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Abstract: Cherednik attached to an affineHecke algebramodule a compatible systemof
difference equations, called quantum affine Knizhnik–Zamolodchikov (KZ) equations.
In the case of a principal series module, we construct a basis of power series solutions
of the quantum affine KZ equations. Relating the bases for different asymptotic sectors
gives rise to a Weyl group cocycle, which we compute explicitly in terms of theta
functions.

For the spin representation of the affine Hecke algebra of type C , the quantum affine
KZ equations become the boundary qKZ equations associated to the Heisenberg spin- 12
XXZ chain. We show that in this special case the results lead to an explicit 4-parameter
family of elliptic solutions of the dynamical reflection equation associated to Baxter’s 8-
vertex face dynamical R-matrix.We use these solutions to define an explicit 9-parameter
elliptic family of boundary quantum Knizhnik–Zamolodchikov–Bernard (KZB) equa-
tions.
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1. Introduction

In Cherednik [10] associates to an abstract affine R-matrix {Rα}α , labelled by the roots
α of an affine root system, a compatible system of equations called quantum affine
KZ equations. For type A, affine R-matrices can be constructed using the braiding
of quantum affine algebras. The resulting quantum affine KZ equations become the
Frenkel–Reshetikhin–Smirnov qKZ equations [27,60]. For type C, affine R-matrices
arise naturally in the context of integrable lattice models with boundaries. The corre-
sponding quantum affine KZ equations are called boundary qKZ equations. In this case
quantum affine symmetric pairs [41] produce examples, see, e.g., [4,13]. Besides the
quantum group approach, which always leads to quantum affine KZ equations of classi-
cal type, one can attach quantum affine KZ equations to affine Hecke algebra modules.
The associated affine R-matrices are constructed using the affine intertwiners of the
double affine Hecke algebra [11].

In special cases the affine R-matrices can be obtained from both the quantum group
and the Hecke algebra construction. The underlying actions of the quantum group and
Hecke algebra are related by quantum Schur–Weyl type dualities.

In this paper we construct bases of power series solutions of quantum affine KZ
equations associated to principal series modules of the affine Hecke algebra. The bases
depend on asymptotic sectors, which are given in terms of Weyl chambers of the under-
lying root system. The connection matrices relating the bases for different asymptotic
sectors give rise to a Weyl group cocycle. We solve the connection problem by deriving
an explicit expression of the Weyl group cocycle in terms of theta functions. In addition
we study the applications to integrable lattice models with boundaries in detail.

The connection to quantum integrable models is threefold. Firstly, for arbitrary root
systems the difference Cherednik–Matsuo correspondence [11,62,64] gives a bijec-
tive correspondence between the solutions of the quantum affine KZ equations associ-
ated to principal series modules and solutions of the spectral problem of Ruijsenaars–
Macdonald–Koornwinder–Cherednik (RMKC) difference operators. The RMKC differ-
ence operators are the Hamiltonians of the quantum relativistic trigonometric Calogero–
Moser system, first introduced byRuijsenaars [57] for typeA. These quantum relativistic
integrable models are intimately related to Macdonald–Koornwinder polynomials [9].
This point of view was emphasized in [64].

Secondly, special cases of the quantum affine KZ equations for principal series
modules arise as compatibility conditions for correlation functions and form factors
of (semi-)infinite XXZ spin chains [34,35,69]. In these cases vertex operator and alge-
braic Bethe ansatz techniques have been employed to construct solutions of the quan-
tum affine KZ equations (see, e.g., [27,34,54,68] and references therein for type A,
and [4,25,26,30,35,38,40,55,65,69] for type C). These methods have the drawback
that they require additional assumptions on the associated XXZ spin chains, such as the
existence of pseudo-vacuum vectors. Our construction of power series solutions of the
quantum affine KZ equations is applicable without such restrictions.
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Thirdly, the solution of the connection problem is an explicit Weyl group cocycle
expressed in termsof theta functions. For classical type and for special classes of principal
series modules the cocycle gives rise to elliptic solutions of dynamical quantum Yang–
Baxter and reflection equations.

In Sect. 3 we treat the general theory, but we start in Sect. 2 with a detailed discussion
of the applications to integrable lattice models with boundaries. Applications to other
classes of integrable lattice models, such as quasi-periodic lattice models with quantum
supersymmetry or higher spin models, will be addressed in future work. The crucial step
in applying the general theory to integrable lattice models is to decompose the affine
Hecke algebra module underlying the pertinent integrable lattice model as a direct sum
of principal series modules. For each principal series component the general theory from
Sect. 3 can be applied to obtain an associated explicit connection cocycle of elliptic type.

We treat in full detail the spin representation of the affine Hecke algebra of type C
[29,65] encoding the affine Hecke algebra symmetries of the Heisenberg spin- 12 XXZ
chainwith arbitrary reflectingboundary conditions onboth ends.The associated quantum
affine KZ equations are boundary qKZ equations depending on 6 parameters: a repre-
sentation parameter, a bulk parameter, and two free parameters for each end of the XXZ
spin chain with reflecting ends. The associated K -matrices, encoding the integrability
at the boundary, are those first obtained in [67] by direct computations. We explicitly
apply the general theory from Sect. 3 to this context, resulting in the construction of
bases of power series solutions of the boundary qKZ equations (Theorem 2.7) and the
description of the associated connection matrices in terms of explicit elliptic solutions
of dynamical quantum Yang–Baxter and reflection equations (Theorem 2.10). It leads
to a 4-parameter family of solutions of the dynamical reflection equation with respect
to Baxter’s [5] dynamical elliptic R-matrix, with the representation parameter playing
the role of the dynamical parameter. It can be reinterpreted as a 4-parameter family of
solutions of the boundary Yang–Baxter equation for Baxter’s eight vertex face model.
Solutions to the boundary Yang–Baxter equations for the eight vertex face model, or
equivalently, by vertex-face correspondences, to reflection equations for the eight vertex
model itself, have been computed by direct computations before; see [32,33,67] from
the vertex perspective, [6,18,43] from the face perspective, and [31] for the explicit link
by vertex-face correspondences.

The current paper thus provides a conceptual understanding of such solutions and
of their free parameters. In fact, by the difference Cherednik–Matsuo correspondence
[11,62,65], the solutions of the boundary qKZ equations associated to the spin represen-
tation correspond to solutions of the spectral problem of the (higher order) Koornwinder
operators [46] for a special family of spectral points which are naturally parametrized
by the representation parameter of the spin representation. It results in the interpretation
of the remaining 5 free parameters of the boundary qKZ equations as the free para-
meters in the theory of Koornwinder polynomials (see [65] for a detailed discussion).
The four free parameters in the elliptic solutions of the dynamical reflection equation
obtained from the computation of the associated connection problem then correspond
to the Askey–Wilson parameters [64] in the theory of Koornwinder polynomials [46].

In [19,21] solutions of dynamical quantumYang–Baxter equations are used to define
quantum analogs of the Knizhnik–Zamolodchikov–Bernard (KZB) equations. In the
final part of Sect. 2 we construct quantum analogs of the KZB equations in the pres-
ence of boundaries. These boundary quantum KZB equations are defined in terms of
solutions of the dynamical quantum Yang–Baxter equation and associated solutions of
the left and right dynamical reflection equations. Applied to Baxter’s elliptic dynamical
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R-matrix and the associated 4-parameter family of solutions of the dynamical reflec-
tion equation, we obtain an explicit 9-parameter elliptic family of boundary quantum
Knizhnik–Zamolodchikov–Bernard (KZB) equations.We expect that a generalisation of
the difference Cherednik–Matsuo correspondence relates their solutions to the solutions
of the spectral problem of the 9-parameter family of the elliptic Ruijsenaars’ systems of
type C , as introduced by van Diejen [14] and Komori and Hikami [42].

In Sect. 3 we construct the bases of power series solutions of the quantum affine
KZ equations associated to principal series modules. The explicit expressions of the
associated connection matrices in terms of theta functions are derived using results of
[64] (which dealt with the case of minimal principal series modules). In the last part
of Sect. 3 we explain how these results, when applied to the spin representation of the
affine Hecke algebra of type C , produce the results on integrable lattice models with
boundaries as described in Sect. 2.

2. The Connection Problem for the Spin- 12 XXZ Boundary qKZ Equations

2.1. The spin representation. Let n ≥ 2 and 0 < q < 1. We fix a basis {v+, v−} of C
2

and represent linear operators onC
2 andC

2⊗C
2 as matrices with respect to the ordered

basis (v+, v−) and (v+ ⊗ v+, v+ ⊗ v−, v− ⊗ v+, v− ⊗ v−) respectively.
Let Sn be the symmetric group in n letters and write W0 = Sn � (±1)n for the

hyperoctahedral group. Let s1, . . . , sn be simple reflections ofW0 satisfying s2i = e and
the braid relations si si+1si = si+1si si+1 (1 ≤ i < n), sn−1snsn−1sn = snsn−1snsn−1 and
si s j = s j si if |i − j | > 1, with e the neutral element of W0. The hyperoctahedral group
W0 acts on C

n by

siz = (z1, . . . , zi−1, zi+1, zi , zi+2, . . . , zn), 1 ≤ i < n,

snz = (z1, . . . , zn−1,−zn),

where z = (z1, . . . , zn). Note that Z
n is W0-stable.

The affine Weyl group of type Cn is W := W0 � Z
n . We write λ �→ τ(λ) for the

canonical group embedding Z
n ↪→ W . The action ofW0 on Z

n (resp. Cn) extends to an
action of W by

τ(λ)z := z + λ = (z1 + λ1, . . . , zn + λn), λ = (λ1, . . . , λn) ∈ Z
n .

Let {ei }ni=1 be the standard orthonormal basis of R
n and set

s0 := τ(e1)s1 · · · sn−1snsn−1 · · · s1.
Then

s0z := (1 − z1, z2, . . . , zn)

andW is a Coxeter group with simple reflections s0, s1, . . . , sn . The associated Coxeter
graph is

....
0 1 2 n-1 nn-2

Note that
τ(ei ) = si−1 . . . s1s0s1 . . . sn−1snsn−1 . . . si (2.1)

for i = 1, . . . , n.
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Fix parameters ζ ′, κ, ζ ∈ C. The affine Hecke algebra H = H(qζ ′
, qκ , qζ ) of type

Cn is the unital associative algebra over C with generators T0, . . . , Tn that satisfy the
braid relations associated to the above Coxeter graph and satisfy the Hecke relations

(T0 − q−ζ ′
)(T0 + qζ ′

) = 0,

(Ti − q−κ )(Ti + qκ) = 0, 1 ≤ i < n,

(Tn − q−ζ )(Tn + qζ ) = 0.

The spin representation [29,65] of H is defined as follows.

Proposition 2.1. There exists a unique representationπ
sp
ξ,ξ ′ : H → EndC

((
C
2
)⊗n)

such
that

π
sp
ξ,ξ ′(Ti ) =

⎛

⎜
⎝

q−κ 0 0 0
0 0 1 0
0 1 q−κ − qκ 0
0 0 0 q−κ

⎞

⎟
⎠

i,i+1

for 1 ≤ i < n and

π
sp
ξ,ξ ′(T0) =

(
q−ζ ′ − qζ ′

q−ξ ′

qξ ′
0

)

1

, π
sp
ξ,ξ ′(Tn) =

(
0 qξ

q−ξ q−ζ − qζ

)

n
.

Here we have used the standard tensor leg notation to indicate on which tensor legs of
the n-fold tensor product space

(
C
2
)⊗n

the matrices act.

The isomorphism class of π
sp
ξ,ξ ′ only depends on ξ + ξ ′, see [65, Prop. 3.5]. We write

π
sp
(ξ ′) for the representation π

sp
0,ξ ′ , so that π

sp
ξ,ξ ′ 	 π

sp
(ξ+ξ ′). We will sometimes suppress

the representation parameter ξ and write π sp = π
sp
(ξ).

Remark 2.2. The spin representation π sp factorizes through a representation of the two-
boundary Temperley–Lieb algebra, see [29,65].

For generic parameters there are two natural complex linear bases of the rep-
resentation space

(
C
2
)⊗n which we denote by {vε}ε and {bε}ε , where the indices

ε = (ε1, ε2, . . . , εn) are running over {±1}n . The first basis {vε}ε is simply defined
as

(
C
2)⊗n =

⊕

ε

Cvε, vε := vε1 ⊗ vε2 ⊗ · · · ⊗ vεn ,

where v±1 := v±. In particular, v1 = v⊗n
+ for 1 := (1, . . . , 1) ∈ {±1}n .

The basis elements vε can be expressed in terms of the π sp-action of H on the vector
v⊗n
+ as follows. For anyw ∈ W and corresponding reduced expressionw = si1si2 · · · sir
(0 ≤ i j ≤ n) set

Tw := Ti1Ti2 · · · Tir ∈ H.

The Tw ∈ H are well defined (independent of the choice of reduced expression of
w ∈ W ). Define wε ∈ W0 for a n-tuple ε = (ε1, . . . , εn) ∈ {±1}n by

wε := (sik sik+1 · · · sn) · · · (si2si2+1 · · · sn)(si1si1+1 · · · sn) (2.2)
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where {i1, i2, . . . , ik} := {i | εi = −1} and 1 ≤ i1 < i2 < · · · < ik ≤ n. Note that
wε(1) = ε with respect to the action of W0 on {±1}n ⊂ Z

n . The following lemma is
now easy to verify.

Lemma 2.3. The elements {wε}ε are the minimal coset representatives of W0/Sn, and

vε = π sp(Twε )v
⊗n
+ .

