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Abstract: Weproveoperator-norm resolvent convergence estimates for one-dimensional
periodic differential operators with rapidly oscillating coefficients in the non-uniformly
elliptic high-contrast setting, which has been out of reach of the existing homogenisation
techniques. Our asymptotic analysis is based on a special representation of the resol-
vent of the operator in terms of the M-matrix of an associated boundary triple (“Krein
resolvent formula”). The resulting asymptotic behaviour is shown to be described, up to
a unitary transformation, by a non-standard version of the Kronig–Penney model on R.

1. Introduction

It has been exploited in the mathematical analysis of periodic composite media, see e.g.
[4,5,32], that they are amenable to the asymptotic analysis with respect to the period
of the composite. The related techniques, forming part of the mathematical theory of
homogenisation, are concerned with the asymptotic behaviour of families of operators
associated with boundary-value problems for differential equations with periodic coef-
ficients:

− div
(

Aε(x/ε)∇u
) − zu = f, f ∈ L2(Rd), ε > 0, z < 0, (1)

where for all ε > 0 the matrix Aε is Q-periodic, Q := [0, 1)d , and may additionally be
required to satisfy the condition of uniform ellipticity:

Aε(y) ≥ ν I, y ∈ Q, (2)

where ν > 0 is the ellipticity constant. The aim of these techniques is to describe an
“effectivemedium”,which represents the family (1) in the limit of vanishing “microstruc-
ture size” ε, so that the corresponding “limit” equation, as ε → 0, has the form

− div
(

Ahom∇u
) − zu = f, (3)

with a constant matrix Ahom > 0.
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A relatively recent area of interest within homogenisation is the behaviour of periodic
media with “high contrast”, see e.g. [17,34,54], where the smallest eigenvalue of the
matrix Aε > 0 in (1) goes to zero as ε → 0, i.e., the condition (2) no longer holds
and hence the differential operators in (1) are not uniformly elliptic. High-contrast com-
posites play a key part in modelling photonic band-gap materials (see e.g. [19,33]) and
media with negative material properties (see e.g. [16,38]).

In addition to their practical importance in modelling advanced materials, high-
contrast composites are a source of new analytical challenges compared to the “classical”
moderate-contrast materials described by (1). It has been well understood that the effec-
tive parameters Ahom in (3) are given by the leading-order term at the zero energy λ = 0
of the energy-quasimomentum dispersion relation λ1 = λε

1(�) = Ahom� · � + O(�3),
� → 0, for the first eigenvalue in the problem

− (∇ + i�
) · Aε

(∇ + i�
)
u = λu, u ∈ L2(Q), � ∈ [

0, 2π
)d

, (4)

with respect to the scaled variable y = x/ε ∈ Q, so that Aε = Aε(y), and the gradient
∇ in (4) is taken with respect to y. The link between the effective properties of the
operator in (1) and the asymptotics of λε

1(�) was first studied in [5] for elliptic and
[53] for parabolic equations. The direct fibre decomposition into problems (4), followed
by a perturbation analysis of its eigenvalue λε

1(�) in each fibre, allows one to obtain
sharp operator-norm resolvent convergence estimates for the problem (1), see [9,53].
The related asymptotic results can be interpreted as a “threshold effect near λ = 0”
(see [9], who coined the term in the context of homogenisation) for the resolvent of the
operator −∇ · Aε∇ in L2(Rn), due to the relation

{−divx
(

Aε(x/ε)∇x u
) − z

}−1 = ε2
{−divy

(
Aε(y)∇yu

) − ε2z
}−1

, (5)

so that the rescaled spectral parameter ε2z goes to zero as ε → 0 for a fixed z. However,
in order for this approach to work in the case of general coefficient matrices Aε, it is
crucial that the sequence {λε

2(�)}ε>0 be separated from zero uniformly in ε and �. Here
{λε

j (�)}∞j=1 is the sequence of all eigenvalues of (4)–(6) for each ε, �, indexed by j in
non-decreasing order. This condition is not satisfied for periodic models of “double-
porosity”, whose typical representative is described by

Aε(y) =
{
1, y ∈ Q1,

ε2, y ∈ Q0,
(6)

where Q0 ∪ Q1 = Q and Q0 �= ∅ satisfies some minimal smoothness requirements.
It is easily seen that in this case λε

j (�) → 0 as ε → 0, for all � ∈ [0, 2π)d , j ∈ N.
Additional non-trivial analysis shows that for l = 0, 2, there are infinitelymany functions
j : (0, 1] → N such that ε−lλε

j (ε)(�) is continuous in ε, �, and tends to a finite non-zero
limit as ε → 0.

This implies, in particular, that no equation of the form (3) describes the behaviour of
(1), (6) correctly in the resolvent sense, i.e., with an operator-norm smallness estimate
for the difference between the resolvent of (1), (6) and the resolvent of (3). These
observations necessitate the development of analytical tools capable of dealing with the
high-contrast problem (1), (6).

In our approach, which we develop in the present paper for the one-dimensional
situation, the operator on a fibre is considered as an extension of a suitably chosen
“minimal” closed symmetric operator with equal finite deficiency indices. The extension
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theory, rooted in the classical work of von Neumann [52] and its further development
by Kreı̆n [39], Višik [51], Birman [7] (commonly known as the Birman–Kreı̆n-Višik
theory), was reformulated in abstract terms in [22,29,36] as the theory of boundary
triples (see a brief exposition below, Sect. 2.2). It relies on an abstract Green formula,
which expresses the sesquilinear form of a maximal (adjoint to a symmetric) operator in
terms of two boundary operators from the original Hilbert space to a “boundary space”.
In our setting the boundary space is finite-dimensional, hence the basic version of the
theory is applicable, whereby both boundary operators are assumed to be surjective, and
the (self-adjoint) extension under consideration is parameterised by a Hermitian matrix,
exactly as in the Birman–Kreı̆n–Višik approach. The main analytic tool in the study of
(proper) extensions of the minimal operator is then the Weyl–Titchmarsh M-function,
which is a generalisation of the classical Weyl–Titchmarsh m-coefficient, see e.g. [50].
We remark that the M-function often plays a central rôle in the spectral analysis of partial
differential equations (PDE), where it is usually referred to as the Dirichlet-to-Neumann
map. The advantages of using the above abstract approach are twofold: firstly, in this
way the spectral analysis of the original problem can be reduced to the analysis of finite-
dimensional matrices that depend analytically on the spectral parameter, and secondly,
the celebrated Kreı̆n formula (see Sect. 3.2), expressing the (generalised) resolvent of
the operator extension considered in terms of the resolvent of a given proper self-adjoint
extension A∞, allows one to use the Glazman splitting procedure [2], where A∞ is a
suitable “split operator”.

Our main result is the asymptotics, in the norm-resolvent sense, of a sequence of
differential operators with periodic rapidly oscillating coefficients with high contrast:

− (
aε

(
x/ε

)
u′)′ − zu = f, f ∈ L2(R), ε > 0, z ∈ C, (7)

where, for all ε > 0, the coefficient aε is 1-periodic and

aε(y) :=
⎧
⎨

⎩

a1, y ∈ [0, l1),
ε2, y ∈ [l1, l1 + l2),
a3, y ∈ [l1 + l2, 1),

(8)

with a1, a3 > 0, and 0 < l1 < l1 + l2 < 1. In a physical context (e.g. elasticity,
porous-medium flow, electromagnetism) this represents a laminar composite medium
of the double-porosity type [3], with [0, l1) and [l1 + l2, 1) referred to as the “stiff”
components and [l1, l1+l2) as the “soft” component of the composite (in terms of the “unit
cell” [0, 1)). It has been noticed in [55] that the spectra of a class of multi-dimensional
versions of (7) have the remarkable property of an infinite set of gaps opening in the
limit of a vanishing period. The corresponding fact for laminar high-contrast media
(equivalently, one-dimensional operators with high contrast) does not follow from the
analysis of [55], and was established separately in [18]. However, neither work goes as
far as to establish the behaviour as ε → 0 of the resolvents of the ε-dependent operators
describing the heterogeneous medium, in the operator-norm sense. As is argued by [17]
in the multi-dimensional case, the resolvent asymptotics is not recovered by the standard
two-scale analysis and requires a uniform asymptotic analysis of all components in the
fibre decomposition of the underlying periodic operator. In the present work we utilise a
version of the Kreı̆n formula, written for a suitable boundary triple, in order to provide
such a uniform asymptotics for (7).

We start by providing auxiliary material leading up to a representation of the resol-
vents of (7) in terms of a family of resolvents of the elements of their fibre decompositions
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A(t)
ε , t ∈ [0, 2πε−1). We develop a new approach to the analysis of this family, by con-

sidering it as defined on a particular finite compact metric graph, thus bridging a gap
between the problem of homogenisation of the family (7)–(8) and the seemingly unre-
lated subject of spectral analysis of quantum graphs (see e.g. [6] and references therein).
This includes (Sect. 2) a description of the Gelfand transform, the boundary triple, and
the Green formula associated with (7), as well as a derivation of the corresponding M-
matrix and a discussion of its invertibility properties. We also carry out (Sect. 3) a useful
rescaling of the problem on the fibre, and recall the Kreı̆n resolvent formula, which is
key to the analysis of the subsequent sections.

In Sect. 4 we show that the resolvents of the operators A(t)
ε , t ∈ [0, 2πε−1), in

the fibre decomposition of (7) are close, in the operator-norm sense, to the family of
generalised resolvents

(
Ã(t)

ε − z
)−1 associated with a modified metric graph subject to

suitable vertex conditions. The estimate between the resolvents of the two families is
uniform with respect to the values of the “spectral parameter” z in any compact K ⊂ C

outside a fixed neighbourhood of a set S:

z ∈ K : dist(z, S) ≥ ρ > 0, (9)

where S is the union of the limit spectrum for the family A(t)
ε , described by (26) (cf.

[18]), and the spectrumof theDirichlet boundary-value problemon the “soft” component
[l1, l1+l2). Following the sameapproach, it is possible to extend the results (at the expense
of a worse estimate for the error term) to the transitional regime when zεω, ω < 2, tends
to a positive constant as ε → 0. As for the “high-frequency” regime of ω = 2 (cf.
[8,20] for the “moderate-contrast” high-frequency case), the rationale of Sect. 4 is still
applicable and leads to a different form of the result, which is outside the scope of the
present paper.

In Sect. 5 we carry out the uniform asymptotic analysis for the “intermediate” gen-
eralised resolvents of Ã(t)

ε in the “finite-frequency” setting, when the value of z is fixed
according to (9) and ε → 0. We prove our main result (Corollary 5.5): for a suitable
family A(τ )

hom, τ := εt ∈ [0, 2π), the bound
∥
∥(

A(t)
ε − z

)−1 − 
∗
ε Peff

(
�(t))∗(

A(τ )
hom − z

)−1
�(t) Peff
ε

∥
∥ ≤ Cε2, C > 0, (10)

holds for all ε ∈ (0, 1], t ∈ [0, 2πε−1), and z satisfying (9), which yields, in particular,
the spectral convergence result of [18]. We remark that in contrast to the result of [9,53]
(“classical” homogenisation) and [17] (multi-dimensional double porosity), where the
error is estimated as O(ε), in the case studied in the present paper it admits a higher order
estimate. In the estimate (10), the unitary operators
ε,�(t), the projection operator Peff ,
and the “homogenised” operator family A(τ )

hom are given explicitly, see formula (29) and
Definitions 5.1, 5.2.

Finally, in Sect. 6 we show that the asymptotic behaviour given by the family A(τ )
hom

is equivalently represented by a Schrödinger operator on R perturbed by a periodic
dipole-type (“δ′-type”) potential. This suggests an interpretation of (7) as a model of
a “metamaterial”, where the high contrast between components in the composite has
an effective Kronig–Penney formulation with artificial magnetism. The Kronig–Penney
type effective description also suggests a strong connection between the problem (7)–(8)
and “photonic band-gap materials”: as the argument of Sect. 6.4 shows, the asymptotic
result of the well-known work [27], on z-dependent δ-type interactions in periodic pho-
tonic crystals (albeit in a reduced Maxwell setting), is equivalent to the presence of a
δ′-type interaction potential of the kind we obtain.
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In what follows, we use interchangeably the notation z and k2 for the spectral para-
meter, as well as

√
z and k for the square root of it, where we always choose the branch

so that arg
√

z ∈ [0, π). For operators A, B in a Hilbert space H, whenever we say that
Au = Bu + O(ε2), u ∈ H, in the operator-norm sense as ε → 0, we imply the existence
of C > 0 such that ‖Au − Bu‖ ≤ Cε2‖u‖ for all u ∈ H and ε in some neighbourhood
of zero.

In conclusion, we mention some papers that considered the norm-resolvent conver-
gence for operatorswith periodic rapidly oscillating coefficients: in [10,30,35,47,56,58]
the authors established sharp estimates for the rates of convergence in the sense of var-
ious operator norms. Norm-resolvent convergence was established also for certain per-
turbations in the boundary homogenisation: in [11,12], where problems with frequent
alternation (periodic and non-periodic) of boundary conditions were treated, in [15],
[46, Ch. III, Sec. 4], where the norm-resolvent convergence for problems with a fast
periodically oscillating boundary was proved, and in [13,14], where elliptic operators
in perforated domains were studied.

2. Gelfand Transform, Boundary Triple, and M-Matrix

2.1. Gelfand transform. Consider a graph G inRd , invariant with respect to translations
through elements of Zd . For the one-dimensional Hausdorff measure dH1 on G, we
consider the space L2(G) of functions on G that are square integrable with respect to
dH1. We use the notation Q := G∩[0, 1)d and Q′ := [0, 2π)d . The Gelfand transform,
see [28], of a function U ∈ L2(G) is the element Û = Û (y, �) of L2(Q × Q′) defined
by the formula

Û (y, �) = (2π)−d/2
∑

n∈Zd

U (y + n) exp
(−i� · (y + n)

)
, y ∈ Q, � ∈ Q′. (11)

The Gelfand transform is a unitary operator between L2(G) and L2(Q × Q′), where the
inverse transform is expressed by the formula

U (y) = (2π)−d/2
∫

Q′
Û (y, �) exp(i� · y)d�, y ∈ Q. (12)

For the scaled version of the above transform, for u ∈ L2(εG) we set

û(x, t) =
(

ε

2π

)d/2 ∑

n∈Zd

u(x + εn) exp
(−it · (x + εn)

)
, x ∈ εQ, t ∈ ε−1Q′, (13)

which is the result of applying the transform (11) to the function U (y) = εd/2u(εy) and
setting y = x/ε. The inverse of the transform (13) is given by

u(x) =
(

ε

2π

)d/2 ∫

ε−1Q′
û(x, t) exp(it · x)dt, x ∈ εG. (14)

In the rest of this article we use the above definitions with d = 1 and consider the case
of a connected graph G, so that Q = [0, 1).
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Applying the above transform to the equation (7) yields the direct fibre decomposition
(up to unitary equivalence)

− d

dx

(
aε(·/ε) d

dx

)
=

∫

⊕

(
1

i

d

dx
+ t

)
aε

(
1

i

d

dx
+ t

)
dt, (15)

where
∫
⊕ denotes the direct integral with respect to t ∈ [

0, 2πε−1
)
, and all operators

are defined in a standard way, e.g. by the corresponding sesquilinear forms.

