
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Fig. 14. On the LHS, we have a segment of the anyonic chain. To derive the chain ancestor of the twist fields
sitting at the end of Dy, we insert a corresponding anyon, ¢, orthogonally to the chain on the RHS (the authors
of the upcoming [14] independently consider similar insertions). The anyonic chain ancestor of the twist field
transforming in representation (xi’ , x;’ *) is in one-to-one correspondence with the degrees of freedom living
on the two links of the chain intersecting £

T
i, F j j
| [ |

Tl Xy Tiri|Tite Tits ZTi-1 Ti Tit2 Tit3

Vi
Fig. 15. On the LHS, we have inserted conjugate anyons. This figure is the quantum mechanical analog of
Fig. 11. In particular, the links labeled by x; and x;,> are in one-to-one correspondence with the quantum
mechanical ancestors of the defect fields of type (x;, x;"+2). To get to the RHS, we perform an F transformation

(we neglect additional non-vanishing pre-factors that accompany the F transformation since we are only
interested in counting the number of defect fields of type (x;, x},,))

subsection. In particular, we will specialize to fields and defects descending directly
from input fusion objects (related results have been obtained in [12, 14]).24

To that end, let us first construct the chain ancestor of the twist fields living at the
end of a defect, D,. We would like to insert this defect along the time direction and
consider its precursor in the quantum mechanics. The only anyonic chain object we can
insert in the time direction that has the quantum numbers of Dy is the anyon, £. We can
locally attach £ to the chain (see Fig. 14) in N f{x{,* different ways.25 In fact, according

to our expression in (4.21), this is precisely the ‘number of twist fields in representation
(xl.’ , xi”*). Therefore, we see that the degrees of freedom localized on the part of the chain
that intersects £ map to twist fields of the CFT.

We can now repeat this logic with defect fields descending from input objects. As
described in Fig. 15, we insert conjugate anyons £ and £*. The chain analogs of the
defect fields are then in one-to-one correspondence with the links labeled x; and x;4»
that bound the two defects. After performing an F transformation, it is easy to see that
the multiplicity of ways we can attach the two defects to the chain is just

Xirl pr¥isl
D ONGEN (4.26)
~ i+2
Xi+l
24 These are the fields and defects realizing A’.
25 Formally, these N f,x,,* attachments need not all be globally consistent for finite L. However, we will
i%i

assume that £ and Cj, are chosen such that these attachments are globally consistent for finite L. For example,
we can choose Cj, to be simple or demand that £ is not part of a closed fusion sub-algebra of Ajj,. It would
be interesting to further study models in which not all of the attachments in Fig. 14 are consistent for finite L.
We thank D. Aasen for a discussion of this point.



1040 M. Buican, A. Gromov

®p, — 8B s S v4E. - ¥B
C#0 ©
Dy Dy Da

Fig. 16. We sweep the defect D 4 across the local operator, @ g. On the RHS, we obtain a linear combination
of a bulk field and a set of twist fields, g

This expression coincides precisely with the spectrum of defect fields of type (x;, x,,)
in (4.23).

Note that there were two assumptions that went into the computations leading to
(4.21) and (4.23): the defects in question commute with the full chiral algebra and Zqy
is of Cardy type. Since we find matching numbers of degrees of freedom in the chain
itself (at least for those degrees of freedom that are directly related to Ci,), we have
found non-trivial evidence for the claim that the output CFT and the D, defects really
have these properties. Moreover, since modularity of the CFT played a crucial role in
deriving (4.21) and (4.23), we see that in a rather precise sense, the anyonic chain has
knowledge of this modular characteristic of the output theory.

4.4. A partial converse of Theorem 4.1. Given the above construction of fields localized
to defects, we are now in a position to prove the following partial converse to Theorem
4.1

Theorem 4.4. Consider a local bulk operator, g, in a “Cardy-like” RCFT, Toy, and
consider a topological defect, Dy, commuting with the maximal left and right chiral
algebras of Tou. If (1) Aap = Aag and (ii) there is at most one field with the same
quantum numbers (under the maximal left and right chiral algebras) as ®p living on
Dy, then [DA, fd)g] =0.

The conditions imposed on 7, and D4 are motivated by the discussion in Sect. 4.3
and the fact that we are particularly interested in the case in which 74y is the output
RCFT of some anyonic chain with D4 = D, descending from a topological symmetry,
Yy. However, our proof of Theorem 4.4 does not assume an anyonic chain origin of the
RCFT.

To prove Theorem 4.4, we take a different approach to evaluating the commutator,
[Dg4, ®p] (we can equivalently use the methods in [37]). To that end, consider passing
the defect, D4, across the field, ®p, as in Fig. 16. When the bulk field &5 is swept
by Dy, it emerges as a linear combination (with complex coefficients, véB) of a bulk
field on the other side (the first term on the RHS of Fig. 16) and a series of twist fields
coupling to topological flux tubes, Dc¢.

