Skip to main content
Log in

Global Completability with Applications to Self-Consistent Quantum Tomography

  • Published:
Communications in Mathematical Physics Aims and scope Submit manuscript

Abstract

Let \({{p}_{1},\ldots, {p}_{N} \in \mathbb{R}^D}\) be unknown vectors and let \({\Omega \subseteq \{1,\ldots,N\}^{2}}\). Assume that the inner products \({{p}_{i}^T {p}_{j}}\) are fixed for all \({(i,j) \in \Omega}\). Do these inner product constraints (up to simultaneous rotation of all vectors) determine \({{p}_{1}, \ldots, {p}_{N}}\) uniquely? Here we derive a necessary and sufficient condition for the uniqueness of \({{p}_{1}, \ldots,{p}_{N}}\) (i.e., global completability) which is applicable to a large class of practically relevant sets \({\Omega}\). Moreover, given \({\Omega}\), we show that the condition for global completability is universal in the sense that for almost all vectors \({{p}_{1}, \ldots,{p}_{N} \in \mathbb{R}^{D}}\) the completability of \({{p}_{1}, \ldots,{p}_{N}}\) only depends on \({\Omega}\) and not on the specific values of \({{p}_{i}^T {p}_{j}}\) for \({(i,j) \in \Omega}\). This work was motivated by practical considerations, namely, matrix factorization techniques and self-consistent quantum tomography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Singer A., Cucuringu M.: Uniqueness of low-rank matrix completion by rigidity theory. SIAM J. Matrix Anal. Appl. 31, 1621–1641 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Boyd S., Vandenberghe L.: Convex optimization. Cambridge university press, Cambridge (2004)

    Book  MATH  Google Scholar 

  3. Euler, L.: Opera postuma, i. Bd. I, S (1862)

  4. Cauchy A.L.: Sur les polygones et polyedres, second mémoire. J. Ecole Polytechnique 9, 87 (1813)

    Google Scholar 

  5. Asimow L., Roth B.: The rigidity of graphs. Trans. Am. Math. Soc. 245, 279–289 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  6. Gluck H.: Geometric topology. Lect. Notes Math. 438, 225–239 (1975)

    Article  MathSciNet  Google Scholar 

  7. Saxe, J.B.: Embeddability of Weighted Graphs in k-Space is Strongly NP-Hard. Department of Computer Science, Carnegie-Mellon University, Pittsburgh (1980)

  8. Connelly R.: Generic global rigidity. Discrete Comput. Geom. 33(4), 549–563 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gortler S.J., Healy A.D., Thurston D.P.: Characterizing generic global rigidity. Am. J. Math. 132(4), 897–939 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Koren Y., Bell R., Volinsky C. et al.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  11. Stark C.: Self-consistent tomography of the state-measurement gram matrix. Phys. Rev. A 89(5), 052109 (2014)

    Article  ADS  Google Scholar 

  12. Merkel S.T., Gambetta J.M., Smolin J.A., Poletto S., Córcoles A.D., Johnson B.R., Ryan C.A., Steffen M.: Self-consistent quantum process tomography. Phys. Rev. A 87(6), 062119 (2013)

    Article  ADS  Google Scholar 

  13. Blume-Kohout, R., Gamble J.K., Nielsen, E., Mizrahi, J., Sterk, J.D., Maunz, P.: Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit. (2013). arXiv preprint arXiv:1310.4492

  14. Laurent M., Varvitsiotis A.: Positive semidefinite matrix completion, universal rigidity and the strong arnold property. Linear Algebra Appl. 452, 292–317 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dym H., Gohberg I.: Extensions of band matrices with band inverses. Linear Algebra Appl. 36, 1–24 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grone R., Johnson C.R., Sá E.M., Wolkowicz H.: Positive definite completions of partial hermitian matrices. Linear Algebra Appl. 58, 109–124 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Paulsen V.I., Power S.C., Smith R.R.: Schur products and matrix completions. J. Funct. Anal. 85(1), 151–178 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tomasi C., Kanade T.: Shape and motion from image streams under orthography: a factorization method. Int. J. Comput. Vis. 9(2), 137–154 (1992)

    Article  Google Scholar 

  19. Lee, D.D., Seung, S.H.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, pp. 556–562 (2001)

  20. Donoho, D., Stodden, V.: When does non-negative matrix factorization give a correct decomposition into parts? In: Advances in Neural Information Processing Systems, page None. (2003)