2.2. Boundary triples. Our approach is based on the theory of boundary triples
[22,29,36,37], applied to the class of operators introduced above. We next recall two
fundamental concepts of this theory, namely the boundary triple and the generalised
Weyl–Titchmarsh matrix function. Assume that Amin is a symmetric densely defined
operator with equal deficiency indices in a Hilbert space H , and set Amax := A∗

min.

Definition 2.1 ([22,29,36]). Let 0, 1 be linear mappings of dom(Amax) to a separable
Hilbert spaceH. The triple (H, 0, 1) is called a boundary triple for the operator Amax
if:

1. For all u, v ∈ dom(Amax) one has

〈Amaxu, v〉H − 〈u, Amaxv〉H = 〈1u, 0v〉H − 〈0u, 1v〉H. (16)

2. Themappingu �−→ (0u;1u), f ∈ dom(Amax) is surjective, i.e., for allY0, Y1 ∈ H
there exists an element y ∈ dom(Amax) such that 0y = Y0, 1y = Y1.

A non-trivial extension AB of the operator Amin such that Amin ⊂ AB ⊂ Amax
is called almost solvable if there exists a boundary triple (H, 0, 1) for Amax and a
bounded linear operator B defined onH such that for every u ∈ dom(Amax)

u ∈ dom(AB) if and only if 1u = B0u.

The operator-valued function M = M(z), defined by

M(z)0uz = 1uz, uz ∈ ker(Amax − z), z ∈ C+ ∪ C−,

is called the Weyl–Titchmarsh M-function of the operator Amax with respect to the
corresponding boundary triple.

The property of the M-function that makes it our tool of choice for the analysis of
high-contrast periodic problems is formulated as follows ([22,48]): provided that AB is
an almost solvable extension of a simple1 symmetric operator Amin, one has z0 ∈ ρ(AB)

if and only if
(
B − M(z)

)−1 admits analytic continuation into z0. Henceforth, we shall
refer to points where the latter condition fails as “zeros” of B − M(z).

1 In other words, there exists no reducing subspace H0 such that the restriction Amin|H0 is a selfadjoint
operator in H0.
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2.3. The triple and the Green formula. For all ε > 0 and t ∈ [0, 2πε−1), we study
the operators A(t)

ε obtained by applying Gelfand transform to the operator (7), see (15).
These are defined by the differential expressions

a j

(
1

i

d

dx
+ t

)2

, j = 1, 2, 3, a2 = ε2, (17)

on the orthogonal sum Hε := L2(0, �1) ⊕ L2(0, �2) ⊕ L2(0, �3), where � j := εl j ,
j = 1, 2, 3, so that �1 + �2 + �3 = ε. Here l1 and l2 are the same as in (8), whereas
l3 := 1 − l1 − l2. The domain of the operator is the linear set in ⊕3

j=1W 2,2(0, � j ) of

vector functions u = (u1, u2, u3)
� such that

u1(�1) = u2(0), u2(�2) = u3(0), u3(�3) = u1(0),

∂(t)u1|�1 = ∂(t)u2|0, ∂(t)u2|�2 = ∂(t)u3|0, ∂(t)u3|�3 = ∂(t)u1|0.
Here

∂(t)u := a

(
du

dx
+ itu

)
, (18)

where a stands for a1, a3, or ε2, depending on the interval where the derivative is taken,
see (8). Further, we define a normal derivative at the endpoints of each interval [0, � j ],
j = 1, 2, 3, in the direction towards the interior of the interval:

∂(t)
n u(x) :=

{
∂(t)u(x), if x = 0,
−∂(t)u(x), if x = � j .

(19)

The described operator can be viewed as defined by the form
∫ ε

0

∣
∣∂(t)u

∣
∣2dx

considered on its natural domain.
By virtue of the fact that A(t)

ε is a family of problems on an interval viewed as a
“cycle”, where the end-points are identified with each other, it proves convenient to
exploit the toolbox of the theory of differential operators on metric graphs (“quantum
graphs”), which we introduce next. In particular, in our treatment of the family A(t)

ε ,
we build on a recent development of the related theory in [24], see also references
therein, concerning the use of the M-function machinery in the study of the inverse
spectral problem for quantum graphs. Albeit not a familiar tool in homogenisation,
the terminology and rationale of the theory of quantum graphs proves highly useful in
addressing the behaviour of the related operator families.

With the above idea in mind, we view A(t)
ε as a second-order differential operator on

a metric graph Gε, which in our case is a simple cycle with three vertices, and rewrite
the matching conditions in the following way. First, we identify the left endpoint of the
interval [0, � j ] with the right endpoint of the interval [0, � j−1], where for j = 1 we set
j −1 = 3. This yields three equivalence classes of the edge endpoints, which we denote
by Vj , j = 1, 2, 3, while the interface (“matching”) conditions take the form:

∀ j u is continuous at Vj ,
∑

x∈Vj

∂(t)
n u(x) = 0.
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We thus arrive at a “quantum graph” with an associated weighted magnetic Laplacian2,
where all vertices are of the “δ-type”, using the terminology of [23,25], with zero cou-
pling constant at each vertex. In order to facilitate notation, we shall sometimes also
denote by xm , m = 1, 2, ..., 6, the endpoints of the intervals (graph edges) ẽ j := [0, � j ],
j = 1, 2, 3, where the odd indices m = 1, 3, 5, correspond to the left end-points of
the corresponding intervals, and the even indices m = 2, 4, 6, correspond to their right
end-points, respectively.

In the spectral analysis of the above operator we use the boundary triples approach
extensively. First, we define a “maximal” operator (cf. [48]) Amax in the space Hε, by
the same differential expression as above, its domain being ⊕ j W 2,2(0, � j ), subject to
the condition of continuity at all vertices. We remark that the choice of the operator
Amax is certainly non-unique, and for our choice one has Amax ⊂ Amax,0, where Amax,0
is defined on the whole of ⊕ j W 2,2(0, � j ) and is adjoint to Amin,0 defined on W 2,2-
functions that vanish together with their first derivatives at the endpoints of all intervals
ẽ j , j = 1, 2, 3. Yet our choice turns out to be suitable for our purposes, as it leads to an
“effective” boundary triple, using the terminology of [24]. We set the adjoint to Amax
to be the “minimal” densely defined symmetric operator Amin, using the terminology of
[48]. We choose the boundary triple as follows: the boundary space isH = C

3, and the
boundary operators are

(0u) j := u(Vj ), (1u) j :=
∑

x∈Vj

∂(t)
n u(x), j = 1, 2, 3.

The Green identity (16) holds by integration by parts:

〈Amaxu, v〉 − 〈u, Amaxv〉 =
3∑

j=1

[
−u(x2 j )∂

(t)v̄(x2 j ) + u(x2 j−1)∂
(t)v̄(x2 j−1)

+∂(t)u(x2 j )v̄(x2 j ) − ∂(t)u(x2 j−1)v̄(x2 j−1)
]

=
6∑

k=1

[
∂(t)

n u(xk)v̄(xk) − u(xk)∂
(t)
n v̄(xk)

]
.

Rearranging the sum in the last expression yields

〈Amaxu, v〉 − 〈u, Amaxv〉 =
3∑

j=1

( ∑

k: xk∈Vj

∂(t)
n u(xk)v̄(x j ) −

∑

k: xk∈Vj

u(x j )∂
(t)
n v̄(xk)

)

= 〈1u, 0v〉C3 − 〈0u, 1v〉C3 ,

as required.

2.4. Datta–Das Sarma conditions. In what follows, we study second-order differential
operators onmetric graphs with matching conditions more general than those of δ−type,
introduced above, namely, with the so-calledweighted, or “Datta–Das Sarma”,matching

2 The definition and well-known basic properties of the Laplacian on a quantum graph perturbed by a
magnetic field are discussed in e.g. [42], see also references therein.
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conditions, see [21,31,45]. In the case of differential expression (17) on the graph Gε,
the corresponding modification is described as follows.

Assume that some endpoints xm are assigned weights wm such that either wm ∈ R

or wm = exp(iθm), θm ∈ R. Without loss of generality, we set wm = 1 for all remaining
endpoints xm . Then the formulae at the end of Sect. 2.3 stand, if one modifies the
definition of the domain of Amax and the definition of boundary operators 

(1)
0 , 

(1)
1 , as

follows. The domain of the new operator Amax consists of all W 2,2-functions u such that
wlu(xl) = wku(xk) for all xk, xl ∈ Vj , and

(


(1)
0 u

)
j := wku(xk), xk ∈ Vj ,

(


(1)
1 u

)
j :=

∑

xk∈Vj

∂̂ (t)
n u(xk), j = 1, 2, 3, (20)

where

∂̂ (t)
n u(xk) := wk

−1∂(t)
n u(xk), k = 1, 2, . . . , 6.

Introducing the weights described above allows for the treatment of graph operators
withmore generalmatching conditions than the basic δ-type conditions. In particular, the
analysis is no longer limited to domains consisting of functions that are either continuous
or have continuous co-normal derivatives.

In what follows, it is crucial that we can consider matching conditions that no longer
have zero coupling constants, or equivalently in terms of the boundary operators intro-
duced above, that are no longer described as 1u = 0 on the domain of Amax. We
parameterise these general matching conditions by a matrix B, cf. Definition 2.1. For
each operator and boundary triple considered, we attach a superscript to the related
matrices B and M , so that the matrices with the same superscript always pertain to the
same operator and the same triple.

2.5. M-matrix. In order to proceed with the spectral analysis of the operator family
A(t)

ε introduced above, we construct its M-matrix with respect to the boundary triple
described in Sect. 2.3. On all edges of the graph we deal with a differential equation of
the form

− a

(
d

dx
+ it

)2

u = k2u, (21)

with a suitable value of the coefficient a = a j > 0, j = 1, 2, 3, where a2 = ε2. For any
solution u of the equation (21) on the interval [0, l] one has

u = Ae−it x exp

(
−i

k√
a

x

)
+ Be−it x exp

(
i

k√
a

x

)
(22)

with some A, B ∈ C. The solution u such that u(0) = 1, u(l) = 0, corresponds to the
values

A =
{
2i sin

(
k√
a

l

)}−1

exp

(
i

k√
a

l

)
, B = −

{
2i sin

(
k√
a

l

)}−1

exp

(
−i

k√
a

l

)
.

Consider a vertex ofGε, such that one of its adjacent edges is represented by the above
interval [0, l] that “starts” at the vertex, i.e. the vertex is represented by the boundary
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point 0. Then the contribution at the vertex to the value of the boundary operator 
(1)
1

(see Eq. 20) calculated for the solution (22), is given by

∂(t)
n u(x)

∣
∣∣
x=0

= A

{
a

(
−it − i

k√
a

)
+ ita

}
e−it x exp

(
−i

k√
a

x

)∣∣
∣∣
x=0

+B

{
a

(
−it + i

k√
a

)
+ ita

}
e−it x exp

(
i

k√
a

x

)∣∣∣
∣
x=0

= −Aik
√

ae−it x exp

(
−i

k√
a

x

)∣∣∣∣
x=0

+ Bik
√

ae−it x exp

(
i

k√
a

x

)∣∣∣∣
x=0

= −k
√

a cot

(
k√
a

l

)
. (23)

A similar contribution of the boundary operator 
(1)
1 for the case of an edge that “ter-

minates” at the vertex, i.e. the vertex is represented by the boundary point l is given
by

∂(t)
n u(x)

∣∣
∣
x=l

= A

{
a

(
it

k√
a

)
− ita

}
e−it x exp

(
−i

k√
a

x

)∣∣
∣∣
x=l

+B

{
a

(
it − i

k√
a

)
− ita

}
e−it x exp

(
i

k√
a

x

)∣∣∣∣
x=l

= Aik
√

ae−it x exp

(
−i

k√
a

x

)∣
∣∣∣
x=l

+ Bik
√

ae−it x exp

(
i

k√
a

x

)∣
∣∣∣
x=l

= k
√

ae−itl csc

(
k√
a

l

)
.

Therefore, the following explicit formula for the M-matrix holds:

M (1)
ε (z) =

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎝

− ∑

j=1,3

√
a j k cot

k� j√
a j

√
a1ei�1t k csc

k�1√
a1

√
a3e−i�3t k csc

k�3√
a3

√
a1e−i�1t k csc

k�1√
a1

− ∑

j=1,2

√
a j k cot

k� j√
a j

√
a2ei�2t k csc

k�2√
a2

√
a3ei�3t k csc

k�3√
a3

√
a2e−i�2t k csc

k�2√
a2

− ∑

j=2,3

√
a j k cot

k� j√
a j

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎠

.

(24)

2.6. Zeros of the M-matrix and spectrum. Putting the discussion about simplicity of
Amin aside for a moment, consider the set of “zeros” of M (1)

ε , which we, as mentioned
above, define as those points z at which M (1)

ε (z) has a zero eigenvalue.