All terms on the RHS of Fig. 16 must have certain features. First, the terms are
independent of other operator insertions sufficiently far away (i.e., Fig. 16 is an operator
equation). Second, the asymptotics of the LHS must be unchanged in the transition: at
infinity we should only have the defect, D 4, and the local operators on the RHS should
have the same quantum numbers as ® . Finally, the defect junction on the RHS should
be topological. In particular, this means that the junction field sitting at the junction of
the A and C type defects should have the quantum numbers of the identity (i.e., there
cannot be an additional local coordinate dependence).
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Fig. 17. We use the diagrams in Fig. 16 to compute the defect commutator, [D 4, ®p]

With these observations, we are ready to compute the set of possible D¢ flux tubes
and twist fields appearing in Fig. 16. First of all, according to (4.21), the number of ¢p
twist fields for a defect of type D¢ is NgB*. Next, the allowed set of D¢ that connect
topologically to D 4 is obtained by taking (4.25), setting P = Q = 0,andtakingC — A,
E — C. This set of fields is just

D ONKANECNG =Y NEANR e = N5y = NS4 (4.27)
K.F K
As a result, the number of terms, |C|, on the RHS of Fig. 7 (including the identity) is

. c c A,Rp®R g
ICl = ZNAA*NBB* - ’Hdefect
C

) (4.28)

where, in the last equality, we have noted that this is just the number of defect fields of
type ¢p sitting on the defect D 4. Therefore, we learn that the possible fields appearing
on the RHS of Fig. 16 are in one-to-one correspondence with the corresponding defect
fields on D 4. In particular, we see that

A,Rp®Rpx
defect

cl=|n

> 1. (4.29)

Now, let us consider the commutator [D 4, ®p] in Fig. 17. Clearly, if v{)*B =1 and

|IC| = ‘H?éffg@RB* = 1, then all the diagrams on the RHS of Fig. 17 vanish. Indeed,
taking |C| = ‘Hféf[;g@RB*’ = 1 means that there are no C # 0 contributions on the

RHS. As aresult, [Dy, ®p] = 0.
More generally, suppose |C| = 1 but v()L‘B is not necessarily equal to one. Clearly, we

can evaluate vS‘B by closing the defect on the LHS of Fig. 16 into a circle that doesn’t
surround ® p and doing the same on the RHS except now enclosing ® . We find

(&)
AB 00
vy = ——.
TG
Sop*
In particular, we see that v(?B = lisequivalent to the statement that the defect eigenvalue

of B is the same as the defect eigenvalue of the identity. Altogether, we have proven our
theorem

(4.30)

A,RB®RB*

Sa0 Sapr
|C| = ‘Hdefect =

:1, _— =
Soo  Sop*

= [Da, ®p] =0. (4.31)

O
Let us now make some comments on Theorem 4.4. If the defect, D4, is group-like,
then Ng qx = 867 (this statement is due to the fact that D4 and D4+ implement the
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A, RB®RB*
Hdefect

the paragraph below (4.8), the theorem simplifies: Sap+/Sop* = Sa0/Soo implies that
[Dy4, ®p] = 0. Note the interpretation of this theorem is simple. The commutator of an
operator with a defect vanishes if there are no bound states that can be generated on the
defect that mix with the operator and if the local operator cannot acquire a multiplicative
factor when passing through the defect. This discussion connects with a topologically
equivalent way of evaluating the commutator due to Runkel that also involves defect
fields [34]. Indeed, we can see explicitly how the existence of defect fields affects the
commutator.

At the level of modular tensor categories (MTCs), the quantum double of the discrete
group 83, D(S3), provides an example of a theory in which condition (i) of Theorem
4.4 is satisfied but condition (ii) is not. In the notation of [38], we can identify C <> ®p
and Dy <> Dc (alternatively, we can identify F < ®p and Dy <> D). Indeed,
we have that Sccx/Socx = Sco/Soo, but Y NgC*NcI“{C* = 3. Note, however, that

[Dc, C] = 0. This commutator vanishes because the v;}B defined in Fig. 16 vanish. It
would be interesting to consider quantum doubles of more exotic categories to see if one
can find an example in which the commutator is also non-vanishing.

Finally, let us discuss this theorem from the perspective of the anyonic chains we
introduced above. Suppose that we have a quantum mechanical state, | P ), in the anyonic
chain that has Y, eigenvalues equal to those of the identity for all £ (and is uncharged
under any discrete symmetries), i.e., it is in the topological sector of the identity. We see
that Theorem 4.4 gives us hope that even if ®; is a relevant operator in 7oy, it may still
be possible for [Dy, ;] # 0 if condition (ii) of Theorem 4.4 is not satisfied. This result
would imply that we can rule out the deformation § Hegy ~ A f @ even though |®;) is
in the topologically trivial sector.

