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Abstract: In this article we consider large energy wave maps in dimension 2+1, as
in the resolution of the threshold conjecture by Sterbenz and Tataru (Commun. Math.
Phys. 298(1):139–230, 2010; Commun. Math. Phys. 298(1):231–264, 2010), but more
specifically into the unit Euclidean sphere S

n−1 ⊂ R
n with n ≥ 2, and study further

the dynamics of the sequence of wave maps that are obtained in Sterbenz and Tataru
(Commun. Math. Phys. 298(1):231–264, 2010) at the final rescaling for a first, finite or
infinite, time singularity. We prove that, on a suitably chosen sequence of time slices
at this scaling, there is a decomposition of the map, up to an error with asymptotically
vanishing energy, into a decoupled sum of rescaled solitons concentrating in the interior
of the light cone and a term having asymptotically vanishing energy dispersion norm,
concentrating on the null boundary and converging to a constant locally in the interior
of the cone, in the energy space. Similar and stronger results have been recently ob-
tained in the equivariant setting by several authors (Côte, Commun. Pure Appl. Math.
68(11):1946–2004, 2015; Côte, Commun. Pure Appl.Math. 69(4):609–612, 2016; Côte,
Am. J. Math. 137(1):139–207, 2015; Côte et al., Am. J. Math. 137(1):209–250, 2015;
Krieger, Commun. Math. Phys. 250(3):507–580, 2004), where better control on the dis-
persive term concentrating on the null boundary of the cone is provided, and in some
cases the asymptotic decomposition is shown to hold for all time. Here, however, we do
not impose any symmetry condition on the map itself and our strategy follows the one
from bubbling analysis of harmonic maps into spheres in the supercritical regime due to
Lin and Rivière (Ann.Math. 149(2):785–829, 1999; DukeMath. J. 111:177–193, 2002),
which we make work here in the hyperbolic context of Sterbenz and Tataru (Commun.
Math. Phys. 298(1), 231–264, 2010).
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1. Introduction

1.1. Wave maps into spheres. We discuss here some facts, important for our argument,
regarding smooth wave maps with target the Euclidean sphere. For a broad introduction
to the subject, we shall refer the reader to the monograph of Shatah and Struwe [24].

Wavemaps are smoothmaps φ : I×R
2 → R

n , defined on some time interval I ⊂ R,
taking values in the sphere Sn−1 ⊂ R

n , which concretely means:

φ†φ = 1, φ†∇t,xφ = 0, (1.1)

with the evolutionφ[t] := (φ(t), ∂tφ(t)) ∈ T (Sn−1), taking values in the tangent bundle
and belonging to the space C0

t (I ; Ḣ1
x ) ∩ C1

t (I ; L2
x ), governed by the equation:

�φ = −φ∂αφ†∂αφ, (1.2)

where the D’Alembertian is given by � := ∂α∂
α = −∂2t + �x . Note our convention

here is that we are summing over repeating indices, where α is running from 0 to 2,
with ∂0 = ∂t and ∂0 = −∂t as we will be always raising the indices with respect to the
Minkowski metric μ = −dt⊗2 + dx⊗2

1 + dx⊗2
2 on R2+1 unless clearly stated otherwise.

We recall that equation (1.2) is invariant with respect to the scaling:

φ(t, x) 	−→ φ(λt, λx),

for any λ > 0, and also any space-time translation.
Let us mention a few important conservation laws associated to the above evolution.

Firstly, recall that the energy of a wave map at time t0 ∈ I , scale invariant in dimension
2+1, is given by:

E[φ](t0) := 1

2

∫
R2

|∂tφ(t0)|2 + |∇xφ(t0)|2 dx = 1

2

∥∥∇t,xφ(t0)
∥∥2
L2
x
,

and a conservation of energy law holds:

E[φ](t0) = E[φ](t1), (1.3)

for any t0, t1 ∈ I . Secondly, as the target is the Euclidean sphere Sn−1, equation (1.2) is
equivalent to the conservation law:

∂α(φ∂αφ
† − ∂αφφ

†) = 0, (1.4)
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which is a consequence ofNoether’s theorem and the symmetries of the sphere (and simi-
larly for other homogeneousRiemannianmanifolds, butwe shall focus on the sphere here
for simplicity), recalling that wave maps are formally critical points of the Lagrangian:

L(φ) :=
∫
R2+1

∂αφ†∂αφdtdx, (1.5)

of which (1.2) is the Euler-Lagrange equation. The use of (1.4) means however, that
some of our arguments do not directly generalize to the case when one has an arbitrary
closed Riemannian manifold as a target.

Another consequence of the variational point of view and Noether’s theorem, is that
smooth wave maps enjoy the stress energy tensor:

Tαβ [φ] := ∂αφ
†∂βφ − 1

2
μαβ∂

γ φ†∂γ φ, (1.6)

being divergence free:
∂αTαβ [φ] = 0, (1.7)

and the energy conservation law (1.3) is in fact obtained by contracting T [φ] with ∂t
and using (1.7) with Stokes’ theorem in [t0, t1] × R

2. As we shall see later, many other
monotonicity and Morawetz type estimates, very important in the blow-up analysis of
large energy wave maps, are obtained in this way.

Finally, closing our presentation of wave maps, we remark that the Lagrangian L is
Lorentz invariant which implies that, after composition with Lorentz transformations,
the map still solves Eq. (1.2) and in particular the conservation law (1.4) also stays true.

1.2. Statement of the main result. Before presenting our main result, let us set up some
notation. As usual, for two positive quantities A and B we will be writing A � B if
A ≤ C · B for some implicit constant C > 0 whose dependence should be clarified
when necessary. We also write A ∼ B whenever the additional estimate B � A holds.
Similarly, for the O-notation, we set A = O(B) with A not necessarily positive this
time, if |A| ≤ C · B.

Regarding the asymptotic notation, arising in various statements of the soliton de-
composition below, we write oX (A), as ν → +∞ in the background with X some
Banach space (typically a Sobolev space), for a sequence of elements fν ∈ X with
‖ fν‖X ≤ cν · A where cν ↓ 0. In the same spirit, we will write Aν � Bν whenever
Aν/Bν → 0 holds.

By Br0(x0) ⊂ R
2, we will be always referring to a spatial open ball of radius r0 > 0

and center x0 ∈ R
2, whereas in space-time our basic domains should be light cones. We

denote the forward light cone by:

C := {(t, x) : 0 ≤ t, r ≤ t} , r := |x | ,
and the restriction to some time interval I , as well as time sections, by:

CI := C ∩ (I × R
2), St0 := C ∩ ({t0} × R

2),

respectively, with ∂CI := {(t, x) : t ∈ I, r = t} standing for the lateral boundary, to
which we usually refer as the null boundary. Given some δ > 0, it will be convenient
also to set Cδ := (δ, 0) + C , with the convention that C0 stays for ∪δ>0Cδ , the open
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interior of C . Accordingly, we have Cδ
I := CI ∩ Cδ, Sδt0 := St0 ∩ Cδ and if δ > 0, ∂Cδ

I
for the lateral boundary of Cδ

I .
We recall now the set-up from [27] (which of course holds for any closed Riemannian

manifold as target, but we restrict ourselves to the case of Sn−1 for the sake of consis-
tency). By the finite speed of propagation, translation and scaling invariance properties,
we shall restrict ourselves to the forward light cone C on which it is convenient to study
at the same time both scenarios: the finite time blow-up at the tip of the cone, as well as
the problem of scattering as t → +∞. Hence, we can assume that we are given a wave
map φ on C , smooth up to but not necessarily including the origin (0, 0), and satisfying
the energy bound:

ESt0 [φ] := 1

2

∥∥∇t,xφ
∥∥2
L2(St0 )

≤ E, ∀t0 ∈ [0,∞), (1.8)

where E is an arbitrarily large but fixed for the rest of the paper bound on which most of
our constants will depend. Let us introduce here the notation for the energy of the wave
map φ over some domain U ⊂ R

2+1 at the time slice {t = t0} setting:

EU [φ](t0) := 1

2

∫
U∩{t=t0}

∣∣∇t,xφ(t0)
∣∣2 dx = 1

2

∥∥∇t,xφ(t0)
∥∥2
L2(U∩{t=t0}) ,

or simply EU [φ] when there is no ambiguity, as for example with ESt0 [φ] above. For the
latter quantity, we recall the important monotonicity property:

ESt0 [φ] ≤ ESt1 [φ] for t0 ≤ t1,

which is obtained, as the conservation of energy law (1.3), contracting the stress energy
tensor T [φ] with ∂t and using (1.7) with Stokes’ theorem, this time however applied in
C[t0,t1], giving:

ESt1 [φ] = F[t0,t1][φ] + ESt0 [φ], F[t0,t1][φ]
:=
∫
∂C[t0,t1]

(
1

4
|Lφ|2 + 1

2

∣∣∣r−1∂θφ

∣∣∣2
)
d A, (1.9)

where F[t0,t1][φ] is called the flux of the wave map from t1 to t0, and L is part of the null
frame:

L := ∂t + ∂r , L := ∂t − ∂r .

The monotonicity property and the global bound (1.8) enable us to define the limits:

E0 := lim
t↓0 ESt [φ], E∞ := lim

t↑∞ ESt [φ],

and imply that F[t0,t1][φ] ↓ 0 as t0, t1 both tend to zero or infinity. The latter can be
used, together with the angular part of F[t0,t1][φ] from (1.9), to construct, given any
ε > 0, an extension of φ outside the cone C on (0, t0] for t0 = t0(ε) small enough, and
on [t∞,∞) for t∞ = t∞(ε) large enough, solving the wave maps equation (which is
possible by finite speed of propagation, hence we shall slightly abuse notation denoting
those extensions by φ) such that:

E[φ](t)− ESt [φ] ≤ εE, ∀t ∈ (0, t0] ∪ [t∞,∞),
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see Sections 6.1 and 6.2 in [27]. By the small energy theorem of Tao [28], if E[φ](t0)
can be chosen small enough, then E0 = 0 and φ can be extended to a smooth wave
map for all time (this guarantees also that the above extensions are smooth everywhere
except possibly (0, 0), even if ESt [φ] is large, provided ε > 0 was chosen small enough
initially).

Moreover, via a continuity-iteration-renormalization argument, φ is proved in [28]
to belong to a space S ⊂ C0

t (I ; Ḣ1
x )∩C1

t (I ; L2
x ), implying control in all the Strichartz

spaces amongst others, in which well-posedness for the Cauchy problem (1.2) can be
established. We discuss this more precisely with further references later in Sect. 2.2.
Here, we should mention that, following the terminology of Sterbenz and Tataru [27],
we will say that scattering holds if:

φ ∈ S,

noting that, strictly speaking, this means that φ behaves like a linear wave as t → ±∞
after applying the microlocal gauge (if small energy, see [28]) or the diffusion gauge
(necessary if large energy, see [26]). We refer the reader to the structure theorem of
Sterbenz and Tataru in [26], Proposition 3.9 there, for further information. Let us take
the opportunity here to remark that, if the target manifold is a hyperbolic Riemann
surface, then scattering in the classical sense was established by Krieger and Schlag [15]
for wave maps in the Coulomb gauge. For the hyperbolic spaces, this was achieved by
Tao [29] using the caloric gauge. Therefore, if E[φ](t∞) could be chosen small enough
for some extension we consider the scattering problem for φ as t → +∞ resolved.

Once energy gets large, blow-up can occur and the first examples of finite time
singularity for equivariant wave maps into S

2 were constructed by Krieger, Schlag and
Tataru [16], as well as Rodnianski and Sterbenz [22] and also Raphaël and Rodnianski
[20], where, as for the harmonic map heat flow, the mechanism behind the singular
behavior was concentration of a non-trivial harmonic map. More generally, the wave
map φ could have concentrated at the origin at least one soliton: these are defined to be
finite energy smooth maps ω : R2+1 → S

n−1 solving the wave maps equation (1.2) and
satisfying:

Xω = 0,

for some constant time-like vector field X on R2+1. In particular, precomposing ω with
a Lorentz transformation � that takes ∂t to X , we obtain a finite energy harmonic map
from R

2 steady in the time direction which, upon extending over spatial infinity using
the removable singularity theorem of Sacks and Uhlenbeck [23], gives a harmonic two-
sphere ω ◦ � : R × S

2 → S
n−1 familiar from the bubbling analysis of harmonic

maps and heat flows. Let us note here that this last point of view enables us to set
ω(∞) := lim|x |→∞ ω(t, x), which is well-defined and independent of time t chosen.

The threshold conjecture, resolved by Sterbenz and Tataru [26,27] (for closed Rie-
mannian manifolds), Krieger and Schlag [15] (for hyperbolic surfaces) and Tao [29] (for
hyperbolic spaces of any dimension), predicts that concentration of solitons is the es-
sential mechanism behind blow-up. That is, if E0, E∞ are less than the energy threshold
below which every harmonic two-sphere is constant, then one has regularity at t = 0
and scattering as t → +∞.

One of the central difficulties in establishing this conjecture in the general non-
symmetric situation was that relying only on standardMorawetz type estimates obtained
from the stress energy tensor, it was not possible to get a non-trivial amount of energy
concentrating within the light cone required to produce a non-constant soliton. As far
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as the program of Sterbenz and Tataru is concerned, the breakthrough was made in
[26], where they obtain that, on top of concentrating energy, the map must concentrate
a non-trivial amount ε(E) > 0 of the BMO type energy dispersion norm.

That is, if:
sup
k

‖Pkφ‖L∞
t,x ((0,t0]∪[t∞,∞)) < ε(E), (1.10)

where Pk stands for the Littlewood–Paley projection, then:

φ ∈ S((0, t0] ∪ [t∞,∞)),

and the map extends smoothly to a neighborhood of t = 0 (we shall state a slightly more
precise version of this theorem in Sect. 2.2). This is a large data result and is proved in
[26] via an induction on energy argument.

Let us note here, as an aside, that the program of Krieger and Schlag [15], as well as
the one of Tao [29], proceeded via a different induction on energy argument and without
any smallness assumption as (1.10). As there are no non-constant solitons for the targets
considered there, one obtains global regularity and scattering for arbitrarily large data
in those cases. We point out, on the other hand, that the concentration-compactness
techniques used in [15] can also lead to a fruitful study of the formation of solitons,
as was demonstrated so far for equivariant wave maps in [1–4,13]. In the present work
however, we shall adopt a more direct approach, staying closer to [26,27], see Sect. 1.3
for a detailed summary of our strategy.

In Sect. 3.2, we will briefly discuss results from [27] that convert concentration of
energy dispersion into concentration of a non-trivial amount of time-like energy, as
this is how, arguing by contradiction, we get the energy dispersion norm of the term
concentrating on the null boundary asymptotically vanishing. On the other hand, the
fact that arguments in [27] give that only some energy is prevented from escaping into
the null boundary at a finite time singularity is a serious obstacle to controlling null
concentration further. In fact, techniques dealing with this phenomenon would have to
strengthen [26,27] considerably in this situation, if not giving a wholly alternative proof
to the threshold conjecture (which we shall not attempt in this paper).

Theorem 1.1 (Sterbenz and Tataru [26,27]). Suppose that the wave map φ is singular
at (0, 0), respectively φ /∈ S[t∞,∞) for any extension as discussed above, then there
exists a sequence λ0ν ↓ 0, respectively λ∞

ν ↑ ∞, the so-called final rescaling, such that
setting:

φν(·) := φ(λ0ν ·), respectively φ(λ∞
ν ·),

we can find a sequence of concentration points (tν, xν) ∈ C
1
2
[1,O(1)] and scales rν ↓ 0,

for which:

φν(tν + rν t, xν + rνx) −→ ω(t, x) in (H1
t,x )loc

(
[−1

2
,
1

2
] × R

2
)
,

for some non-constant soliton ω.

Weshall describe in detail the final rescalingφν at the beginning of Sect. 3, seeLemma
3.1. In our main theorem, we study this sequence further, carrying out a blow-up analysis
for it and establishing an analogue of the energy identity from the bubbling analysis of
harmonic maps and heat flows (and many other geometric variational problems), see for
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example the works [5,17,32] and the references therein for the critical regime, and for a
supercritical situation the papers of Lin and Rivière [18,19], which are of closer flavor
to the arguments presented in this paper.

Theorem 1.2. Upon passing to a subsequence for the wave maps {φν}ν∈N obtained in
Theorem 1.1, or abstractly those satisfying the conclusions of Lemma 3.1, we have:

• Blow-up analysis for asymptotically self-similar sequences of wave maps: There
exists a non-trivial finite collection of time-like geodesics �1, . . . , �I , emanating
from the origin in Minkowski space R2+1, along which the maps concentrate some
threshold εs > 0 of energy:

lim inf
ν→∞ EBr (�i (t))[φν] > εs ∀t ∈ [1, 2], ∀r > 0, i = 1, . . . , I,

where we are writing �i (t) := �i ∩ St , and the maps converge locally to a constant
away from �i in the interior of the light cone:

φν −→ const. on C0[1,2]\ ∪i �i ,

locally in C0
t (H

1
x ) ∩ C1

t (L
2
x ).• Dispersive property for null-concentration: The parts of the maps φν that get con-

centrated on the null boundary ∂C have asymptotically vanishing energy dispersion
norm, that is fixing the constant:

δ0 := 1

10
dist(∪i�i , ∂C[1,2]),

the maps φν on C[t0−δ0,t0+δ0]\C2δ0[t0−δ0,t0+δ0] admit extensions�t0,ν to [t0 − δ0, t0 + δ0] ×
R
2, for each t0 ∈ [1 + δ0, 2 − δ0], solving the wave maps equation on this short, but

independent of ν, time interval and satisfying:

∇t,x�t0,ν −→ 0 in C0
t (L

2
x )loc

(
([t0 − δ0, t0 + δ0] × R

2)\∂C[t0−δ0,t0+δ0]
)
,

and lim sup
ν→∞

sup
k

(
2−k
∥∥Pk∇t,x�t0,ν

∥∥
L∞
t,x [t0−δ0,t0+δ0]

)
= 0;

• Asymptotic decomposition: We can find a sequence of time slices:

{tν}ν∈N ⊂ [1 + δ0, 2 − δ0],
on which there exists a non-trivial collection of J = J ({tν}ν∈N) �E 1 sequences of
points a j

ν ∈ R
2, |a j

ν | < tν − 5δ0, with associated scales λ j
ν ↓ 0 for j = 1, . . . , J ,

satisfying:

λiν

λ
j
ν

+
λ
j
ν

λiν
+

|aiν − a j
ν |2

λiνλ
j
ν

−→ ∞

as ν → +∞ for distinct i �= j , such that:

φν(t, x) =
J∑

j=1

(
ω j

(
t − tν

λ
j
ν

,
x − a j

ν

λ
j
ν

)
− ω j (∞)

)
+�tν ,ν(t, x) + oḢ1

x ×L2
x
(1) on Stν ,
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where ω j : R2+1 → S
n−1 are solitons for which:

φν(tν + λ
j
ν t, a

j
ν + λ

j
νx) −→ ω j (t, x) on R

2+1\ ∪q �
j
q , (1.11)

locally in C0
t (H

1
x ) ∩ C1

t (L
2
x ), for a finite collection, q = 1, . . . , q(ω j , E), of parallel

time-like geodesics � j
q .

Remark 1.3. In other words, we have energy quantization in the interior of the light cone
for wave maps into spheres. This is a little first step towards understanding the soliton
resolution conjecture for the (2+1)-dimensional wave maps equation with target Sn−1.
It states that in addition, such a decomposition should be unique holding for all time and
that�t0,ν should have asymptotically vanishing energy in the case of finite time blow-up
(we note that this is guaranteed in the equivariant case by the well-known exterior energy
estimate, see [24]), or correspond to the scattering part of the wave map in the case of
global existence. Some further estimates, following directly from the work of Sterbenz
and Tataru [26,27], regarding the terms�t0,ν can be found in Remark 2.6 and Sect. 3.2
(for example, (3.17) there gives decay for the angular and the null L = ∂t + ∂r energy).
We note in the end though that our techniques do not lead to any further information.

We mention here that the soliton resolution conjecture has recently been shown to
hold for the 1-equivariant wave maps into S

2 ⊂ R
3 with initial data having topological

degree one and energy strictly less than 3 times 4π (note that 4π is the energy threshold)
by Côte, Kenig, Lawrie and Schlag at finite time singularity in [3], and in [4] for the
case of global existence (more general surfaces of revolution are also considered). Note
that in this situation, one knows a priori the uniqueness of the possible configurations
of solitons that can be concentrated (in fact there is only one of them and it is the
unique equivariant degree one harmonic map). The conjecture is also established for
the examples constructed by Krieger et al. [16], as well as Raphaël and Rodnianski
[20].

Without this restriction on the initial data, the soliton resolution along a sequence of
times was obtained in the 1-equivariant setting by Côte [1,2] building upon [3,4], and
more generally for the �-equivariant case for any integer � ≥ 1 by Jia and Kenig [13]
relying on a method different from [1,3,4] (in both works, the finite time singularity and
the global existence case have been considered). We refer the reader to [13] for more
references and an overview with some history of the various beautiful techniques used
to tackle the soliton resolution conjecture in the radial/equivariant cases for a variety of
non-linear wave equations initiated by Duyckaerts, Kenig and Merle, see for example
[7]. We also note that those techniques have been very recently applied to prove the
sequential soliton resolution conjecture without any symmetry assumptions for some
focusing semi-linear wave equations by Duyckaerts et al. [6,8,12]. The strategy of
the present paper will have a very different flavor though. An outline can be found in
Sect. 1.3.

Let us say that the techniques we use to establish the above theorem leave completely
open the question of uniqueness of the set of solitons. In fact, as suggested by an example
of Topping [32] for the harmonic map heat flow, this, and therefore the soliton resolution
conjecture, could fail for certain targets (in view of the work of Simon [25] however,
such pathologies are believed to be excluded when working with real analytic targets
like Sn−1). Therefore, there is a notoriously difficult and long way from Theorem 1.2
to the full soliton resolution conjecture, as one should expect the former to hold for any
closed Riemannian manifold as a target, and the only place where we use the fact that
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our target is a sphere is when relying on the conservation law (1.4) in the proof of the
compensation estimates in Sect. 2.3. Establishing the analogue of those estimates for
general targets is an important open question even in the elliptic theory, see the work of
Rivière [21] for a further discussion.

1.3. Discussion of the strategy. We should close the introduction by outlining the proof
of Theorem 1.2, which is contained in Sect. 3.