Proposition 2.2. The determinant of M (1)
ε (z) admits the following asymptotic formula

as ε → 0 for all z ≡ k2 ∈ K , where K ⊂ C is a compact:

det M (1)
ε (z) = (l1l3ε)

−1a1a3k
(
2 csc kl2 cos εt + k(l1 + l3) − 2 cot kl2

)
+ O(ε). (25)
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Proof. We substitute � j = εl j , a2 = ε2 into (24) and expand trigonometric functions
into power series wherever possible. Note, that since t is not bounded independently of ε
(indeed, t spans the interval

[
0, 2πε−1

)
, which grows as ε → 0), one cannot use power

expansions for exponentials. As a result, we obtain the following formula:

M (1)
ε (z) =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

−1

ε

(
a1
l1

+
a3
l3

)
+
1

3
ε

(
l1k2 + l3k2

) a1
εl1

eiεtl1 +
1

6
eiεtl1εl1k2

a1
εl1

e−iεtl1 +
1

6
e−iεtl1εl1k2 − a1

εl1
+ ε

(
k2l1
3

− k cot (kl2)

)

a3
εl3

eiεtl3 +
1

6
eiεtl3εl3k2 e−iεtl2kε csc (kl2)

a3
εl3

e−iεtl3 +
1

6
e−iεtl3εl3k2

eiεtl2kε csc (kl2)

− a3
εl3

+ ε

(
k2l3
3

− k cot (kl2)

)

⎞

⎟⎟
⎟⎟
⎠

+ O
(
ε3

)
,

as ε → 0, and (25) follows. ��
The spectrum of the operator A(t)

ε is a union of the set Sε
M of points z into which

the inverse of M (1)
ε can not be analytically continued (zeroes of M (1)

ε ) and the set Smin
of eigenvalues of the reducing self-adjoint “part” of the symmetric minimal operator
Amin = A∗

max, which are “invisible” to the M-matrix, as discussed in e.g. [22]. The latter
appear whenever the operator Amin is not simple, cf. Sect. 2.2 above. A straightforward
argument, see e.g. [23], demonstrates that in our case Smin coincides with the set of
eigenvalues of the symmetric operator Amin. In our setting, the named operator is defined
by the same differential expression as Amax on functions u ∈ dom(Amax) subject to the
conditions 0u = 1u = 0.

Proposition 2.2 immediately implies that for all compact K ⊂ C, the set Sε
M ∩ K

converges as ε → 0 to the set of solutions k2 ∈ K to

2 cos τ + k(l1 + l3) sin kl2 − 2 cos kl2 = 0, τ = εt ∈ [0, 2π), (26)

in line with the result of [18]. Notice that for each ε, t , the set of poles of M (1)
ε , where

one needs to check additionally whether M (1)
ε has a vanishing eigenvalue, coincides with

the set of zeroes of sin kl2, at which the determinant (25) is either regular or has a pole.
It is regular at a given point in this set if and only if one has | cos εt | = 1 at the same
time (i.e. t = 0 or t = π/ε), which immediately implies that exactly one eigenvalue of
M (1)

ε vanishes for such k, ε, t . Clearly, these values of k, ε, t also satisfy (26).
In the remainder of this section, motivated by the above calculation, we give an

example of an operator family that is asymptotically isospectral (as ε → 0) but is not
resolvent-close to the family A(t)

ε . For all z ∈ R+, define the operator family Ǎ(τ̌ )(z) by
the differential expression

(
1

i

d

dx
+ τ̌

)2

, τ̌ ∈ [
0, 2πl−1

2

)
,

on the interval [0, l2] with the following z-dependent conditions:

u(0) = u(l2), ∂(τ̌ )
n u

∣∣
0 + ∂(τ̌ )

n u
∣∣
l2

= −z(l1 + l3)u(0). (27)
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Here, notation analogous to (18)–(19) is used:

∂(τ)u := du

dx
+ iτu, ∂(τ)

n u(x) :=
{

∂(τ)u(x), if x = 0,
−∂(τ)u(x), if x = l2,

τ ∈ R, (28)

with τ = τ̌ . We remark that Ǎ(τ̌ )(z) can be treated as an operator pencil, admitting the
form of a differential operator with an energy-dependent perturbation that is a Dirac
delta-function multiplied by a spectral parameter, see [25,41] and Sect. 7. It is checked
directly that the set of z = k2 such that k is a solution to (26) coincides with the set
of poles of the resolvent3

(
Ǎ(τ̌ )(z) − z

)−1. Indeed, consider a cycle of two vertices

connected by two edges of lengths ľ1, ľ2, such that ľ1 + ľ2 = l2. Proceeding as above
yields the following M-matrix for the operator Ǎmax on the domain of W 2,2-functions
that are continuous on the cycle:

M̌ (τ̌ )(z) = k

⎛

⎜⎜⎜
⎝

− cot kľ1 − cot kľ2
eiτ̌ ľ1

sin kľ1
+

e−iτ̌ ľ2

sin kľ2
e−iτ̌ ľ1

sin kľ1
+

eiτ̌ ľ2

sin kľ2
− cot kľ1 − cot kľ2

⎞

⎟⎟⎟
⎠

.

The requirement that at one of the vertices, say V1, one has the energy-dependent match-
ing condition (27), leads to the equation

det
(
M̌ (τ̌ )(z) − B̌(z)

) = 0, B̌(z) := diag
{−(l1 + l3)z, 0

}
,

which by a straightforward manipulation is reduced to (26), with τ̌ = τ/ l2.
The above argument shows that (the “visible” part of) the spectra of the family

A(τ/ε)
ε converge, as ε → 0, to the set of singularities of the generalised resolvent(
Ǎ(τ/ l2)(z)−z

)−1, which suggests that Ǎ(τ/ l2)(z) is the resolvent limit of the family A(t)
ε

in the operator-norm sense. However, as we demonstrate below (see Theorem 5.4 and
Remark 5.6), this is false for

(
Ǎ(τ/ l2)(z) − z

)−1 and all its unitary transformations, and
a closely related self-adjoint operator, albeit in a larger space, has the desired property.

3. Preliminary Observations

3.1. Auxiliary re-scaling in the soft component. Motivatedby the above result on spectral
convergence, we apply to the initial operator family A(t)

ε a unitary transformation that
rescales the soft component interval [0, εl2] to size of order one while leaving the stiff
component intact. The unitary image of A(t)

ε under this transformation is shown to have
the same M-matrix as the operator A(t)

ε , after an appropriatemodification of the boundary
triple. This modification is done by passing from the (Kirchhoff) δ-type coupling to a
Datta–Das Sarma coupling at the endpoints of the interval [0, l2]. To this end,we consider
the unitary dilation Fε : L2(0, εl2) → L2(0, l2), given by (Fεu)(x) := √

εu(εx). The
operator


ε :=
⎛

⎝
I 0 0
0 Fε 0
0 0 I

⎞

⎠ (29)

3 Note that we evaluate the resolvent at the point k2, which determines the domain of the operator. The
object thus defined is therefore a generalised resolvent, cf. Sect. 3.2 below.
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is a unitary transform of ⊕ j L2(0, εl j ) to the space H := L2(0, εl1) ⊕ L2(0, l2) ⊕
L2(0, εl3). We denote byG the graphGε to which the above rescaling has been applied.
Clearly, the matching conditions at the vertex common to [0, εl1] and [0, εl3] are not
affected. As for the matching conditions at the remaining vertices V2 and V3 (see Fig. 1a
on p.456 below), the following calculation applies. First, notice that the differential
expression on the “developed” weak component

Fε

(
ε

i

d

dx
+ εt

)2

F∗
ε u =

(
1

i

d

dx
+ εt

)2

u (30)

remains essentially the same, with the symbol of the differential part of the operator
losing the coefficient ε. As for the endpoints of the dilated soft component, they acquire
Datta–Das Sarma weights 1/

√
ε. This is immediately obvious for the values of the

function under the unitary transformation Fε, whereas for ∂(t)u one has:

∂(t)u = ε2
1

ε3/2
(Fεu)′ + iε2t

1√
ε
(Fεu) = √

ε
(
(Fεu)′ + iεt (Fεu)

) = √
ε∂(τ)(Fεu),

where τ = εt and the notation (28) is used.
In line with the discussion of Sect. 2.4, the boundary triple for the rescaled operator

is chosen as follows: both endpoints of the interval [0, l2] are assigned the weight wm =
1/

√
ε, whereas wm = 1 for all remaining endpoints xm . The domain of Amax consists

of all W 2,2-functions u such that wlu(xl) = wku(xk) for all xl , xk ∈ Vj for each vertex
Vj , j = 1, 2, 3, and

(


(2)
0 u

)
j := wku(xk), xk ∈ Vj ,

(


(2)
1 u

)
j :=

∑

xk∈Vj

∂̂σ (wk )
n u(xk), j = 1, 2, 3,

where (cf. (18)–(19), (28))

∂̂σ (wk )
n u(xk) := wk

−1∂σ(wk )
n u(xk),

σ (wk) :=
{

(t), if wk = 1,
(τ ), if wk = 1/

√
ε,

k = 1, 2, . . . , 6.

Remark 3.1. The formula (30) suggests that after the unitary rescaling
ε , the differential
expression that defines the operator loses its dependence on the parameter ε on the soft
component. This becomes obvious after the substitution τ = εt in (30). Henceforth, we
use τ and εt interchangeably: τ in the objects pertaining to the soft component, and εt in
those pertaining to the stiff component, as in the latter case one cannot drop the explicit
dependence on ε.

The claim concerning the form of the M-matrix follows. Indeed, when obtaining its
expression one constructs for any given vertex V the solution uz ∈ ker(Amax − z) such
that this solution equals unity at the vertex V and zero at any other vertex (cf. Sect. 2.3
above). Such solutions are constructed independently on any edge emanating from the
vertex V . If this edge is the edge [0, l2], the corresponding solution acquires the factor√

ε compared to the corresponding solution on the edge [0, εl2]. The column of the
M-matrix corresponding to the vertex V is then obtained by evaluating either ∂

(t)
n uz or√

ε ∂
(τ)
n uz , which yields yet another multiplication by

√
ε of the normal derivatives at

both endpoints of [0, l2], where we use the fact that Datta–Das Sarma weights at the two
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endpoints are equal. As a result, we obtain the following expression for the M-matrix
of the unitary image of the operator A(t)

ε , cf. (24):

M (2)
ε (z)=

⎛

⎜
⎜⎜⎜⎜
⎜⎜
⎝

− ∑
j=1,3

√
a j k cot

kεl j√
a j

√
a1eiεl1t k csc

kεl1√
a1

√
a3e−il3εt k csc

kεl3√
a3

√
a1e−iεl1t k csc

kεl1√
a1

−√
a1k cot

kεl1√
a1

− εk cot kl2 εeiεl2 t k csc kl2

√
a3eiεl3t k csc

kεl3√
a3

εe−iεl2t k csc kl2 −√
a3k cot

kεl3√
a3

− εk cot kl2

⎞

⎟
⎟⎟⎟⎟
⎟⎟
⎠

.

(31)

3.2. Kreı̆n resolvent formula. One of the cornerstones of our analysis is the celebrated
Kreı̆n formula, which allows to relate the resolvent of AB , see Sect. 2.2, to the resolvent
of a self-adjoint operator A∞ defined as the restriction of the maximal operator Amax to
the set

dom(A∞) = {
u ∈ dom(Amax)| 0u = 0

}
.

(We follow [48] in using the notation A∞, justified by the fact that in the language of
triples this extension formally corresponds to AB with B = ∞.)

In particular, we will find it necessary to consider not only proper operator extensions
AB of the symmetric operator Amin which are defined on domains

dom(AB) = {
u ∈ dom(Amax)| 1u = B0u

}

parameterised by bounded inH operators B, but also those for which the parameterising
operator B depends on the spectral parameter z. This amounts to considering spec-
tral boundary-value problems where the spectral parameter is present not only in the
differential equation but also in the boundary conditions:

Amaxu − zu = f, u ∈ dom(Amax), 1u = B(z)0u. (32)

The solution operator R(z) for a boundary-value problem of this type is known [49] to
be a generalised resolvent in the case when −B(z) is an R-function: if B(z) is analytic
in C+ ∪ C− with �z�B(z) ≤ 0, then

R(z) = PH (AH − z)−1
∣∣

H , (33)

whereH is a Hilbert space such that H ⊂ H, the operator PH is the orthogonal projection
of H onto H , and AH is a self-adjoint in H out-of-space extension of the operator Amin.

On the other hand, for any fixed z the operator R(z) coincides with the resolvent
(evaluated at the point z) of a closed linear operator that is a proper extension of Amin
with the z-dependent domain given in (32). It is for this reason that in what follows we
preserve the notation (AB − z)−1 for the generalised resolvent of AB when B = B(z).

The Kreı̆n formula suitable for treatment of such problems was obtained in [22]. For
the sake of completeness we include a short proof of this result.

Proposition 3.2 (Version of the Kreı̆n formula of [22]). Assume that {H, 0, 1} is a
boundary triple for the operator Amax. Then for the (generalised) resolvent (AB − z)−1,
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where B = B(z) is a bounded operator in H for z ∈ C+ ∪ C−, one has, for all
z ∈ ρ(AB) ∩ ρ(A∞):

(AB − z)−1 = (A∞ − z)−1 + γ (z)
(
B(z) − M(z)

)−1
γ ∗(z̄)

= (A∞ − z)−1 + γ (z)
(
B(z) − M(z)

)−1
1(A∞ − z)−1, (34)

where M(z) is the M-function of Amax with respect to the boundary triple {H, 0, 1}
and γ (z) is the solution operator

γ (z) = (
0|ker (Amax−z)

)−1
.

Proof. For any f ∈ H , one clearly has

uz := (AB − z)−1 f − (A∞ − z)−1 f ∈ ker (Amax − z) =: Nz (35)

Setting u := (AB − z)−1 f and using the explicit description of the domain of A∞
together with the equality [22] γ ∗(z̄) = 1(A∞ − z)−1, one has:

1u = 1uz + 1(A∞ − z)−1 f = 1uz + γ ∗(z̄) f, 0u = 0uz,

and, since

1u = B(z)0u,

one immediately arrives at the equality

1uz + γ ∗(z̄) f = B(z)0uz .

On the other hand, since uz ∈ Nz one has 1uz = M(z)0uz , which yields

(
B(z) − M(z)

)
0uz = γ ∗(z̄) f,

and hence

0uz = (
B(z) − M(z)

)−1
γ ∗(z̄) f.