We are not aware of a proof implying these defect commutators must vanish for
general topological defects in Z,,.. However, we will see in the next section that unitarity
combined with modularity and the quantum mechanical conditions satisfied by the chains
rule this possibility out for the descendants of topological symmetries and fields in the
trivial topological sector.

actions of inverse group elements). As a result, =1, and, as mentioned in

4.5. A fusion theorem. In order to better understand the role the quantum mechanics of
the anyonic chain plays in constraining the defect commutator discussed in (3.7), we
will need to supplement Theorem 4.4 with additional results on fields transforming in
the trivial defect eigenvalue sector. In particular, it will be useful to prove the following
statement

Theorem 4.5. Consider a unitary CFT, Toy. Suppose ©; and ®j satisfy Sar+/Sor+ =
Sa0/Soo and Sa y+/Sos+ = Sao/Soo respectively. Then, any ® g appearing in the fusion
of ®; and ® satisfies Sax+/Sox+ = Sa0/S00.2°

Proof. We have

A1+ Say =<OA OA)(IA IA)=<EE>ZNIKJSKA' 4.32)
0A*
K

Sor+ Sou+ Sor+ So Soax Soax Sor Soys

26 We thank T. Gannon for discussions related to this proof. Similar statements have appeared in the literature
on subfactor theory [39,40].



Anyonic Chains, Topological Defects, and Conformal Field Theory 1043

Taking the absolute value, using the fact that the first row (column) in the modular
S-matrix is positive for a unitary theory, and using the triangle inequality, we find

Soa S Sk ax Soa S

. (ﬂﬂ) SNk kA (ﬂﬂ) SONE
Sor Sos ) % Soa* Sor Sos ) %

The LHS of the above equation has the following special property that follows from

the conditions of the theorem and the positivity (all we actually need here is the weaker
condition of reality) of S40/Soo in a unitary theory

Sk ax
Soa*

Sar< Sagx

. (433)
Sor< Sog+

Sar- Sar- Sao Sao| _ Sao Sa0 _ Sarr Sas- (4.34)
Sor+ Sog+ So0 Soo Soo Soo  Sors Sos+ '
Moreover, we have that
Sa0 Sao Soa Soa '\ { Sor Sos Soa Soa Sko
240240 _ (204 204 ) (207207 ) _ (204 204 ZN,K,—. (4.35)
So0 Soo Sor Sos So00 So0 Sor Sos IR So0
Therefore, we see
SKo Skar
NE=2Z2 <Y NK (4.36)
Z Z o

On the other hand, since S K A*/Soa* are elgenvalues of fusion matrices (which have
positive semi-definite coefficients), we have that, in a unitary theory, |Sx A+ /Soa*| <
Sk0/Soo and so in fact

ZNK Sko <> nNK
K

As a result, we conclude that

Sk ax

Sko
< § NE =22 (4.37)
Soax e 7800

Ska* Sko Sk ax
NK NE K
— 229 E Ny |——|, (4.38)
EK: o E : 17 500 . 17| S
and so
Sak+ _ Sa0 (4.39)
Sok=  Soo '
O

We can now use Theorem 4.4 to prove a constraint on the 7o, modular S-matrix
elements corresponding to objects that descend from Ci,. In the next subsection, we will
use this constraint to prove the vanishing of (3.7).

To that end, we assume that the Y, satisfy the criteria discussed below (3.2) and are
therefore independent operators. Let us now also suppose that ®; (in the topological
sector of the identity) does not satisfy condition (ii) of Theorem 4.4 for at least one D,
representing an element of the output fusion sub algebra, A" >~ Ajy, that is isomorphic
to the input fusion subalgebra (here we are implicitly using our argument given below
(4.26) that the Dy commute with the full chiral algebra and that 7oy is Cardy-like). In
this case, we must have that the fusion ®; ®7 contains a non-identity element of A ie.

= {®'|®' C ©; P} satisfies

=F NA #{0}. (4.40)
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In fact, we have the stronger statement that
vie = Fr N Fp #{0}. “4.41)

In other words, there is some ® € vy, vy¢ that is non-trivial (i.e., ® # 0). By Theorem
4.5, this ® satisfies
S _ M, V&, cA. (4.42)
So&)* SOO
As aresult, we see that the sub-block of the modular S matrix of the output theory that
corresponds to the objects in the input fusion category is necessarily degenerate.

As afinal aside, note that Theorem 4.5 uses unitarity. Therefore, the above conclusions
may not hold for some non-unitary theories. Also, they may not hold in theories in which
there are relations between the Y, (unless we can guarantee that the corresponding
relations lead to sensible defect Hilbert spaces upon identifying topological symmetries
with topological defects).

4.6. Further implications for anyonic chains. Given the above groundwork, we can now
prove the vanishing of (3.7) for ®; in the topological sector of the identity.

Theorem 4.6. Consider a unitary RCFT, 1y, arising from some input fusion category
via the thermodynamic limit of an anyonic chain (satisfying the conditions discussed
below (3.2)). For the topological defects, Dy, descending from topological symmetries,
Yy, of the anyonic chain, any local operator, @, with all Dy eigenvalues equal to those
of the identity, satisfies [Dy, 1] = 0 VL.