The second basis {bε}ε of
(
C
2
)⊗n is defined as follows. Set for i ∈ {1, . . . , n},

Yi := T−1
i−1 · · · T−1

1 T0T1 · · · Tn−1TnTn−1 · · · Ti ∈ H

(cf. (2.1)). Then [Yi ,Y j ] = 0 and the elements T1, . . . , Tn,Y
±1
1 , . . . ,Y±1

n algebraically
generate H . The affine Hecke algebra can be completely characterised in terms of these
generators, leading to the Bernstein–Zelevinsky presentation of H (see [49]). We write
Y λ = Y λ1

1 Y λ2
2 · · · Y λn

n for λ = (λ1, . . . , λn) ∈ Z
n .

For η = (η1, η2, . . . , ηn) ∈ C
n and a left H -module V set

Vη := {v ∈ V | Yiv = q−ηi v ∀ i}
= {v ∈ V | Y λv = q−(λ,η)v ∀ λ ∈ Z

n}
for the common eigenspace of the commuting operators Yi on V with eigenvalues q−ηi ,
where we have used the standard bilinear form

(
z,w

) = ∑n
i=1 ziwi on C

n .
Set

γ := (ξ + (n − 1)κ, ξ + (n − 3)κ, . . . , ξ + (1 − n)κ) ∈ C
n . (2.3)

It follows from the fact that
(
C
2
)⊗n is a principal series module of H with central char-

acter q−γ (see [65, Prop. 3.5] and Sect. 3.6) that the spin representation
(
π
sp
(ξ),

(
C
2
)⊗n)

decomposes for generic parameters as
(
C
2)⊗n =

⊕

ε∈{±1}n

((
C
2)⊗n)

wεγ

with the common eigenspaces
((

C
2
)⊗n)

wεγ
being one-dimensional. The generic condi-

tions on the parameters can be made precise, see [62, Prop. 2.12] and Sect. 3.2.
The basis element bε is a particular choice of nonzero element from

((
C
2
)⊗n)

wεγ
. To

define itweneed to introduce a bitmore notation. Let R0 = {±ei±e j }1≤i �= j≤n∪{±ei }ni=1
be the root system of type Bn . We fix

{α1, . . . , αn−1, αn} = {e1 − e2, . . . , en−1 − en, en}
as basis of R0 and write R+

0 (respectively R−
0 ) for the corresponding set of positive

(respectively negative) roots in R0. The simple reflections s1, . . . , sn of W0 correspond
with the reflections in the simple roots α1, . . . , αn . Let ≤ be the associated Bruhat order
on W0. Set for roots α ∈ R0,

Nα(z) :=
⎧
⎨

⎩

(1−q(α,z))

qκ (1−q−2κ+(α,z))
if ‖α‖2 = 2,

(1−q2(α,z))

qζ (1−q−ζ−ζ ′+(α,z))(1+q−ζ+ζ ′+(α,z))
if ‖α‖2 = 1.

It is easy to check that if α ∈ R+
0 ∩ w−1

ε R−
0 (ε ∈ {±1}n) then z �→ Nα(z) is regular

at z = γ (see also Sect. 3.2). The following lemma follows from standard techniques
involving affine Hecke algebra intertwiners (see [62, Sect. 2.5] and Sect. 3.2).



Connection Problems 1369

Lemma 2.4. Fix generic parameters and fix ε ∈ {±1}n. There exists a unique 0 �= bε ∈
((

C
2
)⊗n)

wεγ
satisfying

bε = Nεvε +
∑

ε′∈{±1}n :wε′<wε

Lε′vε′

for certain coefficients Lε′ ∈ C, where

Nε :=
∏

α∈R+
0∩w−1

ε R−
0

Nα(γ ).

The vectors bε (ε ∈ {±1}n) forms a basis of (C2
)⊗n

.

Note that b1 = v⊗n
+ = v1.

2.2. The boundary qKZ equations. The Baxterization [65, Sect. 4] of the representation
π sp gives rise to a W -cocycle {Cu(z)}u∈W depending on two additional parameters υ

and υ ′, which are the two additional degrees of freedom in the C∨Cn type double affine
Hecke algebraH containing H as a subalgebra.We do not recall here this construction of
the cocycle {Cu(z)}u∈W , which uses the intertwiners of the double affine Hecke algebra
H, but instead will give the resulting explicit formulas for Cu(z) directly. Details on this
Baxterization procedure can be found in [9,62,65].

The values Cu(z) are EndC
((

C
2
)⊗n)-valued meromorphic functions in z ∈ C

n sat-
isfying

Ce(z) = Id(C2)⊗n , Cuv(z) = Cu(z)Cv(u−1z)

for all u, v ∈ W and satisfying

Cs0(z) = K1

(1
2

− z1
)
,

Csi (z) = Pi,i+1Ri,i+1(zi − zi+1), 1 ≤ i < n,

Csn (z) = Kn(zn)

(2.4)

with

R(z) := 1

1 − q−2κ+z

⎛

⎜⎜
⎝

1 − q−2κ+z 0 0 0
0 q−κ (1 − qz) 1 − q−2κ 0
0 (1 − q−2κ)qz q−κ (1 − qz) 0
0 0 0 1 − q−2κ+z

⎞

⎟⎟
⎠

and

K(z) = k(z)

(
(qζ ′ − q−ζ ′

)q2z + (qυ ′ − q−υ ′
)qz q−ξ (1 − q2z)

qξ (1 − q2z) qζ ′ − q−ζ ′
+ (qυ ′ − q−υ ′

)qz

)
,

K(z) = k(z)

(
qζ − q−ζ + (qυ − q−υ)qz 1 − q2z

1 − q2z (qζ − q−ζ )q2z + (qυ − q−υ)qz

)
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and scalar functions k(z) and k(z) given by

k(z) := q−ζ ′

(1 − q−ζ ′−υ ′+z)(1 + q−ζ ′+υ ′+z)
, k(z) := q−ζ

(1 − q−ζ−υ+z)(1 + q−ζ+υ+z)
,

see [65, Sect. 4]. The fact that {Cu(z)}u∈W is aW -cocycle of the form (2.4) is equivalent
toR(z) being a unitary R-matrix:

R12(z1 − z2)R13(z1 − z3)R23(z2 − z3) = R23(z2 − z3)R13(z1 − z3)R12(z1 − z2),

R21(z)R(−z) = IdC2⊗C2 , and K(z) respectively K(z) being a left respectively right
unitary K -matrix with respect to R(z):

R(z1 − z2)K1(z1)R21(z1 + z2)K2(z2) = K2(z2)R(z1 + z2)K1(z1)R21(z1 − z2),

R21(z1 − z2)K1(z1)R(z1 + z2)K2(z2) = K2(z2)R21(z1 + z2)K1(z1)R(z1 − z2),
(2.5)

K(z)K(−z) = IdC2 = K(z)K(−z) (compare with [29, Sect. 2.3]). The equations (2.5)
are called reflection equations, or boundary Yang–Baxter equations.

A transfer operator can be associated to the data K(z), R(z) and K(z) (see [59]). It
is the transfer operator of the finite inhomogeneous XXZ spin- 12 chain with arbitrary
reflecting boundaries at both ends, see [24,29,65] and references therein.

In this paper we are interested in the quantum affine KZ equations related to the
integrability data K(z), R(z) and K(z). They are the following boundary quantum KZ
equations (cf. [10,65] and references therein).

Definition 2.5. Let f : C
n → (

C
2
)⊗n be a

(
C
2
)⊗n-valued meromorphic function on

C
n . We say that f is a solution of the boundary quantum KZ equations associated to the

spin representation π sp = π
sp
(ξ) if f satisfies the difference equations

Cτ(λ)(z) f (z − λ) = f (z) ∀ λ ∈ Z
n . (2.6)

We write Solsp for the space of meromorphic solutions f : C
n → (

C
2
)⊗n of (2.6).

Remark 2.6. (i) By the cocycle property of {Cv(z)}v∈W we obtain a W -action on the
space of

(
C
2
)⊗n-valued meromorphic functions on C

n by
(∇(v) f

)
(z) := Cv(z) f (v−1z), v ∈ W.

The boundary quantum KZ equations (2.6) are equivalent to the equations
∇(τ (λ)) f = f for all λ ∈ Z

n . The solution space Solsp becomes a W0-module by
restricting the ∇-action of W0 to Solsp.

(ii) The boundary quantum KZ equations (2.6) are equivalent to the equations
∇(τ (ei )) f = f (i = 1, . . . , n) which, by the cocycle property of {Cu(z)}u∈W ,
(2.4) and (2.1), take on the explicit form

Cτ(−ei )(z) f (z + ei ) = f (z), i = 1, . . . , n

with

Cτ(−ei )(z) = Ri+1,i (zi − zi+1)Ri+2,i (zi − zi+2) · · ·Rni (zi − zn)Ki (zi )

× Rin(zi + zn) · · ·Ri,i+1(zi + zi+1)Ri,i−1(zi−1 + zi ) · · ·Ri1(z1 + zi )

× Ki

(1
2
+ zi

)R1i (1 − z1 + zi ) · · ·Ri−2,i (1 − zi−2 + zi )Ri−1,i (1 − zi−1 + zi ).
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It is in this form that the boundary quantum KZ equations often appear in the
literature, see, e.g., [10,25,26,30,35,40,55,69].

(iii) For special choices of the K -matrices K(z) and K(z) a vertex operator approach
leads to solutions of the associated boundary quantum KZ equations [35]. These
solutions give rise to correlation functions of the semi-infinite XXZ spin- 12 chain.
See [4,25,26,38,65] for other constructions of solutions for special classes of K -
matrices K(z) and K(z).

2.3. basis consisting of power series solutions. Note that Solsp is a vector space over the
field F of scalar valued Z

n-translation invariant meromorphic functions on C
n . We now

give, for generic parameters ξ, κ, ζ, ζ ′, υ, υ ′, the construction of a F-basis of Solsp.
It is a special case of the construction of a basis of solutions of the quantum affine
KZ equations associated to principal series modules in Sect. 3.4 using the asymptotic
techniques from [50,51,63,64].

Let w0 ∈ W0 for the longest Weyl group element (w0 = −1 in the natural action of
W0 on C

n by permutations and sign changes) and define ρ ∈ C
n by

ρ = (ζ + ζ ′ + (n − 1)κ, ζ + ζ ′ + (n − 3)κ, . . . , ζ + ζ ′ + (1 − n)κ).

Let ρ̃ be the vector ρ with υ and ζ ′ interchanged. The role of the plane wave in the
asymptotic expansion is played by

W(z,w) := q(ρ−w,ρ̃+w0z).

Let ζ, ζ ′, υ, υ ′ ∈ C. Define the associated Askey–Wilson parameters by

{a, b, c, d} := {qζ+υ,−qζ−υ, q
1
2 +ζ ′+υ ′

,−q
1
2 +ζ ′−υ ′ } (2.7)

and the dual Askey–Wilson parameters by

{̃a, b̃, c̃, d̃} := {qζ+ζ ′
,−qζ−ζ ′

, q
1
2 +υ+υ ′

,−q
1
2 +υ−υ ′ },

cf. [64]. Note that the dual Askey–Wilson parameters are obtained from the Askey–
Wilson parameters by interchanging υ and ζ ′. This defines an involution on the para-
meters, which we call the duality involution.

Write

(
x1, . . . , xm; q)

∞ :=
r∏

i=1

(
xi ; q

)
∞,

(
x; q)

∞ :=
∞∏

j=0

(1 − q j x)

for products of q-shifted factorials and set

Ssp(z) :=
n∏

i=1

(
q1−zi /a, q1−zi /b, q1−zi /c, q1−zi /d; q)

∞

×
∏

1≤r<s≤n

(
q1−2κ−zr+zs , q1−2κ−zr−zs ,−q1−zr+zs ,−q1−zr−zs ; q)

∞
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and

U(z) := Ssp(z)∏n
i=1

(
q1−2zi ; q)

∞
∏

1≤r<s≤n

(
q2−2zr+2zs , q2−2zr−2zs ; q2)∞

=
n∏

i=1

(
q1−zi /a, q1−zi /b, q1−zi /c, q1−zi /d; q)

∞(
q1−2zi ; q)

∞

×
∏

1≤r<s≤n

(
q1−2κ−zr+zs , q1−2κ−zr−zs ; q)

∞(
q1−zr+zs , q1−zr−zs ; q)

∞
.

Write Ũ(z) for U(z) with υ and ζ ′ interchanged (i.e. the Askey–Wilson parameters are
replaced by the dual Askey–Wilson parameters). Write Q+ for the Z≥0-linear combina-
tions of the simple roots α j (1 ≤ j ≤ n).

Theorem 2.7. For generic parameter values we have

Solsp =
⊕

ε∈{±1}n
F�ε

with �ε ∈ Solsp characterised by the expansion formula

�ε(z) := W(z, wεγ )

Ssp(z)Ũ(wεγ )

∑

α∈Q+

�α,εq
−(α,z), �α,ε ∈ (

C
2)⊗n (2.8)

with the power series converging normally for z in compacta of C
n, with γ given by

(2.3), and with leading coefficient given by

�0,ε := π sp(Tw0)bε .

The proof of the theorem is given in Sect. 3.6. It is obtained as a special case of
Proposition3.13,whichdealswith power series solutions of quantumaffineKZequations
associated to principal series modules of affine Hecke algebras. Note that Ssp(z)�ε(z)
is holomorphic in z ∈ C

n , i.e. the factor Ssp(z) in (2.8) is singling out the singularities
of �ε(z).