Since 0 is invertible [22] on Nz provided that z ∈ ρ(A∞), and writing (0|Nz )
−1 =

γ (z), this leads to

uz = γ (z)
(
B(z) − M(z)

)−1
γ ∗(z̄) f,

which together with (35) completes the proof. ��



456 K. D. Cherednichenko, A. V. Kiselev

4. Comparison to the “Intermediate” Generalised Resolvents
(
Ã

(t)
ε − z

)−1

We shall now consider an operator family Ã(t)
ε that is defined by the same differential

expression as
ε A(t)
ε 
∗

ε and on the sameHilbert space H but is different from
ε A(t)
ε 
∗

ε

as a graph Hamiltonian: it is defined by a topologically different underlyingmetric graph
G̃ in the terminology of the spectral theory of quantum graphs. The graph G̃ has two
components that correspond to the “soft” and “stiff” components of the original graph
G. These are decoupled but for a non-local condition of the order

√
ε intertwining the

two. This family turns out to be a good approximation, up to a rank-one operator, for the
original operator family A(t)

ε , while being at the same time a convenient intermediate
operator for the final step of our plan, the passage to the homogenised operator. From
now on, we shall assume that a1 = a3 ≡ a for the sake of brevity. Note that the
domain of Ã(t)

ε depends on the spectral parameter z. The operator
(

Ã(t)
ε − z

)−1 solves a
spectral boundary-value problem where the spectral parameter is present not only in the
differential equation, but also in the associated boundary conditions. In the terminology
of [22,49], it is therefore a generalised resolvent of the corresponding boundary-value
problem, cf. Sect. 3.2 above. Nevertheless, in Sect. 5 it will become apparent that this
intermediate generalised resolvent itself is, up to the same correcting rank-one operator,
O(ε2)-close in the operator-norm sense to the resolvent of a unitary transformation of a
self-adjoint operator Ahom, yielding the estimate (10).

We first describe a modification procedure for the original cycle graph G, see Fig. 1.
The modified graph G̃ is a two-component graph with edges e1 ≡ ẽ1 := [0, εl1],
e3 ≡ ẽ3 := [0, εl3], and e2 := [0, l2]. The edges e1 and e3 are “glued” together, forming
a cycle with two vertices. Compared to the original graph G (Fig. 1a), the vertex V1
remains unchanged, whereas the right endpoint εl1 of the edge e1 disconnects from the

Fig. 1. The graph modification. The stiff component is in black, the soft component is in blue. Double
arrows represent vertices carrying unimodularDatta–DasSarmaweights.Dotted arrowed linebetweenvertices
V2 and V3 represents non-local ε−dependent interface
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vertex V2 (Fig. 1b) and joins V3, which is the left endpoint of e3 (Fig. 1c). There is a
price to be paid for this: this right endpoint of e1 is then assigned a Datta–Das Sarma
unimodular weight wstiff := exp

(
i(l1 + l3)τ

)
. The edge e2 in turn disconnects from the

vertex V3 where its right endpoint was attached to inG (Fig. 1(d)), and loops backwards
to the vertex V2 (Fig. 1(e)). The loop thus formed is assigned a Datta–Das Sarma weight

wsoft = wstiff = exp
(−i(l1 + l3)τ

)

at its right endpoint l2. Compared to the graph G, the weights 1/
√

ε at both endpoints
of the soft component are no longer applied. Notice also that the weights wstiff , wsoft
are independent of ε, which is important in view of our aim to obtain an ε-independent
family A(τ )

hom in the estimate (10).

The operator Ã(t)
ε is defined by the same differential expression as the operator


ε A(t)
ε 
∗

ε , which has an ε-independent form. The domain of Ã(t)
ε , however, depends

on ε as well as on k2 and is described by the following system of matching conditions
(36)–(39). We always assume u = (u1, u2, u3)with respect to the space decomposition,
where u2 is the value on the soft component.

A. At the vertex V1: standard δ-type matching with the coupling constant equal to zero.
B. At the vertex V3 (stiff component):

u3(0) = wstiffu1(εl1), (36)

∂(t)u3
∣∣
0 − wstiff∂

(t)u1
∣∣
εl1

= √
εk2(l1 + l3)wstiffu2(0). (37)

C. At the vertex V2 (soft component):

u2(0) = wsoftu2(l2), (38)

∂(τ)u2
∣∣
0 − wsoft∂

(τ)u2
∣∣
l2

= √
εk2(l1 + l3)wsoftu3(0) − 2k2(l1 + l3)u2(0). (39)

Clearly, all these conditions are of δ-type, with ε-dependent non-local terms in (37) and
(39), which link the two components.

The operator Ã(t)
ε is written down in terms of the Datta–Das Sarma boundary triple,

see Sect. 2.4, for themodified graph G̃. It involvesDatta–Das Sarmamatching conditions
at two of the three graph vertices, namely, V2 (incoming edge endpoint, weightwsoft) and
V3 (incoming edge endpoint, weight wstiff ). We denote by ̃

(2)
0 , ̃(2)

1 the corresponding
boundary operators and by B̃(2)(z) thematrix such that the interface conditions (36)–(39)
are equivalent to

̃
(2)
1 u = B̃(2)(z)̃(2)

0 u.

Omitting the details of the calculation for B̃(2)(z) and for the M-matrix M̃ (2)
ε (z) of the

operator Ã(t)
ε with respect to ̃

(2)
0 , ̃(2)

1 (which is analogous to the calculations of [24]
and Sects. 2.5 and 3.1 of the present article), we claim that
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M̃ (2)
ε (z) − B̃(2)(z) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎝

−√
ak

∑

j=1,3
cot

kl jε√
a

0

0
2k(cos εt − cos kl2)

sin kl2
+ 2k2(l1 + l3)

eiεl3t√ak
∑

j=1,3

(
sin

kl jε√
a

)−1

−eiε(l1+l3)t k2(l1 + l3)
√

ε

e−iεl3t√ak
∑

j=1,3

(
sin

kl jε√
a

)−1

−e−iε(l1+l3)t k2(l1 + l3)
√

ε

−√
ak

∑

j=1,3
cot

kl jε√
a

⎞

⎟
⎟⎟
⎟
⎟
⎟
⎠

. (40)

We argue that the difference between the resolvent of 
ε A(t)
ε 
∗

ε and the generalised

resolvent of Ã(t)
ε is of order O(ε2) in the operator-norm sense, up to a “correcting”

operator, which takes into account the difference between the kernels of the 
ε A(t)
ε 
∗

ε

and Ã(t)
ε on the stiff component and is O(ε2)-close to a rank-one operator multiplied

by z−1. Once the mentioned estimate is obtained, it is possible to eliminate ε from the
domain description of the operator Ã(t)

ε , which can therefore be viewed as intermediate
from the perspective of homogenisation. We keep this step explicit, owing to the fact
that the resolvent estimate in this form does not require the assumption that the spectral
parameter belongs to a compact set. It therefore showswhat happens during the transition
from the “classical” homogenisation regime to the “high-frequency” regime, when the
norm of the correcting rank-one operator discussed above goes to zero as ε → 0. In the
present paper we refrain from discussing the related details and assume that the spectral
parameter z belongs to a compact set K ⊂ C. We point out that in the transition regime
the error estimates in the statements given at the end of the present section are changed
accordingly, which will be studied elsewhere.

In order that the Kreı̆n formula of Sect. 3.2 be applicable, we must ensure that the
spectral parameter is away from the zeros of the denominator. Let S(t)

hom be the limiting

spectrum of the family A(t)
ε described by (26), and let S∞ be the set of eigenvalues of

the Dirichlet boundary-value problem of the operator −d2/dx2 on the soft component
e2, i.e. the set of points z > 0 such that sin

√
zl2 = 0. Setting (cf. (9))

S(t) := S(t)
hom ∪ S∞ ∪ {0}, S(t)

K ,ρ := {
z ∈ K | dist (z, S(t)) ≥ ρ > 0

}
, (41)

the following theorem holds.

Theorem 4.1. Denote

X (t)(x) :=
{
e−it x , x ∈ e1,
eit (εl3−x), x ∈ e3,

(42)

L2
stiff := L2(e1) ⊕ L2(e3), (43)

and consider the z-dependent linear operator C (t) on H given by

C (t)

⎛

⎝
f1
f2
f3

⎞

⎠ :=
⎛

⎝
Pe1
0

Pe3

⎞

⎠ Ĉ (t)
(

f1
f3

)
, Ĉ (t)[·] := (

εz(l1 + l3)
)−1〈·,X (t)〉

L2
stiff

X (t), (44)
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where Pe j is the orthogonal protection onto L2(e j ), j = 1, 3. Then the following estimate
holds:

∥
∥
ε

(
A(t)

ε − z
)−1


∗
ε − (

Ã(t)
ε − z

)−1 − C (t)
∥
∥ = O(ε2), (45)

uniformly with respect to t ∈ [0, 2πε−1) for all z ∈ S(t)
K ,ρ , and therefore, as is seen from

the explicit expression for
(
M (2)

ε (z)− B̃(2)(z)
)−1

below, away from the set of singularities

of the generalised resolvent
(

Ã(t)
ε − z

)−1
.

Proof. We start with the following lemma. ��
Lemma 4.2. 1. The inverse of the matrix M (2)

ε (z), see (31), has the following asymp-
totics as ε → 0:

(
M (2)

ε (z)
)−1 = 1

εD(k)

⎛

⎝
1 eiεl1t e−iεl3t

e−iεl1t 1 e−iε(l1+l3)t

eiεl3t eiε(l1+l3)t 1

⎞

⎠ + O(ε),

uniformly with respect to t ∈ [0, 2πε−1) for all z ∈ S(t)
K ,ρ , where

D(k) := k2(l1 + l3) − 2k cot kl2 +
2k cos t

sin kl2
,

and the matrix defining the leading term of order O(1/ε) is a rank-one matrix with
the range spanned by the eigenvector

(
e−iεl3t , e−iε(l1+l3)t , 1

)�
corresponding to the

eigenvalue 3.
2. For the inverse of the matrix M̃ (2)

ε (z) − B̃(2)(z), see (40), one has

(
M̃ (2)

ε (z) − B̃(2)(z)
)−1 = ε−1M−1(z) + M0(z) + εM1(z) + O

(
ε2

)
M0(z) + O(ε2),

ε → 0,

uniformly with respect to t ∈ [0, 2πε−1) for all z ∈ S(t)
K ,ρ , where

M−1(z) :=
(

1

k2(l1 + l3)
+

1

D(k)

) ⎛

⎝
1 0 e−iεl3t

0 0 0
eiεl3t 0 1

⎞

⎠ ,

M0(z) := 1

D(k)

⎛

⎜⎜⎜
⎜⎜
⎝

0
1√
ε
eiεl1t 0

1√
ε
e−iεl1t 1

1√
ε
e−iε(l1+l3)t

0
1√
ε
eiε(l1+l3)t 0

⎞

⎟⎟⎟
⎟⎟
⎠

,

and the matrix M1(z) has all but the four corner elements vanishing.

Proof. This is the result of a direct calculation. ��
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In order to compare the two resolvents, we use the Kreı̆n resolvent formula of Propo-
sition 3.2 twice, namely for 
ε A(t)

ε 
∗
ε and Ã(t)

ε , as well as the observation that in both
cases the “reference operator” A∞ is the same Dirichlet decoupling: on each edge e j

of both G and G̃ it is the differential operator defined by the corresponding differential
expression subject to Dirichlet conditions at both endpoints, u j (0) = u j (εl j ) = 0 for

j = 1, 3, or u2(0) = u2(l2) = 0. Note that the operator B, see Definition 2.1, for A(t)
ε

with respect to the triple of Sect. 3.1 is the zero matrix, and hence the matrix −M (2)
ε (z)

plays the role of the operator B(z) − M(z) in the corresponding Kreı̆n formula.
We consider three cases for the form of the argument of the resolvents, as follows.
I. First, we apply the two mentioned resolvents to functions f = (0, f2, 0)�. Then

(A∞ − z)−1 f = (0, v, 0)� and


(2)
1

⎛

⎝
0
v

0

⎞

⎠ = √
ε

⎛

⎜
⎝

0
∂

(τ)
n v

∣∣
0

∂
(τ)
n v

∣
∣
l2

⎞

⎟
⎠ =: √

ε

⎛

⎝
0
α2
β2

⎞

⎠ ,

̃
(2)
1

⎛

⎝
0
v

0

⎞

⎠ =
⎛

⎝
0

∂
(τ)
n v

∣
∣
0 + e−iε(l1+l3)t∂

(τ)
n v

∣
∣
l2

0

⎞

⎠ =
⎛

⎝
0

α2 + e−iε(l1+l3)tβ2
0

⎞

⎠ =:
⎛

⎝
0
γ2
0

⎞

⎠ .

Using Lemma 4.2, we obtain:

(
M (2)

ε (z)
)−1


(2)
1

⎛

⎝
0
v

0

⎞

⎠ = 1√
εD(k)

⎛

⎝
γ2eiεl1t

γ2
γ2eiε(l1+l3)t

⎞

⎠ +

⎛

⎝
O(ε3/2)

O(ε3/2)

O(ε3/2)

⎞

⎠ ,

(
M̃ (2)

ε (z) − B̃(2)(z)
)−1

̃
(2)
1

⎛

⎝
0
v

0

⎞

⎠ = M0̃
(2)
1

⎛

⎝
0
v

0

⎞

⎠ + · · · = 1

D(k)

⎛

⎜⎜⎜
⎝

γ2√
ε
eiεl1t

γ2
γ2√
ε
eiε(l1+l3)t

⎞

⎟⎟⎟
⎠

+

⎛

⎝
O(ε3/2)

O(ε2)

O(ε3/2)

⎞

⎠ .

It remains to apply the solution operators γ (z) and γ̃ (z) of Proposition 3.2, pertaining
to the boundary triples of operator families A(t)

ε and Ã(t)
ε , respectively. This amounts to

comparing solutions to three pairs of boundary-value problems, on e1, e2, and e3.
(a) Solutions on e2. Due to the definitions of boundary triples, to the leading order in

each case one solves boundary-value problems with the boundary data

u2(0) = γ2

D(k)
, u2(l2) = γ2

D(k)
eiε(l1+l3)t ,

with an error of order O(ε2) between the contributions to the resolvents
(

A(t)
ε − z

)−1

and
(

Ã(t)
ε − z

)−1.
(b) Solutions on e1. In both cases, to the leading order one gets the solution to the

boundary-value problems with the data

u1(0) = γ2√
εD(k)

eiεl1t , u1(εl1) = γ2√
εD(k)

.



