Skip to main content
Log in

On Complexity of the Quantum Ising Model

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

We study complexity of several problems related to the Transverse field Ising Model (TIM). First, we consider the problem of estimating the ground state energy known as the Local Hamiltonian Problem (LHP). It is shown that the LHP for TIM on degree-3 graphs is equivalent modulo polynomial reductions to the LHP for general k-local ‘stoquastic’ Hamiltonians with any constant \({k \ge 2}\). This result implies that estimating the ground state energy of TIM on degree-3 graphs is a complete problem for the complexity class \({\mathsf{StoqMA}}\) —an extension of the classical class \({\mathsf{MA}}\). As a corollary, we complete the complexity classification of 2-local Hamiltonians with a fixed set of interactions proposed recently by Cubitt and Montanaro. Secondly, we study quantum annealing algorithms for finding ground states of classical spin Hamiltonians associated with hard optimization problems. We prove that the quantum annealing with TIM Hamiltonians is equivalent modulo polynomial reductions to the quantum annealing with a certain subclass of k-local stoquastic Hamiltonians. This subclass includes all Hamiltonians representable as a sum of a k-local diagonal Hamiltonian and a 2-local stoquastic Hamiltonian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaev A., Shen A., Vyalyi M.: Classsical and Quantum Computation. American Mathematical Society, Providence (2002)

    MATH  Google Scholar 

  2. Oliveira R., Terhal B.M.: The complexity of quantum spin systems on a two-dimensional square lattice. Quant. Inf. Comput. 8(10), 900–924 (2008)

    MATH  MathSciNet  Google Scholar 

  3. Aharonov D., Gottesman D., Irani S., Kempe J.: The power of quantum systems on a line. Commun. Math. Phys. 287(1), 41–65 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Hallgren S., Nagaj D., Narayanaswami S.: The local Hamiltonian problem on a line with eight states is QMA-complete. Quant. Inf. Comput. 13(9–10), 721–750 (2013)

    MathSciNet  Google Scholar 

  5. Schuch N., Verstraete F.: Computational complexity of interacting electrons and fundamental limitations of density functional theory. Nat. Phys. 5(10), 732–735 (2009)

    Article  Google Scholar 

  6. Childs, A.M., Gosset, D., Webb, Z.: The Bose–Hubbard model is QMA-complete. In: Proceedings of the 41st International Colloqium on Automata, Languages, and Programming (ICALP), pp. 308–319 (2014)

  7. Cubitt T., Montanaro A.: Complexity classification of local Hamiltonian problems. SIAM J. Comput. 45(2), 268–316 (2016)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bravyi S., DiVincenzo D., Oliveira R., Terhal B.: The complexity of stoquastic local Hamiltonian problems. Quant. Inf. Comput. 8(5), 0361–0385 (2008)

    MATH  MathSciNet  Google Scholar 

  9. Suzuki M., Miyashita S., Kuroda A.: Monte Carlo simulation of quantum spin systems. I. Prog. Theor. Phys. 58(5), 1377–1387 (1977)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  10. Prokof’ev N., Svistunov B., Tupitsyn I.: Exact quantum Monte Carlo process for the statistics of discrete systems. Pis’ma v Zh. Eks. Teor. Fiz. 64(12), 911–916 (1996)

    Google Scholar 

  11. Sandvik A.W., Kurkijärvi J.: Quantum Monte Carlo simulation method for spin systems. Phys. Rev. B 43(7), 5950 (1991)

    Article  ADS  Google Scholar 

  12. Trivedi N., Ceperley D.M.: Green-function Monte Carlo study of quantum antiferromagnets. Phys. Rev. B 40(4), 2737 (1989)

    Article  ADS  Google Scholar 

  13. Bravyi, S.: Monte Carlo simulation of stoquastic Hamiltonians. arXiv:1402.2295 (arXiv preprint) (2014)

  14. Pfeuty P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57(1), 79–90 (1970)

    Article  ADS  Google Scholar 

  15. Sachdev S.: Quantum Phase Transitions. Cambridge University Press, Cambridge (2007)

    Book  MATH  Google Scholar 

  16. Kopeć T.K., Usadel K.D., Büttner G.: Instabilities in the quantum Sherrington–Kirkpatrick Ising spin glass in transverse and longitudinal fields. Phys. Rev. B 39(16), 12418 (1989)