Observe that �ε(z) is the solution of the boundary qKZ equations which behaves
as the “plane wave”

(Ũ(wεγ )−1π sp(Tw0)bε

)W(z, wεγ ) when �(
(αi , z)

) → −∞ for
i = 1, . . . , n. This power series basis thus picks the Weyl chamber C− := {x ∈
R
n | (

αi , x
)

< 0 ∀ i} as the asymptotic region in which the basis elements behave
as plane waves.

Remark 2.8. (i) The generic conditions on the parameters can be made precise, see
Sects. 3.4 and 3.6.

(ii) The choice of normalisation factor Ũ(wεγ )−1 in (2.8) is motivated by duality prop-
erties of the asymptotic series solutions of quantum affine KZ equations associated
to minimal principal series representations (see [50,51,63,64] and Sect. 3.4).
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2.4. The connection problem. In this subsection we assume that the parameters are
generic. Let v ∈ W0. Then {(∇(v)�ε′)(z)}ε′ is a F-linear basis of Solsp with the basis
elements behaving asymptotically as plane waves for �(

(αi , v
−1z)

) → −∞ for i =
1, . . . , n. Let Mv

cm;ε,ε′(·, ξ) ∈ F be the unique elements satisfying

(∇(v)�ε′
)
(z) =

∑

ε∈{±1}n
Mv

cm;ε,ε′(z, ξ)�ε(z)

(the subindex “cm” stands for “connection matrix”). We single out the dependence on
the representation parameter ξ , because it will play the role of the dynamical parameter
when relating the Mv

cm;ε,ε′(z; ξ) to solutions of dynamical quantum Yang–Baxter and
reflection equations.

Consider the corresponding 2n × 2n-matrix

Mv
cm(·, ξ) = (

Mv
cm;ε,ε′(·, ξ)

)
ε,ε′∈{±1}n

as an EndC
(
(C2)⊗n

)
-valued meromorphic function on C

n by

Mv
cm(z, ξ)vε′ :=

∑

ε∈{±1}n
Mv

cm;ε,ε′(z, ξ)vε.

Corollary 2.9. The set {Mv
cm(z, ξ)}v∈W0 of EndC

(
(C2)⊗n

)
-valued meromorphic func-

tions in z ∈ C
n is a W0-cocycle:

Me
cm(z, ξ) = Id(C2)⊗n , Muv

cm(z, ξ) = Mu
cm(z, ξ)Mv

cm(u−1z, ξ)

for all u, v ∈ W0.

We call {Mv
cm(z, ξ)}v∈W0 the connection cocycle of the boundary quantum KZ equa-

tions associated to the spin representation π
sp
(ξ).

Let h be the linear operator on C
2 defined by hvε = εvε (ε ∈ {±1}). Write hi for the

linear operator on
(
C
2
)⊗n given by

hi := id(C2)⊗(i−1) ⊗ h ⊗ id(C2)⊗(n−i) .

For a family S(ξ) of linear operators on
(
C
2
)⊗n depending meromorphically on ξ we

write

S(ξ + αhi )vε := S(ξ + αεi )vε.

for the associated linear operator on
(
C
2
)⊗n in which the representation parameter ξ is

shifted according to the “weight” of the i th tensor component of vε .
Write

θ(x1, . . . , xr ; q) :=
r∏

i=1

θ(xi ; q), θ(x; q) :=
∞∏

j=0

(1 − q j x)(1 − q j+1/x)

for products of renormalised Jacobi theta functions. Set

C(z, ξ) := θ
(
ãqξ , b̃qξ , c̃qξ , dqξ−z /̃a; q)

θ
(
q2ξ , dq−z; q) q−(ζ+υ−z)(ζ+ζ ′−ξ) (2.9)
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and write C̃(z, ξ) for C(z, ξ) with υ and ζ ′ interchanged,

C̃(z, ξ) := θ
(
aqξ , bqξ , cqξ , d̃qξ−z/a; q)

θ
(
q2ξ , d̃q−z; q) q−(ζ+ζ ′−z)(ζ+υ−ξ).

Note that C(z, ξ) is one-periodic in both z and ξ .We show in Sect. 3.6 that the connection
cocycle {Mu

cm(z, ξ)}u∈W0 is characterised by the following formulas.

Theorem 2.10. We have

Msi
cm(z, ξ) = Pi,i+1Rcm(zi − zi+1, 2ξ − 2κ(h1 + h2 + · · · + hi−1))i,i+1, 1 ≤ i < n,

Msn
cm(z, ξ) = Kcm(zn, ξ − κ(h1 + h2 + · · · + hn−1))n

(2.10)

where P : C
2 ⊗ C

2 → C
2 ⊗ C

2 is the permutation operator and

Rcm(z, ξ) :=
⎛

⎜
⎝

1 0 0 0
0 Acm(z, ξ) Bcm(z, ξ) 0
0 Bcm(z,−ξ) Acm(z,−ξ) 0
0 0 0 1

⎞

⎟
⎠ ,

Kcm(z, ξ) :=
(

αcm(z, ξ) βcm(z, ξ)

βcm(z,−ξ) αcm(z,−ξ)

)

with the matrix coefficients given explicitly by

Acm(z, ξ) := θ(q2κ−ξ , q−z; q)

θ(q2κ−z, q−ξ ; q)
q2κ(z−ξ), Bcm(z, ξ) := θ(q2κ , q−z−ξ ; q)

θ(q−ξ , q2κ−z; q)
q(2κ+ξ)z,

and

αcm(z, ξ) := C(z, ξ) − C̃(ξ, z)

C̃(ξ,−z)
, βcm(z, ξ) := C(z, ξ)

C̃(−ξ,−z)
.

Note that Rcm(z, ξ) and Kcm(z, ξ) are one-periodic in both z and ξ .

2.5. Dynamical R- and K -matrices. The explicit form (2.10) of the connection cocycle
implies that Rcm(z, ξ) is a unitary solution of the dynamical quantum Yang–Baxter
equation and Kcm(z, ξ) a unitary solution of the dynamical reflection equation associated
to Rcm(z, ξ). Before stating the exact result we introduce the dynamical quantum Yang–
Baxter and reflection equations in a slightly more general setting, replacing the spin
space C

2 by an arbitrary finite dimensional complex vector space V . Before doing so
we need to extend some of the notations introduced in the previous paragraph to this
more general context.

Let h : V → V be a semisimple complex linear operator. We write V = ⊕
μ∈C Vμ

for the corresponding eigenspace decomposition, with Vμ the eigenspace of h with
eigenvalue μ. Write hi : V⊗n → V⊗n for the linear operator

hi := Id⊗(i−1)
V ⊗ h ⊗ Id⊗(n−i)

V .
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We use the shorthand notation μ := (μ1, . . . , μn) for a n-tuple of complex numbers μi .
Set

(V⊗n)μ := Vμ1 ⊗ · · · ⊗ Vμn = {v ∈ V⊗n | hiv = μiv, i = 1, . . . , n},
so that V⊗n = ⊕

μ(V⊗n)μ. Let S(ξ) be a family of linear operator on V⊗n depending

meromorphically on a complex parameter ξ ∈ C. For a given complex number α ∈ C

we write ξ �→ S(ξ + αhi ) for the family of linear operator on V⊗n defined by

S(ξ + αhi )v := S(ξ + αμi )v, v ∈ (V⊗n)μ.

We also occasionally use the backward weight shift. To define it, let Pμ : V⊗n →
(V⊗n)μ be the projection along the direct sum decomposition V⊗n = ⊕

ν(V
⊗n)ν .

Then we define

S(ξ + αhi ) :=
∑

ν

PνS(ξ + ανi ).

It is a linear operator on V⊗n depending meromorphically on ξ .
A family (z, ξ) �→ R(z, ξ) of linear operators on V ⊗V depending meromorphically

on two complex parameters z and ξ is called a dynamical R-matrix if R(z, ξ) satisfies
the dynamical quantum Yang–Baxter equation with spectral parameter [20]:

R12(z1 − z2, ξ − 2κh3)R13(z1 − z3, ξ)R23(z2 − z3, ξ − 2κh1)

= R23(z2 − z3, ξ)R13(z1 − z3, ξ − 2κh2)R12(z1 − z2, ξ) (2.11)

as a meromorphic family of linear operators on V⊗3 (for later purposes it is convenient
to add the factor two in the step size 2κ). The complex parameter z is called the spectral
parameter and ξ the dynamical parameter. The dynamical quantum Yang–Baxter equa-
tion (2.11), also known as the Gervais–Neveu–Felder equation, first appeared in [28]. It
is closely related to Baxter’s star-triangle equation, see [20, Thm. 3] and Sect. 2.7.

We say that a dynamical R-matrix R(z, ξ) satisfies the ice rule if

[R(z, ξ),�(h)] = 0, (2.12)

where �(h) := h1 + h2. It is said to be unitarity if

R21(z, ξ)R(−z, ξ) = Id⊗2
V . (2.13)

We call R(z, ξ) dynamically P-symmetric if

R21(z, ξ) = R(z,−ξ + 2κ�(h)) (2.14)

as linear operators on V ⊗ V .

Remark 2.11. In [19] a family R̃(z, ξ) of linear operator on V ⊗ V is said to satisfy the
dynamical quantum Yang–Baxter equation if

R̃12(z1 − z2, ξ − κh3)R̃13(z1 − z3; ξ + κh2)R̃23(z2 − z3; ξ − κh1)

= R̃23(z2 − z3; ξ + κh1)R̃13(z1 − z3; ξ − κh2)R̃12(z1 − z2; ξ + κh3). (2.15)

The two versions (2.11) and (2.15) of the dynamical quantum Yang–Baxter equations
are equivalent with the identification given by

R(z, ξ) = R̃(z, ξ − κ�(h)),

provided that R(z, ξ) (hence also R̃(z, ξ)) satisfies the ice-rule.
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Dynamical R-matrices encode the integrable structures underlying 2-dimensional
face models from statistical mechanics with periodic boundary conditions (see, e.g.,
[5,19,20]). A well-known example is Baxter’s 8-vertex face dynamical R-matrix. We
come back to this example in Sect. 2.7.

Solutions of dynamical versions of reflection equations are related to integrable
reflecting boundary conditions for face models, see, e.g., [2,6,7,23] and Sect. 2.7. In
this paper we will use the following left and right version of the dynamical reflection
equation.

Definition 2.12. Let (z, ξ) �→ R(z, ξ) be a meromorphic family of linear operators on
V⊗2 of two complex parameters z and ξ .

1. A meromorphic family (z, ξ) �→ K (z, ξ) of linear operators on V is called a right
dynamical K -matrix with respect to R(z, ξ) if K (z, ξ) satisfies the right dynamical
reflection equation

R21(z1 − z2, 2ξ)K1(z1, ξ − κh2)R12(z1 + z2, 2ξ)K2(z2, ξ − κh1)

= K2(z2, ξ − κh1)R21(z1 + z2, 2ξ)K1(z1, ξ − κh2)R12(z1 − z2, 2ξ) (2.16)

as a family of linear operators on V ⊗ V . The right dynamical K -matrix K (z, ξ) is
called unitary if

K (z, ξ)K (−z, ξ) = IdV . (2.17)

2. A meromorphic family (z, ξ) �→ K (z, ξ) of linear operators on V is called a left
dynamical K -matrix with respect to R(z, ξ) if K (z, ξ) satisfies the left dynamical
reflection equation

R(z1 − z2, 2ξ+2κ�(h))K 1(z1, ξ+κh2)R21(z1 + z2, 2ξ+2κ�(h))K 2(z2, ξ + κh1)

= K 2(z2, ξ+κh1)R(z1+z2, 2ξ+2κ�(h))K 1(z1, ξ+κh2)R21(z1 − z2, 2ξ+2κ�(h))

(2.18)

as a family of linear operators on V ⊗ V . The left dynamical K -matrix K (z, ξ) is
called unitary if K (z, ξ)K (−z, ξ) = IdV .

Remark 2.13. If R(z, ξ) is dynamically P-symmetric and if K (z, ξ) is a solution of the
right dynamical reflection equation (2.16) then

K (z, ξ) := K (z,−ξ)

is a solution of the left dynamical reflection equation (2.18) (and vice versa).

Let R(z, ξ) be a linear operator on V ⊗ V and K (z, ξ) a linear operator on V , both
dependingmeromorphically on (z, ξ) ∈ C

2. Let P : V⊗V → V⊗V be the permutation
operator. Consider the linear operators

Msi (z, ξ) := Pi,i+1Ri,i+1(zi − zi+1, 2ξ − 2κ(h1 + h2 + · · · + hi−1)), 1 ≤ i < n,

Msn (z, ξ) := Kn(zn, ξ − κ(h1 + h2 + · · · + hn−1)).

(2.19)

on V⊗n , depending meromorphically on (z, ξ) ∈ C
n × C.

Proposition 2.14. Suppose that R(z, ξ) : V ⊗ V → V ⊗ V satisfies the ice-rule (2.12).
The following two statements are equivalent.
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(1) The linear operators (2.19) are part of a (necessarily unique) set {Mu(z, ξ)}u∈W0 of
EndC

(
V⊗n

)
-valued meromorphic functions Mu(z, ξ) in (z, ξ) ∈ C

n × C satisfying
the cocycle properties

Me(z, ξ) = IdV⊗n , Muv(z, ξ) = Mu(z, ξ)Mv(u−1z, ξ)

for all u, v ∈ W0;
(2) R(z, ξ) is a unitary dynamical R-matrix and K (z, ξ) is an associated right unitary

dynamical K -matrix.

Proof. This follows from a direct computation. ��
Consider now the special case that V = C

2 with basis {v+, v−} and with h the linear
operator on C

2 satisfying hvε = εvε . Since Rcm(z, ξ) satisfies the ice-rule (2.12) we
obtain from Corollary 2.9, Theorem 2.10 and Proposition 2.14 the following result.