Norm-Resolvent Convergence of One-Dimensional High-Contrast Periodic Problems 461

(c) In the case of e3, to the leading order one also gets the same solution for both A(t)
ε

and Ã(t)
ε , which is fixed by

u3(0) = γ2√
εD(k)

eiε(l1+l3)t , u3(εl3) = γ2√
εD(k)

eiεl1t .

In the cases (b), (c) (stiff component), the error between the actions of the resolvents(
A(t)

ε − z
)−1 and

(
Ã(t)

ε − z
)−1 is of the order O(ε2). Indeed, the pointwise error is of

the order O(ε3/2), and e1, e3 have lengths proportional to ε.
II. Now consider vectors f = ( f1, 0, 0)�. Denoting (A∞ − z)−1 f = (v, 0, 0)�, one

has


(2)
1

⎛

⎝
v

0
0

⎞

⎠ =
⎛

⎜
⎝

∂
(t)
n v

∣
∣
0

∂
(t)
n v

∣∣
εl1

0

⎞

⎟
⎠ =:

⎛

⎝
α1
β1
0

⎞

⎠ , ̃
(2)
1

⎛

⎝
v

0
0

⎞

⎠ =
⎛

⎜
⎝

∂
(t)
n v

∣
∣
0

0
eiε(l1+l3)t∂

(t)
n v

∣∣
εl1

⎞

⎟
⎠

=
⎛

⎝
α1
0

eiε(l1+l3)tβ1

⎞

⎠ .

Denoting γ1 := α1 + β1eiεl1t and using Lemma 4.2 again, we obtain:

(
M (2)

ε (z)
)−1


(2)
1

⎛

⎝
v

0
0

⎞

⎠ = 1

εD(k)

⎛

⎝
α1 + β1eiεl1t

α1e−iεl1t + β1

α1eiεl3t + β1eiε(l1+l3)t

⎞

⎠ + · · ·

= 1

εD(k)

⎛

⎝
γ1

γ1e−iεl1t

γ1eiεl3t

⎞

⎠ + γ1O(ε),

(
M̃ (2)

ε (z) − B̃(2)(z)
)−1

̃
(2)
1

⎛

⎝
v

0
0

⎞

⎠ = 1

ε

(
1

k2(l1 + l3)
+

1

D(k)

) ⎛

⎝
γ1
0

γ1eiεl3t

⎞

⎠

+
1

D(k)

⎛

⎜
⎝

0
γ1√
ε
e−iεl1t

0

⎞

⎟
⎠ + γ1

⎛

⎝
O(ε)

O(ε3/2)

O(ε)

⎞

⎠ .

In contrast to γ2 in the case considered above, the coefficient γ1 is of the order O(
√

ε)

rather than O(1). Indeed, the operator (A∞ − z)−1 on L2(e1) is simply the resolvent of
the self-adjoint Dirichlet operator L D defined by the differential expression

a

(
1

i

d

dx
+ t

)2

on L2(e1). It is an integral operator with a kernel R(x, y; k) that can be found by
the classical method of [43,44] combined with the unitary elimination of the “magnetic
potential” t

√
a. Namely, let AD be theDirichlet operator on the same space defined by the

expression −a(d2/dx2), and let 
 be the unitary transformation (
u)(x) = e−it x u(x).
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Then L D = 
AD
∗, and hence (L D − z)−1 = 
(AD − z)−1
∗. The resolvent of AD
is well-known, see e.g. [43]: it is the integral operator with kernel

RA(x, y; k) =
(√

ak sin
kεl1√

a

)−1

⎧
⎪⎪⎨

⎪⎪⎩

sin
kx√

a
sin

k(εl1 − y)√
a

, x < y,

sin
ky√

a
sin

k(εl1 − x)√
a

, x > y.

Using the fact that R(x, y; k) = e−it x RA(x, y; k)eit y , it follows that

∂(t)((L D − z)−1 f
)
(x) = −e−it x

(
sin

kεl1√
a

)−1 [
cos

k(εl1 − x)√
a

∫ x

0
sin

ky√
a
eit y f (y)dy

− cos
kx√

a

∫ εl1

x
sin

k(εl1 − y)√
a

eit y f (y)dy

]
.

Substituting trigonometric functions by the leading-order terms, as ε → 0, of their
power series yields

∂(t)((L D − z)−1 f
)
(x)

= − 1

εl1
e−it x

[∫ εl1

0
yeit y f (y)dy − εl1

∫ εl1

x
eit y f (y)dy

] (
1 + O(ε2)

)
+ O(ε5/2)‖ f ‖,

and therefore

γ1 = ∂(t)u
∣∣
0 − eiεl1t∂(t)u

∣∣
εl1

=
∫ εl1

0
eit y f (y)dy

(
1 + O(ε2)

)
+ O(ε5/2)‖ f ‖

= 〈
f, e−it y 〉

L2(e1)

(
1 + O(ε2)

)
+ O(ε5/2)‖ f ‖. (46)

Notice that by the Kreı̆n resolvent formula the term O(ε5/2)‖ f ‖ contributes an error of
order O(ε2) in the resolvent estimate and can therefore be discarded. An application of
the Schwartz inequality yields γ1 = O(

√
ε), as claimed. It again remains to apply the

operators γ (z) and γ̃ (z).
(a) Solutions on e2. Due to the definitions of the boundary triples, to the leading order

in each case one solves boundary-value problems with boundary data

u2(0) = γ1√
εD(k)

e−iεl1t , u2(l2) = γ1√
εD(k)

eiεl3t .

with an error of order O(ε2) between the contributions to the resolvents
(

A(t)
ε − z

)−1

and
(

Ã(t)
ε − z

)−1.

(b) Solutions on e1 In the case of Ã(t)
ε , to the leading order one solves the boundary-

value problem with data

u1(0) = γ1

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
, u1(εl1) = γ1

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
e−iεl1t ,

whereas in the case of A(t)
ε the boundary data to the leading order are

u1(0) = γ1

εD(k)
, u1(εl1) = γ1

εD(k)
e−iεl1t .
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Clearly, a correcting boundary-value problem appears, for the “stiff component to stiff
component” action of the intermediate generalised resolvent only.

(c) Solutions on e3. As in (b) above, a correcting boundary-value problem appears,
which has the same form. Indeed, in the case of Ã(t)

ε , to the leading order one solves the
boundary-value problem with boundary data

u3(0) = γ1

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
eiεl3t , u3(εl3) = γ1

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
,

whereas in the case of A(t)
ε one has

u3(0) = γ1

εD(k)
eiεl3t , u3(εl3) = γ1

εD(k)
.

In the cases (b), (c), the error between the actions the resolvents 
ε(A(t)
ε − z)−1
∗

ε and

( Ã(t)
ε − z)−1, up to the correcting term mentioned above, is of the order O(ε2), due to

the pointwise error being of the order O(ε3/2). Here we again use the fact that e1 and
e3 have lengths proportional to ε, as well as the above estimate for γ1.

III. Finally, in the case f = (0, 0, f3)� one has


(2)
1

⎛

⎝
0
0
v

⎞

⎠ =
⎛

⎜
⎝

∂
(t)
n v

∣∣
εl3

0
∂

(t)
n v

∣
∣
0

⎞

⎟
⎠ =:

⎛

⎝
β3
0
α3

⎞

⎠ , ̃
(2)
1

⎛

⎝
0
0
v

⎞

⎠ =
⎛

⎜
⎝

∂
(t)
n v

∣∣
εl3

0
∂

(t)
n v

∣
∣
0

⎞

⎟
⎠ =

⎛

⎝
β3
0
α3

⎞

⎠ ,

where we set (A∞ − z)−1 f =: (0, 0, v)�. Denoting γ3 := β3 + α3e−iεl3t and using
Lemma 4.2, we obtain:

(
M (2)

ε (z)
)−1


(2)
1

⎛

⎝
0
0
v

⎞

⎠ = 1

εD(k)

⎛

⎝
β3 + α3e−iεl3t

β3e−iεl1t + α3e−iε(l1+l3)t

β3eiεl3t + α3

⎞

⎠

+ · · · = 1

εD(k)

⎛

⎝
γ3

γ3e−iεl1t

γ3eiεl3t

⎞

⎠ + γ3O(ε),

(
M̃ (2)

ε (z) − B̃(2)(z)
)−1

̃
(2)
1

⎛

⎝
0
0
v

⎞

⎠ = 1

ε

(
1

k2(l1 + l3)
+

1

D(k)

) ⎛

⎝
γ3
0

γ3eiεl3t

⎞

⎠

+
1

D(k)

⎛

⎜
⎝

0
γ3√
ε
e−iεl1t

0

⎞

⎟
⎠ + γ3

⎛

⎝
O(ε)

O(ε3/2)

O(ε)

⎞

⎠ .

An argument similar to the case of γ1 yields the estimate γ3 = O(
√

ε). We now apply
the operators γ (z) and γ̃ (z).

(a) Solutions on e2. Due to the definitions of the boundary triples, in both cases to
the leading order one solves the boundary-value problem with data

u2(0) = γ3√
εD(k)

e−iεl1t , u2(l2) = γ3√
εD(k)

eiεl3t
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yielding an error of order O(ε2) between the actions of the resolvents
ε(A(t)
ε − z)−1
∗

ε

and ( Ã(t)
ε − z)−1.

(b) Solutions on e1. In the case of Ã(t)
ε , to the leading order one solves the boundary-

value problem with data

u1(0) = γ3

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
, u1(εl1) = γ3

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
e−iεl1t ,

whereas in the case of A(t)
ε one has

u1(0) = γ3

εD(k)
, u1(εl1) = γ3

εD(k)
e−iεl1t .

(c) Solutions on e3. In the case of Ã(t)
ε , to the leading order one solves the boundary-

value problem with data

u3(0) = γ3

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
eiεl3t , u3(εl3) = γ3

ε

(
1

k2(l1 + l3)
+

1

D(k)

)
,

whereas in the case of A(t)
ε one has

u3(0) = γ3

εD(k)
eiεl3t , u3(εl3) = γ3

εD(k)
.

In the cases (b), (c), the error between the actions of
ε

(
A(t)

ε −z
)−1


∗
ε and

(
Ã(t)

ε −z
)−1,

up to the correcting term, is of the order O(ε2), due to the order O(ε3/2) pointwise error,
the above estimate for γ3, and the fact that e1, e3 have lengths proportional to ε.

We now consider the “correcting” term that appears above in the analysis of the action
of

(
Ã(t)

ε − z
)−1 restricted to the stiff component. On the face of it, this term is ε-singular,

however this is an artificial singularity, since this corrector is equal to the difference of
resolvents of two self-adjoint operators and as such is at most of order O(1). The order
O(ε−1) singularity is due to the fact that this operator acts in the space L2

stiff , see (43),
and disappears under a unitary rescaling. The correcting term admits the form

C (t)
ε

(
f1
f3

)
:= 1

εk2(l1 + l3)

(
1 0 0
0 0 1

)
γ̃ (z)

⎛

⎝
1 0 e−iεl3t

0 0 0
eiεl3t 0 1

⎞

⎠ ̃
(2)
1 (A∞ − z)−1

⎛

⎝
f1
0
f3

⎞

⎠ ,

and for any fixed k �= 0 can be treated as a bounded linear operator on L2
stiff . We next

show that up to an error of order O(ε2) it is a rank-one operator multiplied by k−2. The
analysis leading to the equation (46) and the similar argument pertaining to the space
L2(e3) show that C (t)

ε essentially only acts on the function e−it y . As for its range, the
following simple argument applies. If one seeks to compute the action of the operator
γ̃ (z) on a vector obtained by the application of C (t)

ε to the vector ( f1, 0)� ∈ L2
stiff , then

for the restriction to the interval e1 one has the boundary-value problem with data

u1(0) = γ1

εk2(l1 + l3)
, u1(εl1) = γ1

εk2(l1 + l3)
e−iεl1t ,
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where γ1 is defined by (46) with the terms O(ε5/2)‖ f ‖ dropped. Its solution is given by

u1(x) = γ1

εk2(l1 + l3)

{

e−it x
(
sin

kεl1√
a

)−1
sin

k(εl1 − x)√
a

+ e−iεl1t eit (εl1−x)

(
sin

kεl1√
a

)−1
sin

kx√
a

}

= γ1

εk2(l1 + l3)

{
e−it x

(
x

εl1
+ O(ε2)

)
+ e−iεl1t eit (εl1−x)

(
1 − x

εl1
+ O(ε2)

)}

= γ1

εk2(l1 + l3)

(
e−it x + O(ε2)

)
.

For the interval e3 we look at the boundary-value problem with data

u3(0) = γ1

εk2(l1 + l3)
eiεl3t , u3(εl3) = γ1

εk2(l1 + l3)
,

whence by the same argument we get

u3(x) = γ1

εk2(l1 + l3)

(
eit (εl3−x) + O(ε2)

)
.

In the situation just considered, we have γ1 = 〈
f1, e−it x

〉
L2(e1)

(
1 + O(ε2)

)
, up to

an error O(ε5/2)‖ f ‖, which contributes an error O(ε2) to the norm-resolvent estimate.
Using the notation (42), one then gets the following representation for the correcting
operator:

C (t)
ε [·] = (

εk2(l1 + l3)
)−1〈·,X (t)〉

L2
stiff

X (t) + O(ε2) = Ĉ (t)[·] + O(ε2), (47)

where the error estimate is understood in the sense of the operator norm in L2(e1).
Nowweshow that the sameexpression accounts for the correcting term in the situation

when C (t)
ε is evaluated on the vector f = (0, f3)� ∈ L2

stiff . Indeed, up to O(ε5/2)‖ f ‖,
one has

γ3 = e−iεl3t (∂(t)v
∣∣
0 − eiεl3t∂(t)v

∣∣
εl3

) = e−iεl3t 〈 f3, e
−it x 〉

L2(e3)

(
1 + O(ε2)

)

= 〈
f3,X (t)〉

L2(e3)

(
1 + O(ε2)

)
.

By the same argument as above we get (47) in the sense of the norm in L2(e3). Sum-
marising, the estimate (47) holds in the sense of the norm of L2

stiff . The required estimate
(45) follows.

Remark 4.3. Note that the norm of C (t) does not depend on ε when z = k2 is in S(t)
K ,ρ .