Proof. Let us prove by contradiction. To that end, suppose 3 £ such that [Dy, ®;] # 0.
In this case, the contrapositive of Theorem 4.4 implies that ®; does not satisfy condition
(i1). _

Then, it must follow from (4.42) that there is an operator, ® € A =~ Aj, with
® # 0, appearing in the fusion product ®;®7 satisfying (note again that we are using
the argument given below (4.26) that the D, commute with the full chiral algebra)

Si.« Sya
“omt _Z0® v, e A (4.43)
Som*  S00
This equation implies that the corresponding topological symmetry, Y, acts as amultiple
of the identity on the input data
Sod
Yo =1-—. (4.44)
S00
Since the remaining states in the theory that do not descend directly from the input must
still be in topological sectors labeled by the input data, this discussion implies that Yg
is proportional to the identity when acting on all states, which is a contradiction since
Y; would not be an independent operator (here we use the conditions below (3.2)). O

Our above discussion also proves the following corollary

Corollary 4.6. Consider a unitary CFT, Toy, arising from some modular input fusion
category via the thermodynamic limit of an anyonic chain (satisfying the conditions
discussed below (3.2)). Let us call Coy; the MTC associated with Toy. If every proper
fusion sub-category, C' C Cou, has a corresponding sub-block of the modular S-matrix
with two rows proportional to the identity row, then the input fusion category must (up
to choices of Frobenius—Schur indicators®’ ) be isomorphic to Cyy.

27 This additional data does not affect the fusion rules, but it can affect the F-symbols [28].
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5. Examples and Applications

In this section we will give some brief examples and applications of the general discus-
sion?® above.

5.1. Basic example: Fibonacci “golden” chain. The Fibonacci chain is the first non-
trivial example of an anyonic chain [8]. The input fusion category, Ci,, has an algebra
consisting of two elements, A;j, = Afip, = {1, 7}. The fusion rules are

Ix1=1, I1xt=1, TXT=1+T. 5.1)

One simplification in this theory is that there is only one higher-dimensional F-symbol

—1 -5
= (2, 27, (52)
¢ ¢~
where ¢ = 1%6 is the golden ratio and is one of the solutions to the following equation
¢ L 1 (5.3)
" . .

The only non-trivial choice of external particle involves taking £ = 7. In this case, the
local projector Pl.(r)(l) discussed around (2.10) has the form

o [¢2 o2
RO =S T ) (5.4)

when acting on |t17) and |7 77). The Hamiltonian is then given by

H=JY POV (5.5)
i

which energetically favors one of the fusion outcomes over the other. Such a situation is
physical, because, if they exist in nature, anyons will interact and those interactions will
likely lift some of the degeneracies we expect in the limit of well-separated particles.
This model is related to the fusion algebra of su(2)3, and the (modular) input fusion
category is sometimes referred to as Cj; = Rep [su(2)§m] = Rep[so(3)3] (i.e., the
integer spin representations of su(2)3).2° Let us explain this relation further since we
will need it in the next set of examples we discuss. The fusion category Rep [su(2)3]
consists of four objects Ay 2); = {0, %, 1, %}. The fusion rules are given by [42]

28 Letusalsonote thatitis possible to use unitarity, aspects of the discussion in Sect. 4, and certain topological
manipulations to derive the vanishing of [Dg, P 1] from a more topological point of view. Elements of this
discussion were summarized in Appendix B of the previous version of this paper, but this appendix has evolved
into its own paper which will appear soon [41].

29 Note that the s0(3)3 WZW model is not modular [42]. However, one can associate the Cj;, fusion category
with the representations of the (G7); WZW theory (although we should emphasize that the input is not a
full-fledged RCFT, but only its associated UMTC).
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[x[o 3 1 3
1 3
VIV 2, L.
513 0+1 5+5 1
1|1 $+3 o+1 %
3 3 1
213 1 37 0

Note, that, as in the case of the usual su(2) algebra, the integer subset is closed under
fusion. Moreover, the fusion rules of the integer subset coincide with the fusion rules of
Fibonacci anyons, i.e., Ag2); = Afib-
Let us now discuss the topological symmetries. We have one non-trivial operator, Y-,
satisfying
YioY, =1+7Y;. (5.6)
.. . gin 1 gin
Y has only two distinct eigenvalues A g = ¢ = sﬁ and A = -3 = 5+0“I
S is the modular S matrix of the Fibonacci theory). Note that ¢ and —% solve the
polynomial Eq. (5.6). Moreover, as in the discussion below Fig. 8, it is easy to check that
both topological sectors are present in the theory (and so Y; is an independent operator).
Although this example is particularly simple, it also illustrates an important point
discussed above: ¥, ! does not belong to the fusion algebra of the topological operators.
Indeed, let’s suppose that Y.~ Iexists in the fusion algebra and then find a contradiction. To
that end, consider a state, |/), in the topologically trivial sector. Under Yr_l, this state
has quantum number A -1, = % Moreover, there must exist positive semi-definite
integers p and ¢ such that

(where

Y l=p-1+q-Y.. (5.7)

Now, acting with this equation on the state |) yields

! 1 —¢%q
—=p+ = —- ¢ 7Z, 5.8
5 =" q9 = p p ¢ (5.8)
which contradicts the assumption that Y ! is in the fusion algebra. Thus, we see that,
although Y is invertible as a matrix, it is not invertible as a topological symmetry (hence,
as emphasized in [12], the word “symmetry” is not particularly appropriate).