Corollary 2.15. Rcm(z, ξ) is a unitary dynamical R-matrix and Kcm(z, ξ) is a right
unitary dynamical K -matrix associated to Rcm(z, ξ).

In the following subsection we will constructed gauges that transform Rcm(z, ξ) into
Baxter’s [5] dynamical R-matrix associated to the eight vertex facemodel and Kcm(z, ξ)

into associated right dynamical K -matrices.

2.6. Gauges of dynamical R- and K -matrices. We give two types of gauge transforma-
tions for a special class of dynamical R- and K -matrices. We only consider the case that
V = C

2 and h is the linear operator on C
2 defined by hvε = εvε .

Proposition 2.16. Suppose that

R(z, ξ) :=
⎛

⎜
⎝

1 0 0 0
0 A(z, ξ) B(z, ξ) 0
0 B(z,−ξ) A(z,−ξ) 0
0 0 0 1

⎞

⎟
⎠

is a unitary dynamical R-matrix and that

K (z, ξ) :=
(

α(z, ξ) β(z, ξ)

β(z,−ξ) α(z,−ξ)

)

is a right unitary dynamical K -matrix associated to R(z, ξ). Then

Rg(z, ξ) :=
⎛

⎜
⎝

1 0 0 0
0 Ag(z, ξ) Bg(z, ξ) 0
0 Bg(z,−ξ) Ag(z,−ξ) 0
0 0 0 1

⎞

⎟
⎠

is a unitary dynamical R-matrix and

K g(z, ξ) :=
(

αg(z, ξ) βg(z, ξ)

βg(z,−ξ) αg(z,−ξ)

)

a right unitary dynamical K -matrix associated to Rg(z, ξ) if
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(i) Ag(z, ξ) = u(ξ)A(z, ξ), Bg(z, ξ) = B(z, ξ) and K g(z, ξ) = K (z, ξ) with u(ξ) a
meromorphic function satisfying u(ξ)u(−ξ) = 1,

and if

(ii) Ag(z, ξ) = q2κ(ξ−z)A(z, ξ), Bg(z, ξ) = q−z(2κ+ξ)B(z, ξ), αg(z, ξ) = q2zξ α(z, ξ)

and βg(z, ξ) = β(z, ξ).

Proof. This follows by a tedious but direct computation. ��
Remark 2.17. The type (i) gauge transformations for dynamical R-matrices were con-
sidered before in [16].

Baxter’s dynamical R-matrix RBa(z, ξ) corresponding to the eight vertex face model
[1,5] is defined as

RBa(z, ξ) :=
⎛

⎜
⎝

1 0 0 0
0 ABa(z, ξ) BBa(z, ξ) 0
0 BBa(z,−ξ) ABa(z,−ξ) 0
0 0 0 1

⎞

⎟
⎠ (2.20)

with the matrix coefficients given by

ABa(z, ξ) := θ(q−z, q2κ+ξ ; q)

θ(q2κ−z, qξ ; q)
, BBa(z, ξ) := θ(q−z−ξ , q2κ ; q)

θ(q2κ−z, q−ξ ; q)
.

Note that RBa(z, w) is unitary, satisfies the ice-rule and is dynamically P-symmetric.
Write

KBa(z, ξ) :=
(

αBa(z, ξ) βBa(z, ξ)

βBa(z,−ξ) αBa(z,−ξ)

)
(2.21)

with

αBa(z, ξ) := αcm(z, ξ)q2zξ =
(
C(z, ξ) − C̃(ξ, z)

C̃(ξ,−z)

)

q2zξ ,

βBa(z, ξ) := βcm(z, ξ) = C(z, ξ)

C̃(−ξ,−z)

(2.22)

(recall the definition of C(z, ξ) from (2.9)). If we need to specify the dependence of
KBa(z, ξ) on the parameters ζ, ζ ′, υ, υ ′ then we write KBa(z, ξ ; ζ, ζ ′, υ, υ ′).

Corollary 2.18. RBa(z, ξ) is a unitary dynamical R-matrix and KBa(z, ξ) is a unitary
right dynamical K -matrix associated to RBa(z, ξ).

Proof. Apply to the unitary dynamical R-matrix Rcm(z, ξ) and the associated unitary
right dynamical K -matrix Kcm(z, ξ) gauge (i) with

u(ξ) = θ(q2κ+ξ , q−ξ ; q)

θ(q2κ−ξ , qξ ; q)

and apply subsequently gauge (ii). Then we obtain RBa(z, ξ) and KBa(z, ξ). Hence
RBa(z, ξ) is a unitary dynamical R-matrix and KBa(z, ξ) an associated unitary right
dynamical K -matrix as a consequence of Corollary 2.15. ��
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The fact that RBa(z, ξ) is a unitary solution of the dynamical quantum Yang–Baxter
equation goes back to Baxter [5] (the dynamical quantum Yang–Baxter equation in [5]
takes the form of star-triangle equations, see [19] and the next subsection for more
details on this viewpoint). The interpretation of Baxter’s solution RBa(z, ξ) in terms
of connection matrices for the Frenkel–Reshetikhin–Smirnov qKZ equations goes back
to [27] (see also [44,52]). Other examples of unitary dynamical R-matrices have been
constructed in, e.g., [12,36,37,44]. Some of these examples are constructed using fusion
techniques, others by computing connection matrices. A quantum group context for
dynamical R-matrices was developed by Felder, Etingof and Varchenko, see, e.g., [16,
17,20].

Baxter’s unitary dynamical R-matrix RBa(z, ξ) satisfies dynamical crossing symme-
try. In coordinates it reads

δ2ε2R
δ1,−ε2
ε1,−δ2

(z, ξ) = q−κ(1+ε2)
θ(qξ+2κε2 , qz; q)

θ(qξ , qz−2κ ; q)
Rε1ε2

δ1δ2
(2κ − z, ξ + 2κε2),

where we have written RBa(z, ξ)vδ1 ⊗ vδ2 = ∑
ε1,ε2

Rε1ε2
δ1δ2

(z, ξ)vε1 ⊗ vε2 . In coordinate
free dynamical notations it reads

σ
y
2 RBa(z, ξ)T1σ

y
2 = q−κ(1+h2) θ(qξ+2κh2 , qz; q)

θ(qξ , qz−2κ ; q)
RBa(2κ − z, ξ + 2κh2) (2.23)

where σ y =
(

0 −√−1√−1 0

)
and T1 is transposition in the first tensor component.

InCorollary 2.18wehave constructed a 4-parameter family of unitary right dynamical
K -matrices associated to RBa(z, ξ) by relating them to connection matrices of boundary
qKZ equations. Dynamical K -matrices associated to RBa(z, ξ) have been constructed
before by direct computations in the study of the eight vertex solid-on-solid model with
integrable reflecting boundaries (see [32,33,67] from the vertex perspective, [6,18,43]
from the face perspective, and [31] for the explicit link by vertex-face correspondences).
In particular, see [6, Sect. 4.3] for alternative parametrisations of unitary right dynamical
K -matrices associated to RBa(z, ξ) depending on four parameters. We will explain the
link to the eight vertex face model with integrable reflecting boundaries in more detail
in the following subsection.

Remark 2.19. (i) Let S be the spin-reversal operator on C
2, defined as the linear map

S : C
2 → C

2 satisfying S(v+) = v− and S(v−) = v+. Then KBa(z, w) has the
spin-reversal symmetry

SKBa(z, ξ)S−1 = KBa(z,−ξ). (2.24)

(ii) The matrix coefficient βBa(z, ξ) of KBa(z, ξ) decouples,

βBa(z, ξ) = μ̃(ξ)

μ(−z)

with

μ(z) := θ(aqz, bqz, cqz, dqz; q)

θ(q2z; q)
q2(ζ+ζ ′)z

and with μ̃(z) obtained from μ(z) by interchanging ν and ζ ′. The function μ(z)
is a natural elliptic analog of the c-function associated to the Askey–Wilson
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polynomials [3]. It naturally appears in the study of the Askey–Wilson function
transform (see [39,63, Lem. 4.4]), as well as in Rains’ [53] difference operator
acting on BC-symmetric theta functions, which plays an important role in the study
of Rains’ interpolation theta functions.

(iii) In [23] a reflection equation different from (2.16) is considered in relation toBaxter’s
dynamical R-matrix RBa(z, ξ). It does not involve shifts in the dynamical parameter.
The one-parameter family of diagonal solutions from [23] appears to be unrelated
to the four-parameter family of dynamical K -matrices KBa(z, ξ).

(iv) The dynamical K -matrix KBa(z, ξ) is anti-diagonal iff C(z, ξ) = C̃(ξ, z). An
explicit discrete set of parameter values for which this is the case has been derived
in [61, Sect. 3], see also [64]. In [61,64] the condition C(z, ξ) = C̃(ξ, z) is related
to the theory of reflectionless Askey–Wilson second-order q-difference operators
and to the theory of Baker–Akhiezer functions [8].

2.7. Face reformulation. Felder [20] observed that solutions of the dynamical quan-
tum Yang–Baxter equation satisfying the ice-rule are in one-to-one correspondence to
solutions of the star-triangle equation [5], see also [56, Sect. 3]. We recall it here, and
extend the correspondence to associated dynamical K -matrices. We will match it with
the notations from [6] in order to facilitate the comparison of our 4-parameter family of
dynamical K -matrices from Corollary 2.18 with the 4-parameter family of solutions of
the boundary Yang–Baxter equation from [6, Sect. 4.3].

In this subsection we fix a finite dimensional complex vector space V and a semisim-
ple linear operator h with simple spectrum I (in many examples V is the vector space
underlying a finite dimensional irreducible sl2(C)-representation and h is the Cartan
generator of sl2(C), in which case h acts semisimply on V with simple spectrum given
by {k−2l}kl=0 for some k ∈ N).We fix a linear basis {vμ}μ∈I of V satisfying hvμ = μvμ.

Suppose R(z, ξ) is a linear operator onV⊗V dependingmeromorphically on (z, ξ) ∈
C
2 and write

R(z, ξ)vμ1 ⊗ vμ2 =
∑

ν1,ν2∈I
Rν1ν2

μ1μ2
(z, ξ)vν1 ⊗ vν2

for μ1, μ2 ∈ I . For μi , νi ∈ C we set Rν1ν2
μ1μ2(z, ξ) ≡ 0 if (μ1, μ2, ν1, ν2) �∈ I×4. Note

that the ice rule (2.12) for R(z, ξ) is equivalent to the property that Rν1ν2
μ1μ2(z, ξ) ≡ 0

unless μ1 + μ2 = ν1 + ν2. Set for a, b ∈ C,

Aab :=
{
1 if b − a ∈ I,
0 if b − a �∈ I.

Define for a, b, c, d ∈ C the Boltzmann weight

W

(
a b
c d z, ξ

)
:= Rd−c,c−a

b−a,d−b(z, ξ − 2κa). (2.25)

Note that W

(
a b
c d z, ξ

)
≡ 0 unless Aab Aac Abd Acd = 1. By [19, Sect. 5] (see also

[56, Sect. 3]), we have the following result.
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Proposition 2.20. Suppose that R(z, ξ) : V ⊗ V → V ⊗ V satisfies the ice rule (2.12).
Then R(z, ξ) is a solution of the dynamical quantum Yang–Baxter equation (2.11) if and
only if the corresponding Boltzmann weights (2.25) satisfy the star triangle equations

∑

g

W

(
f g
a b z1 − z2, ξ

)
W

(
g d
b c z1 − z3, ξ

)
W

(
f e
g d z2 − z3, ξ

)

=
∑

g

W

(
a g
b c z2 − z3, ξ

)
W

(
f e
a g z1 − z3, ξ

)
W

(
e d
g c z1 − z2, ξ

)

(2.26)

for all a, b, c, d, e, f ∈ C.

Remark 2.21. Note that (2.26) is a nontrivial identity only if Aab Abc Adc Aed A f e A f a =
1. Furthermore, for fixed a, b, c, d, e, d the left and right hand sides of (2.26) are well
defined since the summand on the left (resp. right) is zero unless g ∈ C is in the
finite (possibly empty) set of complex numbers g satisfying A f g Agb Agd = 1 (resp.
Aag Aeg Agc = 1). With these two remarks it is clear that (2.26) coincides with the star
triangle equations for face models, see, e.g., [6, (2.3)].

Unitarity (2.13) of R(z, ξ) is equivalent to the inversion relation
∑

e

W

(
d e
a b z, ξ

)
W

(
d c
e b − z, ξ

)
= δac

with δac the Kronecker delta function, cf. [6, (2.13)].
Boundary star-triangle equations are defined in [6,7,48], leading to integrable face

models with boundary. We now proceed to explain its equivalence to the right dynam-
ical reflection equation (2.16). Let K (z, ξ) : V → V be a linear operator depending
meromorphically on (z, ξ) ∈ C

2 and write

K (z, ξ)vμ =
∑

ν∈I
K ν

μ(z, ξ)vν

for μ ∈ I . For μ, ν ∈ C we set K ν
μ(z, ξ) ≡ 0 if (μ, ν) �∈ I × I . Define for a, b, c ∈ C

the boundary Boltzmann weight

B
(
b

c
a z, ξ

)
:= Ka−b

c−b

(
z,

ξ

2
− κb

)
. (2.27)

Note that B
(
b

c
a z, ξ

)
≡ 0 unless Aba Abc = 1. The following result can be checked

by a direct computation.