The first point of Theorem 1.2 is obtained in Sect. 3.1. For the sequence of wave
maps {φν}ν∈N at the final rescaling, Sterbenz and Tataru [27] obtain a decay estimate
along the scaling vector field ∂ρ = 1

(t2−r2)1/2
(t∂t + r∂r ):

∫ ∫
C
ε

1
2
ν

[ςν ,ς−1
ν ]

1

(t2 − r2)
1
2

∣∣∂ρφν∣∣2 dxdt −→ 0,

for some sequences ςν ↓ 0, ε
1
2
ν � ςν , see Lemma 3.1. If one uses a local version of

the latter, by contracting the stress energy tensor (1.6) with ϕ∂ρ , for some compactly
supported cut-off ϕ on the unit hyperbolic plane H

2, it is possible to spread a given
energy control on some ball Br0(x0) � S01 , at the time slice t = 1 say, along the flow
of the vector field ∂ρ for any finite amount of time; in other words the wave maps φν
would have small energy, uniformly in ν, on the whole of:

{
λz : λ ∈ [1, 2], z ∈ {t = 1} × Br0(x0)

}
,

provided they did so initially at t = 1. This is a simple analogue of the fact, from the
blow-up analysis of supercritical harmonic maps, that one must have the tangent Radon
measures monotone under scaling (see the work of Lin [18], and Lemma 3.2 here).

This way, relying as well on concentration-compactness at t = 1 and the small energy
compactness result under control of a time-like direction due to Sterbenz and Tataru [27],
see Lemma 2.3 here, we are able to obtain a subsequence for {φν}ν∈N which converges
on C0[1,2], away from a finite set of time-like rays passing through the origin, to a regular
self-similar wave map φ. By homogeneity and the singularity removable theorem of
Sacks and Uhlenbeck [23], the map φ extends to a smooth wave map on the whole of
the open forward light cone C0 (the details of this argument are contained in Lemma
3.3). We note that similar arguments give also the convergence to solitons statement
(1.11) claimed in Theorem 1.2 (see Lemma 3.6 for this point). We recall, however, that
self-similar wave maps of finite energy must be constant. This is a well-known result,
the proof of which can be found in [27] (see also Proposition 3.4 here for a precise
statement).

On the other hand, another crucial property of the wave maps at the final scaling of
Sterbenz and Tataru [27] is that a non-trivial amount of energy is uniformly held at a
fixed distance away from the null boundary. Hence, our configuration of time-like rays,
along which the wave maps concentrate, must be non-trivial. At this stage of the proof,
this yields the first point of Theorem 1.2.

Because only some time-like energy is obtained in [27] (and this should have been
so almost surely, if one considers the non-scattering problem for example), the second
point of Theorem 1.2, treated in Sect. 3.2, tries to address the issue of null concentration.
By cutting the parts of the map concentrating at the time-like geodesics, we are able to
solve the wave maps equation for a uniform amount of time, even though the energy of
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the initial data is a priori large (thanks to the finite speed of propagation property and
the fact the configuration of time-like rays was fixed initially). Running the arguments
of Sterbenz and Tataru [27] backwards yields then the claimed control for the energy
dispersion norm (see Lemma 3.5).

The construction of the asymptotic decomposition and the proof of the energy quanti-
zation, the third point of Theorem 1.2, is contained in Sect. 3.3. Upon choosing a suitable
sequence of time slices {t (1)ν }ν∈N ⊂ (1, 2) and scales δν ↓ 0, we study the wave maps:

φi,ν(·) := φν(t
(1)
ν + δν ·, �i (t (1)ν ) + δν ·) on [−1, 1] × B1,

for each geodesic �i , from the first point of Theorem 1.2. The maps φi,ν converge to
the constant cφ corresponding to the self-similar wave map φ mentioned previously,
locally in L∞

t (H
1
x × L2

x ) away from �i , and in fact strongly in L∞
t (L

2
x ). The time slices

{t (1)ν }ν∈N have been chosen such that:

Xiφi,ν −→ 0 in L2
t,x ,

for the constant time-like vector field Xi pointing in the direction of the ray �i . The
concentration scales {δν}ν∈N have been chosen decaying slowly enough, to avoid losing
energy in the process:

lim
ν→∞ sup

t∈[1,2]
ESδνt \∪i Bδν (�i (t))

[φν] = 0.

From there, we appeal to the compensation type estimates from Sect. 2.3 (the only
place where we use the fact that our target is the sphere Sn−1), decomposing the gradient
as:

∇t,xφi,ν = �i,ν +�i,ν , with �i,ν −→ 0 in L2
t,x and

∑
k∈Z

∥∥Pk�i,ν
∥∥
L1
t (L2

x )
� 1,

which is obtained in Proposition 2.7. To construct�i,ν , we rely essentially on the time-
like decay above, and for �i,ν the div-curl type structure of the non-linearity:

�i,ν
α ∂αφi,ν , where �i,ν

α := φi,ν∂αφ
†
i,ν − ∂αφi,νφ

†
i,ν ,

coming from the conservation law (1.4). Furthermore, we obtain a decomposition for
the higher order time-like derivatives of φi,ν :

X2
i φi,ν = �i,ν +�i,ν ,

where the first term is a linear combination of:∑
k∈Z

Pk∇x [�i,ν
x (P>k+10φi,ν)],

∑
k∈Z

Pk[�i,ν
x (P≤k+10∇xφi,ν)], and �

i,ν
t,x∇t,xφi,ν ,

(1.12)
that we note being local in time and quadratic in the gradient, and the second one satisfies
a favorable decay estimate:

∑
k∈Z

2−2k
∥∥Pk�i,ν

∥∥2
L2
t,x [−1,1] −→ 0.

This is obtained in Lemma 2.8 of Sect. 2.3, relying crucially on the conservation law
(1.4) again, and plays an important role in the proof of the Besov decay estimate for wave
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maps on neck domains of Lemma 3.8 in Sect. 3.3, to which we come in few moments
here.

We proceed then by constructing the soliton decomposition for the wave maps φi,ν ,
up to terms called necks in the literature on harmonic maps, which are given by φi,ν
restricted to a finite collection of conformally degenerating annuli:

[−rki,ν
2
,
rki,ν
2

] ×
(
BRk

i,ν
(xki,ν)\Brki,ν (x

k
i,ν)
)

⊂ [−1, 1] × B1 with rki,ν � Rk
i,ν

and k = 1, . . . , Ki (E), satisfying the local energy decay estimate:

sup
2−�rki,ν≤r≤2�Rk

i,ν

sup
t∈[− r

2 ,
r
2 ]
EB2r (xki,ν )\Br (xki,ν )[φi,ν](t) −→ 0, (1.13)

for any positive integer � ∈ N. This is the content of Lemma 3.6, and represents essen-
tially a standard argument of concentration-compactness. The whole of Theorem 1.2 is
then reduced to showing that those necks have asymptotically vanishing energy.

In doing so, upon picking up suitable time slices {t (2)ν }ν∈N ⊂ (− 1
2 ,

1
2 ) before applying

Lemma 3.6, and taking the fastest concentrating scale λmin,ν := mini {λiν}, we consider
the maps:

φν,xki,ν
(t, x) := φi,ν(t

(2)
ν + λmin,ν t, x

k
i,ν + λmin,νx) on [−1, 1] × R

2,

together with:

�ν,xki,ν
(t, x) := λmin,ν�i,ν(t

(2)
ν + λmin,ν t, x

k
i,ν + λmin,νx),

�ν,xki,ν
(t, x) := λmin,ν�i,ν(t

(2)
ν + λmin,ν t, x

k
i,ν + λmin,νx),

�ν,xki,ν
(t, x) := λ2min,ν�i,ν(t

(2)
ν + λmin,ν t, x

k
i,ν + λmin,νx),

and {t (2)ν }ν∈N was chosen in such a way that:

∥∥∥�ν,xki,ν
(0)
∥∥∥
L2
x

+
∥∥∥Xiφν,xki,ν

(0)
∥∥∥
L2
x

+
∑
k∈Z

2−2k
∥∥∥Pk�ν,xki,ν

(0)
∥∥∥2
L2
x

−→ 0.

We use then the second and third items of the decay statement above, to write for the
gradient of φν,xki,ν

on the neck domain:

∇t,xφν,xki,ν
= ϒν,xki,ν

on [−1, 1] × (B
λ−1
min,ν R

k
i,ν

\B
λ−1
min,νr

k
i,ν
),

with the RHS supported on [−1, 1] × (B2λ−1
min,ν R

k
i,ν

\B2−1λ−1
min,νr

k
i,ν
) and satisfying:

∥∥∥ϒν,xki,ν

∥∥∥
L∞
t (L2

x )[−1,1]
� 1, sup

k∈Z

∥∥∥Pkϒν,xki,ν
(0)
∥∥∥
L2
x

−→ 0.

This is proved in Lemma 3.8 using the decay for Xiφν,xki,ν
, localizing to the neck region

the already obtained favorable estimate for�ν,xki,ν
, and relying on the local energy control

(1.13) to get a weak Ḃ−1,2∞ decay estimate for the non-linear terms at high frequency,
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which are quadratic in the gradient of the map φν,xki,ν
such as (1.12) left over from

Lemma 2.8.
Finally, we are brought to the following control for the energy of φν,xki,ν

on the neck

domain at time t = 0:
∥∥∥∇t,xφν,xki,ν

(0)
∥∥∥2
L2
x (Bλ−1

min,ν R
k
i,ν

\B
λ
−1
min,ν r

k
i,ν
)
� (sup

k∈Z

∥∥∥Pkϒν,xki,ν
(0)
∥∥∥
L2
x

)
∑
k∈Z

∥∥∥Pk�ν,xki,ν
(0)
∥∥∥
L2
x

+
∥∥∥ϒν,xki,ν

(0)
∥∥∥
L2
x

∥∥∥�ν,xki,ν
(0)
∥∥∥
L2
x

+ o(1),

and this gives the desired energy collapsing result.

2. Technical Results

In this section we gather some of the technical results, mainly restricted to the regularity
theory of wave maps, that we will be using in Sect. 3 to establish Theorem 1.2. The
crucial compensation estimate is proved in Sect. 2.3.

2.1. Some harmonic analysis. We will be mainly relying on the spatial Fourier trans-
form. For φ(t, x) ∈ S(R2), a Schwartz function on R2 at some fixed time t , we define:

φ̂(t, ξ) :=
∫
R2

e−2π i x ·ξφ(t, x)dx,

together with the inverse transform given by:

ϕ̌(t, x) =
∫
R2

e2π i x ·ξ ϕ(t, ξ)dξ,

for a Schwartz function ϕ(t, ξ) on the frequency space. The space-time Fourier trans-
form:

Fψ(τ, ξ) =
∫
R2

∫
R

e−2π i(tτ+x ·ξ)ψ(t, x)dtdx, ψ ∈ S(R × R
2),

with inverse denoted by F−1, should however appear in Sect. 2.3 while treating high
modulations.

The use of Littlewood-Paley theorywill be quite beneficial to our analysis and general
references for it are the monographs of Taylor [31] and Grafakos [10]. We shall rely on
the discrete version here only: the Littlewood-Paley projection P≤k , with k ∈ Z, is
defined to be a Fourier multiplier with symbol m≤k(ξ) := m≤0(2−k |ξ |), i.e. via the
convolution:

P≤kφ(t, x) := 22k
∫
R2

m̌≤0

(
2k(x − y)

)
φ(t, y)dy, (2.1)

for some radial non-negative function m≤0(|ξ |) in frequency space, identically 1 on
|ξ | ≤ 1 and 0 for |ξ | ≥ 2.

Wealso set Pk to be amultiplierwith symbolmk(ξ) := m0(2−k |ξ |),wherem0(|ξ |) :=
m≤0(|ξ |) − m≤0(2 |ξ |), and the operators P<k, Pk1≤·≤k2 , P≥k , etc. are then defined in
the usual way. Note that LP-projections make sense for functions defined only at some
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given time t , or restricted to any time interval, and more generally commute with time
cut-offs. Furthermore they are disposable multipliers, i.e. have the distributional con-
volution kernels of bounded mass, even when considered on the whole of space-time
which in practice means that they are bounded on any translation invariant Banach space
of functions onR×R

2 and therefore can be discarded from the estimates as one wishes.
Two elementary but important facts about LP-projections that we would like to men-

tion here are the finite band property that states:
∥∥∇x P≤kφ

∥∥
L p
x

� 2k
∥∥P≤kφ

∥∥
L p
x
, (2.2)

and further:
‖∇x Pkφ‖L p

x
∼ 2k ‖Pkφ‖L p

x
, (2.3)

for any 1 ≤ p ≤ ∞, as well as Bernstein’s inequality:

‖Pkφ‖L p
x

� 2
2k
(
1
q − 1

p

)
‖Pkφ‖Lq

x
, (2.4)

for any 1 ≤ q ≤ p ≤ ∞. The latter is especially useful converting integrability into
regularity at low frequencies.

We can decompose any Schwartz function using LP-projections, and as we typically
consider maps taking values in the sphere, we will be considering affinely (i.e. upon
adding a constant) Schwartz functions, obtaining:

φ = P≤0φ +
∑
k>0

Pkφ = const. +
∑
k∈Z

Pkφ in S(R2). (2.5)

While working with the gradient ∇t,xφ, this will make no difference of course. By
duality, the above decompositions hold also for tempered distributions and are used to
define various Besov and Triebel-Lizorkin spaces, see [10]. Let us present here some
examples important for our argument.

In this paper, we will be mainly working with the Besov spaces Bs,p
q (R2), for s ∈ R

and 1 ≤ p, q ≤ ∞, together with the homogeneous versions Ḃs,p
q (R2), defined as

completions with respect to the norms:

‖φ‖q
Bs,p
q

:= ∥∥P≤0φ
∥∥q
L p
x
+
∑
k>0

2qsk ‖Pkφ‖q
L p
x
, ‖φ‖q

Ḃs,p
q

:=
∑
k∈Z

2qsk ‖Pkφ‖q
L p
x
,

and taking the �∞ norm if q = ∞ instead, of subspaces of S(R2) for which those norms
are finite. We remark that the case p, q = 2 corresponds to the familiar Sobolev spaces
Hs
x , and their homogeneous versions Ḣ s

x respectively.
We introduce also the local Hardy spaceH1

loc(R
2)with its homogeneous counterpart

H1(R2), as Triebel-Lizorkin spaces F0,1
2 (R2) = H1

loc(R
2) and Ḟ0,1

2 (R2) = H1(R2)

(this characterization is obtained in [10]), both subspaces of L1
x , defined as the completion

of Schwartz functions with respect to the norms:

‖φ‖F0,1
2

:= ∥∥P≤0φ
∥∥
L1
x
+ ‖ (
∑
k≥1

|Pkφ|2)1/2 ‖L1
x
,

‖φ‖Ḟ0,1
2

:= ‖ (
∑
k∈Z

|Pkφ|2)1/2 ‖L1
x
,
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and which admit the local and homogeneous BMO spaces as a duals, (H1
loc)

′ = bmo and
(H1)′ = BMO respectively. Although the latter does not admit a Littlewood-Paley type
characterization, the former does via the Triebel-Lizorkin space F0,∞

2 = bmo, which
is defined to be the Banach space of all tempered distributions ϕ ∈ S ′(R2) having the
following norm finite:

‖ϕ‖F0,∞
2

:= inf{ϕk }⊂L∞{∥∥P≤0ϕ0
∥∥
L∞ + ‖ (

∑
k≥1

|Pkϕk |2)1/2 ‖L∞ : ϕ

= P≤0ϕ0 +
∑
k≥1

Pkϕk},

the series above required to hold in S ′, see the monograph of Taylor [31] for further
information. Hardy spaces are especially useful in estimating paraproducts (see below),
and let us mention here, with this in mind, thatH1 embeds into a Besov space with lower
regularity but better summability:

Ḟ0,1
2 (R2) ⊂ Ḃ−1,2

1 (R2). (2.6)

This fact, that we will enjoy exploiting in the proof of Proposition 2.7 later, is taken
from Lemma 7.19 of Krieger and Schlag [15] (p. 250). For a related result in the Lorentz
space setting see the monograph of Hélein [11] (Theorem 3.3.10 and also the references
mentioned there).

Littlewood-Paley decompositions are also very useful in studying non-linear expres-
sions, and one central example is the product θϑ of two Schwartz functions θ and ϑ ∈ S.
Applying the decomposition (2.5), we can write:

Pk (θϑ) = Pk
∑
k1,k2

(Pk1θ)(Pk2ϑ),

but recalling that the Fourier transform of a product is a convolution leads to the so-called
Littlewood-Paley trichotomy decomposition (also called paraproduct decomposition),
which simplifies the above double sum into:

Pk (θϑ) = Pk[
∑

k1,k2≥k−6:|k1−k2|≤O(1)

(Pk1θ)(Pk2ϑ)

+ (P≤k−7θ)(Pk−3≤·≤k+3ϑ)

+ (Pk−3≤·≤k+3θ)(P≤k−7ϑ)],
• The high-high interactions Both θ and ϑ have Fourier support well above the scale

|ξ | ∼ 2k , but the only way the sum of two annuli at larger scales |ξ | ∼ 2k1 , 2k2 with
k1, k2 ≥ k+6 can intersect the small annulus at |ξ | ∼ 2k , is if they are approximately
at the same scale, we should have |k1 − k2| ≤ 3.

• The low-high interactions If θ has Fourier support in the ball of radius 2k−6, it will
contribute to the frequency scale |ξ | ∼ 2k if it is multiplied by ϑ frequency localized
to the annuli |ξ | ∼ 2k2 with k − 3 ≤ k2 ≤ k + 3. The rougher components of ϑ
bring up the low frequency parts of θ . The sum in k of the low-high interactions is
sometimes called a paraproduct in the literature. By symmetry, we have the same
picture with the roles of θ and ϑ interchanged: these are the high-low interactions.
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We are then left only with the contribution of θk1ϑk2 where both terms are frequency
localized at 2k1 , 2k2 ∼ 2k , these are the low-low interactions and in our case it will be
often convenient to incorporate them in the high-high interactions.

Finally, let us set up here the notation for some space-time function spaces and related
tools that we use. We define the Sobolev spaces Hs

t,x = Hs
t,x (R × R

2), for s ∈ R, by
using the space-time Fourier transform and taking the completion of S(R × R

2) with
respect to the norm:

‖ψ‖Hs
t,x

:=
∥∥∥(1 + τ 2 + |ξ |2) s2Fψ(τ, ξ)

∥∥∥
L2
t,x

.

Wedefine themodulation projections Q≤ j and Q j for j ∈ Z to be the Fouriermultipliers
with symbols:

m0(| |τ | − |ξ |
2 j

|) and m(| |τ | − |ξ |
2 j

|),

respectively (and similarly for Q< j , Q j1≤·≤ j2 and Q≥ j ). We note that those are not
disposable so that one needs to be careful when discarding them off from the estimates
in general, but as their symbols are bounded and smooth, they are directly seen to be
bounded on L2

t,x by Plancherel. Otherwise, we have the following lemma due to Tao
(Lemmata 3 and 4 in [28]).

Lemma 2.1. The operators PkQ j , PkQ≤ j , P≤k Q≤ j and P≤k Q j are disposable for any
pair of integers j and k with j ≥ k + O(1). Moreover, for any 1 ≤ p ≤ ∞ and
j, j1, j2 ∈ Z, the operators Q≤ j , Q j1≤·≤ j2 and Q j are bounded on the spaces L

p
t (L

2
x ).

Using themodulation projections Q j , we define following Tao [28] the homogeneous

Ẋ s,b,q
k spaces associated to the cone {|τ | = |ξ |} at the spatial frequency scale k, for any

fixed integer k ∈ Z and some given real b ∈ R, to be the completion of the space of
Schwartz functions ψ on R × R

2 with respect to the norm:

‖ψ‖
Ẋ s,b,q
k

:= 2sk

⎡
⎣∑

j

2qbj
∥∥Q j Pkψ

∥∥q
L2
t,x

⎤
⎦

1
q

,

provided the latter is finite for ψ , and adopting the usual convention if q is infinite.
For q = 1 we obtain an atomic space. As our methods here have more of an elliptic
rather than dispersive character in the end, we shall not use those spaces directly (other
than stating the estimates from regularity theory). However, the distinction between the
high modulations regime PkQ>k+10, and the one of frequency space-like PkQ≤k+10, is
absolutely crucial for our analysis.

To close this section, let us recall here the convention that function spaces over
domains are defined via minimal extensions. For example, we shall write X (I ), where
X is a function space over R × R

2 and I some time interval, for the Banach space of
functions f in I × R

2 admitting an extension f ′ to the whole of R × R
2 and set:

‖ f ‖X (I ) := inf
{∥∥ f ′∥∥

X : f ′ ∈ X, f ′ = f on I × R
2
}
.
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2.2. Regularity theory for wave maps. We shall not give here the full definition of the
space DS, and its undifferentiated version S, used in the iteration arguments of the
proofs of well-posedness for the wave maps equation, referring to [28, Section 10] or
[26, Section 5.2], but we will briefly summarize here some characteristic properties.

At a given frequency scale k ∈ Z, the space DS is defined as an intersection of several
different spaces and for us it will be enough to note that we have the control:

‖Pkψ‖L∞
t (L2

x )
+ ‖Pkψ‖

Ẋ
0, 12 ,∞
k

+ sup
(q,r): 1q + 1

2r ≤ 1
4

2(
1
q +

2
r −1)k ‖Pkψ‖Lq

t (Lrx )
≤ ‖Pkψ‖DS ,

(2.7)
for any Schwartz function ψ on R × R

2 (under frequency localization, for the space
S we have Pkφ ∈ S if ∇t,x Pkφ ∈ DS for a Schwartz φ). The first component is the
natural energy component on which we should mainly rely in this work. The second
one is the dispersive component to be used only indirectly here but being important in
gaining extra regularity for the part of the wave map that has Fourier support away from
the light cone. The latter observation is exploited by Sterbenz and Tataru [27] in their
compactness result that we discuss below. The third component represents the standard
Strichartz spaces. We note that we do obtain the null concentration terms�t0,ν lying in
this space, see Remark 2.6.

We note that, for the regularity theory, the Q0-null structure in the non-linearity of
equation (1.2) is crucial and the components mentioned above are not enough by them-
selves to exploit it so that one needs to introduce further suitable null frame Strichartz
spaces. However, as this structure will not play any direct role in our arguments we
should not elaborate more on this point here. Let us simply remark in the end that DS
contains the atomic Fourier restriction space:

‖Pkψ‖DS � ‖Pkψ‖
Ẋ
0, 12 ,1
k

, (2.8)

referring to Lemma 8 in Tao’s paper [28] for the proof of this fact, ideas from which we
should actually use later in the proof of Lemma 2.8.