However, if one considers a transition regime from the classical setting to high frequency
homogenisation, i.e., the situationwhen zεω,ω < 2, tends to a positive constant, its norm
starts decaying as ε → 0 and this term thus has no influence on the result.

5. Behaviour of the Resolvents
(
Ã

(t)
ε − z

)−1 and the Main Result

The next step of our argument concerns passing to the effective, or “homogenised”,
operator A(τ )

hom, which provides the “operator asymptotics” for the generalised resolvent

of Ã(t)
ε for all ε, t . Recall that in the present paper we consider the “finite-frequency”

case, by assuming throughout that z ∈ S(t)
K ,ρ (see (41)) for some compact K and ρ > 0.

First, we introduce some notation.
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Definition 5.1. Consider the following normalisation of the vectorX (t) defined by (42):

ψ(t) := 1√
ε(l1 + l3)

eiεl1tX (t),

and the orthogonal projection Pψ in the space L2
stiff , defined by (43), onto the vector

ψ(t). For convenience, in what follows we keep the same notationψ(t) for the extension,
by the zero element in L2(e2), of the vector ψ(t) to the whole space H = L2(e1) ⊕
L2(e2) ⊕ L2(e3). For all t ∈ [0, 2πε−1), we define a unitary operator

�(t) : Pψ L2
stiff ⊕ L2(e2) =: Heff → Hhom := L2(e2) ⊕ C

by mapping βψ(t) ⊕ u2 �→ (u2, β)�.

Definition 5.2. For all values τ ∈ [0, 2π), consider an operator A(τ )
hom on the above space

Hhom, defined as follows. Let the domain dom
(

A(τ )
hom

)
consist of all pairs (u, β) such

that u ∈ W 2,2(e2) and the quasiperiodicity condition

u(0) = wsoftu(l2) = β√
l1 + l3

(48)

is satisfied. On dom
(

A(τ )
hom

)
the action of the operator is set by

A(τ )
hom

(
u

β

)
=

⎛

⎜⎜
⎝

(
1

i

d

dx
+ τ

)2

− 1√
l1 + l3

∑
∂̂

(τ )
n u

⎞

⎟⎟
⎠ ,

∑
∂̂ (τ )

n u := ∂(τ)u
∣∣
0 − wsoft∂

(τ)u
∣∣
l2
.

As we show below, the space Heff is “almost invariant” for the generalised resolvent
of Ã(t)

ε , whence this resolvent can be sandwiched by projections Peff of H onto Heff
(Peff := Pψ ⊕ I2, where I2 is the identity operator on L2(e2)) at the expense of an error
of order O(ε2). Having done this, we will only consider the situation in the space Heff .
The function u on the space of dimension one that remains of the stiff component is
then uniquely defined by its value at the vertex V3, which is determined by the boundary
values of u on the soft component. These boundary values are not fixed by the domain
of the operator Ã(t)

ε but are nevertheless readily available by the same argument as in
the proof of Theorem 4.1. Once u1 and u3 are determined uniquely, one can rewrite the
matching conditions on the soft component that decouple it from the stiff component.
Finally, the value u2(0) uniquely determines the solution on the stiff component, up to
an error of order O(ε2).

Theorem 5.3. The following statements hold for any z ∈ S(t)
K ,ρ , where S(t)

K ,ρ is defined
by (41):

1. The norm of the difference
(

Ã(t)
ε − z

)−1 − Peff
(

Ã(t)
ε − z

)−1
Peff is of the order O(ε2).

2. The action of the generalised resolvent
(

Ã(t)
ε − z

)−1
on a vector f = ( f1, f2, f3)� is

O(ε2)–close in the operator-norm sense to the vector u = (u1, u2, u3)
� described as

follows. The component u2 is the solution of the following boundary-value problem
on e2:
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(
1

i

d

dx
+ τ

)2

u2 − zu2 = f2, u2(0) = wsoftu2(l2),

∑
∂̂ (τ )

n u2 = −z(l1 + l3)u2(0) − √
l1 + l3

〈
f, ψ(t)〉, (49)

where ψ(t) is extended to a vector in Heff by zero on the soft-component space L2(e2).
For the solution u2 of (49), the component ustiff = (u1, 0, u3)

� is determined by

ustiff = √
l1 + l3 u2(0)ψ

(t) − z−1〈
f, ψ(t)〉ψ(t). (50)

Proof. We use the Kreı̆n resolvent formula, see Sect. 3.2, that links
(

Ã(t)
ε − z

)−1 to
(A∞ − z)−1. Notice that the Dirichlet decoupling (A∞ − z)−1 has the property

(A∞ − z)−1[
( f1, 0, f3)

�] = O(ε2),

due to the fact that the lower bound of the spectrum of its first and third components
is of the order O

(
ε−2

)
. Therefore, the contribution of the Dirichlet decoupling can be

ignored in the proof, and the only part of the expression for the resolvent of Ã(t)
ε that

needs to be accounted for is the second term in the Kreı̆n formula (34), related to the
perturbation in the boundary space from the decoupled operator.

It follows from the proof of Theorem 4.1 that for all vectors f = ( f1, 0, 0)� ∈ H
and f = (0, 0, f3)� ∈ H , whose projection onto L2

stiff is orthogonal to ψ(t), one has
γ1 = O(ε5/2)‖ f ‖ and γ3 = O(ε5/2)‖ f ‖, respectively, as ε → 0. This immediately
implies that restricting

(
Ã(t)

ε − z
)−1 to the space Heff results in an error of order O(ε2)

in the operator norm.
In order to estimate the effect of sandwiching the resolvent between two projections

onto Heff , we start by considering the vector u := (
Ã(t)

ε − z
)−1

(0, f2, 0)�. By an
argument in the proof of Theorem 4.1, for u1 and u3 one has the boundary values (up to
an error of order O(ε3/2))

u1(0) = − γ2√
εD(k)

eiεl1t , u1(εl1) = − γ2√
εD(k)

,

and

u3(0) = − γ2√
εD(k)

eiε(l1+l3)t , u3(εl3) = − γ2√
εD(k)

eiεl1t , (51)

respectively. In the same way as in approximating the corrector in the proof of Theo-
rem 4.1, we obtain

u1(x) = − γ2√
εD(k)

eit (εl1−x)
(
1 + O(ε2)

)
,

u3(x) = − γ2√
εD(k)

eiεl1teit (εl3−x)
(
1 + O(ε2)

)
,

whence the restriction of the function u to the stiff component is given by

u1 ⊕ u3 = − γ2√
εD(k)

eiεl1tX (t)(1 + O(ε2)
)
.

The first claim of the theorem in the case of the vector f = (0, f2, 0)� readily follows,
since the error term is of order O(ε2) in L2

stiff .
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Postponing to a later stage the proof of the case when the resolvent is applied to
vectors of the form f = ( f1, 0, f3)�, we proceed with the comparison of the asymptotic
formulae for the boundary values of u2 and u3 in order to ascertain the second claim
of the theorem on the vectors f = (0, f2, 0)�. Building up on the analysis so far, we
obtain

u2(0) = − γ2

D(k)
+ O(ε2), u3(0) = − γ2√

εD(k)
eiε(l1+l3)t + O(ε3/2),

where the expression for u3(0) is taken from (51), while the expression for u2(0) was
obtained in the proof of Theorem 4.1. Clearly

u3(0) = ε−1/2eiε(l1+l3)t u2(0) + O(ε3/2),

and therefore, taking into account the explicit description of the domain of Ã(t)
ε , one has

∑
∂̂ (τ )

n u2 = −2k2(l1 + l3)u2(0) +
√

εk2(l1 + l3)e
−i(l1+l3)τ u3(0) + O(ε2)

= −z(l1 + l3)u2(0) + O(ε2). (52)

We show that dropping the O(ε2) term on the right-hand side of (52) leads to an error
of order O(ε2) in the operator-norm sense. Indeed, as (u1, u2, u3)

� is in the domain of
Ã(t)

ε by construction, the component u2 satisfies
(
1

i

d

dx
+ τ

)2

u2 − zu2 = f2, u2(0) = wsoftu2(l2). (53)

Note, that up to an O(ε2) term the problem (52)–(53) is independent of the stiff com-
ponent and no longer depends on ε. Looking for a solution u2 = u0 + v, with

v ∈ V := W 2,2(e2) ∩ {
v : v(0) = v(l2) = 0, ∂(τ)v

∣∣
0 − wsoft∂

(τ)v
∣∣
l2

= rε

}
,

where rε is the O(ε2) term in (52), one arrives at the following boundary-value problem
for u0:

(
1

i

d

dx
+ τ

)2

u0 − zu0 = f2 −
(
1

i

d

dx
+ τ

)2

v + zv, u0(0) = wsoftu0(l2),

∑
∂̂ (τ )

n u0 = −z(l1 + l3)u0(0).

Whenever z is outside somefixed neighbourhood of the poles of the generalised resolvent
Rsoft(z) of the last boundary-value problem (it is easily seen that this set is defined by
the dispersion relation (26), cf. calculation in Sects. 6.1, 6.3), one has:

u0 = Rsoft(z)

{
f2 −

(
1

i

d

dx
+ τ

)2

v + zv

}
,

Let κ be a constant such that 0 < l1 + l3 + κl2 < 1/4, and set v = αx(1 − x/ l2)e−iκτ x ,
α = rε

(
1 + e−i(l1+l3+κl3)τ

)−1. Clearly v ∈ V , and
∥
∥∥∥

(
1

i

d

dx
+ τ

)2

v − zv

∥
∥∥∥

L2(e2)
= O(ε2)
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uniformly with respect to τ , so that

u0 = Rsoft(z) f2 + O(ε2) (54)

in the operator-norm sense. In view of (54) and the fact that v = O
(
ε2

)
, the estimate

u2 = u0 + O(ε2) = Rsoft(z) f2 + O(ε2)

holds. In addition, the embedding of W 2,2(e2) into C(e2) implies that

u2(0) = [
Rsoft(z) f2

]
(0) + O(ε2).

Indeed, Rsoft(z) can again be considered as the resolvent at the point z of a closed linear
operator Az defined by (49). Therefore away from the spectrum of Az , the operator
Rsoft(z) is bounded from L2(e2) to dom(Az) equipped with the graph norm. As is easily
seen, within the conditions of the theorem we are guaranteed to be in this situation.
Denoting

ũ = Rsoft(z)

{(
1

i

d

dx
+ τ

)2

v − zv

}
,

one then has ‖Azũ‖2 + ‖ũ‖2 = O(ε4), whence

∥∥∥
∥

(
1

i

d

dx
+ τ

)2

ũ

∥∥∥
∥

2

+ ‖ũ‖2 =
∥∥∥
∥

(
1

i

d

dx

)2

eiτ x ũ

∥∥∥
∥

2

+ ‖eiτ x ũ‖2 = O(ε4),

and ũ(0) = O(ε2) by the embedding theorem. Noting that u2 = Rsoft(z) f2 − ũ + v and
v = O

(
ε2

)
in W 2,2-norm, the claim follows. The explicit relationship between u3(0)

and u2(0) is now used to construct the solution on the stiff component. As mentioned
above, this solution is fully determined by its value at the vertex V3:

ustiff = ε−1/2eiεl1t [Rsoft(z) f2
]
(0)X (t) + O(ε3/2),

where the O(ε3/2) terms leads to an order O(ε2) error in L2
stiff , as claimed.

It remains to show that both claims of the theorem hold for the resolvent applied
to the right-hand side supported on the stiff component, namely f = ( f1, 0, f3)�.
Since we have already shown that the resolvent

(
Ã(t)

ε − z
)−1 can be restricted to the

space Heff up to an error of order O(ε2) in the operator-norm sense, we assume that f is
proportional toψ(t). By linearity, we split the calculation into two cases, f = ( f1, 0, 0)�
and f = (0, 0, f3)�, which are labelled by the index j = 1, 3. Once again, in each of
the two cases we start by reconstructing the solutions that pertain to Ã(t)

ε restricted to
the stiff component. These are sums of solutions to the boundary-value problems on
[0, εl1], [0, εl3]:

u1(0) = − γ j

εD(k)

(
1 + O(ε2)

)
, u1(εl1) = − γ j

εD(k)
e−iεl1t (1 + O(ε2)

)
, j = 1, 3,

u3(0) = − γ j

εD(k)
eiεl3t (1 + O(ε2)

)
, u3(εl3) = − γ j

εD(k)

(
1 + O(ε2)

)
, j = 1, 3,
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and solutions to the boundary-value problems due to the corrector C (t). By the same
asymptotic expansion as above, we get

u1 = − γ j

εD(k)
e−it x (

1 + O(ε2)
)
, u3 = − γ j

εD(k)
eit (εl3−x)(1 + O(ε2)

)
, j = 1, 3.

Taking into account the contributions due to the corrector term yields

u1 ⊕ u3 = − γ j

εD(k)
X (t)(1 + O(ε2)

) − 1

ε

γ j

k2(l1 + l3)
X (t), j = 1, 3,

which clearly suffices to ascertain the first claim of the theorem, taking into account the
estimates γ1 = O(

√
ε), γ3 = O(

√
ε) obtained in the proof of Theorem 4.1.

In order to prove the second claim of the theorem, we proceed in the same way
as above. Using the boundary data for u2, namely, u2(0) = −γ j

(√
εD(k)

)−1e−iεl1t ,
to the leading order, j = 1, 3, we obtain for the cases f = f (1) := ( f1, 0, 0)� and
f = f (3) := (0, 0, f3)�, cf. (52):
∑

∂̂ (τ )
n u2 = −2k2(l1 + l3)u2(0) +

√
εk2(l1 + l3)e

−i(l1+l3)τ u3(0)

= −2k2(l1 + l3)u2(0)

+
√

εk2(l1 + l3)e
−i(l1+l3)τ

(
1√
ε
ei(l1+l3)τ u2(0) − 1

ε

γ j

k2(l1 + l3)
eil3τ + O(ε3/2)

)

= −k2(l1 + l3)u2(0) − 1√
ε
e−il1τ γ j + O(ε2)

= −z(l1 + l3)u2(0) − 1√
ε
e−il1τ

〈
f ( j),X (t)〉 + O(ε2), j = 1, 3. (55)

Further, we discard the O(ε2) term on the right-hand side, due to the same argument as
for

(
Ã(t)

ε − z
)−1[

(0, f2, 0)�
]
. The only difference in this case is that in order to reduce

the problem to that for Rsoft(z), we look for the solution u2 as a sum of three functions,
namely u2 = u0 + ṽ + v, where v is as above and

ṽ ∈ W 2,2(e2) ∩
{
ṽ : ṽ(0) = ṽ(l2) = 0, ∂(τ)ṽ

∣
∣
0 − wsoft∂

(τ)ṽ
∣
∣
l2

= − 1√
ε
e−il1τ

〈
f ( j),X (t)〉

}
,

j = 1, 3,

is constructed in the same way as v. The function

f̃2 := −
(
1

i

d

dx
+ τ

)2

ṽ + zṽ

then takes the place of the function f2 in the corresponding construction for u0 in the case
f = (0, f2, 0)�, allowing to drop an error term of order O(ε2) in u2, by an application
of the same embedding theorem. Finally, the function u2 = Rsoft(z) f̃2 + ṽ solves the
boundary-value problem (49), since in terms of the functionψ(t) the boundary condition
(55) reads

∑
∂̂ (τ )

n u2 = −k2(l1 + l3)u2(0) − √
l1 + l3

〈
f ( j), ψ(t)〉, j = 1, 3.