    Article  ADS  Google Scholar 

  17. Laumann C., Scardicchio A., Sondhi S.L.: Cavity method for quantum spin glasses on the Bethe lattice. Phys. Rev. B 78(13), 134424 (2008)

    Article  ADS  Google Scholar 

  18. Farhi, E., Goldstone, J., Gutmann, S., Sipser, M.: Quantum computation by adiabatic evolution. arXiv:quant-ph/0001106 (arXiv preprint) (2000)

  19. Boixo S., Rønnow T., Isakov S., Wang Z., Wecker D., Lidar D., Martinis J., Troyer M.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10(3), 218–224 (2014)

    Article  Google Scholar 

  20. Rønnow T.F., Wang Z., Job J., Boixo S., Isakov S., Wecker D., Martinis J., Lidar D., Troyer M.: Defining and detecting quantum speedup. Science 345, 420 (2014)

    Article  ADS  Google Scholar 

  21. Shin, S.W., Smith, G., Smolin, J., Vazirani, U.: How “quantum” is the D-wave machine? arXiv:1401.7087 (arXiv preprint) (2014)

  22. Kempe J., Kitaev A., Regev O.: The complexity of the local Hamiltonian problem. SIAM J. Comput. 35(5), 1070–1097 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Bravyi, S., Bessen, A.J., Terhal, B.M.: Merlin–Arthur games and stoquastic complexity. arXiv:quant-ph/0611021 (arXiv preprint) (2006)

  24. Farhi E., Goldstone J., Gutmann S., Lapan J., Lundgren A., Preda D.: A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem. Science 292(5516), 472–475 (2001)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  25. Jansen S., Ruskai M.-B., Seiler R.: Bounds for the adiabatic approximation with applications to quantum computation. J. Math. Phys. 48, 102111 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Schrieffer J.R., Wolff P.A.: Relation between the Anderson and Kondo hamiltonians. Phys. Rev. 149(2), 491 (1966)

    Article  ADS  Google Scholar 

  27. Bravyi S., DiVincenzo D.P., Loss D., Terhal B.M.: Quantum simulation of many-body Hamiltonians using perturbation theory with bounded-strength interactions. Phys. Rev. Lett. 101(7), 070503 (2008)

    Article  ADS  Google Scholar 

  28. Bravyi S., DiVincenzo D.P., Loss D.: Schrieffer–Wolff transformation for quantum many-body systems. Ann. Phys. 326(10), 2793–2826 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  29. von Gehlen G., Iorgov N., Pakuliak S., Shadura V., Tykhyy Yu.: Form-factors in the Baxter–Bazhanov–Stroganov model II: Ising model on the finite lattice. J. Phys. A Math. Theor. 41(9), 095003 (2008)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  30. Isakov S., Hastings M.B., Melko R.: Topological entanglement entropy of a Bose–Hubbard spin liquid. Nat. Phys. 7(10), 772–775 (2011)

    Article  Google Scholar 

  31. Isakov S., Melko R., Hastings M.B.: Universal signatures of fractionalized quantum critical points. Science 335(6065), 193–195 (2012)

    Article  ADS  Google Scholar 

  32. Cao Y., Nagaj D.: Perturbative gadgets without strong interactions. Quant. Inf. Comput. 15(13, 14), 1197–1222 (2015)

    MathSciNet  Google Scholar 

  33. Hastings M.B.: Obstructions to classically simulating the quantum adiabatic algorithm. Quant. Inf. Comput. 13(11–12), 1038–1076 (2013)

    MathSciNet  Google Scholar 

  34. Fendley P.: Free parafermions. J. Phys. A 47, 075001 (2014)

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergey Bravyi.

Additional information

Communicated by M. M. Wolf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bravyi, S., Hastings, M. On Complexity of the Quantum Ising Model. Commun. Math. Phys. 349, 1–45 (2017). https://doi.org/10.1007/s00220-016-2787-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2787-4

Navigation