By default in [26], the authors define then the spaces DS and S as completions of
Schwartz functions in R × R

2 with respect to the norms obtained by �2-summing the
control on the LP-projections and adding the L∞ norm for S:

‖ψ‖2DS :=
∑
k∈Z

‖Pkψ‖2DS , ‖φ‖2S := ‖φ‖2L∞
t,x

+
∑
k∈Z

∥∥∇t,x Pkφ
∥∥2
DS . (2.9)

In practice however, it is sometimes convenient to replace the �2 summation in (2.9)
with a control with respect to a frequency envelope. Following Sterbenz and Tataru [26],
we call a sequence c := {ck}k∈Z ∈ �2 of positive numbers ck > 0 a (σ0, σ1)-admissible
frequency envelope if 0 < σ0 < σ1 and for any k0 < k1 we have:

2−σ0(k1−k0)ck1 ≤ ck0 ≤ 2σ1(k1−k0)ck1 .

Given some smooth initial data φ[0] = (φ(0), ∂tφ(0)) we can naturally attach to it an
admissible frequency envelope by setting:

c2k =
∑
k0<k

2−2σ1(k−k0)
∥∥Pk0∇t,xφ(0)

∥∥2
L2
x
+
∑
k1≥k

2−2σ0(k1−k)
∥∥Pk1∇t,xφ(0)

∥∥2
L2
x
, (2.10)
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for which we note that:
(∑
k∈Z

22σ c2k

) 1
2

∼ ∥∥∇t,xφ(0)
∥∥
Ḣσ
x
, −σ0 < σ < σ1, (2.11)

so that given any function ψ on R
2, ‖Pkψ‖L2

x
� ck implies:

‖ψ‖Ḣσ
x

�
∥∥∇t,xφ(0)

∥∥
Ḣσ
x
, −σ0 < σ < σ1,

which is very useful in controlling the regularity of an evolution like the wave map.
Well-posedness theory for the wave maps equation with small energy initial data is

due to Tao [28] and Tataru [30], and also Krieger [14] who considered the hyperbolic
plane as target. We will be using here a local version that we state below appearing as
Theorem 1.3 in [30]. Of course, all of the results stated in this section are true for general
closed Riemannian manifolds as target, but we present them in the case of spheres for
the sake of consistency.

Theorem 2.2 (Tao [28], Tataru [30]). There exists a constant ε0 := ε0(S
n−1) > 0 such

that:

• Regularity: given some smooth initial data φ[0] ∈ T (Sn−1) at time t = 0 constant
outside a compact domain with energy:

E[φ](0) < ε0,

there exists a unique smooth wave map φ defined on the whole of Minkowski space
R
2+1 such that:

‖Pkφ‖S � ck, (2.12)

taking the frequency envelope c from (2.10) for φ[0] and where σ0 = σ0(S
n−1) is

some fixed small positive constant but σ1 can be chosen arbitrarily large;
• Continuous dependence on initial data and rough solutions: given a sequence of

smooth tuples φν[0] ∈ T (Sn−1) of initial data equal to a fixed constant outside some
fixed compact domain, with energy:

E[φν](0) < ε0,

and converging strongly in H1
x × L2

x to some φ[0], there exist smooth wave maps φν
with the properties as stated in the first point above and a map:

φ ∈ S,

solving weakly the wave maps equation (1.2), to which φν converge in C0
t (H

1
x )∩C1

t (L
2
x )

on bounded time intervals, and further for 0 < s < σ0:

∇t,xφν → ∇t,xφ in DS ∩ L∞
t (Ḣ

−s
x )(R2+1).

We state now a compactness result due to Sterbenz and Tataru [27] for a sequence
of small energy wave maps which become constant in the direction of some smooth
time-like vector field. The absence of such a result in the general small energy case is
precisely what makes the study of wave maps near the null boundary of the light cone a
very challenging affair, requiring global non-linear techniques going beyond the present
article. We mention that the arguments in [27] rely on the elliptic flavor given to the
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situation by the assumption that the sequence is asymptotically constant along a time-
like vector field, the use of the Fourier restriction component of DS to gain compactness
and regularity for the limiting map, as well as the small energy weak stability theory
developed by Tataru [30] (which we have presented in the second point of Theorem 2.2
here).

Lemma 2.3 (Sterbenz and Tataru [27]). Consider a sequence of smooth wave maps φν
in [−3, 3] × B3 with small energy:

sup
t∈[−3,3]

EB3 [φν](t) ≤ εs, (2.13)

where εs > 0 depends only on ε0 from Theorem 2.2, and such that:

‖Xφν‖L2
t,x ([−3,3]×B3)

−→ 0, (2.14)

for some smooth time-like vector field X. Then there exists a wave map:

φ ∈ H
3
2−ε
t,x ([−1, 1] × B1), (2.15)

for any 0 < ε < 1
2 , satisfying:

Xφ = 0 on [−1, 1] × B1,

to which the maps φν converge in C0
t (H

1
x ) ∩ C1

t (L
2
x ) after passing to a subsequence,

and further:

∇t,xφν −→ ∇t,xφ in DS({t ∈ [−1, 1], r ≤ 2 − |t |}). (2.16)

Remark 2.4. The proof of this lemma can be found in Proposition 5.1 of [27] and we
remark that convergence in H1

t,x (U ) for any domain U � (−3, 3)× B3 only is claimed
there. But the stronger statement (2.16), to be understood in terms ofminimal extensions,
can be obtained as follows. Let us fixU = [− 5

2 ,
5
2 ]×B5/2, then upon passing to a further

subsequence we would have:

‖φν(t)− φ(t)‖2L2
x (B 5

2
)
+
∥∥∇t,xφν(t)− ∇t,xφ(t)

∥∥2
L2
x (B 5

2
)
−→ 0 for a.e. t, (2.17)

therefore φν converge strongly to φ in (H1
x × L2

x )(B5/2) for almost every t that we can
fix as close to 0 as we wish. Hence, assuming that εs was chosen small enough initially,
by the pigeonhole principle we have for σ ∈ (2, 52 ):∫

∂Bσ

∣∣∇t,xφ(t)
∣∣2 dθ � εs,

away from a set of measure 1
10 say. Fixing such a σ , we would have φ(t, ∂Bσ ) contained

in a single chart of Sn−1 of diameter O(
√
εs) around a point c ∈ S

n−1. Moreover, upon
passing to a further subsequence, by the strong convergence (2.17) we can choose σ ∈
(2, 52 ) such that φν(t)|∂Bσ → φ(t)|∂Bσ in the Hölder space Cα(∂Bσ ) with α ∈ (0, 12 ),
using Morrey’s inequality. Hence, we would have φν(t, ∂Bσ ) contained in the chart
around c ∈ S

n−1 of diameter O(
√
εs) as well, for all ν ∈ N large enough. Therefore,
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we can construct extensions φ′
ν[t] ∈ T (Sn−1) of φν[t]|Bσ , smooth as the latter are, with

the energy bound:

E[φ′
ν](t) � εs,

by smoothly interpolating between φν[t]|∂Bσ and (c, 0) ∈ T (Sn−1) on B3\Bσ . By
construction, we obtainφ′

ν [t] strongly convergent in H1
x ×L2

x to somemapφ′[t] agreeing
with φ[t] on B2. In the end, setting the constant εs > 0 small enough and the time t close
enough to 0, the convergence statements are justified by the continuous dependence on
the initial data part of Theorem 2.2 and the finite speed of propagation property.

In particular, the assumption (2.14) gets upgraded to:

Xφν −→ 0 in C0
t (L

2
x ) ([−1, 1] × B1) ,

and going further, the regularity theory of Theorem 2.2 tells us that in fact we have:

φ ∈ C0
t ([−1, 1] ; H

3
2−ε
x (B1)) ∩ C1

t ([−1, 1] ; H
1
2−ε
x (B1)),

for any 0 < ε < 1
2 improving upon (2.15), although it is unfortunately impossible to

obtain convergence in such a stronger space without further assumptions, especially
regarding the decay (2.14).

Let us close this section bymentioning the result of Sterbenz and Tataru [26], see both
Theorem 1.3 and Proposition 3.9 there, which relaxes the assumption of small energy
in the work of Tao [28] and Tataru [30] to small energy dispersion. This represents a
crucial technical ingredient in the proof by Sterbenz and Tataru [27] of the threshold
conjecture. Let us consider an open interval I = (t0, t1), which can be unbounded.

Theorem 2.5 (Sterbenz and Tataru [26]). Given an energy bound E > 0, there exist
constants 0 < ε(Sn−1, E) � 1 and 1 � F(Sn−1, E) such that for any smooth wave
map φ on (t0, t1) with energy bounded by E and ∇t,xφ spatially Schwartz, if we have:

sup
k

‖Pkφ‖L∞
t,x (t0,t1)

≤ ε(Sn−1, E),

then

‖φ‖S(t0,t1) ≤ F(Sn−1, E).
Moreover, considering an admissible frequency envelope c attached to some φ[t] for
t0 < t < t1, as in (2.10) and σ0 as in Theorem 2.2, we obtain:

‖Pkφ‖S(t0,t1) � ck,

and the map φ extends to a smooth wave map on a neighborhood of the time interval
(t0, t1).

Remark 2.6. In this paper, the above theorem will be used indirectly only, but we can
apply it immediately to the wave maps �t0,ν from Theorem 1.2 concentrating on the
null boundary ∂C , to obtain the bound:∥∥�t0,ν

∥∥
S[t0−δ0,t0+δ0] � 1,

for any t0 ∈ [1 + δ0, 2 − δ0].
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2.3. Compensation type estimates. We prove here two compensation estimates for wave
maps into spheres with a good bound in the direction of some constant time-like vector
field, relying on the conservation law (1.4) to treat high-high frequency interactions
(this phenomena goes back essentially to Wente). These estimates will play a key role
in the proof of no loss of energy in formation of solitons, and as in the case of higher
dimensional harmonic maps considered by Lin and Rivière [19], this is the only place
where we use the fact that our target manifold is Sn−1.

Proposition 2.7. Let φ : [−1, 1] × R
2 → S

n−1 be a smooth wave map equal to a
constant c outside a compact domain in space, with energy bounded by some positive
E > 0: ∥∥∇t,xφ

∥∥2
L∞
t (L2

x )[−1,1] ≤ E, (2.18)

and X a constant time-like vector field, that we may take to be:

X = cosh(ζ )∂t + sinh(ζ )∂x1, (2.19)

for some rapidity constant ζ ≥ 0. Denote by χ = χ(t) ∈ C∞
0 (−1, 1) a smooth time

cut-off function, then there exists a decomposition holding in S(R × R
2):

χ∇t,xφ = �X +�X , (2.20)

satisfying:
‖�X‖L2

t,x
� ‖Xφ‖L2

t,x [−1,1] + ‖φ − c‖L∞
t (L2

x )[−1,1] (2.21)

and ∑
k∈Z

‖Pk�X‖L1
t (L2

x )
� 1, (2.22)

with the implicit constants depending only on n the dimension of Rn, the energy bound
E , the rapidity constant ζ and the cut-off χ (most notably on ‖∂tχ‖L∞

t
).

Proof. We start by noting that, expressing ∂t as a linear combination of X and ∂x1 via
(2.19), it suffices to consider the spatial gradient χ∇xφ.

For low frequencies, we proceed claiming immediately:∥∥χ P≤0∇xφ
∥∥
L2
t,x

� ‖φ − c‖L∞
t (L2

x )[−1,1] , (2.23)

which simply follows from the finite band property (2.2), passing to L∞
t (L

2
x ) as neces-

sary. This is an acceptable contribution.
For high modulations, we claim:∥∥∥∥∥
∑
k∈Z

Q≥k+10Pk[χ∇xφ]
∥∥∥∥∥
L2
t,x

� ‖Xφ‖L2
t,x [−1,1] + ‖φ − c‖L∞

t (L2
x )[−1,1] , (2.24)

and the idea here, as in [27], is to note that the vector field X being time-like, the Fourier
multiplier X−1∇x Q≥k+10 P̃k , where P̃k = Pk−1≤·≤k+1, has symbol smooth and bounded
uniformly in k ∈ Z. ByPlancherel in L2

t,x , this gives rise to the favorable elliptic estimate:
∥∥Q≥k+10Pk[χ∇xφ]∥∥L2

t,x
� ‖χ Pk Xφ‖L2

t,x
+ ‖(∂tχ)Pkφ‖L2

t,x
, (2.25)

and so (2.24) follows square-summing in k the above and dropping the cut-off. This is
again acceptable.
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Themain term to consider is Q<k+10Pk(χ∇xφ)with k > 0, and for this we rely on the
wave maps Eq. (1.2), that we trick slightly to make the vector X to appear, introducing
the operator:

�x,β := (1 − β2)∂2x1 + ∂
2
x2 , β := tanh(ζ ) ∈ [0, 1), (2.26)

which is elliptic in the frequency region considered. So, using (2.19), together with (1.1),
we rewrite the wave maps equation (1.2) as:

�x,β(χφ) = −χ(φ∂αφ† − ∂αφφ
†)∂αφ

+ sech2(ζ )(X − 2sinh(ζ )∂x1)(χXφ)

− sech(ζ )(∂tχ)Xφ, (2.27)

and inverting �x,β we have:

P>0χ∇xφ = ∇x

�x,β
P>0(�x,β(χφ)),

holding in S(R × R
2), hence let us treat each term in (2.27) one by one.

Considering second line in (2.27), we control the first two terms by claiming, for any
k ∈ Z: ∥∥∥∥∇x

∇t,x

�x,β
Q<k+10Pk(χXφ)

∥∥∥∥
L2
t,x

� ‖Pk Xφ‖L2
t,x [−1,1] , (2.28)

which follows immediately discarding, via Plancherel in L2
t,x , the Fourier multiplier

∇x∇t,x�
−1
x,βQ<k+10 P̃k of symbol bounded uniformly in k ∈ Z, and dropping the time

cut-off χ . For the third term, we have, for any k ∈ Z:

∥∥∥∥ ∇x

�x,β
Q<k+10Pk[(∂tχ)Xφ]

∥∥∥∥
L2
t,x

� 2−k ‖∂tχ‖L∞
t,x

‖Pk Xφ‖L2
t,x [−1,1] , (2.29)

where we discarded by Plancherel in L2
t,x the Fourier multiplier 2k∇x�

−1
x,βQ<k+10 P̃k ,

having here again the symbol bounded uniformly in k ∈ Z. Therefore, square-summing
over k > 0, both (2.28) and (2.29) lead to acceptable contributions.

We consider now the non-linear term on the first line of (2.27). Let us introduce some
notation for the connection matrices:

�α := φ∂αφ
† − ∂αφφ

†, with ∂α�α = 0 and ‖�α‖L∞
t (L2

x )[−1,1] � 1, (2.30)

by (1.4), respectively the global energy bound (2.18) and the boundedness of the wave
map. We claim then the following compensation estimate:

∑
k>0

∥∥∥∥ ∇x

�x,β
Q<k+10Pk(χ�α∂

αφ)

∥∥∥∥
L1
t (L2

x )

� 1. (2.31)

Thanks to the conservation law, the term�α∂
αφ exhibits and a div-curl type structure,

and we should treat this using the Littlewood-Paley trichotomy in very much the same
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standard way as the actual div-curl structure, see Taylor’s monograph [31]. We start by
writing:

Pk
(
χ�α∂

αφ
) = Pk[(∂tχ)

∑
k1,k2≥k−6:|k1−k2|≤O(1)

�α,k1φk2

+ ∂α
∑

k1,k2≥k−6:|k1−k2|≤O(1)

χ�α,k1φk2

+ χ�α,≤k−7∂
αφk−3≤·≤k+3

+ χ�α,k−3≤·≤k+3∂
αφ≤k−7], (2.32)

where �α,k1 := Pk1�α and similarly for φk2 ,�α,≤k1 , etc. We are going to prove claim
(2.31) for each of the terms in (2.32) separately. Note that the Fourier multipliers:

∇x∇t,x

�x,β
Q<k+10 P̃k and

2k∇x

�x,β
Q<k+10 P̃k, (2.33)

are disposable,which is essentially contained inLemma2.1 (precomposing, for example,
with the space-time LP-projections to |τ | + |ξ | ∼ 2k that we don’t use here otherwise).
This justifies the fact that we can work with the space L1

t (L
2
x ) instead of L

2
t,x (on which,

of course, (2.33) are bounded by Plancherel).
Let us start with the high-high interactions on the first and second lines of (2.32), for

which we control (2.31), discarding the multipliers (2.33) and dropping 2−k∂tχ for the
first term, by:

∑
k>0

∥∥∥∥∥∥Pk
∑

k1,k2≥k−6:|k1−k2|≤O(1)

�α,k1φk2

∥∥∥∥∥∥
L1
t (L2

x )[−1,1]
� sup

t∈[−1,1]

∑
k>0

2k
∑

k1,k2≥k−6:|k1−k2|≤O(1)

∥∥�α,k1(t)φk2(t)
∥∥
L1
x
, (2.34)

where we applied Bernstein’s inequality (2.4), commuted the sum
∑

k>0 with L1
t and

discarded Pk . Using Cauchy–Schwarz in L1
x and recalling the finite band property (2.3)

for φk2 , we can bound the contribution of (2.34) via:

sup
t∈[−1,1]

∑
k>0

∑
k1,k2≥k−6:|k1−k2|≤O(1)

2−(k2−k)
∥∥�α,k1(t)

∥∥
L2
x

∥∥∇xφk2(t)
∥∥
L2
x
,

and summing this over k > 0, letting i := k1 − k2 and j := k2 − k, we obtain:

sup
t∈[−1,1]

∑
i=O(1)

∑
j≥O(1)

2− j
∑
k>0

∥∥�α,k+ j+i (t)
∥∥
L2
x

∥∥∇xφk+ j (t)
∥∥
L2
x

� sup
t∈[−1,1]

⎛
⎝ ∑

k1≥O(1)

∥∥�α,k1(t)
∥∥2
L2
x

⎞
⎠

1
2
⎛
⎝ ∑

k2≥O(1)

∥∥∇xφk2(t)
∥∥2
L2
x

⎞
⎠

1
2

,

where we have used Cauchy–Schwarz in k. By the global energy bound, we get that
high-high interactions make an acceptable contribution to (2.31).
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Finally, let us consider the contribution of the paraproducts from lines three and four
in (2.32), and we focus on the latter as the former is treated in the sameway by symmetry
(or in fact, could have already been absorbed in the argument for high-high interactions).
Here, the div-curl structure is not playing any role, and is actually counter-productive.
Hence, discarding the second multiplier from (2.33) and commuting the discrete sum∑

k>0 with L1
t as previously, it suffices control:

sup
t∈[−1,1]

∑
k>0

2−k
∥∥Pk[�α,k−3≤·≤k+3(t)∂

αφ≤k−7(t)]
∥∥
L2
x
.

Recalling the embedding (2.6) we are reduced to showing:

sup
t∈[−1,1]

∥∥∥∥∥
∑
k>0

Pk[�α,k−3≤·≤k+3(t)∂
αφ≤k−7(t)]

∥∥∥∥∥
F0,1
2 (R2)

� 1.

Using the duality (F0,1
2 )′ = F0,∞

2 , as discussed in Sect. 2.1, we take an arbitrary

ϕ ∈ F0,∞
2 together with a representation ϕ = ∑k≥0 ϕk in S ′

x such that each ϕk has
Fourier support in |ξ | ∼ 2k (|ξ | � 1 for ϕ0) and:

‖ (
∑
k≥0

|ϕk |2)1/2 ‖L∞
x

≤ 2 ‖ϕ‖F0,∞
2

.

Then, recalling the fact that LP-projections are self-adjoint, we must show that:

∑
j=O(1)

∑
k≥0

∫ ∣∣�α,k−3≤·≤k+3(t)∂
αφ≤k−7(t)ϕk+ j

∣∣ dx � ‖ϕ‖F0,∞
2

,

with the convention thatϕk with k negative simply stands forϕ0.UsingCauchy–Schwartz
we bound this via:
∥∥∥∥∥∥(
∑
k≥0

|�α,k−3≤·≤k+3(t)|2)1/2
∥∥∥∥∥∥
L2
x

∥∥∥∥sup
k∈Z

|P≤k∇t,xφ(t)|
∥∥∥∥
L2
x

∑
j=O(1)

∥∥∥∥∥∥(
∑
k≥0

|ϕk+ j |2)1/2
∥∥∥∥∥∥
L∞
x

.

It is a well-known fact from harmonic analysis, to which we shall refer as the Littlewood-
Paley square function estimate, see e.g. [31], that:

‖ (
∑
k∈Z

|�α,k(t)|2)1/2 ‖L2
x
� ‖�α(t)‖L2

x
and

‖ sup
k∈Z

∣∣P≤k∇t,xφ(t)
∣∣ ‖L2

x
�
∥∥∇t,xφ(t)

∥∥
L2
x
.

Hence, by the global energy bound, the contribution of the paraproducts is acceptable.
Therefore we have shown the compensation estimate (2.31).

Proposition 2.7 is proved.
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We present now a compensation estimate for higher order time-like derivatives of wave
maps as considered in the previous proposition. It holds up to a non-linear bulk, essen-
tially quadratic in the gradient and local in time, that we shall consider on neck regions
later in the proof of the weak Besov Ḃ1,2∞ decay estimate in Lemma 3.8. Parts of this
estimate are non-linear, and will be established via a duality argument in the spirit of the
energy collapsing result itself.

As for Proposition 2.7, the conservation law (1.4) is absolutely crucial, and so our
arguments do not generalize directly to the case of a general target beyond the Euclidean
sphere Sn−1.

Lemma 2.8. Consider a wave map φ : [−1, 1] × R
2 → S

n−1 with the same set-up as
in Proposition 2.7, then we have the following decomposition holding in S(R × R

2),
using notation from (2.30) and recalling that β = tanh(ζ ):

sech2(ζ )χX2φ = −
∑
k∈Z

Pk
[
χ((1 − β2)∂x1�x1 + ∂x2�x2)(P>k+10φ)

]

+ sech2(ζ )χ
(−�X Xφ + sinh(ζ )(�X∂x1φ +�x1Xφ)

)
+ �X , (2.35)

the error term satisfying:

∑
k∈Z

2−2k ‖Pk�X‖2
L2
t,x [−1,1] � (1 + ‖Xφ‖L2

t,x [−1,1] + ‖φ − c‖L∞
t (L2

x )[−1,1])

× (‖Xφ‖L2
t,x [−1,1] + ‖φ − c‖L∞

t (L2
x )[−1,1]), (2.36)

with the same dependence for the implicit constant as in Proposition 2.7.

Let us note here, for later use in Lemma 3.8, that we can rewrite the decomposition
(2.35) as follows. Introducing the notation:

�x,β := (1 − β2)�x1dx1 +�x2dx2,

we can write:

sech2(ζ )χX2φ − χ�α∂
αφ = −

∑
k∈Z

χ Pk
[∇x · (�x,β P>k+10φ)

+�x,β · P≤k+10∇xφ
]

+ �X .

For, one should rely on the conservation law (1.4), making the vector X to appear through
(2.19) and adding up on both sides some low-high interactions—see the proof below for
more details.