In the thermodynamic limit, the dynamics of the spin chain is governed by a CFT [8].
In the anti-ferromagnetic case, the CFT is the superconformal M (5, 4) minimal model,
while, in the ferromagnetic case, it is the 3-state Potts model (i.e., the Z3 parafermions).
For the sake of brevity, we will confine our discussion to the parafermion case (the
M3, 4) case is largely similar, with W3 symmetry replaced by A = 1 superconformal
symmetry).

As a Virasoro theory, the Z3 parafermions have the following primaries and dimen-
sions

D (®q1y.0.)) =0, D(Pas.0.5)=6. D(Pas.a.n) =3

4 1
D (¢(1,1),(1,5)) =3,D (<D(2,1),(2,1)) =3 D (q>(2,5),(2,5)) =3
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9 9
D(®@s).en) = 57 D (Pen.23) = 3
- 2 - 4
=1,2 =1,2
D (q)l(3,3),(3,3)) 15 D (q)l(4,3),(4,3)> =3 (5.9)

On the other hand, these primaries combine into the following W3 representations

Qw0 = a0, ® 215,05 D P50, D P35,
1 2
O0,-2 = Pu3as Q02 = Pusas),
Op.0) = Po.1n,21) D P0s),05 D Pes),en® P2 aes).
1 2
Ow.-2 = P33).65 Oen =P3G3,.63) (5.10)

Recall that the left-moving W3 chiral algebra is generated by the holomorphic stress
tensor and the dimension three holomorphic Virasoro primary, ®(j sy (1,1). The right-
moving W3 chiral algebra is generated by the anti-holomorphic stress tensor and the
dimension 3 anti-holomorphic Virasoro primary, ®(j 1y (1,5). Our notation above cor-
responds to quantum numbers under the coset construction discussed in the appendix.
These quantum numbers are in one-to-one correspondence with highest weight quantum
numbers under the W3 algebra as can be seen, for example, from Table 4.1 in [43].

It is straightforward to check that the only possible map consistent with the fusion in
(5.6) and modularity of the RCFT is>°

S2,0,G, )
Y; — DO(Z,O) = Z m|0(i,/’)><o(i,])|
ij s 1),

1++/5
=— (100,00 (00,0 +100,-2)) (O0,-2) | + 10(0,2)) (O(0,2)])
1-+/5
+ (102,000l +100,-2)(On, - +102.2)(Oel) .

2
(5.11)

where we have used the well-known parafermion S-matrix (e.g., see chapter 10 of [35]).
This result illustrates another important point discussed above: Y; maps to a defect that
commutes with the full W3 chiral algebra of the Z3 parafermions (i.e., not just with Vira-
soro).>! Moreover, the 3-state Potts model is diagonal with respect to this W3 symmetry
(although it is not diagonal with respect to Virasoro). Above, we argued this statement
was true under relatively mild assumptions for RCFTs coming from anyonic chains.
In addition, note that as expected from our general discussion, D(9<z,o> forms a closed
fusion sub-algebra that is isomorphic to Aj,

2
DO<2,0> = DO(O,O) + Do(w). (5.12)

Finally, to understand why we have critical behavior in the thermodynamic limit of
the chain (i.e., why the A in (3.4) are forced to vanish), note that the only relevant defor-
mations in the trivial sector of DO(2.0> are in the representations O g, +2). However, these

30 Any other solution consistent with (5.6) does not lead to a well-defined defect Hilbert space. Indeed, one
finds multiplicities of defect fields that are not just positive semi-definite integers.

31 Similarly, in the M(5, 4) case, modular covariance forces the topological defect related to Y7 to commute
with the full A" = 1 super-Virasoro algebra.
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representations are charged under the Z3 symmetry of the CFT (which in turn descends
from the microscopic Z3 symmetry of the chain). This statement can also be understood
by examining the corresponding group-like defects that implement the Z3 symmetry

Doy, 5 = 100,0)(00,0) +102,0)(O@,0)|
2mi
+e3 (100,-2)(00,-2)| +102,-2) (O, 2 )

_2xi
+e” 3 (1002002 +102.2)(O22)) .
Do, = 100,0)(00,0] +102,0)(O2,0)l

2mi
+e~ 3 (100,-2))(00,-2)| +102,-2)){O2,—2)|)

21
+e3 (1002002 +1022)(02,2)1) - (5.13)

In particular, we see that O, +2) do not have the same defect eigenvalues as the identity.

5.2. The su(2)}(rlt generalization. The Fibonacci chain has a straightforward generaliza-
tion: a chain with Ci, = Rep [su(Z)}cm] and 3 < k € Z (i.e., the fusion category of integer
spins of su(2)y). The fusion rules for su(2); are [42]

min(j1+j2, k—ji—j2)
Ji X o= > J. (5.14)
J=ljt—Jjl
As in the k = 3 case, the integer subset forms a closed sub-algebra which we will use
to construct the chain. In what follows, we will study the case of odd %, i.e.

k=2n+1, neZs. (5.15)

The case of even k is not modular.
To generalize the previous example in a translationally invariant manner, we replace
the t external legs with anyons of “angular momentum” j = % The fusion rules are

k—1 k-1
X
2 2

=0 1. (5.16)

In the rest of this section, we summarize the main results and leave details of the com-
putations to the Appendix.