Proposition 2.22. Assume that R(z, ξ) : V⊗V → V⊗V is a dynamical R-matrix satis-
fying the ice rule (2.12). Define the associatedBoltzmannweights by (2.25). Then K (z, ξ)

is a right dynamical K -matrix with respect to R(z, ξ) if and only if the corresponding
boundary Boltzmann weights (2.27) satisfy the boundary Yang–Baxter equations
∑

f,g

W

(
c f
d e z1 − z2, ξ

)
B

(
f

g
e z1, ξ

)
W

(
c b
f g z1 + z2, ξ

)
B

(
b

a
g z2, ξ

)

=
∑

f,g

B

(
d

g
e z2, ξ

)
W

(
c f
d g z1 + z2, ξ

)
B

(
f
a
g z1, ξ

)
W

(
c b
f a z1 − z2, ξ

)

(2.28)
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for all a, b, c, d, e ∈ C.

By a similar reasoning as in Remark 2.21 one shows that the equations (2.28) are
equivalent to the boundary Yang–Baxter equations [6, (2.4)]. Note that unitarity (2.17)
of K (z, ξ) is equivalent to the boundary inversion relation

∑

d

B

(
b

d
c z, ξ

)
B

(
b

a
d − z, ξ

)
= δac,

cf. [6, (2.14)].
Solutions of the star triangle (2.26) and boundary Yang–Baxter equations (2.28)

give rise to two-dimensional integrable face models with boundary. We refer to [6,7]
and references therein for details. I will finish this subsection by giving the explicit
formulas relating RBa(z, ξ) to the Boltzmann weights of the eight vertex face model
and subsequently pushing the associated 4-parameter solutions of the right dynamical
reflection equation (Corollary 2.18) to a 4-parameter family of solutions of the associated
boundary Yang–Baxter equations. So in the remainder of this section we take V = C

2 =
Cv+ ⊕ Cv− and hv± = ±v±, so that I = {−1, 1} and Aab = 1 iff |a − b| = 1.

We gauge RBa(z, ξ) to the unitary dynamical R-matrix R8vSOS(z, ξ) given by

R8vSOS(z, ξ) := q
z
2
θ(q2κ−z; q)

θ(q2κ ; q)

⎛

⎜
⎝

1 0 0 0
0 u(ξ)ABa(z, ξ) BBa(z, ξ) 0
0 BBa(z,−ξ) u(−ξ)ABa(z,−ξ) 0
0 0 0 1

⎞

⎟
⎠ ,

with

u(ξ) := q−κ
( θ(q−ξ+2κ ; q)

θ(q−ξ−2κ ; q)

) 1
2
.

Denote the corresponding Boltzmann weights (see (2.25)) by W8vSOS

(
a b
c d z, ξ

)
.

Then the nonzero Boltzmann weights are

W8vSOS

(
a a ± 1

a ± 1 a z, ξ

)
= q∓ z

2
θ(q±z−ξ+2κa; q)

θ(q−ξ+2κa; q)
,

W8vSOS

(
a ± 1 a
a a ∓ 1 z, ξ

)
= q

z
2
θ(q2κ−z; q)

θ(q2κ ; q)
,

W8vSOS

(
a a ± 1

a ∓ 1 a z, ξ

)
= qκ

(θ(q−ξ+2κ(a−1), q−ξ+2κ(a+1); q)

θ(q−ξ+2κa; q)2

) 1
2
q

z
2
θ(q−z; q)

θ(q2κ ; q)
,

which coincide with the standard weights of the eight-vertex face model. To relate it
to the notations in [6], note that it corresponds to the Boltzmann weights [6, (4.4)] by
identifying the parameters λ,w0, u in [6, (4.4)] with our parameters 2κ,−ξ, z (note
though that there is a small typo in [6, (4.4)]). The dynamical crossing symmetry (2.23)
of RBa(z, ξ) corresponds to the crossing symmetry [6, Sect. 4.1 and (2.11)] of the
Boltzmann weights W8vSOS .
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We write B8vSOS

(
b

c
a z, ξ

)
for the boundary Boltzmann weights associated to the

dynamical K -matrix KBa(z, ξ) (see (2.27)). The nonzero values are

B8vSOS

(
a

a ± 1
a ± 1 z, ξ

)
= K±

Ba,±
(
z,

ξ

2
− κa

) = αBa
(
z,±ξ

2
∓ κa

)
,

B8vSOS

(
a

a ∓ 1
a ± 1 z, ξ

)
= K±

Ba,∓
(
z,

ξ

2
− κa) = βBa

(
z,±ξ

2
∓ κa

)
,

(2.29)

where αBa and βBa are explicitly given by (2.22).

Corollary 2.23. B8vSOS is a 4-parameter family of solutions of the boundary Yang–
Baxter equations (2.28) with respect to the Boltzmann weights W8vSOS.

Proof. ByProposition 2.16 thematrix KBa(z, ξ) is also a right dynamical K -matrixwith
respect to the gauged dynamical R-matrix R8vSOS(z, ξ). Now use Proposition 2.22. ��

Solutions to the boundary Yang–Baxter equations for the eight vertex face model,
or equivalently, by vertex-face correspondences, to reflection equations for the eight
vertex model itself, have been computed by direct means in [32,33,67] from the vertex
perspective and in [6,18,43] from the face perspective (see [31] for a discussion of the
vertex-face correspondence in this context). See [6, 4.3] for a direct derivation of the
solutions of the boundary Yang–Baxter equations for the eight vertex face model, which
are also parametrised (but in a different way) by four degrees of freedoms.

2.8. Boundary qKZB equations. A unitary solution of the dynamical quantum Yang–
Baxter equation satisfying the ice-rule gives rise to cocycles of the extended affine
symmetric group [19]. This leads to a compatible system of q-difference equations,
known as the quantum Knizhnik–Zamolodchikov–Bernard (KZB) equations, see [19,
21]. In this subsectionwe establish the analog of this result in the presence of boundaries,
resulting in a cocycle of the affine Weyl group of type Cn and a new type of compatible
systems of q-difference equations,whichwewill call boundary quantumKZBequations.

We return to the setting of Sect. 2.5. If f : C → V⊗n is a meromorphic V⊗n-valued
function then we define

(Tαhi f )(ξ) :=
∑

μ

fμ(ξ + αμi )

if f (ξ) = ∑
μ fμ(ξ) is the decomposition of f as the sum of

(
V⊗n

)
μ
-valued mero-

morphic functions fμ. In case of a meromorphic V⊗n-valued function f (z, ξ), the
parameter-shift of Tαhi is in the dynamical parameter ξ . When n = 1 then we write Tαh
for Tαh1 .

Let S(z, ξ) be a family of linear operators on V⊗n depending meromorphically on
(z, ξ) ∈ C

n ×C. Consider the associated matrix difference operator T−κhi STκhi , acting
complex linearly on the spaceM(Cn×C)⊗V⊗n ofmeromorphic V⊗n-valued functions
onC

n×C. It is amatrix valued difference operator in the dynamical parameter ξ , depend-
ing meromorphically on z ∈ C

n . We therefore also denote it by T−κhi S(z, ·)T−κhi .
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Let K (z, ξ) be a linear operators on V depending meromorphically on (z, ξ) ∈ C
2.

Let P : V ⊗ V → V ⊗ V be the permutation operator and consider the EndC(V⊗n)-
valued difference operator in w defined by

Ms0(z) := (T−κhK (
1

2
− z1, ·)Tκh)1

= T−κh1K 1(
1

2
− z1, ·)Tκh1 . (2.30)

Remark 2.24. Letπμ : V → Vμ be the projection along the decomposition V = ⊕
ν Vν .

For f (ξ) ∈ V depending meromorphically on ξ we have

((
T−κhK (z, ·)Tκh

)
f
)
(ξ) =

∑

μ,ν

Kμ
ν (z, ξ − κν) fμ(ξ + κ(μ − ν))

where fμ(ξ) := πμ( f (ξ)) and Kμ
ν (z, ξ) := πνK (z, ξ)|Vμ . Hence if the left dynamical

K -matrix K (z, ξ) satisfies
[K (z, ξ), h] = 0 (2.31)

thenMs0(z) = K 1(
1
2−z1, ·−κh1) (which thus simply acts on the space ofmeromorphic

V⊗n-valued functions in (z, ξ) ∈ C
n × C as the linear operator K 1(

1
2 − z1, ξ − κh1)).

We have now the following affine version of Proposition 2.14.

Proposition 2.25. Let R(z, ξ) be a linear operator on V⊗V and K (z, ξ), K (z, ξ) linear
operators on V , all depending meromorphically on (z, ξ) ∈ C

2. Suppose that R(z, ξ)

satisfies the ice-rule (2.12). The following two statements are equivalent.

(1) The operators (2.30) and (2.19) are part of a (necessarily unique) set {Mv(z)}v∈W
of EndC(V⊗n)-valued meromorphic difference operators Mv(z) in ξ , depending
meromorphically on z ∈ C

n, and satisfying the cocycle conditions

Me(z) = Id, Muv(z) = Mu(z)Mv(u−1z)

for all u, v ∈ W;
(2) R(z, ξ) is a unitary dynamical R-matrix, and K (z, ξ) and K (z, ξ) are associated

unitary left and right dynamical K -matrices respectively.

Proof. For v ∈ W0 the Mv(z) coincide with the cocycle values from Proposition 2.14.
The extension to the affine setup now follows by a direct computation. ��

Proposition 2.25 should be compared to [19, Proposition 4.1 and Theorem 4.2]
(see also [21]), which deals with the extended affine symmetric group.

Remark 2.26. Note that the cocycle values Mv(z) (v ∈ W ) are EndC
(
V⊗n

)
-valued

difference operators in ξ , depending meromorphically on z ∈ C
n . For v ∈ W0 they

simply act as multiplication operators,

(Mv(z) f (z, ·))(ξ) = Mv(z, ξ) f (z, ξ), v ∈ W0,

with the linear operator Mv(z, ξ) on V⊗n as defined in Proposition 2.14. In fact, if
K (z, ξ) satisfies (2.31) then all cocycle values Mv(z) (v ∈ W ) act as multiplication
operators in view of Remark 2.24.
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Definition 2.27. Suppose that R(z, ξ) : V ⊗ V → V ⊗ V is a unitary solution of
the dynamical quantum Yang–Baxter equation satisfying the ice-rule and suppose that
K (z, ξ) and K (z, ξ) are associated unitary left and right dynamical K -matrices. Let
{Mu(z)}u∈W be the W -cocycle of difference operators in ξ as defined in Proposition
2.25.

A V⊗n-valued meromorphic function f (z, ξ) in (z, ξ) ∈ C
n × C is said to satisfy

the boundary quantum Knizhnik–Zamolodchikov-Bernard (KZB) equations if

Mτ(λ)(z) f (z − λ, · ) = f (z, · ) ∀ λ ∈ Z
n . (2.32)

The boundary quantum KZB equations (2.32) form a compatible systems of dif-
ference equations in both z and ξ . Note that the translation action on the dynamical
parameter ξ is hidden in the transport operators Mτ(λ)(z) (λ ∈ Z

n).

Remark 2.28. The space of V⊗n-valuedmeromorphic functions f (z, ξ) in (z, ξ) ∈ C
n×

C satisfying the boundary quantum KZB equations (2.32) is invariant for the W0-action

(v · f )(z, ξ) := Mv(z, ξ) f (v−1z, ξ), v ∈ W0.

Remark 2.29. If the left dynamical K -matrix K (z, ξ) satisfies (2.31), then the transport
operators of the boundary quantum KZB equations are linear operators Mτ(λ)(z, ξ)

on V⊗n depending meromorphically on (z, ξ) (see Remark 2.26). Hence, under the
additional assumption (2.31) on K (z, ξ), the boundary quantum KZB equations reduce
to the compatible system

Mτ(λ)(z, ξ) f (z − λ, ξ) = f (z, ξ) ∀ λ ∈ Z
n

of difference equations acting only on the spectral parameters z.

The boundary quantum KZB equations are equivalent to the set of equations

Mτ(−ei )(z) f (z + ei , ·) = f (z, ·) i = 1, . . . , n. (2.33)

The left hand side of (2.33) can be explicitly expressed in terms of the dynamical R-and
K -matrices using the cocycle property of {Mv(z)}v∈W (Proposition 2.25) and (2.1). We
give the explicit expression of (2.33) for i = 1, the explicit expressions for arbitrary i
then follow from

Mτ(−ei+1)(z) = Msi (z)Mτ(−ei )(siz)Msi (siz + ei )

recursively. For i = 1 the left hand side of (2.33) is

(
Mτ(−e1)(z) f (z + e1, ·)

)
(ξ) = R21(z1 − z2, 2ξ)R31(z1 − z3, 2ξ − 2κh2)

× · · · × Rn1(z1 − zn, 2ξ − 2κ(h2 + · · · + hn−1))K1(z1, ξ − κ(h2 + h3 + · · · + hn))

× R1n(z1 + zn, 2ξ − 2κ(h2 + h3 + · · · + hn−1)) · · · R13(z1 + z3, 2ξ − 2κh2)

× R12(z1 + z2, 2ξ)
∑

μ,ν

Kμ1
ν1

(
1

2
+ z1, ξ − κν1) fμ(z + e1, ξ + κ(μ1 − ν1)).
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In the special case that the left dynamical K -matrix K (z, ξ) satisfies (2.31), the left hand
side of (2.33) for i = 1 takes on the simpler form

Mτ(−e1)(z, ξ) f (z + e1, ξ) = R21(z1 − z2, 2ξ)R31(z1 − z3, 2ξ − 2κh2)

× · · · × Rn1(z1 − zn, 2ξ − 2κ(h2 + · · · + hn−1))K1(z1, ξ − κ(h2 + h3 + · · · + hn))

× R1n(z1 + zn, 2ξ − 2κ(h2 + h3 + · · · + hn−1)) · · · R13(z1 + z3, 2ξ − 2κh2)

× R12(z1 + z2, 2ξ)K 1(
1

2
+ z1, ξ − κh1) f (z + e1, ξ)

due to Remarks 2.24 and 2.29.
We now apply the construction of the boundary quantum KZB equations to Bax-

ter’s dynamical R-matrix RBa(z, ξ) and the associated 4-parameter family of unitary
dynamical K -matrices. So in the following corollary we take V = C

2 = Cv+ ⊕ Cv−
and hvε = εvε for ε ∈ {±}.