  21. Laurberg, H., Christensen, M.G., Plumbley, M.D., Hansen, L.K., Jensen, S.H.: heorems on positive data: on the uniqueness of NMF. Comput. Intell. Neurosci. 2008, 764206 (2008). doi:10.1155/2008/764206

  22. Huang K., Sidiropoulos N.D., Swami A.: Non-negative matrix factorization revisited: uniqueness and algorithm for symmetric decomposition. IEEE Trans. Signal Process. 62(1), 211–224 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  23. Pan, W., Doshi-Velez, F.: A characterization of the non-uniqueness of nonnegative matrix factorizations. (2016). arXiv preprint arXiv:1604.00653

  24. Brańczyk A.M., Mahler D.H., Rozema L.A., Darabi A., Steinberg A.M., James DFV: Self-calibrating quantum state tomography. N. J. Phys. 14(8), 085003 (2012)

    Article  Google Scholar 

  25. Mogilevtsev D.: Calibration of single-photon detectors using quantum statistics. Phys. Rev. A 82, 021807 (2010)

    Article  ADS  Google Scholar 

  26. Mogilevtsev D., Řeháček J., Hradil Z.: Relative tomography of an unknown quantum state. Phys. Rev. A 79, 020101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  27. Mogilevtsev D., Řeháček J., Hradil Z.: Self-calibration for self-consistent tomography. N. J. Phys. 14(9), 095001 (2012)

    Article  Google Scholar 

  28. Kimmel S., da Silva M.P., Ryan C.A., Johnson B.R., Ohki T.: Robust extraction of tomographic information via randomized benchmarking. Phys. Rev. X 4, 011050 (2014)

    Google Scholar 

  29. Medford J., Beil J., Taylor J.M., Bartlett S.D., Doherty A.C., Rashba E.I., DiVincenzo D.P., Lu H., Gossard A.C., Marcus C.M.: Self-consistent measurement and state toraphy of an exchange-only spin qubit. Nat. Nanotechnol. 8, 654 (2013)

    Article  ADS  Google Scholar 

  30. Rosset D., Ferretti-Schöbitz R., Bancal J.D., Gisin N., Liang Y.C.: Imperfect measurements settings: implications on quantum state tomography and entanglement witnesses. Phys. Rev. A 86, 062325 (2012)

    Article  ADS  Google Scholar 

  31. Stark, C.J., Harrow, A.W.: Compressibility of positive semidefinite factorizations and quantum models. IEEE Trans. Inf. Theory 62(5), 2867–2880 (2016). arXiv preprint arXiv:1412.7437

  32. Stark, C.: Learning optimal quantum models is NP-hard. (2015). arXiv preprint arXiv:1510.02800

  33. Stark, C.: Simultaneous estimation of dimension, states and measurements: computation of representative density matrices and POVMs. (2012). arXiv:1210.1105

  34. Blume-Kohout R.: Optimal, reliable estimation of quantum states. N. J. Phys. 12(4), 043034 (2010)

    Article  Google Scholar 

  35. Hradil Z.: Quantum-state estimation. Phys. Rev. A 55(3), R1561-R1564 (1997). doi:10.1103/PhysRevA.55.R1561

    Article  ADS  MathSciNet  Google Scholar 

  36. Banaszek K., D’Ariano G.M., Paris M.G.A., Sacchi M.F.: Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304 (1999)

    Article  Google Scholar 

  37. Audenaert K.M.R., Scheel S.: Quantum tomographic reconstruction with error bars: a kalman filter approach. N. J. Phys. 11(2), 023028 (2009)

    Article  Google Scholar 

  38. Gross D., Yi-Kai L., Flammia S.T., Becker S., Eisert J.: Quantum state tomography via compressed sensing. Phys. Rev. Lett. 105, 150401 (2010)

    Article  ADS  Google Scholar 

  39. Flammia S.T., Gross D., Yi-Kai L., Becker S., Eisert J.: Quantum tomography via compressed sensing: Error bounds, sample complexity, and efficient estimators. N. J. Phys. 14, 095022 (2012)

    Article  Google Scholar 

  40. Mayers, D., Yao, A.: Self testing quantum apparatus. (2003). arXiv:quant-ph/0307205

  41. Bardyn C.-E., Liew T.C.H., Massar S., McKague M., Scarani V.: Device-independent state estimation based on Bell’s inequalities. Phys. Rev. A 80, 062327 (2009)

    Article  ADS  Google Scholar 

  42. Pironio S., Acin A., Brunner N., Gisin N., Massar S., Scarani V.: Device-independent quantum key distribution secure against collective attacks. N. J. Phy. 11(4), 045021 (2009)