These anyonic chains are also critical with the corresponding critical theories being
the M(k + 2, k + 1) minimal models (with the central charge c = 1 — m) in the

anti-ferromagnetic case and the Z; parafermions (with the central charge ¢ = 2%) in
the ferromagnetic case. As in the Z3 parafermion case discussed above, it is straightfor-
ward to check that these theories have no relevant perturbations that are invariant under
the defects, Dy, related to the integer spin topological symmetries, except for perturba-
tions that are charged under the discrete symmetries (i.e., Z in the AF case and Z; in
the F case) coming from the microscopic translational symmetry (see the Appendix). It
is also easy to verify that the Y [1 are not in the fusion algebra and so the corresponding
defects are not group-like. Moreover, one observes that these defects commute with
the full chiral algebra of 7oy and satisfy a fusion algebra isomorphic to Aj,. Finally,
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note that all the theories discussed here are diagonal with respect to the maximal chiral
algebra (e.g., W, in the case of the Z, parafermions).

Before finishing this section, let us note that many different generalizations of the
anyonic chains are available. For example, one can consider placing spin ]% anyons on

the external legs, which would produce a spin-3 generalization of the anyonic spin—%
chains. This spin-1 generalization was considered in [9], where both gapped and gapless
phases were found. In the gapped phase the topological symmetry is broken sponta-
neously and leads to degeneracy of the ground state as well as to fractionalized anyonic
edge excitations, similarly to what happens in the AKLT model. Another natural gen-
eralization is the inclusion of the Majumdar—Ghosh type of interaction, which has been
studied in spin-% chains [19] (where it also produces a rich phase diagram).

5.3. The su(2)ion.f case. When k — o0, the fusion rules in (5.14) become the standard
ones for su(2)
J1+)2
hxjp= > j (5.17)
J=ljii=rl
Therefore, it is tempting to imagine that we might recover the Heisenberg spin-% chain
in this limit.

However, at the level of output RCFTs, this idea doesn’t appear too promising. For
example, we saw above that in the ferromagnetic case, the Heisenberg chain goes to a
scale invariant theory with dynamical critical exponent z = 2. On the other hand, the
k — oo limit of the Z; parafermions is a ¢ = 2 conformal (and Lorentz invariant)
theory, Z~,, described in [44] (this theory is also Wy, symmetric). Moreover, in the
anti-ferromagnetic case, the Heisenberg theory is described by the su(2) theory, but the
k — oo limit of M(k + 2, k + 1) is an irrational CFT [45].

One possible resolution to these apparent discrepancies is to imagine that the two
limits k — oo and L — oo don’t commute. However, if we try to take the limit k — oo
before taking the thermodynamic limit, the situation is also puzzling. For example, the
finite length su(2)'2! chain has an infinite dimensional Hilbert space, while the Heisen-
berg chain has a finite dimensional one (this fact suggests we should place additional
constraints on the su(2)™ chain if we wish to reproduce the Heisenberg chain).

Another puzzle involves the fact that in the su(2); model, all the non-trivial defects
are group-like [21]. On the other hand, we saw that none of the topological symmetries
in the su(2); chains were group-like. Therefore, one can wonder how this state of af-
fairs might be compatible with our proposed topological defect/topological symmetry
correspondence. In short, there is no contradiction because su(2)2% is not modular and
infinitely many of the corresponding topological symmetries, Yy, are not independent.
Indeed, the putative modular S matrix takes the following form when acting on finite
spin representations

o _h [ 2  [Qiu+DQRp+Dr]\
Sf"”‘;ﬁ&( k+2$1n|: %12 :|>_0. (5.18)

Moreover, the finite spin Y, have the following action on finite spin states

Yelj1) = @€+ Dlj1). (5.19)

While it is certainly true that the Y, form a representation of the fusion algebra (5.17)
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L1+4o

YooYn,= Y Y. (5.20)
=1t

we also see from (5.19) that infinitely many of these operators are not independent.

5.4. Some constraints on Ci, from Coy. In this section, we would like to use Corollary
4.6 to exhibit some constraints on the input fusion category given Coy. We leave a more
detailed study of these constraints to future work and content ourselves with presenting
a few examples here.

For instance, if the output theory has a UMTC that is just D(S3), i.e., the quantum
double of S3, then Cj, = D(S3) is the only possible modular input category as well (at
least as long as the conditions described below (3.2) hold). To that end, we use the notation
and results of [38] to point out that D(S3) has three non-trivial closed sub-algebras. One
sub-algebra is generated by A and B (a Z; sub-algebra), the second sub-algebra is
generated by A, B, and C, and the final sub-algebra is generated by A, B, and F. From
the expression of the modular S-matrix in (6) of [38], it is straightforward to see that all
of the fusion sub-categories satisfy the conditions required for Corollary 4.6 to apply.