Proof. Let us start with the frequency space-like region, that we can treat directly and
for which we claim the stronger estimate:

2−k
∥∥∥PkQ<k+10(χX

2φ)

∥∥∥
L2
t,x [−1,1] � ‖Pk Xφ‖L2

t,x [−1,1] , (2.37)
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for any k ∈ Z. To see this, we simply commute X with the time cut-off χ , getting:

2−k
∥∥∥PkQ<k+10(χX

2φ)

∥∥∥
L2
t,x [−1,1] � ‖Pk(χXφ)‖L2

t,x

+2−k ‖PkQ<k+10(∂tχXφ)‖L2
t,x [−1,1] ,

where for the first term we discarded the multiplier 2−k X P̃k Q<k+10 using Plancherel
in L2

t,x . Regarding the second one, passing to L∞
t (L

2
x ), which is possible as we are

working over a bounded time interval in (2.37), we can apply the inversion formula for
the space-time Fourier transform F , to get:

2−k ‖PkQ<k+10(∂tχXφ)‖L∞
t (L2

x )
� 2−k ‖F PkQ<k+10(∂tχXφ)‖L1

τ (L
2
ξ )
,

combining Minkowski’s inequality and then Plancherel in L2
x . But the integrand on the

RHS has τ -support of length O(2k), hence we can bound this simply via:

‖F Pk(∂tχXφ)‖L∞
τ (L2

ξ )
� ‖Pk(∂tχXφ)‖L1

t (L2
x )

� ‖∂tχ‖L2
t (L∞

x ) ‖Pk Xφ‖L2
t,x [−1,1] ,

where we applied the inversion formula for F−1 this time (note that this argument is
essentially a manifestation of Bernstein’s one dimensional inequality). This gives claim
(2.37) as desired.

For high modulations, we use the wave maps equation as in (2.27). Following the
Littlewood-Paley trichotomy (passing to the convention φk := Pkφ, etc. as before), we
write:

PkQ≥k+10(sech
2(ζ )χX2φ) = PkQ≥k+10

[
�x,β(χφ) + 2 sech2(ζ ) sinh(ζ )χ∂x1Xφ

+ sech2(ζ )χ
(−�X Xφ + sinh(ζ )(�X∂x1φ +�x1Xφ)

)
+ χ�x,β · ∇xφ≤k+10 + χ∇x · (�x,βφ>k+10)

− χ(∇x ·�x,β)(φ>k+10)
]
,

where we set:

�X := cosh(ζ )�t + sinh(ζ )�x1 .

From there, we add and subtract the frequency space-like part of the terms on second
and last lines above, and use the conservation law (1.4), that we rewrite as:

∇x ·�x,β = sech2(ζ )(X�X − sinh(ζ )(∂x1�X + X�x1)).

This yields the following decomposition:

PkQ≥k+10(sech
2(ζ )χX2φ) = PkQ≥k+10

[
�x,β(χφ) + 2 sech2(ζ ) sinh(ζ )χ∂x1Xφ

]

+ sech2(ζ )χ Pk
[−�X Xφ + sinh(ζ )(�X∂x1φ +�x1Xφ)

]
+ sech2(ζ )Q<k+10[ψ(1)

k + ψ(2)
k + ψ(3)

k + ψ(4)
k ]

+ Q≥k+10[ϕ(1)k + ϕ(2)k ] − Pk
[
χ(∇x ·�x,β)(φ>k+10)

]
,

(2.38)
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where we define:

ψ
(1)
k :=χ Pk

[
�X Xφ≤k+10 − sinh(ζ )(�X∂x1φ≤k+10 +�x1Xφ≤k+10)

]
,

ψ
(2)
k := Pk

[
(Xχ)(−�X + sinh(ζ )�x1)φ>k+10

]
ψ
(3)
k := Pk

[[X − sinh(ζ )∂x1](χ�Xφ>k+10)
]
,

ψ
(4)
k := Pk

[−sinh(ζ )X (χ�x1φ>k+10)
]
,

as well as:

ϕ
(1)
k := Pk

[
χ�x,β · ∇xφ≤k+10

]
,

ϕ
(2)
k := Pk

[
χ∇x · [�x,βφ>k+10]

]
.

We proceed proving the estimate (2.36) for the first line of (2.38) and each of theψ(i)
k

and ϕ(i)k separately.
For the Laplacian, inverting X , we have the stronger estimate:

2−k
∥∥PkQ≥k+10�x,β(χφ)

∥∥
L2
t,x [−1,1] � ‖Pk Xφ‖L2

t,x [−1,1] + ‖Pkφ‖L2
t,x [−1,1] ,

that follows immediately by discarding, via Plancherel in L2
t,x , the Fourier multiplier

2−k X−1�x,β P̃k Q≥k+10 having symbol bounded uniformly in k ∈ Z, which leads to an
acceptable contribution.

For the second term on the RHS of (2.38) we immediately have:

2−k
∥∥PkQ≥k+10[χ∂x1Xφ]∥∥L2

t,x
� ‖Pk Xφ‖L2

t,x [−1,1] ,

by the finite band property (2.3), which is acceptable.
Regardingψ(1)

k , we remark that it has a paraproduct structure and so at least one of the
factors will be frequency localized to |ξ | ∼ 2k , which is favorable for square-summing.
More precisely, discarding Q<k+10 before dropping the cut-off χ , and using Bernstein’s
inequality (2.4) to pass to L2

t (L
1
x ), it is enough to note that for any 1 ≤ p, q, r ≤ n and

any time slice t ∈ [−1, 1]:
∑
k∈Z

∑
k′=k+O(1)

(∥∥(φ p Xφq∇t,xφ
r
k′)(t)
∥∥2
L1
x
+
∥∥(φ p∇t,xφ

q Xφrk′)(t)
∥∥2
L1
x

+
∥∥(Pk′ [φ p∇t,xφ

q ]Xφr )(t)∥∥2L1
x
+
∥∥(Pk′ [φ p Xφq ]∇t,xφ

r )(t)
∥∥2
L1
x

)

�
∥∥∇t,xφ(t)

∥∥2
L2
x
‖Xφ(t)‖2L2

x
,

by Cauchy–Schwarz. Upon integrating in time, this is an acceptable contribution by the
energy bound (2.18).

For the expression ψ(2)
k , it is already convenient to proceed via a duality argument:

∑
k∈Z

2−2k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥2
L2
t,x

�
∑
k∈Z

∥∥∥ψ(2)
k

∥∥∥
L1
t,x

2−k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥
L∞
t (L2

x )

�
(∑
k∈Z

2k
∥∥∥ψ(2)

k

∥∥∥
L1
t,x

)(
sup
k∈Z

∥∥∥ψ(2)
k

∥∥∥
L1
t,x

)
,
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where we used Bernstein (2.4) for the first factor, and for the second one we proceeded
as for the frequency space-like term (2.37), using time frequency localization to estimate
it via the Fourier inversion formula:

2−k
∥∥∥Q<k+10ψ

(2)
k

∥∥∥
L∞
t (L2

x )
�
∥∥∥ψ(2)

k

∥∥∥
L1
t (L2

x )
.

The first factor is universally bounded for us, as for any 1 ≤ p, q, r ≤ n:∑
k∈Z

2k
∥∥Pk[(∂tχ)(φ p∇t,xφ

q)φr>k+10]
∥∥
L1
t,x

� ‖∂tχ‖L1
t (L∞

x )

∥∥∇t,xφ
∥∥2
L∞
t (L2

x )[−1,1] ,

which follows directly from the analogous treatment of high-high interactions in the
proof of Proposition 2.7. On the other hand, the second factor is controlled via:∥∥Pk[(∂tχ)(φ p∇t,xφ

q)φr>k+10]
∥∥
L1
t,x

� ‖∂tχ‖L1
t (L∞

x )

∥∥∇t,xφ
∥∥
L∞
t (L2

x )[−1,1] ‖φ − c‖L∞
t (L2

x )[−1,1] ,

which yields an acceptable contribution to the non-linear part of (2.36).
Regarding ψ(3)

k , it is a linear combination of:
∑
k∈Z

2−2k
∥∥Q<k+10Pk∇t,x (χ�Xφ>k+10)

∥∥2
L2
t,x

�

∥∥∥∥∥∥
∑
k∈Z

∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

2−(k2−k)
∥∥χ�X,k1(t)

∥∥
L2
x

∥∥∇xφk2(t)
∥∥
L2
x

∥∥∥∥∥∥
2

L2
t

,

where we discarded via Plancherel in L2
t,x the Fourier multiplier 2−k∇t,x Q<k+10 P̃k hav-

ing bounded symbol, passed from �2 to �1 summation in k after commuting time integra-
tion with the discrete sum

∑
k , and applied Bernstein (2.4) with Cauchy–Schwarz. This

contribution is directly seen to be bounded by O(‖Xφ‖2
L2
t,x [−1,1]

∥∥∇t,xφ
∥∥2
L∞
t (L2

x )[−1,1])
as required.

The terms ψ(4)
k , ϕ

(1)
k and ϕ

(2)
k are similar and require a duality argument relying

heavily on their compensated structure to obtain estimate (2.36) at �2 modulation.
First for ψ(4)

k , using the self-adjointness of Q<k+10 and then commuting
∑

k with
time integration, we have:

∑
k∈Z

2−2k
∥∥∥Q<k+10ψ

(4)
k

∥∥∥2
L2
t,x

�
∥∥∥∥∥
∑
k∈Z

2−k
∥∥∥(Q2

<k+10ψ
(4)
k )(t)

∥∥∥
L2
x

∥∥∥∥∥
L2
t

·
∥∥∥∥sup
k∈Z

2−k
∥∥∥ψ(4)

k (t)
∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

.

For thefirst factorwe claim that it is universally boundeddue to its compensated structure.
Indeed, passing to the Hardy space on each time slice via the embedding (2.6), we
estimate it by:∥∥∥∥∥(

∑
k∈Z

|Q2
<k+10ψ

(4)
k |2) 12

∥∥∥∥∥
L2
t (L1

x )

�
∥∥∥∥∥(
∑
k∈Z

|2k Pk[χ�x1φ>k+10]|2) 12
∥∥∥∥∥
L2
t (L1

x )

,
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where we relied on the Calderón-Zygmund theory for the Littlewood-Paley square func-
tion and the vector valued operator (2−k XQ2

<k+10 P̃k)k∈Z, precomposing with the space-
time LP-projections to |τ |+ |ξ | ∼ 2k as necessary. From there, proceeding as previously,
we immediately bound the latter by O(‖∇xφ‖2

L∞
t (L2

x )[−1,1]) as required.
The set-up is similar for ϕ(1)k and ϕ(2)k . Here however, being at high modulations, we

start by inverting the time-like vector X for one of the factors. Then, using the skew-
adjointness of 2k X−1Q≥k+10, but proceeding identically to the above otherwise, we
obtain:
∑
k∈Z

2−2k
∫ ∫

(Q≥k+10ϕ
(i)
k )(

X

X
Q≥k+10ϕ

(i)
k )dxdt

�
∥∥∥∥∥
∑
k∈Z

2−k
∥∥∥∥(2

k

X
Q2≥k+10ϕ

(i)
k )(t)

∥∥∥∥
L2
x

∥∥∥∥∥
L2
t

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)k (t)

∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

� sup
j≥10

∥∥∥∥∥(
∑
k∈Z

|2
k+ j

X
Qk+ j Q̃k+ jϕ

(i)
k |2) 12

∥∥∥∥∥
L2
t (L1

x )

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)k (t)

∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

�
∥∥∥∥∥(
∑
k∈Z

|ϕ(i)k |2) 12
∥∥∥∥∥
L2
t (L1

x )

·
∥∥∥∥sup
k∈Z

2−2k
∥∥∥Xϕ(i)k (t)

∥∥∥
L2
x

∥∥∥∥
L2
t [−1,1]

,

where Q̃k+ j = Qk+ j−1≤·≤k+ j+1 is the slightly enlarged modulation projection, and we
relied as previously on Calderón-Zygmund theory to discard the vector valued operator
(2k+ j X−1Qk+ j Q̃k+ j P̃k)k∈Z, precomposing with the space-time LP-projections to |τ | +
|ξ | ∼ 2k+ j as necessary, for any integer j ≥ 10.

From there, we note that the first factor is bounded by O(‖∇xφ‖2
L∞
t (L2

x )[−1,1]) as
required. This follows essentially from the arguments used to treat the high-high inter-
actions and the paraproducts, for ϕ(1)k and ϕ(2)k respectively, in the proof of Proposition
2.7 that we shall not reproduce here.

Given this, to prove estimate (2.36) for the terms ψ(4)
k , ϕ

(1)
k and ϕ(2)k , it is enough by

(2.3) and (2.4) to establish the following couple of weak estimates:

2−k
∥∥X Pk[(χφ p∇xφ

q)(P≤k+10∇xφ
r )](t)∥∥L1

x
� ‖Xφ(t)‖L2

x
+ ‖(φ − c)(t)‖L2

x
,

(2.39)

2−k
∥∥X Pk[χφ p(∇xφ

q)(φr>k+10)](t)
∥∥
L2
x

� ‖Xφ(t)‖L2
x
+ ‖(φ − c)(t)‖L2

x
,

(2.40)

for any 1 ≤ p, q, r ≤ n and any time slice t ∈ [−1, 1].
Consider (2.39). For convenience, let us suppress the time t from the notation.Moving

X inside the bracket, we first differentiate the time cut-off getting by Cauchy–Schwarz:

2−k
∥∥(∂tχ)(φ p∇xφ

q)(P≤k+10∇xφ
r )]∥∥L1

x
� ‖φ‖L∞

x
‖∇xφ‖L2

x
‖φ − c‖L2

x
,

where we relied on the finite band property (2.2) for φr , which is a permissible bound
for (2.39).

Next, if X falls on φ p, then we have:

2−k
∥∥χXφ p∇xφ

q(P≤k+10∇xφ
r )]∥∥L1

x
�
∥∥Xφ p

∥∥
L2
x

∥∥χ∇xφ
q
∥∥
L2
x

∥∥φr∥∥L∞
x
,
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with again the finite band property (2.2) applied to φr , but this time in L∞
x , and this is

an acceptable bound.
When X falls on ∇xφ

q , we shall first insert the projection P≤k+O(1) in front of
φ p X∇xφ

q , which is possible by the localization of ∇xφ
r≤k+10, and untangle the high-

high interactions:

P≤k+O(1)(φ
p X∇xφ

q) = P≤k+O(1)[φ p
≤k+O(1)X∇xφ

q
≤k+O(1)

+
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

φ
p
k1
X∇xφ

q
k2

].

Given this decomposition, we have for the low frequency interactions:

2−k
∥∥∥χφ p

≤k+O(1)(X∇xφ
q
≤k+O(1))(∇xφ

r≤k+10)

∥∥∥
L1
x

�
∥∥φ p
∥∥
L∞
x

∥∥Xφq
∥∥
L2
x

∥∥∇xφ
r
∥∥
L2
x
,

where we used the finite band property (2.2) for φq , and this is acceptable. For the
high-high frequency interactions:

∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

2−k
∥∥∥χφ p

k1
(X∇xφ

q
k2
)(∇xφ

r≤k+10)

∥∥∥
L1
x

�
∥∥φr∥∥L∞

x

∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥∥∇xφ
p
k1

∥∥∥
L2
x

∥∥∥Xφq
k2

∥∥∥
L2
x

,

where we have used the finite band property (2.2) for φr in L∞
x , and transferred the

spatial gradient from φq to φ p by relying on (2.3) this time and the fact that |k1 − k2| ≤
O(1). This control is acceptable applying the discrete Cauchy–Schwarz inequality in
k1 = k2 + O(1).

The last case we need to consider, in order to finish with (2.39), is when X falls on
φr . This follows however at once, applying (2.2) to the latter:

2−k
∥∥χφ p(∇xφ

q)(P≤k+10∇x Xφ
r )]∥∥L2

t (L1
x )

�
∥∥φ p
∥∥
L∞
t,x

∥∥∇xφ
q
∥∥
L∞
t (L2

x )[−1,1]
∥∥Xφr∥∥L2

t,x [−1,1] ,

which is certainly acceptable and gives (2.39).
The estimate (2.40) is very much similar to (2.39). As previously, wemove X into the

bracket, first estimating the term when the derivative falls on the time cut-off, passing
initially to L1

x via Bernstein’s inequality (2.4):

∥∥(∂tχ)(φ p∇xφ
q)(φr>k+10)

∥∥
L1
x

� ‖φ‖L∞
x

‖∇xφ‖L2
x
‖φ − c‖L2

x
,

simply noting that P>k+10φ = P>k+10(φ − c) and then discarding the LP-projection.
When X differentiates φ p, we pass again to L1

x , and then immediately get:

∥∥χ(Xφ p)(∇xφ
q)(φr>k+10)

∥∥
L1
x

�
∥∥Xφ p

∥∥
L2
x

∥∥∇xφ
q
∥∥
L2
x

∥∥φr∥∥L∞
x
.

Both estimates are acceptable for (2.40).
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We consider now the term with X falling on φq , and untangling the high-high inter-
actions in the product we should regroup together φ p and φr , obtaining:

Pk[(φ p X∇xφ
q)(φr>k+10)] = Pk[P≤k+O(1)(φ

pφr>k+10)X∇xφ
q
≤k+O(1)

×
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

Pk1(φ
pφr>k+10)X∇xφ

q
k2

].

Now, given this decomposition, we control the first term directly by applying the finite
band property (2.2) to φq :

2−k
∥∥∥χ P≤k+O(1)(φ

pφr>k+10)X∇xφ
q
≤k+O(1)

∥∥∥
L2
x

�
∥∥φ pφr>k+10

∥∥
L∞
x

∥∥Xφq
∥∥
L2
x
,

which is acceptable by the boundedness of wave maps. For the high-high interactions
we proceed as for (2.39) above, passing initially to L1

x via Bernstein’s inequality (2.4)
and transferring the spatial gradient∇x from φq to φ pφr>k+10 via the finite band property
(2.3), which gives:

∑
k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥∥χ Pk1(φ
pφr>k+10)X∇xφ

q
k2

∥∥∥
L1
x

�
∑

k1,k2≥k+O(1):|k1−k2|≤O(1)

∥∥Pk1∇x (φ
pφr>k+10)

∥∥
L2
x

∥∥∥Xφq
k2

∥∥∥
L2
x

,

and using the discrete Cauchy–Schwarz, we can bound this via:

(
∥∥∇xφ

p
∥∥
L2
x

∥∥φr∥∥L∞
x
+
∥∥φ p
∥∥
L∞
x

∥∥∇xφ
r
∥∥
L2
x
)
∥∥Xφq
∥∥
L2
x
,

which is certainly acceptable.
Lastly, if X differentiates φr , we pass to L1

x and this immediately yields the desired
control:

∥∥χφ p(∇xφ
q)(P>k+10Xφ

r )
∥∥
L1
x

�
∥∥φ p
∥∥
L∞
x

∥∥∇xφ
q
∥∥
L2
x

∥∥Xφr∥∥L2
x
,

hence we have (2.40).
Lemma 2.8 is proved.

3. Bubbling Analysis

In this section we prove our main Theorem 1.2. We start by recording, in the lemma just
below, some of the important properties of the wave map φ, we were considering in the
statement of the threshold Theorem 1.1, at the final rescaling obtained by Sterbenz and
Tataru in Section 6.6 of [27].

Lemma 3.1 (Sterbenz and Tataru [27]). The maps {φν}ν∈N from Theorem 1.1 represent
a sequence of smooth wave maps of bounded energy on increasingly large domains of
the forward light cone C:

φν : C[ςν,ς−1
ν ] −→ S

n−1, ESt [φν] ≤ E ∀t ∈ [ςν, ς−1
ν ], (3.1)

where ςν ↓ 0 as ν → ∞, with the following properties:
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• There exists a sequence εν ↓ 0, with ε
1
2
ν � ςν , such that:

F[ςν,ς−1
ν ][φν] < ε

1
2
ν E; (3.2)

• A decay to the self-similar mode holds:
∫ ∫

C
ε

1
2
ν

[ςν ,ς−1
ν ]

1

ρ

∣∣∂ρφν∣∣2 dxdt � |log εν |− 1
2 E, (3.3)

where ρ = (t2 − r2)
1
2 and ∂ρ = 1

ρ
(t∂t + r∂r ) is the scaling vector field which we

recall is uniformly time-like μ(∂ρ, ∂ρ) = −1;
• There is a uniform amount of energy Ec > 0 getting concentrated by the maps φν in

the interior of the light cone:

1

2

∫
|x |<γct0

∣∣∇t,xφν(t0)
∣∣2 dx ≥ Ec ∀t0 ∈ [ςν, ς−1

ν ], (3.4)

for some 0 < γc < 1.

Let us write here a few lines of comments regarding the above lemma, referring the
reader to [27] for more details. Given a sequence of concentration points (tν, xν) for the
energy dispersion norm:

2−kν
∣∣Pkν∇t,xφ(tν, xν)

∣∣ > ε(Sn−1, E),
with tν → 0 in the case of a finite time blow-up, or tν → +∞ in a non-scattering
scenario, the sequence εν ↓ 0 is chosen such that:

F[εν tν ,tν ][φ] < ε
1
2
ν E .

In [27], Sections 6.3 and 6.4, the authors use the above lower bound to prove that there is
a non-trivial amount of time-like energy concentrating on the time slice Stν . As we shall
later rely on those results in Sect. 3.2, we gathered them in Lemma 3.5 here. From there,
a weighted energy estimate (see Lemma 3.4 in [27]) propagates this energy backwards
in time, leading to (3.4) for any t ∈ [ε1/2ν tν, ε

1/4
ν tν].

In parallel to this, a Morawetz type estimate (see Lemma 3.3 in [27]) and the pi-
geonhole principle enable Sterbenz and Tataru to find a sequence of time intervals
[τν, Nντν] ⊂ [ε1/2ν , ε

1/4
ν ], with Nν = exp(

√|log εν |), such that the following decay
estimate holds:∫ ∫

Cεν[τν ,Nν τν ]

1

ρ

∣∣∂ρ[φ(tν t, tνx)]∣∣2 dxdt � |log εν |− 1
2 E,

see Section 6.6 in [27]. Then for the final rescaling, the authors in [27] choose tντν
for the scales λ0ν (or λ∞

ν ), obtaining a sequence of wave maps φ(λ0ν ·) with the desired
properties on the growing cones C[1,Nν ]. In our case, it will be more convenient (for
notational purposes mainly, as to respect the CMC foliation in Sect. 3.1 below), to
asymptotically cover all of forward light cone C0, so we should simply fix any:

tντν � λ0ν, λ
∞
ν � Nν tντν,
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and choose then ςν ↓ 0 decaying slowly enough, for Lemma 3.1 to hold.
Finally, we bring reader’s attention here to our convention that, in any of the results

stated in this last section, we assume (3.1)–(3.4) holding without mentioning it. In fact,
one might directly consider those as the assumptions under which claims of Theorem
1.2 are made.