Corollary 2.30. Let RBa(z, ξ) beBaxter’s dynamical R-matrix given explicitly by (2.20)
(it depends on q and the bulk coupling parameter κ). Fix four left boundary coupling
parameters ζl , ζ

′
l , υl , υ

′
l and four right boundary coupling parameters ζ, ζ ′, υ, υ ′ and

set

K l
Ba(z, ξ) := KBa(z,−ξ ; ζl , ζ

′
l , υl , υ

′
l ),

Kr
Ba(z, ξ) := KBa(z, ξ ; ζ, ζ ′, υ, υ ′)

with KBa(z, ξ ; ζ, ζ ′, υ, υ ′) given by (2.21). Then K l
Ba(z, ξ) and Kr

Ba(z, ξ) are uni-
tary left and right dynamical K -matrices associated to RBa(z, ξ) respectively. Let
{Mv

Ba(z)}v∈W be the associated W-cocycle of EndC
((

C
2
)⊗n)

-valued difference oper-
ators in ξ depending meromorphically on z ∈ C

n (see Proposition 2.25). The corre-
sponding quantum KZB equations

Mτ(λ)
Ba (z) f (z − λ, ·) = f (z, ·), ∀ λ ∈ Z

n (2.34)

for meromorphic (C2)⊗n-valued functions f (z, ξ) in (z, ξ) ∈ C
n × C is a compatible

system of difference equations in z and ξ with elliptic coefficients that depends, besides
on q, on nine coupling parameters κ, ζl , ζ

′
l , υl , υ

′
l , ζ, ζ ′, υ, υ ′.

Proof. The fact that Kl(z, ξ) and Kr (z, ξ) are left and right dynamical K -matrices
respectively follows from Corollary 2.18 and Remark 2.13. ��

Remark 2.31. It is natural to expect that a vertex-face transformation (cf. [31]) transforms
the nine parameter family (2.34) of elliptic boundary quantumKZB equations into a nine
parameter family of elliptic boundary qKZ equations defined in terms of the XYZ spin- 12
R-matrix and its associated K -matrices. We expect that a difference Cherednik–Matsuo
type of correspondencewill relate the solutions of these compatible systems of difference
equations to common eigenfunctions of the nine parameter family of ellipticRuijsenaars’
systems of type C introduced by van Diejen [14] and Komori and Hikami [42].
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3. The Connection Problem for Quantum Affine KZ Equations

Cherednik [11, Sect. 1.3.2] introduced the Baxterization of a finite dimensional affine
Hecke algebramodule using the affine intertwiners of the associated double affineHecke
algebra. It leads to a consistent system of first-order difference equations acting on
vector-valued multivariate meromorphic functions, called the quantum affine Knizhnik–
Zamolodchikov (KZ) equations. These equations are equivariant with respect to a natural
action of the underlying Weyl group.

A natural basis of power series solutions of the quantum affine KZ equations, defined
in terms of their asymptotic behaviour deep in a fixedWeyl chamber, was constructed in
[50,51,63] in case ofminimal principal series.We extend this result to arbitrary principal
series modules, and we also solve the associated connection problem. the affine Hecke
algebra of type C .

We explain how a special case of this general theory leads to the results on lattice
models with boundaries as discussed in the previous section.

3.1. Notations. We recall here some of the notations from [64, Sects. 1.1 and 2],
which are well suited to treat the twisted and untwisted Cherednik-Macdonald the-
ory at the same time (see [64,66] for details). The initial data is given by a five tuple
D = (R0,�0, •,�, �̃), which is defined as follows.

The first entry R0 is a finite, reduced crystallographic root system in an Euclidean
space (E, (·, ·)), irreduciblewithin the subspace V of E spanned by the roots. The second
entry �0 = (α1, . . . , αn) is an ordered basis of the root system R0. The third entry •
equals u or t (“u” stands for untwisted and “t” for twisted). The fourth and fifth entries
� and �̃ are lattices that are defined as follows.

Write R0 = R+
0 ∪ R−

0 for the decomposition of R0 in positive and negative roots with
respect to the basis �0. The root system R̃0 •-dual to R0 is defined as

R̃0 := {̃α := μαα∨ | α ∈ R0},
where α∨ = 2α

|α|2 is the co-root of α and

μα :=
{
1 if • = u,
|α|2
2 if • = t.

So in the untwisted case (• = u), R̃0 is the co-root system R∨
0 = {α∨}α∈R0 , while in the

twisted case (• = t), R̃0 = R0. Let W0 ⊆ O(E) be the Weyl group of R0, generated by
the orthogonal reflections sα in the hyperplanes α−1(0) (α ∈ R0). It is a Coxeter group
with Coxeter generators the simple reflections si := sαi = sα̃i (i = 1, . . . , n).

Write Q and Q̃ for the root lattices of R0 and R̃0 respectively. Let Q∨ and Q̃∨ be
the co-root lattice of R0 and R̃0 respectively. The fourth entry � ⊆ E in the five-tuple
D of initial data is a full lattice in E satisfying the conditions

Q ⊆ �, (�, Q∨) ⊆ Z.

The fifth entry �̃ ⊆ E is a full lattice in E satisfying the conditions

Q̃ ⊆ �̃, (�̃, Q̃∨) ⊆ Z.
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We associate to D the reduced irreducible affine root system

R• := {α(r) := μαrc + α}r∈Z,α∈R0 ,

where μαrc + α is the affine linear function v �→ μαr + (α, v) on E . Let sα(r) be the

orthogonal reflection in the affine hyperplane
(
α(r)

)−1
(0) ⊂ E . Then sα(r) = τ(−r α̃)sα

with τ(v′) : V → V for v′ ∈ V the translation operator v �→ v + v′. In particular,
the affine Weyl group W • associated to R•, which is defined to be the group generated
by the sα(r) (α ∈ R0, r ∈ Z), is isomorphic to W0 � Q̃. We extend R• to a (possibly
nonreduced) irreducible affine root system R(D) by adding to R• the affine roots 2α(r)

for r ∈ Z and α ∈ R0 satisfying (�, α∨) ⊆ 2Z.
The basis�0 of R0 extends to a basis� := (α0, α1, . . . , αn) of R• and R(D)with the

additional simple affine rootα0 = μψc−ψ withψ ∈ R0 the highest (reps. highest short)
root with respect to �0 if • = u (resp. • = t). The basis � of R• gives a decomposition
R• = R•,+ ∪ R•,− of R• in positive and negative affine roots. We write s0 := sα(0) . Note
that s0 = τ(ψ̃)sψ . The affine Weyl group is a Coxeter group with Coxeter generators
s0, s1, . . . , sn . The corresponding braid relations are of the form

si s j · · · = s j si · · · (mi j factors on both sides)

for 0 ≤ i �= j ≤ n, where the mi j ∈ {2, 3, 4, 6,∞} can be read off from the associated
Coxeter graph in the usual manner.

The extended affine Weyl group is defined to be W := W0 � �̃. It acts on E by
reflections and �̃-translations. Its contragredient action on the space of affine linear
functions on E preserves R• and R(D). The length of w ∈ W is defined to be

l(w) := #(R•,+ ∩ w−1R•,−).

Then � := {w ∈ W | l(w) = 0} is an abelian subgroup of W , isomorphic to �̃/Q̃.
Conjugation by � stabilises W • and

W 	 � � W •.

More precisely �, in its action on affine linear functions on E , is preserving the set
{α0, α2, . . . , αn} of simple affine roots. For � ∈ � the induced bijection on the index
set {0, . . . , n}will also be denoted by� , so�(α j ) = α�( j) for 0 ≤ j ≤ n and� ∈ �.
Hence conjugation by � already stabilises the set {s0, . . . , sn} of simple reflections,

� s j�
−1 = s�( j), � ∈ �, j ∈ {0, . . . , n}.

Write

�̃+
min := {ν ∈ �̃ | (ν, α̃∨) ∈ {0, 1} ∀α ∈ R+

0 }.
For ν ∈ �̃+

min let u(ν) ∈ W be the element of minimal length in τ(ν)W0. Define

v(ν) := u(ν)−1τ(ν) ∈ W0,

so that τ(ν) = u(ν)v(ν) and l(τ (ν)) = l(u(ν)) + l(v(ν)). Then it is known that

� = {u(ν)}ν∈�̃+
min

.
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There is an involution on the collection of all initial data D = (R0,�0, •,�, �̃),
mapping D to

D̃ := (R̃0, �̃0, •, �̃,�)

where �̃0 := (̃α1, . . . , α̃n). The (extended) affine Weyl group, affine root systems etc.,
will be denoted by adding tildes. Note that for both the twisted and the untwisted case,
the affine simple root associated to R̃• is given by α̃0 = μθ̃c− θ̃ with θ ∈ R+

0 the highest
short root (see [64, Sect. 2.2]). In particular, s̃0 = τ(θ)sθ .

Finally we introduce multiplicity functions. A multiplicity function is a W -invariant
function κ : R(D) → R. We write κa ∈ R for the value of κ at a ∈ R(D) and κ j := κα j

for 0 ≤ j ≤ n. We furthermore write κ2α(r) := κα(r) if 2α(r) �∈ R(D). For a finite root
α ∈ R0 we define the Askey–Wilson parameters associated to κ and α by

{aα, bα, cα, dα} := {qκα+κ2α ,−qκα−κ2α , qαq
κ
α(1)+κ2α(1) ,−qαq

κ
α(1)−κ2α(1) },

where qα := qμα . We furthermore write κ j := κα j for 0 ≤ j ≤ n.
Given a multiplicity function κ on R(D), there exists a unique multiplicity function

κ̃ on R(D̃) satisfying

κ̃α̃ = κα, κ̃α̃(1) = κ2α, κ̃2α̃ = κα(1) , κ̃2α̃(1) = κ2α(1)

for all α ∈ R0. We write the Askey–Wilson parameters associated to κ̃ and α̃ ∈ R̃0 by
{̃aα, b̃α, c̃α, d̃α} (we abuse notation here by writing α as sublabel instead of α̃). In terms
of the original multiplicity function κ they are explicitly given by

{̃aα, b̃α, c̃α, d̃α} = {qκα+κ
α(1) ,−qκα−κ

α(1) , qαq
κ2α+κ2α(1) ,−qαq

κ2α−κ2α(1) },
+ hence they are obtained from the Askey–Wilson parameters {aα, bα, cα, dα} by inter-
changing the values κ2α and κα(1) . We also write κ̃ j := κ̃α̃ j for 0 ≤ j ≤ n.

3.2. Principal series representations.

Definition 3.1. The affine Hecke algebra H•(κ) is the unital associative algebra over C

generated by Tj (0 ≤ j ≤ n) with defining relations

Ti Tj Ti · · · = Tj Ti Tj · · · (mi j factors on both sides)

for 0 ≤ i �= j ≤ n and (Tj − q−κ j )(Tj + qκ j ) = 0 for 0 ≤ j ≤ n.

We write H0(κ) for the unital subalgebra of H•(κ) generated by Ti (1 ≤ i ≤ n).
The abelian group � of length zero elements in W acts by algebra automorphisms

on H•(κ), with � ∈ � acting by Tj �→ T�( j) for 0 ≤ j ≤ n. We write

H(κ) := � � H•(κ)

for the corresponding crossed product algebra. We call it the extended affine Hecke
algebra associated to D and κ . The additional generators in H(κ) parametrized by �

are denoted by T� (� ∈ �). For w ∈ W we write

Tw := T� Tj1Tj2 · · · Tjr ∈ H(κ)

if w = � s j1s j2 · · · s jr in W with � ∈ �, 0 ≤ j ≤ n and l(w) = r . It gives a well
defined complex linear basis {Tw}w∈W of H(κ).
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Write

�̃+ := {ν ∈ �̃ | (ν, α̃∨) ≥ 0 ∀α ∈ R+
0 }

and define for ν ∈ �̃,

Y ν := Tτ(λ)T
−1
τ(μ) ∈ H(κ)

if ν = λ − μ with λ,μ ∈ �̃+. The Y ν are well defined and satisfy

Y νY ν′ = Y ν+ν′
, Y 0 = 1

for ν, ν′ ∈ �̃. The extended affine Hecke algebra H(κ) is generated by H0(κ) and the
commuting elements Y ν (ν ∈ �̃). The additional relations characterizing H(κ) in terms
of the generators Ti (1 ≤ i ≤ n) and Y ν (ν ∈ �̃) are the Bernstein–Zelevinsky–Lusztig
relations

Y νTi = TiY
si ν +

(
q κ̃i

(1 − q−κ̃i−κ̃2α̃i Y−α̃i )(1 + q−κ̃i +̃κ2α̃i Y−α̃i )

1 − Y−2α̃i
− q−κ̃i

)
(Y si ν − Y ν)

(3.1)
for 1 ≤ i ≤ n and ν ∈ �̃ (see [66, (3.4)]).

Let EC := C ⊗ E be the complexification of E and extend the scalar product (·, ·)
to a complex bilinear form on EC. For I ⊆ {1, . . . , n} write HI (κ) for the subalgebra
of HI (κ) generated by Ti (i ∈ I ) and Y ν (ν ∈ �̃). Set

Eκ
C,I := {γ ∈ EC | (̃αi , γ ) = κ̃α̃i + κ̃2α̃i ∀ i ∈ I }.