Similar comments apply to the Ising model (where, as in the discussion in footnote
6, we do not distinguish between Cj, that differ by Frobenius—Schur indicators). Indeed,
this model contains a closed fusion sub-algebra corresponding to the Z, symmetry of
the theory

Ix1l=1, exl=¢ exe=1. 5.21)

From the standard expression for the modular S matrix (see, e.g., (10.138) of [35]), it
is straightforward to see that the sub-block of the § matrix corresponding to the degrees
of freedom in (5.21) have the necessary degeneracy for Corollary 4.6 to apply (although
we should note that the Z; fusion category cannot give rise to the Ising CFT on sim-
pler grounds: the Z, fusion algebra does not have multiple fusion channels for a given
product of elements).

6. Conclusions

In this paper, we have explored various model-independent features of the 1D anyonic
chain / 2D CFT correspondence. In particular, we discussed the topological symmetry /
topological defect correspondence of [11,12, 14] and found new features of this relation.
We then used the map between topological symmetries and topological defects to study
the stability of the critical theory. We hope these results will be of some use in exploring
the topological properties of general FQHE systems and also for better understanding
the space of 2D CFTs.
By its nature, our work leads to many questions, including

e Are there RCFTs with operators that satisfy condition (i) of Theorem 4.4 but for
which [Dy, § 5] # 0?

e For RCFTs coming from unitary (and modular) chains, we saw that condition (ii)
of Theorem 4.4 is implied by condition (i) in the case of defects descending from
topological symmetries and local operators in the topological sector of the identity.
On the other hand, there are interesting non-unitary chains that may have applications
to condensed matter physics. Does such a result apply to these latter chains? If not,
can non-unitary chains exhibit enhanced topological protection of gaplessness?
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e What is the space of 2D CFTs we can generate from the anyonic chain procedure? Is
it possible to associate an RCFT with the (extended) Haagerup subfactor (see, e.g.,
[46—48] for some important work in this direction) thus realizing an old dream of
Vaughan Jones? '

e We saw that when we take k — oo in the Cj;, = Rep [su(Z)}c‘“] case, we could end
up with an irrational output theory [45]. However, we are not aware of the existence
of an irrational output theory if Ci, contains a finite number of simple elements. Can
one prove that this is indeed the case or find a counterexample?

o In the case of translationally invariant spin chains, we know that the output theory can
be scale invariant, but not Lorentz invariant. What about in the case of translationally
invariant anyonic chains? One possibility is that the “topological symmetry” implies
Lorentz symmetry (at least when combined with scale invariance).

e What happens in the case when the anyonic chain is not translationally invariant?
From our discussion in Sect. 4.3, we saw that we could interpret the insertion of
defects in the output theory as anyonic inhomogeneities in the quantum mechanical
chain. Will such theories still be critical (if the translationally invariant parent is)
or will they flow to gapped theories (see related questions in the context of flows
between RCFTs in [49,50])?

e It would likely be worthwhile to connect our discussion directly with systems ex-
hibiting the fractional quantum Hall effect. Some topological defects have been previ-
ously studied in the FQH literature [51-53], and it would be interesting to investigate
potential relations between these defects and the defects discussed in the present
manuscript.

e Can non-modular chains / chains with relations among the Y, have enhanced topo-
logical protection of criticality?

e The anyonic chain procedure inputs associativity via the F-symbols, but it also con-
tains much more information. To what extent does this construction complement more
traditional approaches to CFT that impose associativity like the conformal bootstrap?

e Are there bounds on the number of “accidental” defects (commuting with the full left
and right chiral algebras) that can emerge in the thermodynamic limit as a function
of the number of simple input defects? Such a result would be similar in spirit to the
conjectured bounds on accidental symmetries studied in a quite different context [54].

e Are there any potential connections between our results and conjectured bounds on
numbers of relevant deformations in RG flows in various dimensions [55]?

We hope to return to (some of) these questions soon.
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Appendix A. Spin-1/2 su(2)i" chains

We will briefly describe how topological protection works for the critical spin-1/2 chains
based on the su(2)”” input fusion algebra with k odd.

A.l. The anti-ferromagnetic case and the M(k + 2, k + 1) minimal models. When the
Hamiltonian is AF it was found [17] that the output critical theory is the M(k+2, k+1)
minimal model. We have the following defects, D 241) (0 < m < %), arising from
the microscopic description

S
Daomety = 3~ 1G5y () (1 5), (. 5)]
' S,
oy San.es

2m+l )

_yinCms) 109 M0, 09 (A.D)

(r,s) Sln (k+27T

These defects satisfy the input Verlinde algebra and form a closed subalgebra under
the output fusion rules. According to the Theorem 4.1, a deformation of the form
8H = 1 § ®(r5),(5) is ruled out when

sin (5 ws) | sin (57)

sin (ﬁns) sin (ﬁn)

, (A2)

where r and s are Kac labels.