3.1. Blow-up analysis for asymptotically self-similar sequences of wave maps. We start
the proof of Theorem 1.2 with a study of the energy concentration sets. Our approach
here will be close in spirit to the work of Freire et al. [9]. We will rely on a monotonicity
lemma for asymptotically self-similar wave maps, see Lemma 3.2 below, which is a
rough analogue of part (ii) from Lemma 1.7 in Lin’s work [18], but mainly parallels the
computations in the proof of Morawetz type estimates from Section 3 of [27]. Note that
we do not use here the fact that our target manifold is a sphere.

It will be convenient to use hyperbolic coordinates, also known as CMC foliation of
the (forward) light cone C0, where we recall that C0 denotes the open interior of the
forward light cone, C0 = C\(∂C ∪ {(0, 0)}). Those are defined by:

t = ρ cosh(y), r = ρ sinh(y) and θ.

Associated to those coordinates, we recall the expression for the volume element:

dV := rdtdrdθ = ρ2sinh(y)dρdydθ,

and for the hyperbolic planes H2
ρ0

= {ρ = ρ0} the area element:

d Aρ0 := ρ20 sinh(y)dydθ,

with respect to the Minkowski metric μ on R
2+1. These formulae will be useful below

applying Stokes’ theorem in the hyperbolic annulus {ρ1 ≤ ρ ≤ ρ2}. Let us also record
here that, using the identities:

∂t = t

ρ
∂ρ − r

ρ2
∂y, ∂r = t

ρ2
∂y − r

ρ
∂ρ,

one computes, for a smooth map φ into S
n−1:

∂γ φ†∂γ φ = − |∂tφ|2 + |∂rφ|2 + 1

r2
|∂θφ|2

= − ∣∣∂ρφ∣∣2 + 1

ρ2

∣∣∇H2φ
∣∣2 , (3.5)

where ∇H2 denotes the gradient on the unit hyperboloid H
2 := H

2
1:

∣∣∇H2φ
∣∣2 = ∣∣∂yφ∣∣2 + 1

sinh2(y)
|∂θφ|2 .

For every given ρ0 > 0, let us define the Radon measures:

σν,ρ0 :=
(∣∣∂ρφν∣∣2 + 1

ρ2

∣∣∇H2φν
∣∣2
)
d Aρ0 ∈ R(H2

ρ0
).
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We can naturally view them as measures on the unit hyperbolic plane H2 since for any
given test function ϕ onH2, that we should view as a function ϕ(y, θ) independent of ρ
on the whole of the light cone C0, we have:

∫
ϕdσν,ρ0 =

∫
H2

(∣∣∂ρφν(ρ0)∣∣2 + 1

ρ20

∣∣∇H2φν(ρ0)
∣∣2
)
ϕ(y, θ)ρ20 sinh(y)dydθ.

Using the decay (3.3) to a self-similar mode, we can establish the following asymp-
totic monotonicity property for the family

{
σν,ρ
}
ρ>0 ⊂ R(H2).

Lemma 3.2. For every pair ρ2 > ρ1 > 0 and every λ > 0, we have the decay:

∫ ρ2

ρ1

(∫
ϕdσν,ρ0

)
dρ0 −

∫ ρ2+λ

ρ1+λ

(∫
ϕdσν,ρ0

)
dρ0 −→ 0, (3.6)

holding as ν → +∞ for any test function ϕ ∈ C∞
0 (H2).

Proof. Given a continuously differentiable vector fieldψ = ψβ∂β compactly supported
in (y, θ), contracting the stress-energy tensor T [φν] with ψ , we obtain the associated
Noether current:

(ψ)Pα = Tαβ [φν]ψβ.

Hence, if we set:

D{ρ′≤ρ≤ρ′′}(ψ) :=
∫

{ρ′≤ρ≤ρ′′}
∂α
(
(ψ)Pα
)
dV =

∫
{ρ′≤ρ≤ρ′′}

Tαβ [φν]∂αψβdV,

where we relied on the conservation law (1.7), and:

Bρ̃ (ψ) :=
∫

{ρ=ρ̃}
(ψ)P(∂ρ)d Aρ̃ =

∫
{ρ=ρ̃}

Tαβ [φν] x
α

ρ̃
ψβd Aρ̃ ,

where our convention follows x0 := t and x0 = −t , so that xα = μαγ xγ , applying
Stokes’ theorem over the region {ρ0 ≤ ρ ≤ ρ0 + λ} leads to the identity:

D{ρ0≤ρ≤ρ0+λ}(ψ) = Bρ0(ψ)− Bρ0+λ(ψ). (3.7)

Taking ψ = ϕ(y, θ)∂ρ , we compute using the expression (1.6) for Tαβ [φν]:

D{ρ0≤ρ≤ρ0+λ}(ψ) =
∫

{ρ0≤ρ≤ρ0+λ}

(
1

ρ

∣∣∂ρφν∣∣2 ϕ + ∂ρφ
†
ν∂αφν∂

αϕ

)
dV,

and for the boundary terms:

Bρ̃ (ψ) =
∫

{ρ=ρ̃}

(∣∣ρ̃∂ρφν∣∣2 + ρ̃2 1
2
∂γ φ†

ν∂γ φν

)
ϕ

ρ̃2
d Aρ̃

= 1

2

∫
ϕdσν,ρ̃ ,



674 R. Grinis

where to pass to the second line we have used the identity (3.5). Therefore, plugging the
above back into (3.7) we obtain:∫

ϕdσν,ρ0 −
∫
ϕdσν,ρ0+λ = 2

∫
{ρ0≤ρ≤ρ0+λ}

(
1

ρ

∣∣∂ρφν∣∣2 ϕ + ∂ρφ
†
ν∂αφν∂

αϕ

)
dV .

Integrating over ρ0 ∈ [ρ1, ρ2] and using Cauchy–Schwarz for the second term on RHS
above, appealing to the decay (3.3) and the global energy bound (3.1), we obtain (3.6).
Hence Lemma 3.2 is proved.

From now on we restrict ourselves to the time interval 1 ≤ t ≤ 2. We will study there
the sets in space-time where our wave maps concentrate a non-trivial amount of energy
as in the work of Freire et al. [9], where some general statements about the structure
of energy concentration loci can be found (for instance, it is shown in Proposition 4.1
and Theorem B.1 of [9] that, upon passing to a suitable subsequence, the concentration
set of an energy threshold will be contained in a finite union of Lipschitz curves). Our
assumptions however enable us to go beyond [9] via more elementary arguments and
prove that picking a suitable subsequence will lead to an energy concentration set which
is in fact given by a finite collection of time-like geodesics, relying on Lemmata 2.3 and
3.2.

To use the latter, we remark that for a fixed open domainU with closureU ⊂ C0
[ 12 ,3]

,

we have:

1

C

∣∣∇t,xφν
∣∣2 ≤ ∣∣∂ρφν∣∣2 + 1

ρ2

∣∣∇H2φν
∣∣2 ≤ C

∣∣∇t,xφν
∣∣2 on U, (3.8)

with C := C(dist(U, ∂C[ 12 ,3])), and this will enable us to transfer control back and

forward between the Radon measures σν,ρ and the energy densities
∣∣∇t,xφν

∣∣2 dxdt of
which we want to study the concentration sets (with the small energy compactness
Lemma 2.3 enabling us to obtain some uniformity in time).

Lemma 3.3. There exists a subsequence of {φν}ν∈N restricting to which, without chang-
ing notation, we can find a finite collection of time-like geodesics �1, . . . , �I passing
through the origin in Minkowski space such that defining the energy concentration set
by:

$ :=
{
(t, x) ∈ C0[1,2] : lim inf

ν→∞ EBr (x)[φν](t) > εs ∀r > 0
}
,

we have:

$ = C0[1,2] ∩
I⋃

i=1

�i ,

and away from $, there exist a wave map φ satisfying:

∂ρφ = 0 on C0[1,2]\$ with φ ∈ (H
3
2−ε
t,x )loc

(
C0[1,2]\$

)
,

for any 0 < ε < 1
2 , of finite energy on C

0[1,2], ES0t [φ] ≤ E ∀t ∈ [1, 2], such that:

φν −→ φ on
(
C0
t (H

1
x ) ∩ C1

t (L
2
x )
)
loc

(
C0[1,2]\$

)
, (3.9)

as dictated by Lemma 2.3.
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Proof. In view of the asymptotic monotonicity provided by Lemma 3.2, let us denote
for a set U ⊂ St=1 the cone over U by:

C(U ) := {λ(t, x) : λ > 0, x ∈ U at t = 1} ,
and by CI (U ) := C(U ) ∩ CI the corresponding truncation to a time interval I .

Considering the time slice S01 , given the global energy bound (3.1) we can pass to a
subsequence for {φν}ν∈N, without changing notation, such that for some Radon measure
ι ∈ R(S01 ) we have: ∣∣∇t,xφν(1)

∣∣2 dx ⇀ ι in R(S01 ), (3.10)

fromwhere we also see that there exist only finitely many points {xi }Ii=1 ⊂ S01 such that:

{xi }Ii=1 =
{
x ∈ B1 : lim

ν→∞ EBr (x)[φν](1) > εs ∀r > 0
}
, (3.11)

and we set �i := C({xi }).
Let us start by showing that:

$ ⊂ C0[1,2] ∩
I⋃

i=1

�i , (3.12)

obtaining on the way claim (3.9). Fix any point x0 ∈ S01\$, then there exists a radius
r1 = r1(x0) > 0 such that for all ν ∈ N:

EBr1 (x0)[φν] ≤ εs,

hence by the energy-flux identity (1.9), shrinking r1 to r2 > 0 as necessary, we obtain
that:

sup
t∈[1−3r2,1+3r2]

EB3r2 (x0)[φν](t) ≤ εs .

By the decay assumption (3.3), we can apply the compactness Lemma 2.3 obtaining that
on a subsequence {φν′ }ν′∈N we have convergence in C0

t (H
1
x ) ∩ C1

t (L
2
x ) to a wave map

φ in [1 − r2, 1 + r2] × Br2(x0), satisfying ∂ρφ = 0 and having regularity as dictated by
(2.15) there.

Hence, given any positive constant η > 0 there exist a radius rη > 0 such that:

sup
ν′∈N

sup
t∈[1−rη,1+rη]

EC(Brη (x0))[φν′ ](t) ≤ η.

Therefore, using (3.8) we get for any test function ϕ(y, θ) on the hyperboloidH2, having
support in C(Brη (x0)) ∩ H

2 and satisfying 0 ≤ ϕ ≤ 1, the bound:

sup
ν′∈N

1

ρ2 − ρ1

∫ ρ2

ρ1

(∫
ϕdσν′,ρ

)
dρ � η,

for some suitably chosen 0 < ρ1 < ρ2. The implicit constant here does not depend on
the parameter η, and in fact depends only on the distance of the point (1, x0) to the null
boundary.
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Recalling Lemma 3.2, we obtain by (3.6) for every fixed λ > 0 the estimate:

lim sup
ν′→∞

1

ρ2 − ρ1

∫ ρ2+λ

ρ1+λ

(∫
ϕdσν′,ρ

)
dρ � η.

Given this, shrinking r2 to r3 = r3(x0, η) > 0 and picking a suitable cut-off function
ϕ on H

2 as necessary, we can rely on the other inequality in (3.8) this time and the
energy-flux identity (1.9) to find, arguing via the pigeonhole principle, a finite cover of:

C[1,2](Br3(x0)) ⊂
N⋃
j=1

[t j − s j , t j + s j ] × Bs j (y j )

with N = N (x0, η) ∈ N satisfying:

N⋃
j=1

[t j − 3s j , t j + 3s j ] × B3s j (y j ) ⊂ C[ 12 ,3](Br3(x0)),

and such that:

lim sup
ν′→∞

sup
t∈[t j−3s j ,t j+3s j ]

EB3s j (y j )[φν′ ](t) � η, j = 1, . . . , N ,

where the implicit constant is independent of η. Hence, choosing η > 0 small enough
we can claim:

lim sup
ν′→∞

sup
t∈[t j−3s j ,t j+3s j ]

EB3s j (y j )[φν′ ](t) ≤ 1

2
εs, j = 1, . . . , N ,

with N = N (x0) and r3 = r3(x0) now.
Proceeding this way for a countable dense set of points x0 ∈ S01\$, we obtain

ultimately a countable cover ofC0[1,2]\∪i�i thatwe canuse togetherwith the compactness
Lemma 2.3 to construct a subsequence for {φν}ν∈N via the diagonal process, to which
we restrict ourselves without changing notation this time, such that (3.9) hold for a
wave map φ ∈ (H3/2−ε

t,x )loc(C0[1,2]\ ∪i �i ) with ∂ρφ = 0. By construction, it can be
seen immediately that the obtained map φ has energy bounded by E and we note the
argument also yields (3.12) as desired.

To finish the proof of the lemma, we need to get the reverse inclusion to (3.12). This
follows however from a simple argument by contradiction: suppose that there exists a
point (si , yi ) ∈ �i which is not contained in $. We can then run the above proof with
(si , yi ) instead of (1, x0) and obtain that the full ray �i is not contained in $, but that
contradicts the definition of xi from (3.11). Lemma 3.3 is therefore proved.

To close the proof of the first part of Theorem 1.2 it is enough now to prove that the
wave map φ obtained above must in fact be constant. For this point, we will rely on a
folklore fact that finite energy self-similar wave maps do not exist in dimension 2 + 1
which we state in Proposition 3.4 below. A self-contained proof of this proposition can
be found in the work of Sterbenz and Tataru [27] (see Section 4 there).

Proposition 3.4. Let φ be a smooth wave map in the interior of the forward light cone
C0, having finite energy, ES0t [φ] � 1 ∀t > 0, and satisfying the self-similarity condition
∂ρφ = 0. Then φ must be constant.
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Consider the wave map φ from Lemma 3.3. By homogeneity, we can extend it to:

φ : C0\
I⋃

i=1

�i −→ S
n−1,

with finite energy ES0t [φ] ≤ E ∀t > 0, locally in H
3
2−ε
t,x and satisfying ∂ρφ = 0. Let us

note here that we were considering the unit time interval [1, 2] in (3.9) just in order to
simplify the task of keeping track of the dependence of implicit constants. It is easy to
see that the arguments above lead to local convergence of the sequence φν to the map φ
on all of C0\ ∪i �i . This is however a purely qualitative statement.

Restricting φ to the unit hyperbolic planeH2 gives rise to a harmonic map of locally
finite energy, by (3.8), defined away from a finite set of points given byH2∩⋃I

i=1 �i . By
the regularity theory due to Hélein [11], we obtain in fact a smooth harmonic map away
from the above collection of points. But then, by the removable singularity theorem of
Sacks and Uhlenbeck [23] we can extend φ to a smooth harmonic map on the whole
of the hyperbolic plane H2, which in turn means that, by homogeneity again, we could
have extended φ across the rays �i to a smooth finite energy self-similar wave map on
C0. By Proposition 3.4, φ has to be a constant.

The first point of Theorem 1.2 is therefore established, given that $ must be non-
trivial by the concentration of time-like energy assumption (3.4).

3.2. Dispersive property for null-concentration. This short section is devoted to the
description of the parts of the sequence that escape into the null boundary. We proceed
first, borrowing arguments from Section 6.1 of [27], by constructing extensions for the
maps φν outside the light cone with asymptotically vanishing energy there (we note
that, if considering the non-scattering problem, those have been already constructed in
Section 6.2 of [27]).

Relying on the flux decay estimate (3.2) and using the angular part of F[ςν,ς−1
ν ][φν],

see the expression in (1.9), we can find by the pigeonhole principle a sequence τν ∈ [2, 3]
such that: ∫

∂Sτν

∣∣∣r−1∂θφν(τν)

∣∣∣2 dθ � ε
1
2
ν .

Hence, as in Remark 2.4, we get that φν(∂Sτν ) is contained in a chart of radius O(ε
1/4
ν )

and so we can build smooth spatial extensions φ′
ν[τν] ∈ T (Sn−1) of φν[τν], satisfying

the energy control:

E[φ′
ν](τν)− ESτν [φν] � ε

1
2
ν .

We solve then the wave maps equation with initial data φ′
ν[τν] backwards in time for

t ∈ [ςν, τν]. By the finite speed of propagation property, the solution agrees with φν on
C[ςν,τν ], hence let us denote it by φν (abusing slightly notation). Moreover, relying again
on the assumption (3.2) and using the conservation of energy law (1.3) together with the
energy-flux identity (1.9), we propagate to all of the time interval [ςν, τν] the smallness
of the energy exterior to the light cone:

sup
t∈[ςν,τν ]

(E[φν](t)− ESt [φν]
)

� ε
1
2
ν ,
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which in particular guarantees smoothness of the extension on all of [ςν, τν] × R
2.

Another consequence of the flux decay estimate (3.2) that we record here, is the
following weighted control:

sup
t∈[1,2]

∫
St

1

(t − |x | + εν) 12
(

|Lφν(t)|2 +
∣∣∣r−1∂θφν(t)

∣∣∣2
)
dx � 1, (3.13)

direct consequence of Lemma 3.2 in [27], and constitutes an important ingredient in the
elimination of sharp pockets of null energy (see Section 6.3 of [27]).

Regarding the interior of the cone, by the previous section we can pick a monoton-
ically decreasing sequence of scales δν ↓ 0, starting with δ0 := 1

10dist(∪i�i , ∂C[1,2]),
such that:

lim
ν→∞ sup

t0∈[1,2]
ESδνt0 \∪i Bδν (�i (t0))

[φν] = 0, (3.14)

which are in some sense the slowest concentration scales, i.e. have the property that:

φν(t0 + δν t, �i (t0) + δνx) −→ cφ ∈ S
n−1 on ([−4, 4] × B4)\�i , (3.15)

locally inC0
t (H

1
x )∩C1

t (L
2
x ), where the constant cφ corresponds to the wave map φ from

(3.9), for any given t0 ∈ (1, 2) and i = 1, . . . , I . This can be obtained upon taking δν
tending slower to 0, which will not break condition (3.14). Hence, by pigeonholing, we
can choose a sequence of radii σν = σν(t0, i) ∈ (3, 4) such that:

∫
∂Bσν

∣∣∇t,x
[
φν(t0 + δν t, �i (t0) + δνx)

]∣∣2 dθ −→ 0,

which enables us, as before, to construct extensions into Bσν that have asymptotically
vanishing energy. That iswe cut off the bubbles from the body of themap.More precisely,
we choose a sequence of maps (�i,t0,ν , ∂t�i,t0,ν) ∈ T (Sn−1) defined on Bσν such that:

∇t,x
[
φν(t0 + δν ·, �i (t0) + δν ·)|{t=0}×B4\Bσν +�i,t0,ν(·)

] −→ 0 in L2
x (B4),

and performing this surgery for each i = 1, . . . , I , we obtain smooth maps:

�t0,ν[t0] := φν[t0]|R2
x\∪i Bδνσν (�i (t0))

+
I∑

i=1

(�i,t0,ν ,
1

δν
∂t�i,t0,ν)

(
x − �i (t0)

δν

)
,

satisfying by construction:

∇t,x�t0,ν(t0) −→ 0 in (L2
x )loc

(
R
2\ {r = t0}

)
. (3.16)

Moreover, fixing t0 ∈ [1 + δ0, 2 − δ0], we can naturally view�t0,ν[t0] as defined on
the time slice St0 , and solve the wave maps equation with initial data�t0,ν[t0] obtaining
a smooth solution on [t0 − δ0, t0 + δ0] provided we work with ν large enough, relying on
the finite speed of propagation property (which tells us that �t0,ν agrees with φν near
and beyond the null boundary, at least away from C2δ0[t0−δ0,t0+δ0]), and the small energy
regularity via (3.16). The choice of δ0 is not the most optimal one, but here we are rather
concerned with its independence from ν. It is immediate then that,

∇t,x�t0,ν −→ 0 in C0
t (L

2
x )loc

(
([t0 − δ0, t0 + δ0] × R

2)\∂C[t0−δ0,t0+δ0]
)
,
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as desired in Theorem 1.2, and furthermore the weighted estimate (3.13) is inherited by
the maps �t0,ν :

sup
t∈[t0−τ,t0+τ ]

∫
St

1

(t − |x | + εν) 12
(∣∣L�t0,ν(t)

∣∣2 +
∣∣∣r−1∂θ�t0,ν(t)

∣∣∣2
)
dx � 1, (3.17)

giving us the possibility to apply the following lemma of Sterbenz and Tataru from [27]
(see Sections 6.3 and 6.4 there), to get the energy dispersion normof�t0,ν asymptotically
vanishing and conclude on the second point of Theorem 1.2.

Lemma 3.5 (Sterbenz and Tataru [27]). Consider tuples {(ϕν, ∂tϕν)}ν∈N of Schwartz
functions on R

2 satisfying, for some sequence εν ↓ 0 and a bound E > 0:

∥∥∇t,xϕν
∥∥2
L2
x

� E, ∥∥∇t,xϕν
∥∥2
L2
x (R

2\B1) � ε
1
2
ν E,∫

B1

1

(1 − |x | + εν) 12
(

|Lϕν |2 +
∣∣∣r−1∂θϕν

∣∣∣2
)
dx � E,

such that for some given ε > 0:

sup
k

(
2−k
∥∥Pk∇t,xϕν

∥∥
L∞
x

)
> ε.

Then, there exist constants 0 < γ (ε, E) < 1 and ε(ε, E) > 0 for which:
∫
Bγ (ε,E)

∣∣∇t,xϕν
∣∣2 dx ≥ ε(ε, E), ∀ν ∈ N.

3.3. Asymptotic decomposition. We have reduced the proof of Theorem 1.2 to carrying
out the bubbling analysis for our sequence ofwavemaps {φν}ν∈N near the set of time-like
energy concentration:

(∪i Bδν (�i )) ∩ C0[1,2] ⊂ Cδ0 , (3.18)

recalling the set-up from Sect. 3.2, where δ0 > 0 controls the distance to the null
boundary ∂C of the light cone, on which dependence of our constants will be considered
universal. The dynamics of the maps φν near distinct rays �i are completely disjoint and
to get the claimed asymptotic decomposition from Theorem 1.2 we will have to select
the time slices tν rather carefully.