Lemma 3.2. Let I ⊆ {1, . . . , n} and γ ∈ Eκ
C,I . There exists a unique unital algebra

map

χI,γ : HI (κ) → C

satisfying

χI,γ (Ti ) = q−κi , ∀ i ∈ I,

χI,γ (Y ν) = q−(ν,γ ), ∀ ν ∈ �̃.
(3.2)

Proof. The assumption γ ∈ Eκ
C,I ensures that the assignment (3.2) respects the crossing

relations (3.1) (we use here that κ̃i = κi for i = 1, . . . , n). ��
Definition 3.3. Let I ⊆ {1, . . . , n} and γ ∈ Eκ

C,I . The induced representation

MI (γ ) := IndH(κ)
HI (κ)

(
CχI,γ

)

is called the principal series representation associated to I , with central character q−γ .
We write π I

γ for its representation map.
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Let γ ∈ Eκ
C,I . For w ∈ W0 set

v I
w(γ ) := Tw ⊗(HI (κ),χI,γ ) 1 ∈ MI (γ ).

The elements v I
w(γ ) (w ∈ W0) span MI (γ ).

LetW0,I ⊂ W0 be the standardparabolic subgroupgeneratedby the simple reflections
si (i ∈ I ). Denote byW I

0 theminimal coset representatives ofW0/W0,I . Ifw = uv ∈ W0

with u ∈ W I
0 and v ∈ W0,I then

v I
w(γ ) = χI,γ (Tv)v

I
u (γ ).

The set {v I
w(γ )}w∈W I

0
is a linear basis of the principal series module MI (γ ).

In case of minimal principal series (I = ∅) we omit I from the notations. In particular
we write πγ : H(κ) → EndC

(
M(γ )

)
for the corresponding representation map. Note

that πγ is defined for all γ ∈ EC.
Let γ ∈ Eκ

C,I . There exists a unique surjective intertwiner φI,γ : M(γ ) � MI (γ )

of H(κ)-modules satisfying for w = uv ∈ W0 (u ∈ W I
0 , v ∈ W0,I ),

φI,γ (vw(γ )) = v I
w(γ ) = χI,γ (Tv)v

I
u (γ ).

Clearly φ∅,γ = IdM(γ ).
We need generic conditions on γ ∈ Eκ

C,I to ensure that the principal series module
MI (γ ) is calibrated (i.e., simultaneously diagonalisable for the action of the commuting
operators Y ν (ν ∈ �̃)), cf. [62, Sect. 2.5] and references therein. To describe the results
we first need to introduce intertwiners for minimal principal series modules.

Let γ ∈ EC and let e ∈ W0 be the neutral element. Set Aunn
e (γ ) := IdM(γ ). For

1 ≤ i ≤ n define a linear map Aunn
si (γ ) : M(siγ ) → M(γ ) by

Aunn
si (γ )vσ (siγ ) := q−κ̃i (1 − q2(̃αi ,γ ))vσ si (γ )

+(Dα̃i (γ ) − q−2χ(−σ α̃i )̃κi (1 − q2(̃αi ,γ )))vσ (γ ) (3.3)

for σ ∈ W0, where χ(̃α) = 1 if α̃ ∈ R̃−
0 and χ(̃α) = 0 if α̃ ∈ R̃+

0 , and with

Dα̃(γ ) := (
1 − q−κ̃α̃−κ̃2α̃+(̃α,γ )

)(
1 + q−κ̃α̃ +̃κ2α̃+(̃α,γ )

)

= (
1 − ã−1

α q (̃α,γ )
)(
1 − b̃−1

α q (̃α,γ )
)

for α ∈ R0. Then Aunn
si (γ ) : M(siγ ) → M(γ ) is an intertwiner of H(κ)-modules and

Aunn
si (γ )Aunn

si (siγ ) = Dsi (γ )Dsi (siγ )IdM(γ )

for all 1 ≤ i ≤ n. More generally, if σ := si1si2 · · · sir is a reduced expression for
σ ∈ W0 then

Aunn
σ (γ ) := Aunn

si1
(γ )Aunn

si2
(si1γ ) · · · Aunn

sir
(sir−1 · · · si2si1γ )

is independent of the choice of reduced expression and defines an intertwiner

Aunn
σ (γ ) : M(σ−1γ ) → M(γ )
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of H(κ)-modules. It satisfies

Aunn
σ (γ )Aunn

σ−1(σ
−1γ ) = Dσ (γ )Dσ−1(σ−1γ )IdM(γ )

with

Dσ (γ ) :=
∏

α̃∈R̃+
0∩σ R̃−

0

Dα̃(γ ).

Note that

Aunn
στ (γ ) = Aunn

σ (γ )Aunn
τ (σ−1γ ),

Dunn
στ (γ ) = Dunn

σ (γ )Dunn
τ (σ−1γ )

(3.4)

for σ, τ ∈ W0 satisfying l(στ) = l(σ ) + l(τ ).
Set R̃ I,±

0 := R̃±
0 ∩ span{̃αi }i∈I . Since

W I
0 = {σ ∈ W0 | σ(R̃ I,+

0 ) ⊆ R̃+
0 } (3.5)

we actually have

Dσ−1(γ ) =
∏

α̃∈(R̃+
0 \R̃ I,+

0 )∩σ−1 R̃−
0

Dα̃(γ ) ∀ σ ∈ W I
0 . (3.6)

Proposition 3.4. Assume that γ ∈ Eκ
C,I satisfies q

2(̃α,γ ) �= 1 for all α̃ ∈ R̃+
0\R̃ I,+

0 . Set
for u ∈ W0,

bunn,I
u (γ ) := φI,γ

(
Aunn
u (γ )ve(u

−1γ )
) ∈ MI (γ ).

Then

(1) For all u ∈ W0 and all ν ∈ �̃ we have

π I
γ (Y ν)bunn,I

u (γ ) = q−(ν,u−1γ )bunn,I
u (γ );

(2) {bunn,I
σ−1 (γ )}σ∈W I

0
is a linear basis of MI (γ );

(3) bunn,I
σ−1 (γ ) = 0 for all σ ∈ W0\W I

0 .

Proof. (1) is trivial.
(2) By the definition of the unnormalized intertwiner we have for σ ∈ W I

0

bunn,I
σ−1 (γ ) =

( ∏

α̃∈(R̃+
0 \R̃ I,+

0 )∩σ−1 R̃−
0

q−κ̃α̃ (1 − q2(̃α,γ ))
)
v I
σ (γ ) +

∑

τ∈W I
0 :τ<σ

cσ,τ v
I
τ (γ )

for certain coefficients cσ,τ ∈ C, where ≤ is the Bruhat order. By the assumption that
q2(̃α,γ ) �= 1 for all α̃ ∈ R̃+

0\R̃ I,+
0 the leading coefficient is nonzero.

(3) Fix σ �∈ W I
0 . Let i ∈ I such that σ = σ ′si and l(σ ) = l(σ ′) + 1 for some i ∈ I .

Then

Aunn
σ−1(γ ) = Aunn

si (γ )Aunn
σ ′−1(siγ ).

Hence it suffices to show that φI,γ ◦ Aunn
si (γ ) is the zero map.
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Since γ ∈ Eκ
C,I we have Dα̃i (γ ) = 0, hence by (3.3),

Aunn
si (γ )vτ (siγ ) = q−κ̃i (1 − q2(̃αi ,γ ))vτ si (γ )

−q−2χ(−τ α̃i )̃κi (1 − q2(̃αi ,γ ))vτ (γ ), τ ∈ W0.

Suppose that τ ∈ W0 satisfies τ α̃i ∈ R̃+
0 (⇔ l(τ si ) = l(τ ) + 1). Then v I

τ si (γ ) =
q−κi v I

τ (γ ) = q−κ̃i v I
τ (γ ) and χ(−τ α̃i ) = 1, hence φI,γ (Aunn

si (γ )vτ (siγ )) = 0.
Suppose that τ ∈ W0 satisfies τ α̃i ∈ R̃−

0 (⇔ l(τ si ) = l(τ ) − 1). Then

v I
τ si (γ ) = qκi v I

τ (γ ) = q κ̃i v I
τ (γ ) and χ(−τ α̃i ) = 0, (3.7)

hence also in this case

φI,γ (Aunn
si (γ )vτ (siγ )) = 0. (3.8)

Hence indeed φI,γ ◦ Aunn
si (γ ) for i ∈ I is the zero map. ��

Definition 3.5. Suppose that γ ∈ EC satisfies q2(̃α,γ ) �= 1 and Dα̃(γ ) �= 0 for all
α̃ ∈ R̃+

0 . Let σ ∈ W0. The normalised intertwiner Aσ (γ ) : M(σ−1γ ) → M(γ ) is
defined by

Aσ (γ ) := Dσ (γ )−1Aunn
σ (γ ), σ ∈ W0.

Note that normalised intertwiners satisfy Ae(γ ) = IdM(γ ) and

Aσ (γ )Aτ (σ
−1γ ) = Aστ (γ ) ∀ σ, τ ∈ W0.

Let γ ∈ Eκ
C,I be generic. Note that Dσ−1(γ ) = 0 if σ ∈ W0 is such that α̃i ∈ σ−1 R̃−

0

for some i ∈ I . Since this cannot happen if σ ∈ W I
0 (see (3.5) and (3.6)), the normalised

intertwiner Aσ−1(γ ) is well defined for σ ∈ W I
0 . Combined with Proposition 3.4 we

obtain the following corollary.

Corollary 3.6. Suppose that γ ∈ Eκ
C,I satisfies the (generic) conditions that q

2(̃α,γ ) �= 1

and Dα̃(γ ) �= 0 for all α̃ ∈ R̃+
0\R̃ I,+

0 . Then

bI
σ−1(γ ) := Dσ−1(γ )−1bunn,I

σ−1 (γ )

= φI,γ
(
Aσ−1(γ )ve(σγ )

)

is well defined for all σ ∈ W I
0 and {bI

σ−1(γ )}σ∈W I
0
is a complex linear basis of MI (γ )

satisfying

π I
γ (Y ν)bI

σ−1(γ ) = q−(ν,σγ )bI
σ−1(γ ) ∀ ν ∈ �̃, ∀ σ ∈ W I

0 .



1394 J. V. Stokman

3.3. Quantum affine KZ equations. Define for a ∈ R• the meromorphic function
ca(z; κ) in z ∈ EC by

ca(z; κ) := (1 − q−κa−κ2a+a(z))(1 + q−κa+κ2a+a(z))

(1 − q2a(z))
,

where we view a = α(r) = μαrc + α as affine linear function on EC by

a(z) := μαr + (α, z).

We omit the κ-dependence from the notation if no confusion is possible. We write
c j (z) := cα( j) (z; κ) and c̃ j (z) := cα̃( j) (z; κ̃) for 0 ≤ j ≤ n. The following theorem
generalizes Cherednik’s [9] results on the Baxterization of affine Hecke algebra modules
to the current setting (including the twisted, untwisted and nonreduced cases all at once).
Its proof uses the affine intertwiners of the double affine Hecke algebra associated to the
data (D, κ) (see [66]).

Theorem 3.7. Let π : H(κ) → EndC(V ) be a representation. The following formulas

(∇V (s j ) f
)
(z) :=

(q−κ j π(Tj ) + c j (z) − q−2κ j

c j (z)

)
f (s jz), 0 ≤ j ≤ n,

(∇V (�) f
)
(z) := π(T� ) f (�−1z), � ∈ �

define a left W-action ∇V on the space of V -valued meromorphic functions f (z) in
z ∈ EC, where we use the natural action of W 	 W0 � �̃ on z ∈ EC by reflections and
�̃-translations.

Note that (∇V (w) f )(z) = CV
w (z) f (w−1z) for w ∈ W , with CV

w (z) : V → V a
linear map depending meromorphically on z ∈ EC and satisfying the cocycle conditions
CV
e (z) = IdV and

CV
uv(z) = CV

u (z)CV
v (u−1z), ∀ u, v ∈ W.

Definition 3.8. For a given representation π : H(κ) → EndC(V ) we say that a mero-
morphic V -valued function f (z) in z ∈ EC is a solution of the associated quantum affine
KZ equations if

(∇V (τ (λ)) f
)
(z) = f (z) ∀ λ ∈ �̃.

We write SolK Z (V ) = SolK Z (V ; κ) for the solution space.

Note that SolK Z (V ) is∇V (W0)-stable. Note furthermore that the quantum affine KZ
equations form a compatible system of difference equations. Indeed, the quantum affine
KZ equations can be written as

CV
τ(λ)(z) f (z − λ) = f (z) ∀ λ ∈ �̃. (3.9)

It is apparent from this form of the quantum affine KZ equations that the cocycle values
CV

τ(λ)(z)play the role of transport operators. The compatibility of the difference equations
(3.9) in terms of the transport operators reads

CV
τ(λ)(z)C

V
τ(μ)(z − λ) = CV

τ(λ+μ)(z) = CV
τ(μ)(z)C

V
τ(λ)(z − μ) ∀ λ,μ ∈ �̃,
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which is a direct consequence of the cocycle property of {CV
u (z)}u∈W . Finally, note

that an intertwiner ψ : V → V ′ of H(κ)-modules gives rise to a W0-intertwiner
SolK Z (V ) → SolK Z (V ′). We will denote this map also by ψ .

Explicit expressions for the cocycle CM(γ )
w (z) (w ∈ W ) are given as follows.