Therefore, all deformations with s 7 1 are ruled out. This restriction leaves deforma-
tions of the Hamiltonian by @ 1) (-,1) unprotected by the topological symmetries and
corresponding CFT defects. In fact, the vanishing of the following defect commutator

[Da2meys @iy, n1y] =0, (A.3)

is a consequence of our Theorem 4.4 described above. Indeed, it is easy to check that
the condition in (4.31) is satisfied

SA,2m+1),(,1)  SA,2m+1),(1,1)
S(1,2m+1),(1,1) Sa,1,31,1)
(A4)
However, since the microscopic anyonic chain has a Z, symmetry (related to a trans-
lation symmetry [12,14]), we should also impose this symmetry in the CFT. It is not
difficult to see that in the CFT, this symmetry is generated by the defectrelated to @y x41)
since

_ (p.q) (p.q)
ICl = Z N(l 2m+1),(1, 2m+l)N(r D,(r,1) — =1,
(r.q)

D(1k41) X P1kr1) = DP(1,1)- (A.S)
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Indeed, we see that

S
Ditety = O 2D 165 () 5). (1, 9)]
' oy San.es)

. [ (+k) s
Sm[ 2+k ]

= Z(_l)kr—l(rs S)v (rv S)><(rv S)a (ra S)'
r.s) sin [—(lgﬂm ]
= D" 5), ()N 9), (,9)]- (A.6)

(r.s)

Therefore, we can apply Theorem 4.1 to rule out Z, odd deformations via the defect
commutator. To that end, since k is odd, when r is odd, the defect eigenvalue is the same
as for the identity. On the other hand, when r is even, then the defect eigenvalue is —1.
The corresponding states have non-trivial Z, charge.

As a result, only CFT deformations of the form ®2,,41,1),(24+1,1) are allowed. For
n = 0, these are deformations in the identity module of the CFT. Clearly, such deforma-
tions cannot be relevant (the dimension zero primary deformation is trivial). For n > 0,
a similar story holds since the primary has scaling dimension

k+3

2h >2— > 2. A7
@n+ll) Z 257 > (A7)

A.2. The ferromagnetic case and the Zj parafermions. In the F case the spin chain is
also critical and is described by Zj parafermions. These theories can also be described
by an su(2);/u(1)x coset.

Now, given a coset model G/ H; the modular S-matrix is given by

G/ H, Gr =
St o.g) = C0(G, H, ke, DS S, (A.8)

where a and b are labels for the AKM primaries in the G theory, p and g are labels for
the AKM primaries in the H; model, and co(G, H, k, ) is an overall constant that can
be fixed by the unitarity of the S-matrix.

The primary fields in this case are denoted as O3, 2,, where thelabels 2 € {0, 1, ..., k}
and 2m € 7Z subject to the identifications

O2jom = Ozjomrok = O2juk2m—k, 2m+2j =0 mod2. (A9)
The fusion rules for these primaries are

min(2(j1+j2),2k—=2(j1+j2))
O2jy.2my X O2jy 2my = Z O2j 20m +my) - (A.10)
J=2lj1—j21€2Z
In more detail, the fields of interest are

e The vacuum Oy =1
e The parafermion currents ¥, = Op 2m, Where m € {1,...,k — 1}. These fields
generate the Zj symmetry. The fusion rules form an abelian group Z

Y1 X Yk = Yk (A.11)



1054 M. Buican, A. Gromov

e The primary fields o; = Oy ;. '
e The neutral su(2); fields ¢; = O . These fields form the A" ~ A, = su(2)™
subalgebra. The fusion rules of &; produce only neutral (in the Z; sense) fields

min(2(j1+j2),2k—=2(ji1+j2))
O@ji.0) X Ojp.0) = > 0@j,0- (A.12)
J=21j1—j21€2Z

The S-matrix is given by applying (A.8), which yields

4
S02j1,2m1’02j2,2mz = B ’ sin (kr[_z) - €Xp <_Tm1m2> ’ (A13)
+

1 _ 1 2 in (T . . . .
where 7 = —z— = = sin (%) is the total quantum dimension. Theorem 4.1 implies

that the primary field O}, 2, is problematic if it commutes with all of the A" defects
Do,; - Explicitly this takes form

[D(szl,()» O2j2,2m2] = O, lev (A14)
which leads to the condition

sin ((21'1+}c)-'_(22j2+1)n) sin ((21'2+1)n)

_ k+2 (A.15)
sin (Z5) sin (Z5)
This equation clearly only holds when j; = 0, that is for the parafermionic fields

Ym, = Oo,2m,. However deformations by these fields can be ruled out by the Z; sym-
metry, which requires

[DOO,Zml ’ Oij,Zmz] = Ov le (A16)
These commutators lead to the condition
sin (%3Pn) sin (Sf507)
e T s S S s T =L (AT
sin (73) sin (75)

which holds only for m> = 0 (but not for arbitrary j,; however, we have already ruled
out those fields).
Note that we can also prove that [D@zjyo, 0o.2m] = 0 using Theorem 4.4. To do so,

we note that
Oo,0

C c — —
> NG Nos10.050 = N0y p = 1 (A.18)
c

To summarize, the commutator with the neutral fields rules out all of the perturbations
except the ones generated by the parafermionic currents and the latter are ruled out by
the commutation with group-like Z; defects.3?

32 As discussed in the main text, one should only impose discrete symmetry defect commutators for symme-
tries that appear microscopically in the chain. For the case of higher-spin chains, this subtlety may potentially
lead to realizations of the parafermionic CFTs having relevant deformations that are not protected by the Zj
discrete symmetries (these symmetries are then accidental symmetries of the continuum limit; see [56] for a
recent discussion).
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