To start, in order to obtain from the decay assumption (3.3) the asymptotic stationarity
at all scales for some suitably chosen time slices, we consider a sequence of positive
functions on the time interval [1, 2] defined by:

ζν(t) :=
∫
S
δ0
t

∣∣∂ρφν(t)∣∣2 dx,

so that ‖ζν‖L1
t [1,2] → 0 by (3.3). Then, looking at the corresponding Hardy-Littlewood

maximal functions:

Mζν(s) := sup
r>0

1

r

∫ s+r

s−r
ζν(t)dt,
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the well-known maximal inequality of Hardy-Littlewood tells us that for any λ > 0:

|{Mζν > λ}| � 1

λ
‖ζν‖L1

t
.

Therefore taking a sequence λν ∼ ‖ζν‖1/2L1
t

↓ 0 decaying slowly enough compared to

‖ζν‖L1
t
, we can select a sequence of time slices {tν}ν∈N ⊂ (1 + δ0, 2 − δ0) such that:

Mζν(tν) −→ 0. (3.19)

We should note here that this will not be quite the final sequence of time slices we will
claim the soliton resolution on as we might need to perturb it a little at scales δν .

From there,we have to study for each i = 1, . . . , I , a sequence ofwavemaps obtained
from φν , upon translating by (tν, �i (tν)) and rescaling by δν , which gives us by (3.15):

φ̃i,ν(·) := φν(tν + δν ·, �i (tν) + δν ·) −→ cφ on ([−4, 4] × B4) \�i , (3.20)

locally in C0
t (H

1
x ) ∩ C1

t (L
2
x ). Moreover from (3.19), denoting by Xi the unit constant

time-like vector field pointing in the direction of the line �i , we have:∥∥Xi φ̃i,ν
∥∥
L2
t,x ([−4,4]×B4)

−→ 0. (3.21)

Proceeding as in Remark 2.4, we interpolate smoothly between φ̃i,ν[0] and the con-
stant initial data (cφ, 0) ∈ T (Sn−1) on B4\B3, replacing the map φ̃i,ν with a wave map
φi,ν agreeing with the latter on [− 3

2 ,
3
2 ] × B3/2 and constant outside B6 (at most) for

t ∈ [− 3
2 ,

3
2 ] by finite speed of propagation. This introduces an error of asymptotically

vanishing energy on this time interval, safely by (3.20). In fact, from the construction it
is immediate that:

φi,ν − cφ −→ 0 in C0
t (L

2
x )[−

3

2
,
3

2
], (3.22)

which improves to locally in C0
t (H

1
x ) ∩ C1

t (L
2
x ) away from �i , and we still have decay

in a time-like direction: ∥∥Xiφi,ν
∥∥
L2
t,x [− 3

2 ,
3
2 ] −→ 0. (3.23)

Let us fix a smooth time cut-off χ(t) ∈ C∞
0 (− 3

2 ,
3
2 ), identically 1 on [−1, 1], so that

we get now in position to apply Proposition 2.7, obtaining from (2.20) the following
decomposition:

χ∇t,xφi,ν = �i,ν +�i,ν , with :
∥∥�i,ν
∥∥
L2
t,x

�
∥∥Xiφi,ν

∥∥
L2
t,x [− 3

2 ,
3
2 ] +
∥∥φi,ν − cφ

∥∥
L∞
t (L2

x )[− 3
2 ,

3
2 ] , (3.24)

∑
k∈Z

∥∥Pk�i,ν
∥∥
L1
t (L2

x )
� 1. (3.25)

Furthermore, applying Lemma 2.8, we get from (2.35) a decomposition for second order
time-like derivative of φi,ν :

χX2
i φi,ν = �i,ν +�i,ν ,
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where the first item is a linear combination of:
∑
k∈Z

Pk∇x [�i,ν
x (P>k+10φi,ν)],

∑
k∈Z

Pk[�i,ν
x (P≤k+10∇xφi,ν)], and �

i,ν
t,x∇t,xφi,ν ,

with �i,ν
α := φi,ν∂αφ

†
i,ν − ∂αφi,νφ

†
i,ν ,

while the second one satisfies (2.36):
∑
k∈Z

2−2k ∥∥Pk�i,ν
∥∥2
L2t,x [− 3

2 ,
3
2 ] � (1 +

∥∥Xiφi,ν
∥∥
L2t,x [− 3

2 ,
3
2 ])
∥∥Xiφi,ν

∥∥
L2t,x [− 3

2 ,
3
2 ]

+ (1 +
∥∥φi,ν − cφ

∥∥
L∞
t (L2x )[− 3

2 ,
3
2 ])
∥∥φi,ν − cφ

∥∥
L∞
t (L2x )[− 3

2 ,
3
2 ] .
(3.26)

We note that the implicit constants, including the factors in the linear combination
for �i,ν , depend only on the energy bound E from (2.18) and the distance δ0 to the null
boundary ∂C from (3.18), hence can be considered universal for the rest of the argument.

With this understood, we define non-negative functions ϑi,ν , ξi,ν , ζ i,ν , and πi,ν for
i = 1, . . . , I and t ∈ [−1, 1], setting:

θi,ν(t) := ∥∥�i,ν(t)
∥∥2
L2
x

with
∥∥θi,ν∥∥L1

t
−→ 0,

ξi,ν(t) :=
∑
k∈Z

∥∥Pk�i,ν(t)
∥∥
L2
x

with
∥∥ξi,ν∥∥L1

t

=
∑
k∈Z

∥∥Pk�i,ν(t)
∥∥
L1
t (L2

x )
� 1,

ζi,ν(t) := ∥∥Xiφi,ν(t)
∥∥2
L2
x
, so that

∥∥ζi,ν∥∥L1
t

−→ 0,

as well as:

πi,ν(t) =
∑
k∈Z

2−2k
∥∥Pk�i,ν(t)

∥∥2
L2
x
, where

∥∥πi,ν∥∥L1
t

=
∑
k∈Z

2−2k
∥∥Pk�i,ν(t)

∥∥2
L2
t,x

−→ 0,

by (3.24) and (3.25), (3.21) and (3.22), and finally (3.26).
We will now choose a sequence of time slices where we uniformly control θi,ν and

have all of the other functions above asymptotically decaying. This will be used to prove
decay of the weak Besov norm Ḃ1,2∞ on the neck regions, and ultimately get the energy
collapsing there via the control on θi,ν . At the same time, to start this argument, we shall
build first the weak bubble tree decomposition. To do so, one relies on the small energy
compactness result from Lemma 2.3 (which, for example, enables one to extract solitons
from the standard concentration-compactness procedure). Hence, for that reason, wewill
need to control the maximal function Mζi,ν corresponding to

∥∥Xiφi,ν(t)
∥∥2
L2
x
as well.

Let us take λθiν ∼ ∥∥θi,ν∥∥1/2L1
t

↓ 0, (λξiν )−1
∥∥ξi,ν∥∥L1

t
< ε for some arbitrarily small

ε > 0 to be fixed according to (3.27) below, as well as λζiν ∼ ∥∥ζi,ν∥∥1/2L1
t

↓ 0 and λπiν ∼
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∥∥πi,ν∥∥1/2L1
t

↓ 0. Hence, applying Chebyshev’s inequality and the maximal inequality of

Hardy-Littlewood for Mζi,ν , we get:

I∑
i=1

(∣∣∣
{
θi,ν > λ

θi
ν

}∣∣∣ +
∣∣∣
{
ξi,ν > λ

ξi
ν

}∣∣∣ +
∣∣∣
{
ζi,ν > λ

ζi
ν

}∣∣∣ +
∣∣∣
{
πi,ν > λ

πi
ν

}∣∣∣ +
∣∣∣
{
Mζi,ν > λ

ζi
ν

}∣∣∣
)
<

1

10
.

(3.27)

Therefore, we can choose a sequence of time slices {tν}ν∈N ⊂ [− 1
2 ,

1
2 ], that we may

assume simply to be tν = 0 upon translating the maps φi,ν by (tν, �i (tν)) without
changing notation for φi,ν (and working on [− 1

2 ,
1
2 ]× B6), such that for all i = 1, . . . , I

we have the following control:

θi,ν(0) −→ 0, ξi,ν(0)�1, ζi,ν(0) −→ 0, πi,ν(0) −→ 0, and Mζi,ν(0) −→ 0.

(3.28)

These are the final time slices that we will consider and obtain the asymptotic decompo-
sition on, as claimed in our main theorem. We start doing bubbling analysis on them just
below.Herewe just add the remark that, uponworking in (3.27)–(3.28) with themaximal
functions for θi,ν , ξi,ν and πi,ν as well, it should be clear by end of the argument that we
can also get the energy collapsing result for almost every time slice strictly within the
lifespan of the fastest concentrating solitons.

In the following lemmawepresent a preliminary version of the soliton decomposition.
It is essentially the one that we aim towards from Theorem 1.2, but it contains errors
that we shall call necks—those are wave maps on conformally degenerating annuli such
that once localized in space converge to a constant but when considered on the whole
annulus might carry a priori a non-trivial amount of energy. Ruling out such a scenario
will be the last step in the proof of the main theorem.

We note that the proof of this lemma relies on a covering argument which goes back
to at least Ding and Tian [5] and today is pretty standard in the literature on bubbling
analysis of harmonicmaps (and related areas,where some authors refer to asweak bubble
tree convergence). The lemma of course holds for any closed Riemannian manifold as
a target.

Lemma 3.6. Passing to a subsequence, there exists for each i = 1, . . . , I a collection of
Ji �E 1 solitonsω j,i , j = 1, . . . , Ji , with corresponding concentration points a

j
i,ν ∈ B1

converging to the origin, and scales λ j
i,ν ↓ 0 satisfying the orthogonality relations:

λ
j
i,ν

λ
j ′
i,ν

+
λ
j ′
i,ν

λ
j
i,ν

+
|a j

i,ν − a j ′
i,ν |2

λ
j
i,νλ

j ′
i,ν

−→ ∞, (3.29)

as ν → ∞ for j and j ′ distinct, such that:

φi,ν(λ
j
i,ν t, a

j
ν + λ

j
i,νx) −→ ω j,i (t, x) on R

2+1\ ∪q �
j,i
q ,

locally in C0
t (H

1
x ) ∩ C1

t (L
2
x ) for a collection of at most Ji − 1 time-like geodesics �i, jq

with direction Xi . Moreover, setting for any fixed positive constant C > 0:

λmin,ν := C · min
i, j

{
λ
j
i,ν

}
, ν ∈ N,
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we have the following asymptotic decomposition holding for t ∈ [−λmin,ν , λmin,ν]:

φi,ν(t, x)− cφ =
Ji∑
j=1

(
ω j,i

(
t

λ
j
i,ν

,
x − a j

i,ν

λ
j
i,ν

)
− ω j,i (∞)

)
+Ni,ν(t, x)

+ oL∞
t (Ḣ1

x ×L2
x )
(1), (3.30)

whereNi,ν stands for the wave map φi,ν restricted to a collection of Ki �E 1 sequences
of degenerating annuli:

[−rki,ν
2
,
rki,ν
2

]×
(
BRk

i,ν
(xki,ν)\Brki,ν (x

k
i,ν)
)

⊂ [−1

2
,
1

2
]× B3 with λmin,ν � rki,ν � Rk

i,ν ,

(3.31)
such that we have:

sup
rki,ν≤r≤ 1

2 R
k
i,ν

sup
t∈[− r

2 ,
r
2 ]
EB2r (xki,ν )\Br (xki,ν )[φi,ν](t) −→ 0, (3.32)

holding for each k = 1, . . . , Ki .

Proof. Let us fix i = 1, . . . , I , and suppress this subscript in the argument below to
lighten the notation. In the same spirit, we also never change notation here whenever
passing to a subsequence for {φν}ν∈N while using Lemma 2.3 as it will be clear from the
construction that we obtain in the end a countable cover of a suitable neighborhood of
{t = 0}× B3 on which we can rely to build via the diagonal process a final subsequence
that satisfies the claims of Lemma 3.6.

Pick a sequence of points a1ν ∈ B1 with radii λ1ν ↓ 0 such that:

EB
2λ1ν

(a1ν )
[φν](0) = εs . (3.33)

Note that such a concentration point is guaranteed to exist by the results of Sect. 3.1 and
the compactness Lemma 2.3, and that by (3.20) any energy concentration point would
have to converge to the origin.

Consider the sequence of balls B2kλ1ν
(a1ν ) with k a positive integer, and choose the

lowest K0 = K0({a1ν }ν∈N) ∈ N such that the functions:

rν : B2K0−1(a1ν ) −→ R>0

x 	−→ rν(x) := sup
{
r > 0 : EBr (x)[φν(λ1ν ·, a1ν + λ1ν ·)](0) ≤ εs

}
, (3.34)

which are continuous as the wave maps φν are smooth, admit a collective positive lower
bound r ′ := lim inf x,ν rν(x) > 0 (assuming K0 exists, the case when it does not is
treated later when we describe convergence to solitons at infinity). As a preliminary
step, relying on (3.28) and the compactness Lemma 2.3, we can obtain for the rescalings
of the maps φν at a1ν , upon passing to a subsequence, that:

φν(λ
1
ν t, a

1
ν + λ

1
νx) −→ ω1(t, x) on [−r ′

3
,
r ′

3
] × B2K0−1,

in C0
t (H

1
x ) ∩ C1

t (L
2
x ) for some wave map ω1 with regularity as in (2.15) and satisfy-

ing Xω1 = 0, with X standing for the constant time-like vector field Xi from (3.21).
Therefore, the map ω1 is part of a soliton.



684 R. Grinis

The time interval [− r ′
3 ,

r ′
3 ] for the convergence above will be improved considerably

below by recalling the methods from Sect. 3.1, see the proof of (3.37). Now, we shall
proceed instead describing further ω1 in space. Slightly abusing terminology, let us refer
to ω1 as a soliton already from here, bearing in mind that we will prove it is one shortly.

By construction, we can find at least one sequence of concentration points:

a2ν ∈ B2K0λ1ν
(a1ν )\B2K0−1λ1ν

(a1ν ), (3.35)

bubbling off on the top of the soliton ω1 in the sense that:

EB
2λ2ν

(a2ν )
[φν](0) = εs, λ2ν � λ1ν, (3.36)

where it is quite important to note that we have an equality above, a fact that must hold
by the compactness Lemma 2.3.

Let us consider a new sequence of concentration points satisfying (3.35) and (3.36)
like
{
a2ν
}
ν∈N, in other words forming itself above the scales λ1ν and converging, upon

passing to a subsequence, in the closure of B2K0λ1ν
(a1ν ), so that it suffices to work in

B2K0+1λ1ν
(a1ν ). There are of course uncountably many of those, given the existence of

a single one,
{
a2ν
}
ν∈N, but we are going to consider equivalent all those for which the

orthogonality condition (3.29) holds and pick only one representative per equivalence
class. That is, if a sequence

{
a′
ν

}
ν∈N satisfies (3.35) and (3.36) but in addition also has

λ′
ν ∼ λ2ν with: ∣∣a2ν − a′

ν

∣∣
λ2ν

� 1,

then one can see that the maps φν(λ2ν t, a
2
ν +λ

2
νx) and φν(λ

′
ν t, a

′
ν +λ

′
νx) would converge

on [−2−1, 2−1] × B2−1 , upon passing to a subsequence directly by Lemma 2.3, to the
same soliton up to translation that we should denote by ω2 as it was initially obtained
from a2ν once the procedure we are describing now for the soliton ω1 is completed and
applied to the soliton ω2. Hence the sequence

{
a′
ν

}
ν∈N should be discarded keeping{

a2ν
}
ν∈N.

Given the orthogonality relations (3.29) holding between any two sequences of con-
centration points as above, we note that we are left with only finitely many possibilities,
say {a j

ν }ν∈N with j = 2, . . . , J ′. This follows from the fact we are considering a se-
quence of functions

{∇t,xφν
}
ν∈N ⊂ L2

x , bounded by the global energy control assump-
tion (2.18), and with∇t,xφν concentrating definite amounts of its L2

x norm, namely
√
εs ,

note the equality in (3.36), at different frequency and/or spatial scales so that we can
conclude that, since L2

x is a Hilbert space, we should have:

J ′ � 1

εs
E,

which is a universal bound for us as desired.
The collection {a j

ν }ν∈N, j = 2, . . . , J ′, gives rise to solitons ω j , one for each j , by
the same procedure as described for ω1 and so from now on we should be running for
each of them the same construction as we are currently considering for ω1.

From the point of view of ω1, we can subdivide the above collection of sequences
of energy concentration points into disjoint families by considering the limit points



Quantization of Time-Like Energy for Wave Maps into Spheres 685

b1q ∈ B2K0λ1ν
(a1ν )\B2K0−1λ1ν

(a1ν ), indexed by q = 1, . . . , Q′ for some integer Q′ ≤ J ′,
to which the sequences converge once rescaled by λ1ν . So for any r > 0 small but fixed,
we have by Lemma 2.3:

φν(λ
1
ν t, a

1
ν + λ

1
νx) −→ ω1(t, x) on [−r ′

3
,
r ′

3
] ×
(
B2K0 \ ∪q Br (b

1
q)
)
,

in C0
t (H

1
x ) ∩ C1

t (L
2
x ) since the functions rν from (3.34) extended to B2K0 \ ∪q Br (b1q)

admit a collective lower bound r ′ := lim inf x,ν rν(x) > 0 (provided r > 0 is fixed
of course as r ′ depends on it). Understanding the behavior of the maps φν as r ↓ 0 is
linked to the convergence of φν to solitons at the spatial infinity and this is when the
neck domains enter into our picture. We shall discuss this straight after we finish the
construction of the soliton ω1 (and so for the other ones, ω j above, in parallel).

Considering the annuli B2K0+kλ1ν
(a1ν )\B2K0+k−1λ1ν

(a1ν ) one after the other and study-
ing as above whether there are new sequences of concentration points satisfying (3.36),
upgrading the collection {a j

ν }ν∈N, j = 2, . . . , J ′, accordingly upon checking the orthog-
onality relation (3.29) holds for each newmember (we should not change the notation for
the upgraded version), we must a reach an integer K1 = K1({a1ν }ν∈N, εs, E) ∈ N such

that for any k ≥ K1 the functions rν from (3.34) once considered on B2k (a1ν )\B2k−1(a1ν )
would admit a positive collective lower bound there. Note that this situation could have
occurred without passing by the previous bubbling analysis induced by the existence of
the integer K0, e.g. if we would have picked up the fastest concentrating soliton initially
for ω1.

From there, we let k → ∞ with r ↓ 0 and fully construct the soliton ω1 in the sense
that we claim:

φν(λ
1
ν t, a

1
ν + λ

1
νx) −→ ω1(t, x) on R

2+1\ ∪q �
1
q , (3.37)

locally in C0
t (H

1
x )∩C1

t (L
2
x ) for a finite collection of geodesics �

1
q , q = 1, . . . , Q′, each

passing through the corresponding point b1q , all with direction X , and such that Xω1 = 0
there. To prove (3.37), we note that by (3.28), used already above, we have for any fixed
bounded time interval the following decay estimate:

∫ s

−s

∫
R2

∣∣∣X [φν(λ1ν t, a1ν + λ1νx)]
∣∣∣2 dxdt = o(s), (3.38)

and so denoting by � the Lorentz boost taking ∂t to X , if one considers the foliation
induced by

{
�({t} × R

2)
}
t∈R on the whole of Minkowski space R

2+1 instead of the
CMC foliation in the interior of the forward light cone as in Lemmata 3.2 and 3.3, the
very same arguments would lead to the convergence claimed in (3.37). Let us present
some details, setting ϕν = φν(λ

1
ν ·, a1ν + λ1ν ·).

Working on �−1(R2+1) we denote the coordinates there by x ᾱ , or (t̄, x̄1, x̄2), and
writing ϕ̄ν := ϕν ◦ � we get by the Lorentz invariance of smooth wave maps that the
associated stress energy tensor Tᾱβ̄ [ϕ̄ν] enjoys the conservation law ∂ᾱTᾱβ̄ [ϕ̄ν] = 0.
So, contracting T [ϕ̄ν] with the vector field χ(x̄)∂t̄ , for some continuously differentiable
test function χ with ∂t̄χ = 0, and integrating the divergence of the Noether current
∂ᾱ((χ(x̄)∂t̄ )Pᾱ) over the strip t̄ ∈ [t, t + λ] for any t ∈ R and positive constant λ > 0
(similar considerations applywhenλ < 0), we get by Stokes’ theorem and thementioned
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conservation law:∫
{t̄=t+λ}

∣∣∇t̄,x̄ ϕ̄ν
∣∣2 χdx̄ −

∫
{t̄=t}
∣∣∇t̄,x̄ ϕ̄ν

∣∣2 χdx̄

= −2
∫

[t,t+λ]×R
2
x̄

∂t̄ ϕ̄
†
ν (∂x̄1 ϕ̄ν∂x̄1χ + ∂x̄2 ϕ̄ν∂x̄2χ)dt̄d x̄ .

Hence, integrating the above identity over t ∈ [t0, t1] for given t0, t1 ∈ R, using the
decay (3.38) we obtain:
∫

[t0,t1]×R
2
x̄

∣∣∇t̄,x̄ ϕ̄ν
∣∣2 χdt̄d x̄ −

∫
[t0+λ,t1+λ]×R

2
x̄

∣∣∇t̄,x̄ ϕ̄ν
∣∣2 χdt̄d x̄ −→ 0, (3.39)

analogously to (3.6) from Lemma 3.2. To use this asymptotic monotonicity formula
to propagate small energy control, we note that we have

∣∣∇t̄,x̄ ϕ̄ν
∣∣ ∼ ∣∣∇t,xϕν

∣∣ with
the implicit constant depending only on X , which is constant and fixed. Therefore,
proceeding as in Lemma 3.3, given any point y ∈ R

2\ ∪q b1q and a positive constant
η > 0, there exists a radius r1 = r1(y, η) > 0 such that:

sup
ν∈N

sup
t∈[−r1,r1]

EBr1 (y)[ϕν](t) ≤ η,

which leads to the control:

sup
ν∈N

1

r1

∫
[−r1,r1]×Br1 (y)

∣∣∇t,xϕν
∣∣2 dtdx � η,

that in turn gives us, precomposing with � and shrinking suitably the radius to r1 >
r2 � r1:

sup
ν∈N

1

r2

∫
[−r2+s̄,r2+s̄]×Br2 (ȳ)

∣∣∇t̄,x̄ ϕ̄ν
∣∣2 dt̄d x̄ � η,

where (s̄, ȳ) := �−1(0, y). By the decay estimate (3.39), we get that given any λ ∈ R:

lim sup
ν∈N

1

r2

∫
[−r2+s̄+λ,r2+s̄+λ]×Br2 (ȳ)

∣∣∇t̄,x̄ ϕ̄ν
∣∣2 dt̄d x̄ � η,

and so going back to ϕν by precomposing with �−1, shrinking further the radius to
r2 > r3 � r2 we obtain by the pigeonhole principle, using the energy flux identity (1.9),
the estimate:

lim sup
ν∈N

∥∥∇t,xϕν
∥∥
L∞
t (L2

x )
(
([−r3,r3]×Br3 (y))+λX

) � η,

for any given λ ∈ R, viewing naturally X ∈ R
2+1. All the implicit constants above being

independent of η (and of λ, the dependence on which of our construction is hidden in
the limsup), we can choose η small enough obtaining the small energy control for any
fixed λ ∈ R:

lim sup
ν∈N

∥∥∇t,xϕν
∥∥
L∞
t (L2

x )
(
([−r3,r3]×Br3 (y))+λX

) ≤ 1

2
εs, (3.40)
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with the radius r3 = r3(y). Therefore, picking suitable collections of points y ∈ R
2\∪q

b1q and constants λ ∈ R, we construct a countable cover ofR2+1\∪q �
1
q such that relying

on the estimates (3.38) and (3.40) we can apply Lemma 2.3 to get a subsequence via the
diagonal process for which the local convergence claim (3.37) holds a desired.