    Article  Google Scholar 

  43. Magniez, F., Mayers, D., Mosca, M., Ollivier, H.: Self-testing of quantum circuits. In: Automata, Languages and Programming, pp. 72–83. Springer, Berlin (2006)

  44. McKague M., Yang T.H., Scarani V.: Robust self-testing of the singlet. J. Phys. A Math. Theor. 45(45), 455304 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lee, J.M.: Introduction to Smooth Manifolds, Volume 218 of Grad. Texts in Math. Springer, New York (2013)

  46. Gouveia J., Parrilo P.A., Thomas R.R.: Lifts of convex sets and cone factorizations. Math. Oper. Res. 38(2), 248–264 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  47. Fiorini, S., Massar, S., Pokutta, S., Tiwary, H.R., de Wolf R.: Linear vs. semidefinite extended formulations: exponential separation and strong lower bounds. In: Proceedings of the forty-fourth annual ACM symposium on Theory of computing, pp. 95–106. ACM (2012)

  48. Gouveia, J., Parrilo, P.A., Thomas, R.R. Approximate cone factorizations and lifts of polytopes. Math. Program. 151(2), 613–637 (2015). doi:10.1007/s10107-014-0848-z

  49. Fawzi H., Saunderson J., Parrilo P.A.: Equivariant semidefinite lifts and sum-of-squares hierarchies. SIAM J. Optim. 25(4), 2212–2243 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  50. Fawzi, H., Saunderson, J., Parrilo, P.A. Equivariant semidefinite lifts of regular polygons. (2014). arXiv preprint arXiv:1409.4379

  51. Fawzi H., Gouveia J., Parrilo P.A., Robinson R.Z., Thomas R.R.: Positive semidefinite rank. Math. Program. 153(1), 133–177 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  52. Acín A., Brunner N., Gisin N., Massar S., Pironio S., Scarani V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98(23), 230501 (2007)

    Article  ADS  Google Scholar 

  53. Harrigan, N., Rudolph, T., Aaronson, S. Representing probabilistic data via ontological models. (2007)

  54. Wehner S., Christandl M., Christandl M.: Lower bound on the dimension of a quantum system given measured data. Phys. Rev. A 78(6), 062112 (2008)

    Article  ADS  Google Scholar 

  55. Gallego R., Brunner N., Hadley C., Acín A.: Device-independent tests of classical and quantum dimensions. Phys. Rev. Lett. 105(23), 230501 (2010)

    Article  ADS  Google Scholar 

  56. Dall Arno M., Passaro E., Gallego R., Acín A.: Robustness of device-independent dimension witnesses. Phys. Rev. A 86(4), 042312 (2012)

    Article  ADS  Google Scholar 

  57. De las Cuevas, G., Schuch, N., Pérez-García, D., Cirac, J.I. Purifications of multipartite states: limitations and constructive methods. N. J. Phys. 15(12), 123021 (2013)

  58. Navascués M., Pironio S., Acín A.: A convergent hierarchy of semidefinite programs characterizing the set of quantum correlations. N. J. Phys. 10(7), 073013 (2008)

    Article  Google Scholar 

  59. Navascués M., Pironio S., Acín A.: Bounding the set of quantum correlations. Phys. Rev. Lett. 98, 010401 (2007)

    Article  ADS  Google Scholar 

  60. Laurent M., Piovesan T.: Conic approach to quantum graph parameters using linear optimization over the completely positive semidefinite cone. SIAM J. Optim 25(4), 2461–2493 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  61. Stark, C.J.: Methods for self-consistent quantum tomography. PhD thesis, Diss., Eidgenössische Technische Hochschule ETH Zürich, Nr. 21335, 2013 (2013)

  62. Laurent, M.: Sums of squares, moment matrices and optimization over polynomials. In: Putinar, M., Sullivant, S. (eds.) Emerging Applications of Algebraic Geometry, pp 157–270. Springer, Berlin (2009)

  63. Parrilo P.A.: Semidefinite programming relaxations for semialgebraic problems. Math. Program. 96(2), 293–320 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  64. Bochnak, J., Coste, M., Roy, M.-F. Real algebraic geometry, vol. 36. Springer, Berlin (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyril Jakob Stark.

Additional information

Communicated by A. Winter

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stark, C.J. Global Completability with Applications to Self-Consistent Quantum Tomography. Commun. Math. Phys. 348, 1–25 (2016). https://doi.org/10.1007/s00220-016-2760-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00220-016-2760-2

Navigation