This completes the proof. ��
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Theorem 5.4. For a given compact K and ρ > 0, let S(t)
K ,ρ be defined by (41). The

asymptotic formula

�(t) Peff
[(

Ã(t)
ε − z

)−1 + C (t)]Peff
(
�(t))∗ = (

A(τ )
hom − z

)−1 + O(ε2), ε → 0, (56)

holds, with the error understood in the sense of the operator norm, uniformly with respect
to z ∈ S(t)

K ,ρ . In the formula (56), the unitary operator �(t) is given by Definition 5.1;

the operator C (t) is given by (44), or equivalently C (t)[·] = z−1
〈·, ψ(t)

〉
ψ(t), where ψ(t)

is extended to a vector in Heff by zero on the soft-component space L2(e2).

Proof. I. We first verify the claimed identity on vectors ( f, 0)�. Notice that(
�(t)

)∗[
( f, 0)�

] = (0, f, 0)�, which is the case considered in Theorem 5.3 with
f2 = f , where we show that the following representation for the action of the resolvent
on the left-hand side holds, in the limit as ε → 0:

(
1

i

d

dx
+ τ

)2

u2 − zu2 = f, u2(0) = wsoftu2(l2),
∑

∂̂ (τ )
n u2 = −z(l1 + l3)u2(0),

ustiff = √
l1 + l3 u2(0)ψ

(t).

Evaluating �(t) on the vector u1 ⊕ u2 ⊕ u3 ≡ u2 ⊕ ustiff yields �(t)(u2 ⊕
ustiff) = (u2, β)�, β = √

l1 + l3 u2(0). On the other hand, for the action
(

A(τ )
hom −

z
)−1[

( f, 0)�
] =: (u, βu)� of the right-hand side of (56) on the same vector, one has:

(
1

i

d

dx
+ τ

)2

u − zu = f, u(0) = wsoftu(l2) = βu√
l1 + l3

,

∑
∂̂ (τ )

n u = −z(l1 + l3)u(0),

which is clearly the same as for the left-hand side of (56). This completes the first part
of the proof.

II. By linearity, it suffices to verify the validity of our claim on vectors of the form
(0, β f )

�. We have
(
�(t)

)∗[
(0, β f )

�] = ( f1, 0, f3)� so that f1 ⊕ f3 = β f ψ
(t). Noting

that the inner product in the last term of (49) equals β f and using Theorem 5.3 again,
we obtain, for the action of the left-hand side of (56):

(
1

i

d

dx
+ τ

)2

u2 − zu2 = 0,

u2(0) = wsoftu2(l2),
∑

∂̂ (τ )
n u2 = −z(l1 + l3)u2(0) − √

l1 + l3 β f ,

ustiff = √
l1 + l3 u2(0)ψ

(t).

Once again, one has �(t)(u2 ⊕ ustiff) = (u2, β)�, β = √
l1 + l3 u2(0). We consider the

result of applying the resolvent
(

A(τ )
hom − z

)−1 to the vector (0, β f )
�:

(
1

i

d

dx
+ τ

)2

u − zu = 0, u(0) = wsoftu(l2) = βu√
l1 + l3

,

∑
∂̂ (τ )

n u = −z(l1 + l3)u(0) − √
l1 + l3 β f ,

and note that u = u2, βu = β, which concludes the proof of the claim. ��
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Corollary 5.5. For z ∈ S(t)
K ,ρ , there exists a constant C > 0 independent of t such that

∥∥(
A(t)

ε − z
)−1 − 
∗

ε Peff
(
�(t))∗(

A(τ )
hom − z

)−1
�(t) Peff
ε

∥∥ ≤ Cε2, τ = εt, (57)

for all ε ∈ (0, 1] and t ∈ [0, 2πε−1). Here Peff := Pψ ⊕ I2, where I2 is the identity
operator on L2(e2).

Remark 5.6. The function u in the eigenvalue problem

A(τ )
hom

(
u

β

)
= z

(
u

β

)

is the solution to
(
1

i

d

dx
+ τ

)2

u = zu, (58)

u(0) = wsoftu(l2),
∑

∂̂ (τ )
n u = −z(l1 + l3)u(0), (59)

where the last condition follows from the equation on the second components. This
coincides with the problem for the “eigenvectors” of the energy-dependent boundary-
value problem obtained as a Datta–Das Sarma modification of the problem considered
in Sect. 2.6. Moreover, the two can be shown to be isospectral (and hence isospectral
with the limiting operator A(τ )

hom).

The argument leading to Theorem 5.4 further implies that the operator A(τ )
hom, which

serves as the norm-resolvent limit of the operator family A(t)
ε , is an out-of-space extension

of the related minimal operator (see Sect. 3.2, Eq. (33)) corresponding to the generalised
resolvent of the spectral boundary-value problem (58)–(59).

6. Transformation to a Kronig–Penney Model of δ′-Type: Bloch Spectrum

Now we turn our attention to the question of unitary transformation of the direct inte-
gral of homogenised fibre operators A(τ )

hom into the operator in the original Hilbert space

L2(R). We claim that A(τ )
hom can be transformed to an operator with non-trivial δ′-type

coupling condition (with an energy-independent domain description). This transforma-
tion,whichwill be calculated belowexplicitly on eigenvectors of either operator, involves
a change in the magnetic potential. Followed by the application of the inverse Gelfand
transform, see Sect. 2.1, this results in a periodic operator on the real line R. We recall
that τ = εt , so that τ ∈ [0, 2π).

6.1. Limit fibre representation of δ-type: Bloch spectrum. We first calculate the eigen-
functions of the self-adjoint operator A(τ )

hom. Its spectrum consists of two parts: the τ -
dependent spectrum (“Bloch spectrum”) described by the corresponding dispersion rela-
tion and, possibly, the “non-Bloch” part of the spectrum, which is not described by the
same and which we calculate explicitly in Sect. 6.3 after discussing the Bloch spectrum.
In order to compute the eigenfunction corresponding to any of the energies described
by the dispersion relation, one must consider solutions to the differential equation

(
1

i

d

dx
+ τ

)2

u = zu on e2. (60)
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For the Bloch spectrum, one has the boundary-value problem

u(0) = wsoftu(l2),
∑

∂̂ (τ )
n u = −z(l1 + l3)u(0), (61)

under the additional condition sin(kl2) �= 0. The solution u = u(α, β; ·) of (60) subject
to the conditions u(0) = α, u(l2) = β, is then given by

u(α, β; x) = αe−iτ x sin k(l2 − x)

sin kl2
+ βeiτ(l2−x) sin kx

sin kl2
, x ∈ e2.

The boundary condition involving normal derivatives then yields (cf. (26)) the dispersion
relation

2 cot kl2 − 2 cos τ csc kl2 = k(l1 + l3). (62)

Therefore, for the eigenvectors ū of the operator A(τ )
hom on the space Hhom one has

ū(k) =
(

u(1, ei(l1+l3)τ ; ·)√
l1 + l3

)
, (63)

where

u
(
1, ei(l1+l3)τ ; x

) = e−iτ x
(
sin k(l2 − x)

sin kl2
+ eiτ

sin kx

sin kl2

)
, x ∈ e2,

subject to the dispersion relation (62) holding so that k2 is in the spectrum. A straight-
forward integration then yields:

∥∥ū(k)
∥∥2

Hhom
= l1 + l3

2
+

l2
(sin kl2)2

(1 − cos τ cos kl2) .

The first component in (63) is rewritten using (62):

u
(
1, ei(l1+l3)τ ; x

) = e−iτ x
(
sin k(l2 − x)

sin kl2
+ eiτ

sin kx

sin kl2

)

= e−iτ x
(
cos kx − cos kl2

sin kl2
sin kx + eiτ

sin kx

sin kl2

)

= e−iτ x
(
cos kx +

[
−k

l1 + l3
2

+ i
sin τ

sin kl2

]
sin kx

)
, x ∈ e2. (64)

6.2. Limit fibre representation of δ′-type: Bloch spectrum. Consider the operator
A′
hom = A′

hom(τ ′) in the space L2(e2) defined by the same differential expression as

A(τ )
hom, with the parameter τ replaced by τ ′:

(
1

i

d

dx
+ τ ′

)2

,

on the domain described by the conditions

u(0) + e−i(l1+l3)τ ′
u(l2) = (l1 + l3)∂

(τ ′)u
∣∣
0, (65)

∂(τ ′)u
∣∣
0 = −e−i(l1+l3)τ ′

∂(τ ′)u
∣∣
l2
. (66)
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Note that the above conditions are written equivalently as

u(0) + e−i(l1+l3)τ ′
u(l2) = (l1 + l3)̂∂

(τ ′)
n u

∣∣
0, ∂̂(τ ′)

n u
∣∣
0= ∂̂ (τ ′)

n u
∣∣
l2
, (67)

by passing over to the corresponding Datta–Das Sarma modification, i.e., by associating
the weight e−i(l1+l3)τ ′

with the right endpoint of the interval e2. The operator A′
hom is

a self-adjoint extension of δ′ type, i.e. it can be formally written as a δ′-type pertur-
bation of a second-order differential operator, see, e.g. [6,26]. The coupling constant
corresponding to this δ′-type matching condition is l1 + l3.

The boundary triple for the operator A′
hom(τ ′) can be chosen [24] so that the boundary

space isH = C and the boundary operators are

′
0u = ∂̂ (τ ′)

n u
∣∣
V , ′

1u = −
∑

x∈V

w(x)u(x), (68)

where both endpoints of e2 are identified with each other, so that e2 forms a loop attached
at the vertexV . The left and right endpoints of this loop are assigned theDatta–Das Sarma
weights 1 and e−i(l1+l3)τ ′

, respectively. The parameterising matrix (see Definition 2.1)
is the scalar B ′ = −(l1 + l3).

The spectrum of A′
hom(τ ′) is discrete and consists of Bloch-type eigenvalues and,

possibly, eigenvalues of non-Bloch type. With respect to the boundary triple introduced
above these parts of the spectrum also correspond to the spectrum that is “visible” to the
M-matrix of the maximal operator and the one which is “invisible” to it (as eigenvalues
of the corresponding minimal operator which is then non-simple). The Bloch spectrum
is characterised in the following way. At a given k, consider the solution to the spectral
equation with the boundary data

∂̂ (τ ′)
n u

∣∣
0 = ∂̂ (τ ′)

n u
∣∣
l2

= k.

The corresponding solution is given by

v(x; k) = e−iτ ′x
(
cos k(l2 − x)

sin kl2
+ eiτ

′ cos kx

sin kl2

)
, x ∈ e2.

Clearly, this is an eigenfunction of the operator A′
hom(τ ′) provided that

2 cot kl2 + 2 cos τ ′ csc kl2 = k(l1 + l3). (69)

Note that if τ ′ = τ +π (mod 2π), the dispersion relation for A′
hom(τ ′) at k is identical to

the one for A(τ )
hom, see (62), at the same point k, and hence their Bloch spectra coincide.

Combining the dispersion relation (69) and the expression for v(x; k) yields

v(x; k) = e−iτ ′x
(
sin kx +

[
k

l1 + l3
2

+ i
sin τ ′

sin kl2

]
cos kx

)
, x ∈ e2. (70)

It is checked that

∥∥v(·, k)
∥∥2 = l1 + l3

2
+

l2
(sin kl2)2

(
1 + cos τ ′ cos kl2

)
,
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i.e. the norms of ū(k) and v(·; k) coincide for τ and τ ′, respectively, when τ ′ = τ +
π (mod 2π). Finally, substituting τ ′ = τ + π (mod 2π) into (70) yields the following
formula for v(x; k) in terms of the parameter τ :

v(x; k) = e−iπxe−iτ x
(
sin kx +

[
k

l1 + l3
2

− i
sin τ

sin kl2

]
cos kx

)
, x ∈ e2, (71)

which we compare below with the first component of the eigenvector ū(k).

6.3. Non-Bloch spectrum in the δ- and δ′-type cases. As far as the non-Bloch spectrum
is concerned, for the operator A(τ )

hom one has to solve the spectral equation (60) when
sin(kl2) = 0 subject to the boundary conditions (61). While a general solution of (60)
has the form u = Ae−iτ xeikx + Be−iτ xe−ikx , the conditions (61) are shown to imply that
cos kl2 = eiτ and the solution sought admits the form u = u(0)e−iτ xeikx +Ce−iτ x sin kx
with an arbitrary C ∈ C. This leads to the eigenvector e−iτ x sin kx at the values τ = 0,
τ = π , where k = πm/ l2 for an even non-zero (for τ = 0) or odd (for τ = π ) value of
m, and to the eigenvector e−iτ x ≡ 1 for τ = 0, m = 0.

The non-Bloch spectrum of the operator A′
hom can be treated in a similar way, which

allows for a simplification since, as argued in Sect. 6.2, it is the set of eigenvalues of
the minimal (symmetric) operator Amin, the domain of which is uniquely defined by
the boundary triple (68) via conditions 0u = 1u = 0 (see also [23] for further
details). These eigenvectors satisfy the spectral equation and the boundary conditions
that determine the domain of the minimal operator:

∂(τ)u
∣∣
0 = ∂(τ)u

∣∣
l2

= 0, u(0) + e−i(l1+l3)τ u(l2) = 0.