Note that by construction ω1 has energy bounded by E , and so precomposing it with
the Lorentz boost� we get a steady in time finite energy harmonic map from R

2 minus
a finite set of points (note that the energy of this harmonic map will be smaller or equal
to E[ω1], nothing travels faster than light!). By the regularity theory of Hélein [11] the
latter has to be smooth and by the removable singularity theoremof Sacks andUhlenbeck
[23], it extends smoothly across the singular points. The outcome of this argument is
therefore that ω1 is a smooth finite energy wave map defined on the whole of R2+1 with
Xω1 = 0, i.e. a genuine soliton as desired.

The same holds of course for the solitons ω j , j = 2, . . . , J ′, but note that those do
not of course constitute all the members of the decomposition (3.30) as parts of the maps
φν can get lost a priori at spatial infinity and in between the solitons we are considering.
We shall address this issue now.

Consider the scales
{
λ1ν
}
ν∈N corresponding to the soliton ω1. Fix an arbitrary small

0 < ε < εs , then by the pigeonhole principle there exist an integer K (ε) ≥ K1 such
that for any k ∈ N fixed:

EB
2K (ε)+kλ1ν

(a1ν )\B2K (ε)+k−1λ1ν
(a1ν )

[φν](0) < ε, (3.41)

for all ν large enough. Suppose that there exist a sequence of smallest integer kν(ε) ≥
K (ε), as ν gets large, such that the above inequality fails:

EB
2kν (ε)+1λ1ν

(a1ν )\B2kν (ε)λ1ν (a
1
ν )

[φν](0) ≥ ε,

and note that by construction we must have kν(ε) → ∞; then we have found a new
soliton on the top of which our previous ω1 is concentrating, that we should denote by
ωJ ′+1 so that setting λJ

′+1
ν := 2kν (ε)−1λ1ν we can apply directly Lemma 2.3, by the choice

of kν(ε) and (3.41), to get:

φν(λ
J ′+1
ν t, a1ν + λ

J ′+1
ν x) −→ ωJ ′+1(t, x) in C0

t (H
1
x )

∩ C1
t (L

2
x )([−

1

4
,
1

4
] × (B1\B 1

2
)),

with EB4\B2 [φν(λJ
′+1

ν ·, a1ν + λJ
′+1

ν ·)](0) ≥ ε,

and the analysis we carried for ω1 so far should also be applied to ωJ ′+1 now.
It should be clear that if no kν(ε) as above exist, i.e. (3.41) is not violated for any

k ∈ N for ν large, then choosing 0 < ε < εs small enough initially, by equality in (3.33)
we must have been working with ω1 and there should exist then a sequence of integers
k′
ν such that 2k

′
ν λ1ν ∼ 1 and (3.41) holding for any k = 1, . . . , k′

ν − K (ε), with any
0 < ε′ < ε for larger k ≥ k′

ν − K (ε) by (3.20) as ν → ∞. The map ωJ ′+1 would be
standing for the constant cφ in this case.

For the other solitons ω j , with j ≥ 2, kν(ε) must exist and we could of course end
up with ω1, or also a constant (to which some authors refer to as a ghost bubble, i.e.
a soliton on the top of which two or more non-constant solitons are concentrating but
itself is constant) in which case we obviously do not consider this as a new soliton. This
brings us to the final steps in the proof of Lemma 3.6.
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In fact, in the above construction the constant ε > 0 could be arbitrarily small but
was initially fixed and we would like now to let it degenerate to 0. We claim that in fact
we can put ourselves in a situation when for any smaller 0 < ε′ < ε the choice of the
integers kν(ε′) ∈ N is uniform in the sense that there exist positive integers L(ε′) ∈ N

independent of ν such that kν(ε′) = kν(ε)− L(ε′), that is:

sup
K (ε′)≤k≤kν (ε)−L(ε′)

EB
2k+1λ1ν

(a1ν )\B2kλ1ν (a
1
ν )

[φν](0) < ε′, (3.42)

for ν large enough. If this were to fail for some ε′ > 0, we could find a sequence of
scales, that we denote by λJ

′+2
ν , such that:

EB
2λJ

′+2
ν

(a1ν )\BλJ ′+2
ν

(a1ν )
[φν](0) > ε′ and λJ

′+1
ν � λJ

′+2
ν � λ1ν, (3.43)

and that would give rise to new non-constant solitons at scale λJ
′+2

ν or above, in which
case we have to redefine ε as ε′. Note that we can have only finitely many non-constant
solitons forming by the global energy bound (3.1) since those cannot have arbitrary small
energy as this is not possible for harmonic 2-spheres, and by (3.43) they are asymptoti-
cally orthogonal in Ḣ1

x × L2
x . Hence our procedure, applied to every single soliton we

have found so far, detects all of the solitons in the claimed decomposition (3.30) and
we are just left to characterize the regions in-between the domains of convergence to
solitons as neck regions, but this can be obtained directly from (3.42) as follows.

Upon changing notation, by the above remarks we can assume that (3.42) holds. Now,
we simply choose sequences 0 < r1ν ≤ R1

ν tending to 0 slowly enough so that for any
ε > 0 small enough:

EB
r1ν
(a1ν )\B2K (ε)λ1ν (a

1
ν )

[φν](0) −→ ER2\B2K (ε) (0)[ω1](0) and

EB
λJ

′+1
ν

(a1ν )\BR1ν
(a1ν )

[φν](0) −→ EB1\{0}[ωJ ′+1](0),

then by (3.42) there exits a sequence ε1ν = ε1ν(r
1
ν , R

1
ν ) ↓ 0 such that:

sup
r1ν≤r≤ 1

2 R
1
ν

sup
t∈[− r

2 ,
r
2 ]
EB2r (a1ν )\Br (a1ν )[φν](t) < ε1ν .

If we know a priori that r1ν ∼ R1
ν , then we can immediately absorb this part of the wave

map φν into the error term oL∞
t (Ḣ1

x ×L2
x )
(1) in the decomposition (3.30) and there is no

loss of energy between the considered solitons. Otherwise we should have r1ν � R1
ν , i.e.

the annulus is conformally degenerating, and this is precisely a neck in our terminology,
as required. To prove Theorem 1.2 we must show that those terms can also be absorbed
into oḢ1

x ×L2
x
(1) upon picking a suitable time slice, but that’s the next and final step of

the whole argument. So far we have established Lemma 3.6.

Remark 3.7. We note here that our techniques cannot say anything more about the de-
composition beyond the scales

{
O(λmin,ν)

}
ν∈N which is a central issue to address if one

were to try understanding the full soliton resolution conjecture.
Let us also remark that there is also quite some freedom in fixing the radii Rk

i,ν and

rki,ν defining the neck domain, as for any positive integer � ∈ N which can be arbitrarily
large but fixed, we still have:

sup
2−�rki,ν≤r≤2�Rk

i,ν

sup
t∈[− r

2 ,
r
2 ]
EB2r (xki,ν )\Br (xki,ν )[φi,ν](t) −→ 0,
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which follows directly from the characterization (3.42) in the proof of Lemma 3.6 above.

Our aim now is to show energy collapsing for the necks Ni,ν , that is a decay to zero
for the L2

x norm of ∇t,xφν as ν → +∞ on the degenerating annuli (3.31). We shall start
by obtaining a decay in the weaker Besov Ḃ1,2∞ norm for Ni,ν , as consequence of the
property (3.32), up to an error whose Ḣ1

x norm is controlled by the L2
x norm of Xφν

for some time-like vector field X that we will fix according to (3.28) later. This is the
content of the following lemma.

Lemma 3.8. Consider a sequence of smooth wave maps of bounded energy:

φν : [−2Nν+O(1), 2Nν+O(1)] × R
2 −→ S

n−1,
∥∥∇t,xφν

∥∥2
L∞
t (L2

x )
≤ E, (3.44)

obtained from Lemma 3.6 up to translating and rescaling, where we are given two
sequences of positive integers nν, Nν → +∞, nν � Nν , such that the neck property
holds on B2Nν \B2nν :

sup
nν≤�±O(1)≤Nν

∥∥∇t,xφν
∥∥
L∞
t (L2

x )
([−2�−1,2�−1]×(B2�+1\B2� )

) −→ 0. (3.45)

Moreover, we assume the maps are asymptotically steady in the direction of a constant
time-like vector field X, standing for one of the Xi ’s from (3.21) which we can take to
be given by (2.19):

‖Xφν(0)‖L2
x

−→ 0, (3.46)

and the second order time-like derivatives satisfy:

�X,ν := sech2(ζ )X2φν −�ν
α∂

αφν

+
∑
k∈Z

Pk
[
∇x · (�ν

x,β P>k+10φν) +�
ν
x,β · P≤k+10∇xφν

]
,

∑
k∈Z

2−2k
∥∥Pk�X,ν(0)

∥∥2
L2
x

−→ 0, (3.47)

setting�ν
α := φν∂αφ

†
ν − ∂αφνφ

†
ν and�

ν
x,β := (1−β2)�ν

x1dx1 +�
ν
x2dx2. Both assump-

tions are justified by (3.28).
Then on the neck region, we can write for the map φν:

∇t,xφν = ϒν on [−1, 1] × (B2Nν \B2nν ),

see (3.53) in the proof, with ϒν(t) ∈ C∞
0 (B2Nν+1\B2nν−1) for t ∈ [−1, 1] being of

bounded energy‖ϒν‖2L∞
t (L2

x )[−1,1] � E , and satisfying the followingweakdecay estimate
on t = 0:

sup
k∈Z

‖Pkϒν(0)‖L2
x

−→ 0.
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The strategy of our argument is roughly to replace, by using the decay in the direction
of the time-like vector field X , the sequence of wave maps on neck domains under
consideration with another one, differing by an error of vanishing energy and converging
locally to a constant on the neck domain with more regularity than Ḣ1

x × L2
x for φν .

However, because we need to obtain estimates that are uniform in time, working on very
short intervals,we should not rely on the small energy regularity theory fromTheorem2.2
and the direct use of Fourier restriction spaces, as in the proof of the compactness result
by Sterbenz and Tataru [27] (Proposition 5.1 there), but proceed directly via the wave
maps equation (1.2) proving a weak Ḃ−1,2∞ decay estimate for its quadratic structure in
the gradient at high frequency (without any null-structure involved, hence having target
S
n−1 is not specifically necessary for this part of the argument), and then using Lemma

2.8 to control the second order time-like derivatives (the latter though does involve the
conservation law (1.4) for wave maps into spheres).

Proof. As usual, having the required control in a time-like direction, it is enough to
consider the spatial gradient only.Nowworkingon thedomain [−1, 1]×(B2Nν \B2nν ),we
note it being arbitrarily rough in time as nν, Nν → +∞ degenerates. This is an additional
difficulty, to bedealtwith in the present proof, in comparison to the analogous estimate for
harmonic maps, where ε-regularity is used on the domains [−2�−1, 2�−1]× (B2�+1\B2� )

instead, see for the example the paper of Lin and Rivière [19] on p. 188.
Before taking themain line of the argument, let us startwith somepreliminaries, fixing

the decay rates for the assumptions of Lemma 3.8, that is sequences ιν ↓ 0, σν ↓ 0 and
εν ↓ 0 for which:

∑
k∈Z

2−2k
∥∥Pk�X,ν(0)

∥∥2
L2
x

≤ ι2ν, (3.48)

‖Xφν(0)‖L2
x

≤ σν, (3.49)

sup
nν≤�±O(1)≤Nν

∥∥∇t,xφν
∥∥
L∞
t (L2

x )
([−2�−1,2�−1]×(B2�+1\B2� )

) ≤ εν, (3.50)

corresponding to (3.47), (3.46) and (3.45) respectively.Next,we consider, for an arbitrary
choice of integers �ν between nν and Nν , the sequence of wave maps:

φν,�ν (·) := φν(2
�ν ·) : [−2−4, 2−4] × (B23\B2−3) −→ S

n−1. (3.51)

We build an extension ψν,�ν of φν,�ν , as in Remark 2.4, by smoothly interpolating on
(B2−2\B2−3)∪(B22\B22−1) between φν,�ν [0] and (c�ν , 0) ∈ T (Sn−1), for some suitably
chosen sequence of constants c�ν = c�ν (φν,�ν ), solving thewavemaps equation forψν,�ν
with initial data of ψν,�ν [0], such that scaling back and setting ψ�ν

ν (·) := ψν,�ν (2
−�ν ·),

we have (denoting by 1�ν the characteristic function of B2�ν+1\B2�ν−1 over the time
interval [−2�ν−3, 2�ν−3]):

∥∥∥∇t,xψ
�ν
ν

∥∥∥
L∞
t (L2

x )
� εν and 1�ν φν = 1�νψ

�ν
ν , (3.52)

by (3.50) and the finite speed of propagation property respectively.
From there, we construct a partition of unity over [−1, 1] × (B2Nν \B2nν ) paralleling

the Littlewood-Paley decomposition in frequency space. For the spatial directions, we
recall the non-negative radial bump functions m0 and m≤0 used in the definition of
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the LP-projections P0 and P≤0, but which this time, we will use on the physical space
setting:

m̄0(t, x) := m0(|x |), m̄�(t, x) := m̄0(2
−�t, 2−�x),

m̄≤0(t, x) := m≤0(|x |), m̄≤�(t, x) := m̄≤0(2
−�t, 2−�x).

We get then the following “physical LP-decomposition”:

ϒν := (m̄≤Nν − m̄≤nν−1)η∇xφν =
Nν∑

�ν=nν

ηm̄�ν∇xφν. (3.53)

where η(t) stands for the rough cut-off to the time interval [−1, 1], and of course it is
immediate that ‖ϒν‖2L∞

t (L2
x )[−1,1] � E . Moreover we note that, recalling the extensions

(3.52), we have ηm̄�ν φν = ηm̄�νψ
�ν
ν .

Writing φc
ν := φν − c�ν , for an arbitrary sequence of maps corresponding to (3.51),

and similarly for φc
ν,�ν

, together with the extensions ψ�ν,c
ν and ψc

ν,�ν
from (3.52) which

become compactly supported by construction, we consider the commutator (denoting
the cut-off functions by χ�ν := ηm̄�ν ):

χ�ν∇xφν = ∇x (χ�νφ
c
ν)− (∇xχ�ν )φ

c
ν, (3.54)

and start by treating the second term, for which we claim:
∥∥Pk[(∇xχ�ν )φ

c
ν]
∥∥
L∞
t (L2

x )
� 2−|k+�ν |εν, (3.55)

for any k ∈ Z. To see this, we rescale by 2�ν . For high frequency scales 2k � 1, we can
use the extra regularity, the spatial derivative falling on the cut-off instead of the map,
available from:
∥∥∇x [(∇x m̄0)φ

c
ν,�ν

]∥∥
L∞
t (L2

x )
�
∥∥∥(∇2

x m̄0)ψ
c
ν,�ν

∥∥∥
L∞
t (L2

x )
+
∥∥(∇x m̄0)∇xφν,�ν

∥∥
L∞
t (L2

x )
,

introducing the extensions ψc
ν,�ν

, so that applying Poincaré’s inequality in L2
x for the

first term, given the spatial localization of ψc
ν,�ν

at any given time slice in the support of

η�ν (·) := η(2�ν ·), we get by the finite band property (2.3) and the bound (3.52):
∥∥η�ν Pk[(∇x m̄0)ψ

c
ν,�ν

]∥∥
L∞
t (L2

x )
� 2−kεν,

as desired. For low frequency scales 2k � 1, by Cauchy–Schwarz and Poincaré’s in-
equalities, we have:

∥∥η�ν (∇x m̄0)ψ
c
ν,�ν

∥∥
L∞
t (L1

x )
�
∥∥η�ν∇xψν,�ν

∥∥
L∞
t (L2

x )
,

dropping ∇x m̄0, and so using Bernstein’s inequality (2.4) we obtain here an exponential
gain as well:

∥∥η�ν Pk[(∇x m̄0)ψ
c
ν,�ν

]∥∥
L∞
t (L2

x )
� 2kεν,

by the energy bound (3.52). Hence, claim (3.55) follows.
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We remark that, by the same argument, we get also control for the low frequencies
of the first term ∇x (χ�νφ

c
ν) in the commutator:

∥∥Pk∇x (χ�νφ
c
ν)
∥∥
L∞
t (L2

x )
� 2k+�ν εν, k ≤ −�ν + O(1), (3.56)

and so it remains to treat now the main terms, that is the LHS above when �ν ≥ −k,
for which we should rely on the wave maps equation, the time-like control assumption
(3.49), as well as the favorable decay (3.48) we already have.

Recalling the expression for the operator (2.26), we compute then:

�x,β(χ�νφ
c
ν) = (�x,βχ�ν )φ

c
ν + 2(1 − β2)(∂x1χ�ν )(∂x1φν) + 2(∂x2χ�ν )(∂x2φν) (3.57)

− 2χ�ν sech
2(ζ )sinh(ζ )∂x1Xφν + χ�ν (sech

2(ζ )X2φν −�ν
α∂

αφν).

Let us treat first the smooth terms on the first line of (3.57), of which there are two
types, (∇2

xχ�ν )ψ
�ν,c
ν and ∇xχ�ν∇t,xψ

�ν
ν , the cut-off differentiated in a spatial direction,

claiming for both the control:∥∥∥∥ ∇x

�x,β
Pk[(∇2

xχ�ν )ψ
�ν,c
ν + ∇xχ�ν∇t,xψ

�ν
ν ]
∥∥∥∥
L∞
t (L2

x )

� 2−(k+�ν)εν, k ≥ −�ν. (3.58)

To show this, relying on Plancherel in L2
x , we discard the Fourier multiplier 2k∇x�

−1
x,β P̃k

(where P̃k = Pk−1≤·≤k+1), having symbol bounded uniformly in k ∈ Z. Rescaling by
2�ν we are brought to estimate for k ≥ O(1):

2−k
∥∥∥η�ν [(∇2

x m̄0)ψ
c
ν,�ν

+ ∇x m̄0∇t,xψν,�ν ]
∥∥∥
L∞
t (L2

x )
,

where the second term is directly seen to have the desired control by (3.50), whereas
for the first one, given the spatial support of the extension ψc

ν,�ν
, we apply Poincaré’s

inequality in L2
x as before, which allows us to conclude by (3.52).

The second line of (3.57) is an error term controlled thanks to the time-like decay
(3.49) we have. We first write:

χ�ν∇x Xφν = ∇x (χ�ν Xφν)− (∇xχ�ν )Xψ
�ν
ν ,

and note that the second term here was already treated in (3.58), and so we just need to
show: ∥∥∥∥∥∥

∇2
x

�x,β
Pk

Nν∑
�ν=max(−k,nν )

(χ�ν Xφν)(0)

∥∥∥∥∥∥
L2
x

� σν, (3.59)

but this follows at once by Plancherel in L2
x , as the Fourier multiplier ∇2

x�
−1
x,β Pk has a

bounded symbol, dropping the cut-offs and relying on (3.49).
Finally, we shall consider the delicate second order time-like derivatives and the non-

linear terms on the third line of (3.57). As was already required for (3.59), we restrict
ourselves from now on to work exclusively over the time slice t = 0. And to lighten the
notation, we shall not mention this explicitly anymore.

Thanks to the assumption (3.48), we have already partial control on them through
�X,ν , which however we need to localize to the neck region B2Nν+1\B2max(−k,nν )−1 . In
doing so, we first note that since m̄≤0 was initially fixed spatially Schwartz, we have:∥∥∇x m̃k,Nν

∥∥
L2
x

� 1, where m̃k,Nν := m̄≤Nν − m̄≤max(−k,nν )−1,
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given that the above norm is scale invariant. Hence applying the Littlewood-Paley tri-
chotomy to m̃k,Nν�X,ν , we get:

Pk(m̃k,Nν�X,ν) = Pk[(P≤k−7m̃k,Nν )(Pk−3≤·≤k+3�X,ν)

+ (Pk−3≤·≤k+3m̃k,Nν )(P≤k−7�X,ν)

+
∑

k1,k2≥k−6:|k1−k2|≤O(1)

(Pk1m̃k,Nν )(Pk2�X,ν)].

From there, using (3.48), we estimate the low-high interactions by:

2−k
∥∥(P≤k−7m̃k,Nν )(Pk−3≤·≤k+3�X,ν)

∥∥
L2
x

�
∥∥m̃k,Nν

∥∥
L∞
x
ιν,

the high-low ones by:

2−k

∥∥∥∥∥∥(Pk−3≤·≤k+3m̃k,Nν )(
∑

k1≤k−7

Pk1�X,ν)

∥∥∥∥∥∥
L2
x

�
∥∥m̃k,Nν

∥∥
L∞
x

∑
k1≤k−7

2−(k−k1)ιν,

whereas for the high-high cascade we have:
∑

k1,k2≥k−6:|k1−k2|≤O(1)

2−k
∥∥η(Pk1m̃k,Nν )(Pk2�X,ν)

∥∥
L2
x

� (
∑
k1

22k1
∥∥Pk1m̃k,Nν

∥∥2
L2
x
)
1
2 ιν,

where we have used Bernstein’s inequality (2.4) passing to L1
x , and then Cauchy–

Schwarz with the fact that k1 = k2 + O(1).
Putting those estimates together we get the required control for m̃k,Nν�X,ν :∥∥∥∥∥∥

∇x

�x,β
Pk

Nν∑
�ν=max(−k,nν )

χ�ν�X,ν

∥∥∥∥∥∥
L2
x

� ιν, (3.60)

by discarding the multiplier 2k∇x�
−1
x,β P̃k and relying on the bounds for the cut-offs

m̃k,Nν discussed above.
We treat now the non-linear bulk left from Lemma 2.8, decomposing it into:

Bν1 :=
∑
k∈Z

Pk∇x · (�ν
x,βφ

>k+10
ν ),

Bν2 :=
∑
k∈Z

Pk(�
ν
x,β · ∇xφ

≤k+10
ν ),

introducing the convenient notation φk
ν := Pkφν (also later φk

ν,�ν
:= Pkφν,�ν for the

rescaled maps), etc. We want to treat this term perturbatively, as in elliptic regularity
theory, and so we proceed claiming first the following Ḃ−1,2∞ estimate:
∥∥∥∥∥∥

∇x

�x,β
Pk

Nν∑
�ν=max(−k,nν )

χ�ν B
ν
i

∥∥∥∥∥∥
2

L2
x

�
∑
j≥0

2−j∑
�

∥∥χ�ν Bνi
∥∥
L1
x

∥∥χ�ν+j Bνi
∥∥
L1
x
, (3.61)

where the sums are such that both �ν and �ν + j range between max(−k, nν) and Nν .
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Discarding the Fourier multiplier 2k∇x�
−1
x,β P̃k via Plancherel in L2

x , we note the
Littlewood-Paley projection Pk in front of the sum in (3.61) is crucial to handle the
remaining factor 2−k . But frequency localization induces spreading for the physical
support by the uncertainty principle. And so, we are not allowed to use a square-summing
trick relyingon thefinitely overlapping supports ofχ�ν B

ν
i .On the other hand, this leakage

is very much controllable given the fact that k ≥ −�ν +O(1), which corresponds to high
frequency here.

More precisely, let us bound the LHS of (3.61) via:

2−2k
∑
μν≥�ν

∣∣∣∣
∫
R2

[
Pk(χ�ν B

ν
i )
] [

Pk(χμν B
ν
i )
]
dx

∣∣∣∣ ,

with both �ν and μν ranging between max(−k, nν) and Nν . By the self-adjointness of
Pk , the summand above can be estimated by:

∥∥∥
[
P2
k (χ�ν B

ν
i )
]
χμν B

ν
i

∥∥∥
L1
x

≤
∥∥∥P2

k (χ�ν B
ν
i )

∥∥∥
L∞
x ({|x |∼2μν })

∥∥χμν Bνi
∥∥
L1
x
.

Now, looking at the convolution kernel for P2
k , analogue to (2.1), we can estimate the

first factor on the RHS above by:

∥∥∥P2
k (χ�ν B

ν
i )

∥∥∥
L∞
x ({|x |∼2μν }) � 22k2−(μν−�ν) ∥∥χ�ν Bνi

∥∥
L1
x
,

for μν ≥ �ν ≥ −k, a refined version of Bernstein’s inequality (2.4). Hence, this leads
us to estimate the LHS of (3.61) by:

∑
μν≥�ν

2−(μν−�ν) ∥∥χ�ν Bνi
∥∥
L1
x

∥∥χμν Bνi
∥∥
L1
x
,

as required.
Given (3.61), we remark that summing one of the factors we get a universal bound.

This follows from the global energy control (3.44) since, by the finitely overlapping
supports of χ�ν B

ν
i :

∑
�ν

∥∥χ�ν Bνi
∥∥
L1
x

�
∥∥Bνi
∥∥
L1
x
,

and in fact we have the stronger control:

∑
k∈Z

∥∥Pk Bν1
∥∥
L1
x
+

∥∥∥∥∥(
∑
k∈Z

|Pk Bν2 |2) 12
∥∥∥∥∥
L1
x

� E, (3.62)

where for the former we have:

∥∥Pk Bν1
∥∥
L1
x

�
∑

k1,k2≥k+5:|k1−k2|≤O(1)

2−(k2−k)
∥∥∥Pk1�ν

x,β

∥∥∥
L2
x

∥∥∥∇xφ
k2
ν

∥∥∥
L2
x

,
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applying initially the finite band property (2.3), and then once again for φk2
ν , and this can

be summed over k ∈ Z using discrete Cauchy–Schwarz in k1 = k2 + O(1). Whereas for
the latter, we note that by the Littlewood-Paley trichotomy:

Pk(�
ν
x,β · ∇xφ

≤k+10
ν ) = Pk[P≤k−7(�

ν
x,β) · ∇xφ

k−3≤·≤k+3
ν

+ Pk−3≤·≤k+3(�
ν
x,β) · ∇xφ

≤k−7
ν

+
∑

k1,k2∼k

Pk1(�
ν
x,β) · ∇xφ

k2
ν ],

and so the first two terms correspond to paraproducts, already localized to |ξ | ∼ 2k ,
and therefore their sum in k ∈ Z lies in the homogeneous Hardy space Ḟ0,1

2 with bound

O(E), and for the last term the stronger estimate in Ḃ0,1
1 with bound O(E) as for Bν1

holds, since the sum under Pk is finite and we can apply the discrete Cauchy–Schwarz
inequality.

Hence, rescaling by 2�ν and setting Bν,�νi (·) = 22�ν Bνi (2
�ν ·), to obtain decay for

(3.61) it suffices to prove:

sup
nν≤�ν≤Nν

∥∥∥m̄0B
ν,�ν
i

∥∥∥
L1
x

≤ o(E). (3.63)

This is directmanifestation of the perturbative nature of quadratic non-linearities on neck
regions, thanks to local energy decay (3.50). In our case, the argument is however slightly
more involved because our product structure is non-local. This represents however a
minor technicality only, and we shall treat this analogously to the previous instances of
physical support leakage.

Let us introduce two auxiliary parameters. Setting�ν,�ν
x,β (·) := 2�ν�ν

x,β(2
�ν ·), by the

local energy estimate (3.50), we can find sequences κν → +∞ and ε̃ν ↓ 0 such that:

∥∥∥m̄−10≤·≤κν�
ν,�ν
x,β

∥∥∥
L2
x

≤ ε̃ν ,

where we use the convention m̄k1≤·≤k2 := m̄≤k2 − m̄≤k1−1, and similarly for m̄≥k1 :=
1 − m̄≤k1−1. Let us first treat the annulus determined so, and then the outer and inner
regions separately.

For the annulus we can discard the cut-off m̄0. Regarding Bν,�ν1 , we have:

∑
k∈Z

∥∥∥Pk∇x · (m̄−10≤·≤κν�
ν,�ν
x,β φ

>k+10
ν,�ν

)

∥∥∥
L1
x

�
∑
k∈Z

∑
k1,k2≥k+5:|k1−k2|≤O(1)

2−(k1−k)
∥∥∥Pk1(m̄−10≤·≤κν�

ν,�ν
x,β )

∥∥∥
L2
x

∥∥∥∇xφ
k2
ν

∥∥∥
L2
x

,

where we have used the finite band property (2.3) as usual, and we control this by

O(ε̃νE 1
2 ) relying on the discrete Cauchy–Schwarz and k1 = k2 + O(1), which is ac-

ceptable for (3.63). For Bν,�ν2 , we use Littlewood-Paley trichotomy as previously to
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get:
∥∥∥∥∥
∑
k∈Z

Pk(m̄−10≤·≤κν�
ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

)

∥∥∥∥∥
L1
x

�
∥∥∥∥∥ supk1∈Z

|P≤k1−7(m̄−10≤·≤κν�ν
x,β)|
∥∥∥∥∥
L2
x

·
∥∥∥∥∥∥(
∑
k2∈Z

|∇xφ
k2−3≤·≤k2+3
ν,�ν

|2) 12
∥∥∥∥∥∥
L2
x

+

∥∥∥∥∥∥(
∑
k1∈Z

|Pk1−3≤·≤k1+3(m̄−10≤·≤κν�ν
x,β)|2)

1
2

∥∥∥∥∥∥
L2
x

·
∥∥∥∥∥ supk2∈Z

|∇xφ
≤k2−7
ν,�ν

|
∥∥∥∥∥
L2
x

+
∑
k∈Z

∑
k1,k2∼k

∥∥∥Pk1(m̄−10≤·≤κν�ν
x,β)

∥∥∥
L2
x

·
∥∥∥∇xφ

k2
ν,�ν

∥∥∥
L2
x

,

and relying on the Littlewood-Paley square function estimate for the first two terms, and

simply the discrete Cauchy–Schwarz for the last, we can bound the above by O(ε̃νE 1
2 )

again. Therefore this is permissible contribution to (3.63).
Now we treat the error terms. First, let us consider the outer region defined by the

cut-off m̄>κν . Writing:
∥∥∥∥∥m̄0

∑
k∈Z

Pk B

∥∥∥∥∥
L1
x

� ‖m̄0‖L1
x

∑
k∈Z

‖Pk B‖L∞
x ({2−1≤|x |≤2}) , (3.64)

we proceed, first for:

B :=
∑
k∈Z

Pk∇x · (m̄>κν�
ν,�ν
x,β φ

>k+10
ν,�ν

),

by considering the convolution kernel for the Fourier multiplier ∇x Pk Pk′ , with k =
k′ + O(1), which gives:

‖Pk B‖L∞
x ({2−1≤|x |≤2}) �N

23k

(1 + 2k2κν )N

∥∥∥m̄>κν�
ν,�ν
x,β φ

>k′+10
ν,�ν

∥∥∥
L1
x

,

for anypositive integer N ∈ N, bearing inmind thephysical support of m̄>κν�
ν,�ν
x,β φ

>k+10
ν,�ν

.
Using this estimate, for high frequency scales, we choose N = 3, getting the following
bound for the sum in k ≥ 0 from (3.64) :

2−3κν
∑
k≥0

2−k
∥∥∥m̄>κν�

ν,�ν
x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∥∇xφ

k1
ν,�ν

∥∥∥
L2
x

,

by the finite band property (2.3) for φν,�ν . This is immediately seen to be o(E) as
κν → +∞, hence this contribution is acceptable. For the low frequency scales, if we set
N = 1 above, we have for the sum over k < 0 in (3.64):

2−κν∑
k<0

2k
∥∥∥m̄>κν�

ν,�ν
x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∥∇xφ

k1
ν,�ν

∥∥∥
L2
x

� o(E),
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as desired, so the contribution of the outer region is controlled for Bν,�ν1 . Regarding

Bν,�ν2 , we have to control (3.64) with:

B :=
∑
k∈Z

Pk(m̄>κν�
ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

).

Proceeding similarly to the above, we look at the convolution kernel of Pk Pk′ , with
k = k′ + O(1), and given the spatial support of m̄>κν�

ν,�ν
x,β φ

≤k+10
ν,�ν

, we get the analogous
estimate for N ∈ Z:

‖Pk B‖L∞
x ({2−1≤|x |≤2}) �N

22k

(1 + 2k2κν )N

∥∥∥m̄>κν�
ν,�ν
x,β · ∇xφ

≤k′+10
ν,�ν

∥∥∥
L1
x

,

so that choosing N = 3 when k ≥ 0, and N = 1 if k < 0 as previously, yields the
control for (3.64):

2−κν (
∑
k∈Z

2−|k|)
∥∥∥m̄>κν�

ν,�ν
x,β

∥∥∥
L2
x

∥∥∇xφν,�ν
∥∥
L2
x

� o(E),

as desired, and this completes the treatment of the contribution to (3.63) of the outer
region.

Finally, we need to study the contribution of the interior region defined by the support
of m̄<−10, that we note being at a definite amount of distance from the support of m̄0.
First, we remark that we have:∥∥∥m̄<−10�

ν,�ν
x,β

∥∥∥
H−1
x

−→ 0, (3.65)

and to see this, we start by getting an extension ϕν of φν,�ν |B1 , equal to a suitably chosen
constant c = c({φν,�ν }ν∈N), such that by the construction of the sequence of wave maps
and the covering in Lemma 3.6, we have ϕcν := ϕν−c vanishing strongly in supercritical
spaces: ∥∥ϕcν

∥∥
Hs
x

−→ 0, s < 1. (3.66)

To establish (3.65) it is enough to consider ϕ̃ν∇xϕν , where ϕ̃ν := m̄<−10ϕν . For low
frequencies:∥∥P≤0(ϕ̃ν∇xϕν)

∥∥
L2
x

� ‖ϕ̃ν‖L∞
x

∥∥P≤O(1)ϕ
c
ν

∥∥
L2
x

+
∑

k1,k2≥O(1):|k1−k2|≤O(1)

∥∥∇x Pk1 ϕ̃ν
∥∥
L2
x

∥∥Pk2ϕcν
∥∥
L2
x
,

where for the first term we have used (2.2) to discard ∇x , and for the second we passed
initially to L1

x applying (2.4), and then transferred∇x from ϕcν to ϕ̃ν via (2.3). Both items
are acceptable by (3.66). For high frequencies, we apply precisely the same argument,
but with a slightly more refined Littlewood-Paley trichotomy decomposition:

2−k ‖Pk(ϕ̃ν∇xϕν)‖L2
x

�
∥∥P≤k−7ϕ̃ν

∥∥
L∞
x

∥∥Pk−3≤·≤k+3ϕ
c
ν

∥∥
L2
x

+
∥∥Pk−3≤·≤k+3∇x ϕ̃ν

∥∥
L2
x

∥∥P≤k−7ϕ
c
ν

∥∥
L2
x

+ 2− k
2

∑
k1,k2≥k−6:|k1−k2|≤O(1)

∥∥∇x Pk1 ϕ̃ν
∥∥
L2
x
2

k2
2
∥∥Pk2ϕcν

∥∥
L2
x
,
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where for the first term we applied (2.2) and for the other two we passed first to L1
x

via (2.3), then used Cauchy–Schwarz, from where for the second term we used (2.2)
for P≤k−7ϕ

c
ν and (2.3) for ϕ̃ν transferring ∇x from one to the other, whereas for the

third term this transfer of ∇x happened at once via (2.3) since k1 = k2 + O(1), and
then multiplied Pk2ϕ

c
ν simply by 2−k2/22k2/2 which led to the exponential gain 2−k/2 in

front of the sum since k2 ≥ k + O(1). Square-summing the above estimate over k > 0,
and applying discrete Cauchy–Schwarz for the third item, gives an acceptable bound by
(3.66), therefore we have claim (3.65).

With this understood, we can control the contribution of the inner region to (3.63)
for the low frequencies. Given any positive integer K > 0, we have regarding Bν,�ν1 :

∑
k≤K

∥∥∥Pk∇x · (m̄<−10�
ν,�ν
x,β φ

>k+10
ν,�ν

)

∥∥∥
L1
x

�
∑
k≤K

2k
∑

k1,k2≥k+5:|k1−k2|≤O(1)

2−k2
∥∥∥Pk1(m̄<−10�

ν,�ν
x,β )

∥∥∥
L2
x

∥∥∥∇xφ
k2
ν

∥∥∥
L2
x

�
∑

k≤O(1)

⎛
⎝ ∑

k+5≤k1,k2≤O(1):|k1−k2|≤O(1)

2−(k2−k)
∥∥∥Pk1(m̄<−10�

ν,�ν
x,β )

∥∥∥
L2
x

∥∥∥∇xφ
k2
ν

∥∥∥
L2
x

⎞
⎠

+ 2K
∑

k1,k2≥O(1):|k1−k2|≤O(1)

2−k1
∥∥∥Pk1(m̄<−10�

ν,�ν
x,β )

∥∥∥
L2
x

∥∥∥∇xφ
k2
ν

∥∥∥
L2
x

,

which is o(E) for the first term and oK (E) for the second by (3.65). Analogously, looking
at Bν,�ν2 we get:

∥∥∥∥∥∥
∑
k≤K

Pk(m̄<−10�
ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

)

∥∥∥∥∥∥
L1
x

�

∥∥∥∥∥∥
∑
k≤K

Pk[P≤K+O(1)(m̄<−10�
ν
x,β) · ∇xφ

k−3≤·≤k+3
ν,�ν

]
∥∥∥∥∥∥
L1
x

+

∥∥∥∥∥∥
∑
k≤K

Pk[Pk1−3≤·≤k1+3(m̄<−10�
ν
x,β) · ∇xφ

≤k2−7
ν,�ν

]
∥∥∥∥∥∥
L1
x

�
∥∥∥P≤K+O(1)(m̄<−10�

ν
x,β)

∥∥∥
L2
x

·
∥∥∥∥∥∥(
∑
k2≤K

|∇xφ
k2−3≤·≤k2+3
ν,�ν

|) 12
∥∥∥∥∥∥
L2
x

+

∥∥∥∥∥∥(
∑
k1≤K

|Pk1−3≤·≤k1+3(m̄<−10�
ν
x,β)|2)

1
2

∥∥∥∥∥∥
L2
x

·
∥∥∥∥∥ supk2≤K

|∇xφ
≤k2−7
ν,�ν

|
∥∥∥∥∥
L2
x

,

and this is again controlled by oK (E) via (3.65). Therefore, for both contributions, we
can choose a sequence of integers Kν → +∞, together with decaying constants ςν ↓ 0,
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such that:

∑
k≤Kν

∥∥∥Pk∇x · (m̄<−10�
ν,�ν
x,β φ

>k+10
ν,�ν

)

∥∥∥
L1
x

+

∥∥∥∥∥∥
∑
k≤Kν

Pk(m̄<−10�
ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

)

∥∥∥∥∥∥
L1
x

≤ ςν,

and this yields the decay of slowly growing frequencies for the inner region, as desired.
Note that the cut-off m̄0 has not played any role in the above argument. However, for the
high frequencies k > Kν , having m̄0 will be crucial as we are going to pass by (3.64) as
before, first with:

B :=
∑
k>Kν

Pk∇x · (m̄<−10�
ν,�ν
x,β φ

>k+10
ν,�ν

).

Considering the convolution kernel for ∇x Pk Pk′ , with k = k′ + O(1), as previously, we
estimate:

‖Pk B‖L∞
x ({2−1≤|x |≤2}) � 23k

(1 + 2k)3

∥∥∥m̄<−10�
ν,�ν
x,β φ

>k′+10
ν,�ν

∥∥∥
L1
x

,

noting the fixed positive distance of the physical support of m̄<−10�
ν,�ν
x,β φ

>k+10
ν,�ν

to the

annulus {2−1 ≤ |x | ≤ 2}. Using this, we can bound (3.64) in this case by:
∑
k>Kν

2−k
∥∥∥m̄<−10�

ν,�ν
x,β

∥∥∥
L2
x

∑
k1>k+10

2−(k1−k)
∥∥∥∇xφ

k1
ν,�ν

∥∥∥
L2
x

� 2−KνE,

which is certainly acceptable, given that Kν → +∞. Finally, the last contribution to
treat is when:

B :=
∑
k>Kν

Pk(m̄<−10�
ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

),

in (3.64), and here we proceed in complete analogy to the above, getting the following
estimate:

‖Pk B‖L∞
x ({2−1≤|x |≤2}) � 22k

(1 + 2k)3

∥∥∥m̄<−10�
ν,�ν
x,β · ∇xφ

≤k′+10
ν,�ν

∥∥∥
L1
x

,

by looking at the convolution kernel of Pk Pk′ , with k = k′ + O(1), and the location of
spatial support of m̄<−10�

ν,�ν
x,β · ∇xφ

≤k+10
ν,�ν

with respect to the annulus {2−1 ≤ |x | ≤ 2}.
This in turn, yields the following control for (3.64):

∑
k>Kν

2−k
∥∥∥m̄<−10�

ν,�ν
x,β

∥∥∥
L2
x

∥∥∇xφν,�ν
∥∥
L2
x

� 2−KνE,

which, as noted above, is permissible. That concludes the treatment of the contribution
of the inner region, and therefore we have obtained claim (3.63).

In the end, going back to the physical Littlewood-Paley decomposition (3.53) and
expressing the time derivative ∂t via X and ∂x1 using expression (2.19), we have for any
k ∈ Z:∥∥Pk[(m̄≤Nν − m̄≤nν−1)∇t,xφν](0)

∥∥
L2
x

�
∑
�∈Z

2−|k+�|εν + σν + ιν + o(E) −→ 0,
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where the first sum arises from the low frequencies (3.56) and the regular part involving
spatial derivatives falling on the cut-offs from (3.55) and (3.58), the second term comes
from errors having good time-like control (3.59), the third one arise from treating the
higher-order time like derivative in (3.60), and finally the last term is due to the pertur-
bative Ḃ−1,2∞ estimate of the non-linearity for the wave maps equation at high frequency
(3.61), combined with (3.62) and (3.63).

Lemma 3.8 is proved.

We are now at the concluding stage of the proof of Theorem 1.2, for which, going
back to the weak bubble tree decomposition (3.30), we must show that the energy of the
necksNi,ν is asymptotically vanishing as ν → +∞. Recall that those are provided with
corresponding neck domains, that is the conformally degeneration annuli from (3.31),
so that setting:

φν,xki,ν
(t, x) := φi,ν(λmin,ν t, x

k
i,ν + λmin,νx),

we can apply Lemma 3.8, by (3.32) and (3.28), to write:

∇t,xφν,xki,ν
= ϒν,xki,ν

on [−1, 1] × (B
λ−1
min,ν R

k
i,ν

\B
λ−1
min,νr

k
i,ν
),

where ϒν,xki,ν
is supported on [−1, 1] × (B2λ−1

min,ν R
k
i,ν

\B2−1λ−1
min,νr

k
i,ν
) with

∥∥∥ϒν,xki,ν

∥∥∥
L∞
t (L2

x )[−1,1]
� 1,

and satisfying the decay:

sup
k∈Z

∥∥∥Pkϒν,xki,ν
(0)
∥∥∥
L2
x

−→ 0.

Recalling (3.28), we also have:
∥∥∥�ν,xki,ν

(0)
∥∥∥
L2
x

−→ 0,

where �ν,xki,ν
(t, x) := λmin,ν�i,ν(λmin,ν t, x

k
i,ν + λmin,νx).

together with:

∑
k∈Z

∥∥∥Pk�ν,xki,ν
(0)
∥∥∥
L2
x

� 1,

where �ν,xki,ν
(t, x) := λmin,ν�i,ν(λmin,ν t, x

k
i,ν + λmin,νx).

From there, we can estimate the energy at time t = 0 on a neck region by:

∥∥∥∇t,xφν,xki,ν
(0)
∥∥∥2
L2
x (Bλ−1

min,ν R
k
i,ν

\B
λ
−1
min,ν r

k
i,ν
)
�
∣∣∣∣
∫
R2
ϒν,xki,ν

(0)�ν,xki,ν
(0)dx

∣∣∣∣

+

∣∣∣∣
∫
R2
ϒν,xki,ν

(0)�ν,xki,ν
(0)dx

∣∣∣∣ + o(1),
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which we bound by:

(sup
k∈Z

∥∥∥Pkϒν,xki,ν
(0)
∥∥∥
L2
x

)
∑
k∈Z

∥∥∥Pk�ν,xki,ν
(0)
∥∥∥
L2
x

+
∥∥∥ϒν,xki,ν

(0)
∥∥∥
L2
x

∥∥∥�ν,xki,ν
(0)
∥∥∥
L2
x

+ o(1),

and by the previous estimates this tends to 0 as ν → +∞. Theorem 1.2 is proved.
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