The general solution is the same as above, while the boundary conditions yield A = B,
sin kl2 = 0, cos kl2 = −eiτ . This system has a solution for τ = 0 and τ = π , where
the associated eigenfunction is given by e−iτ x cos kx , k = πm/ l2 for an odd or even
m, respectively. If follows immediately that the operator A(τ )

hom at τ = 0, τ = π has the
same non-Bloch spectrum as A′

hom(τ ′) at τ ′ = π , τ ′ = 0, respectively.

6.4. Unitary equivalence of A(τ )
hom and A′

hom(τ ′), and the whole-line form of the limit

model. Since A(τ )
hom and A′

hom(τ ′) are self-adjoint operators with purely discrete spectra
in Hhom and L2(e2), respectively, for each τ and τ ′ their eigenfunctions form orthogonal
bases in these spaces. It follows from the above analysis that for each τ the operator A(τ )

hom
is unitarily equivalent to A′

hom(τ ′), τ ′ = τ + π (mod 2π). The corresponding unitary

transformation is described by mapping, for each value of k, the eigenfunctions of A(τ )
hom

with the first component (64) to the eigenfunctions (71) of A′
hom(τ ′), as well as the

respective eigenfunctions of the non-Bloch spectra (see Sect. 6.3). Notice that formally
this is equivalent to the simultaneous substitution of cos kx by sin kx and sin kx by
− cos kx in (64).

Finally, we rewrite the eigenvalue problems for the operators A′
hom(τ ′) in a form

convenient for the application of the inverse Gelfand transform, see Sect. 2.1. This is
followed by the description of an operator in L2(R) of the Kronig–Penney type, whose
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image under the Gelfand transform is given by the family A′
hom(τ ′), τ ′ ∈ [0, 2π). To

this end, introduce a new function ũ in (65)–(66) by the formula

ũ(y) = eil2 yτ ′
u(l2y), y ∈ [0, 1], (72)

results in the following conditions for ũ:

ũ(0) − e−iτ̃ ũ(1) = l1 + l3
l2

ũ′(0), ũ′(1) = eiτ̃ ũ′(0),

where τ̃ = τ ′ + π (mod 2π),
which returns the original value of the fibre parameter τ (mod 2π).
Now, considering

v(y) = e−iτ̃ y ũ(y), y ∈ [0, 1], (73)

results in

v(1) − v(0) = − l1 + l3
l2

(
d

dy
+ iτ̃

)
v

∣∣∣∣
0
,

(
d

dy
+ iτ̃

)
v

∣∣∣∣
1

=
(

d

dy
+ iτ̃

)
v

∣∣∣∣
0
. (74)

The differential expression on the left-hand side of (58) takes the following form in terms
of the function v:

1

l22

(
1

i

d

dy
+ τ ′ + π

)2

v = 1

l22

(
1

i

d

dy
+ τ̃

)2

v,

Hence, the limit Kronig–Penney model is given in each fibre τ̃ ∈ [0, 2π) by the spectral
equation

1

l22

(
1

i

d

dy
+ τ̃

)2

v = zv, (75)

subject to the conditions (74). The inverseGelfand transform (12) results in the following
spectral problem on R for U such that Û = v, cf. (11):

− l−2
2 U ′′ = zU, U ′ ∈ C(R), ∀n ∈ Z U ∈ C[n, n + 1],

U (n + 0) − U (n − 0) = l−1
2 (l1 + l3)U

′(n), (76)

where l1 + l2 + l3 = 1. Notice that in the case when l2 = 1 (i.e. the stiff component is
absent) we obtain the usual operator−d2/dx2 onR. The spectral problem (76) describes
(generalised) eigenfunctions of the operator A′

hom in L2(R) given by the differential
expression −l−2

2 d2/dx2 on

dom(A′
hom)

= {
U : ∀n ∈ Z U ∈W 2,2(n, n+1), U ′ ∈ C(R), ∀n ∈ Z U (n + 0) − U (n − 0)

= l−1
2 (l1 + l3)U

′(n)
}
.
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Fig. 2. The “fattened graph” of the earlier works on spectral convergence of the Laplace operator on thin
domains with Neumann boundary conditions

7. Relation to Earlier Results

1. Our approach via the theory of boundary triples and Krein formula offers a strategy
to obtain operator-norm resolvent convergence estimates for the setting of [25,40,
41], who discuss the behaviour of the spectra of operator sequences associated with
“shrinking” domains as in Fig. 2. Here the rate of shrinking of the green “edge” parts
is assumed to be related to the rate of shrinking of the blue “vertex” parts via

vol(V ε
vertex)

vol(V ε
edge)

→ α ≥ 0, ε → 0. (77)

It is shown in the above works (for the case α = 0 in [40]) that the spectra of the
corresponding Laplacian operators with Neumann boundary conditions converge to
the spectrum of an operator on a one-dimensional lattice obtained as the limit of the
domain in Fig. 2 as ε → 0. Our operator A(τ )

hom, see Definition 5.2, coincides with the
limit operator in [25,41]. The “weight” l1 + l3 in our analysis plays the rôle of the
constant α in (77), see e.g. (59).
In view of our results, it is intriguing to consider the one-dimensional high-contrast
problem (7)–(8) as an equivalent (in the resolvent sense) of Neumann Laplacians
defined on a two-dimensional domain shrinking to an infinite chain graph, under the
assumption (77) with α �= 0. This should allow for the treatment of the homogenisa-
tion problem in terms of resonant properties of thin structures, thereby relating prop-
erties that are due to high contrast to properly chosen “sizes” of resonators located at
the chain vertices. It would be instructive to compare such results with [57], where
α = 0 and thus the effective operator is the Laplacian on a periodic graph with
standard Kirchhoff conditions at the vertices, fully in line with the results of [25,40].
Notably, a resonance scattering theory approach to the treatment of effective trans-
mitting properties of thin graph-like structures has been developed in [1,31,45] and
references therein, whose results, in our view, pave the way for yet another promising
approach to the treatment of homogenisation problems with high contrast.

2. To the best of our knowledge, the fact that the limiting operator of [25,41] is unitarily
equivalent to a Laplacian with a non-trivial δ′-type perturbation supported on an
infinite one-dimensional lattice is observed in the present paper for the first time.
Building upon the results of [25,41] in the special case of infinite chain graphs,
this further reveals the meaning of δ′-type coupling conditions in quantum graphs,
which has attracted considerable attention during the past decade. We conjecture that
the same effect occurs in the general case of periodic metric graphs, which will be
discussed in a forthcoming publication.

3. Ourmain result, Corollary 5.5, describes the asymptotic behaviour of the problem (1),
(6) in classical operator-theoretic terms, and is similar in this to the work [17], where
resolvent estimates of order O(ε) are obtained in the multi-dimensional case d ≥ 2
under the assumption dist(Q0, ∂ Q) > 0, see (6). We do not rely on the techniques
based on two-scale convergence, which have otherwise been used in the analysis of
high-contrast problems, see [16,34,54]. Our approach provides asymptotic estimates
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that are both norm-sharp and ε-order sharp, and is free from restrictions on the geom-
etry of the composite (except for minimal smoothness assumptions on the interfaces),
which in our view shows the potential of operator-theoretic techniques in the study
of “non-classical” periodic media.

4. In the work [9] the effective model (3) was derived by an asymptotic analysis of
the fibre decomposition of the resolvents (5) and a fundamental notion of spectral
germ was introduced, as an operator-theoretic tool for the analysis of the “threshold
behaviour” of (5) when the parameter ε2z < 0 approaches the spectrum at zero. The
approach of [9] applies to operators that can be defined in terms of pencils of the form
(X0 + t X1)

∗(X0 + t X1), t ∈ [0, 1), kerX0 �= {0}, under some additional technical
assumptions on X0, X1. However, a key requirement of this approach concerning the
behaviour of the pencil, namely that the number of its eigenvalues in a sufficiently
small neighbourhood of zero is finite, is not satisfied in the case of the pencil (4),
(6), where the rôle to t is played by |�|, see a related discussion in Sect. 1. From this
perspective, one of themain results of our analysis is the development of a generalised
notion of spectral germ for high-contrast periodic problems. While such an object
would seem to have to involve an infinite set of data, due to a growing (as ε → 0)
set of eigenvalues of the pencil in any given neighbourhood of zero, it is remarkable
that our limit model is a simple quantum graph with non-trivial, dipole-type interface
conditions (67).

5. All the ingredients of our approach to high-contrast problems of the kind (1), (6) are
either already formulated in an abstract operator-theoretic formor canbe reformulated
in such a form, despite the fact that the proofs of Theorems 4.1, 5.4 involve a list
of explicit one-dimensional calculations. In particular, in the multi-dimensional case
d ≥ 2 we expect Fig. 1 to be relevant, illustrating the related modification procedure
in terms of its one-dimensional sections. It is for this reason that we believe in the
strong potential of our approach for the treatment of PDE settings. This will be
realised under an appropriate modification of the classical boundary triple setup,
whose abstract version [22] is not directly applicable to the PDE case. At the same
time, a suitable generalisation is readily available for one-dimensional graphs that
are periodic in several directions, which we shall also address elsewhere.
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37. Kočubeı̆, A.N.: Characteristic functions of symmetric operators and their extensions (in Russian). Izv.
Akad. Nauk Arm. SSR Ser. Mat. 15(3), 219–232 (1980)

38. Kohn, R.V., Shipman, S.P.: Magnetism and homogenisation of microresonators. Multiscale Model.
Simul. 7(1), 62–92 (2008)

39. Kreı̆n, M.G.: Theory of self-adjoint extensions of semibounded hermitian operators and applications
II. Mat. Sb. 21(3), 365–404 (1947)

40. Kuchment, P., Zeng, H.: Convergence of spectra of mesoscopic systems collapsing onto a graph. J. Math.
Anal. Appl. 258(2), 671–700 (2001)

41. Kuchment, P., Zeng, H.: Asymptotics of spectra of Neumann Laplacians in thin domains. Contemporary
Mathematics, vol. 327, pp. 199–213. Amer. Math. Soc., Providence (2004)

42. Kurasov, P.: Inverse problem for Aharonov–Bohm rings.Math. Proc. Cam. Phil. Soc. 148, 331–362 (2010)
43. Levitan, B.M., Sargsyan, I.S.: Sturm–Liouville and Dirac Operators. Kluwer, Dordrecht (1991)
44. Marchenko, V.A.: Sturm-Liouville Operators and Applications. Operator Theory: Advances and Appli-

cations, vol. 22. Birkhäuser, Basel. (1986)
45. Mikhailova, A., Pavlov, B., Prokhorov, L.: Intermediate Hamiltonian via Glazman splitting and analytic

perturbation for meromorphic matrix-functions. Mathematische Nachrichten 280(12), 1376–1416 (2007)
46. Olejnik, O.A., Shamaev, A.S., Yosifyan, G.A.: Mathematical Problems in Elasticity and Homogenization.

Stud. Math. Appl. 26. North-Holland, Amsterdam (1992)
47. Pastukhova, S.E., Tikhomirov., R.N.: Operator estimates in reiterated and locally periodic homogeniza-

tion. Dokl. Math. 76, 548–553 (2007)
48. Ryzhov, V.: Functional model of a class of nonselfadjoint extensions of symmetric operators. Operator

theory, analysis andmathematical physics. In:Oper. TheoryAdv.Appl., vol. 174, pp. 117–158. Birkhäuser,
Basel (2007)

49. Strauss, A.V. : Generalised resolvents of symmetric operators. Izv Akad. Nauk SSSR Ser. Mat. 18, 51–86
(1954). (in Russian)

50. Titchmarsh, E.S.: Eigenfunction Expansions Associated with Second-Order Differential Equations, Part
I. Clarendon Press, Oxford. (1962)

51. Višik, M.I.: On general boundary problems for elliptic differential equations (Russian). Trudy Moskov.
Mat. Obšc. 1, 187–246 (1952)

52. von Neumann, J.: Über adjungierte operatoren. Ann. Math. 33(2), 294–310 (1932)
53. Zhikov, V.V.: Spectral approach to asymptotic diffusion problems (Russian). Differentsial’Nye Urav-

neniya 25(1), 44–50 (1989)
54. Zhikov, V.V.: On an extension of the method of two-scale convergence and its applications. Sbornik

Math. 191(7), 973–1014 (2000)
55. Zhikov, V.V.: On gaps in the spectrum of some divergence elliptic operators with periodic coefficients. St.

Petersburg Math. J. 16(5), 773–779 (2005)
56. Zhikov, V.V.: On operator estimates in homogenization theory. Dokl. Math. 72, 534–538 (2005)
57. Zhikov, V.V., Pastukhova, S.E.: Averaging of problems in the theory of elasticity on periodic grids of

critical thickness. Sb. Math. 194(5–6), 697–732 (2003)
58. Zhikov, V.V., Pastukhova, S.E.: On operator estimates for some problems in homogenization theory. Russ.

J. Math. Phys. 12(4), 515–524 (2005)

Communicated by P. Deift


	Norm-Resolvent Convergence of One-Dimensional High-Contrast Periodic Problems to a Kronig--Penney Dipole-Type Model
	Abstract:
	1 Introduction
	2 Gelfand Transform, Boundary Triple, and M-Matrix
	2.1 Gelfand transform
	2.2 Boundary triples
	2.3 The triple and the Green formula
	2.4 Datta--Das Sarma conditions
	2.5 M-matrix
	2.6 Zeros of the M-matrix and spectrum

	3 Preliminary Observations
	3.1 Auxiliary re-scaling in the soft component
	3.2 Kreĭn resolvent formula

	4 Comparison to the ``Intermediate'' Generalised Resolvents (to.tildeboldsymbolAε(t)-z)to.-1
	5 Behaviour of the Resolvents (to.tildeAε(t)-z)to.-1 and the Main Result
	6 Transformation to a Kronig--Penney Model of δ'-Type: Bloch Spectrum
	6.1 Limit fibre representation of δ-type: Bloch spectrum
	6.2 Limit fibre representation of δ'-type: Bloch spectrum
	6.3 Non-Bloch spectrum in the δ- and δ'-type cases
	6.4 Unitary equivalence of Ahom(τ) and A'hom(τ'), and the whole-line form of the limit model

	7 Relation to Earlier Results
	Acknowledgments.
	References