Proposition 3.9. Let γ ∈ EC. For σ ∈ W0,

CM(γ )
s0 (z)vσ (γ ) = q(ψ̃,σγ )vsψσ (γ )

qκ0c0(z)
+

(c0(z) − q−2χ(σ−1ψ̃)κ0

c0(z)

)
vσ (γ ),

CM(γ )
si (z)vσ (γ ) = vsiσ (γ )

qκi ci (z)
+

(ci (z) − q−2χ(−σ−1α̃i )κi

ci (z)

)
vσ (γ ),

CM(γ )
� (z)vσ (γ ) = q−(�,w0σγ )vv(�)−1σ (γ )

for 1 ≤ i ≤ n and � ∈ �, where w0 ∈ W0 is the longest Weyl group element.

Proof. This follows from the explicit formulas for the action of the affine Hecke algebra
generators on the basis {vσ (γ )}σ∈W0 of M(γ ) (see, e.g., [64] and references therein).
��

3.4. Power series solutions. We first construct a basis consisting of power series solu-
tions of SolK Z (M(γ )). To determine the natural normalisationwe need to investigate the
dependence on γ . We identify M(γ ) as complex vector space with V := ⊕

σ∈W0
Cvσ

via the linear isomorphism M(γ )
∼−→ V satisfying vσ (γ ) �→ vσ for all σ ∈ W0.

Accordingly, we interpret the cocycle values CM(γ )
w (z) : M(γ ) → M(γ ) (w ∈ W ) as

linear maps

Cw(z, γ ) : V → V
depending meromorphically on (z, γ ) ∈ EC × EC. In particular, for all σ ∈ W0,

Cs0(z, γ )vσ = q(ψ̃,σγ )vsψσ

qκ0c0(z)
+

(c0(z) − q−2χ(σ−1ψ̃)κ0

c0(z)

)
vσ ,

Csi (z, γ )vσ = vsiσ

qκi ci (z)
+

(ci (z) − q−2χ(−σ−1α̃i )κi

ci (z)

)
vσ ,

C� (z, γ )vσ = q−(�,w0σγ )vv(�)−1σ

for 1 ≤ i ≤ n and � ∈ �.
For fixed γ ∈ EC, the solution space SolK Z (M(γ )) thus identifies with the space of

V-valued meromorphic functions f (z, γ ) in z ∈ EC satisfying

Cτ(λ)(z, γ ) f (z − λ, γ ) = f (z, γ ), ∀ λ ∈ �̃ (3.10)

which form half of the bispectral quantum KZ equations (see [50,51,63]); the other half
is a compatible dual system of quantum affine KZ equations acting on γ .

Define the plane wave function by

W(z, γ ) := q(ρ̃+w0z,ρ−γ )
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where

ρ := 1

2

∑

α∈R+
0

(κα + κα(1) )̃α
∨, ρ̃ := 1

2

∑

α∈R+
0

(̃κα̃ + κ̃α̃(1) )α
∨.

In addition define S(z) = S(z; κ) by

S(z) :=
∏

α∈R+
0

(
q2αa

−1
α q−(α,z), q2αb

−1
α q−(α,z), q2αc

−1
α q−(α,z), q2αd

−1
α q−(α,z); q2α

)
∞ (3.11)

and S̃(γ ) = S̃(γ ; κ̃) by

S̃(γ ) :=
∏

α∈R+
0

(
q2α ã

−1
α q−(̃α,γ ), q2α b̃

−1
α q−(̃α,γ ), q2α c̃

−1
α q−(̃α,γ ), q2α d̃

−1
α q−(̃α,γ ); q2α

)
∞.

Note that ρ̃ and S̃ are obtained from ρ and S by replacing the initial data (D, κ) by
(D̃, κ̃). The zero locus of the holomorphic function S(z) will give the singularities of
the power series solutions of the quantum affine KZ equations (3.10).

Write Q+ := Z≥0R+
0 . The following theorem comprises the results of [64, Sect. 3].

Special cases have been proven before in [50,51].

Theorem 3.10. There exist unique V-valued holomorphic functions �μ(γ ) in γ ∈ EC

(μ ∈ Q+) such that

(1) �0(γ ) =
(∏

α∈R+
0

(
q2αq

−2(̃α,γ ); q2α
))

vw0 ;

(2) the V-valued series

�(z, γ ) :=
∑

μ∈Q+

�μ(γ )q−(μ,z)

converges normally for (z, γ ) in compacta of EC × EC;
(3) the V-valued meromorphic function �(z, γ ) = �(z, γ ; κ) in (z, γ ) ∈ EC × EC

defined by

�(z, γ ) := W(z, γ )

S(z)S̃(γ )
�(z, γ )

satisfies
Cτ(λ)(z, γ )�(z − λ, γ ) = �(z, γ ) ∀ λ ∈ �̃. (3.12)

If �̃ denotes the V-valued function � with initial data (D, κ) replaced by (D̃, κ̃), then

�̃(γ, z) = �(z, γ ). (3.13)

Remark 3.11. It follows from (3.12) and (3.13) that �(z, γ ) is a solution of dual system
of quantum KZ equations acting as difference equations on γ . The quantum affine
KZ equations (3.10) together with the dual quantum KZ equations are the bispectral
quantum KZ equations from [50,51,64]. In [64] the power series solution �(z, γ ) is
first constructed and characterised as power series solution of the bispectral quantum
KZ equations. The other properties, such as the duality property (3.13), the singularities
and the normalisation, are subsequently derived.
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Definition 3.12. We call γ ∈ Eκ
C,I generic if

(1) q2(̃α,γ ) �= 1 for all α ∈ R+
0\RI,+

0 ;

(2) q (̃α,γ ) �∈ {̃aα, b̃α} for all α ∈ R+
0\RI,+

0 ;

(3) q2(̃α,γ ) �∈ q2Z>0
α for all α ∈ R0\RI,−

0 ;

(4) q (̃α,γ ) �∈ {̃a−1
α q2Z>0

α , b̃−1
α q2Z>0

α , c̃−1
α q2Z>0

α , d̃−1
α q2Z>0

α } for all α ∈ R0\RI,−
0 .

Note that these are indeed generic conditions on γ ∈ Eκ
C,I since

Eκ
C,I ⊆ {γ ∈ EC | q (̃αi ,γ ) = ãi ∀ i ∈ I }.

The condition (1) is to ensure that {bunn,I
σ−1 }σ∈W I

0
is a well defined basis of MI (γ ).

Condition (2) ensures that Dα̃(γ ) �= 0 for allα ∈ R+
0\RI,+

0 , hence the unnormalised basis

{bunn,I
σ−1 (γ )}σ∈W I

0
of MI (γ ) can be turned into the normalised basis {bI

σ−1(γ )}σ∈W I
0
and

the normalised intertwiners Aσ−1(γ ) are well defined for all σ ∈ W I
0 (see Corollary 3.6).

Condition (3) ensures that the leading coefficient �0(σγ ) in the power series solution
of the quantum affine KZ equations is nonzero for all σ ∈ W I

0 . Finally, condition (4)
ensures that S̃(σγ ) �= 0 for all σ ∈ W I

0 .
For γ ∈ Eκ

C,I we write φV
I,γ : V � MI (γ ) for the surjective linear map defined by

φV
I,γ (vw) := χI,γ (Tv)v

I
u (γ )

for w = uv ∈ W0 with u ∈ W I
0 and v ∈ W0,I . We write φV

γ := φV
∅,γ

. Note that

φV
I,γ = φI,γ ◦ φV

γ .

Write F for the field of �̃-translation invariant meromorphic functions on EC.

Proposition 3.13. For generic γ ∈ Eκ
C,I and σ ∈ W I

0 define

�I
σ−1(z, γ ) := φI,γ

(
Aσ−1(γ )φV

σγ

(
�(z, σγ )

))
.

Then {�I
σ−1(·, γ )}σ∈W I

0
is a F-linear basis of SolK Z (MI (γ )). Furthermore,

�I
σ−1(z, γ ) = W(z, σγ )

S(z)S̃(σγ )

∑

α∈Q+

� I
α,σ−1(γ )q−(α,z) (3.14)

with the MI (γ )-valued power series converging normally for z in compact of EC and
with leading coefficient

� I
0,σ−1(γ ) =

( ∏

α∈R+
0

(
q2αq

−2(̃α,σγ ); q2α
)
∞

)
π I

γ (Tw0)b
I
σ−1(γ ). (3.15)
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Proof. Since γ ∈ Eκ
C,I is generic, the �I

σ−1(·, γ ) (σ ∈ W I
0 ) are well defined MI (γ )-

valued meromorphic functions satisfying the quantum affine KZ equations

CMI (γ )

τ (λ) (z)�I
σ−1(z − λ) = �I

σ−1(z), λ ∈ �̃. (3.16)

They are F-linearly independent because their leading coefficients π I
γ (Tw0)b

I
σ−1(γ )

(σ ∈ W I
0 ) form a linear basis of MI (γ ). The solutions �I

σ−1(·, γ ) (σ ∈ W I
0 ) can be

used to define a fundamental matrix solution of the quantum affine KZ equations (3.16),
from which it follows that

DimF
(
SolK Z (MI (γ ))

) = DimC(MI (γ )).

Hence the �I
σ−1(·, γ ) (σ ∈ W I

0 ) form a F-linear basis of SolK Z (MI (γ )) (cf. [51, Sect.
5.6], where the proof is discussed in detail for the initial data of type A and I = ∅). ��

3.5. The connection problemand its solution. Fix generic γ ∈ Eκ
C,I . There exists unique

coefficients

mI,σ
τ1,τ2

(·, γ ) ∈ F (σ ∈ W0; τ1, τ2 ∈ W I
0 )

such that
∇MI (γ )(σ )�I

τ−1
2

(·, γ ) =
∑

τ1∈W I
0

mI,σ
τ1,τ2

(·, γ )�I
τ−1
1

(·, γ ). (3.17)

Definition 3.14. We call the #W I
0 × #W I

0 -matrices

MI,σ (·, γ ) = (
mI,σ

τ1,τ2
(·, γ )

)
τ1,τ2∈W I

0
, σ ∈ W0

with coefficients in F the connection matrices of the quantum afffine KZ equations
associated to the initial data (D, κ) and the principal series representation MI (γ ).

The following cocycle property is immediate:

MI,σσ ′
(z, γ ) = Mσ (z, γ )Mσ ′

(σ−1z, γ ), σ, σ ′ ∈ W0,

MI,e(z, γ ) = Id.

To explicitly compute the connection cocycle {MI,σ (z, γ )}σ∈W0 it thus suffices to
compute MI,si (z, γ ) (1 ≤ i ≤ n).

To state the result we first need to introduce some more notations. For i ∈ {1, . . . , n}
let i∗ ∈ {1, . . . , n} be the index such that

−w0(αi ) = αi∗ .

For σ, σ ′ ∈ W0 let δσ,σ ′ be equal to one if σ = σ ′ and equal to zero otherwise. For a
finite root α ∈ R0 write

eα(x, y) := q− 1
2μα

(κα+κ2α−x)(κα+κ
α(1)−y) θ

(
ãαqy, b̃αqy, c̃αqy, dαqy−x /̃aα; q2α

)

θ
(
q2y, dαq−x ; q2α

) .

We write ẽα(x, y) (α ∈ R0) for its dual version,

ẽα(x, y) := q− 1
2μα

(κα+κ
α(1)−x)(κα+κ2α−y) θ

(
aαqy, bαqy, cαqy, d̃αqy−x/aα; q2α

)

θ
(
q2y, d̃αq−x ; q2α

) .
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Theorem 3.15. Fix generic γ ∈ Eκ
C,I satisfying the additional conditions

q2(β̃,γ ) �∈ q2Zβ ∀β ∈ R0. (3.18)

Let i ∈ {1, . . . , n} and τ2 ∈ W I
0 .

(1) If si∗τ2 �∈ W I
0 then

mI,si
τ1,τ2

(·, γ ) = δτ1,τ2 ∀ τ1 ∈ W I
0 .

(2) If si∗τ2 ∈ W I
0 then

mI,si
τ1,τ2

(·, γ ) ≡ 0 if τ1 �∈ {τ2, si∗τ2}

and

mI,si
τ2,τ2

(z, γ ) = eαi
(
(αi , z), (̃αi∗ , τ2γ )

) − ẽαi
(
(̃αi∗ , τ2γ ), (αi , z)

)

ẽαi
(
(̃αi∗ , τ2γ ),−(αi , z)

) ,

mI,si
si∗ τ2,τ2

(z, γ ) = eαi
(
(αi , z),−(̃αi∗ , τ2γ )

)

ẽαi
(
(̃αi∗ , τ2γ ),−(αi , z)

) .

(3.19)

Remark 3.16. An alternative formulation of Theorem 3.15 is as follows. Suppose that
γ ∈ Eκ

C,I is generic and that (3.18) is valid. Let i ∈ {1, . . . , n} and τ2 ∈ W I
0 . If

si∗τ2 �∈ W I
0 then

∇MI (γ )(si )�
I
τ−1
2

(·, γ ) = �I
τ−1
2

(·, γ ),

if si∗τ2 ∈ W I
0 then

∇MI (γ )(si )�
I
τ−1
2

(·, γ ) = mI,si
τ2,τ2

(·, γ )�I
τ−1
2

(·, γ ) + mI,si
si∗ τ2,τ2

(·, γ )�I
τ−1
2 si∗

(·, γ )

with the coefficients mI,si
τ2,τ2(·, γ ),mI,si

si∗ τ2,τ2(·, γ ) ∈ F explicitly given by (3.19).

Proof. In [64, Thm. 1.6] the connection problem for the bispectral problemof theRuijse-
naars–Macdonald–Koornwinder–Cherednik difference operators associated to (D, κ) is
solved. Through the difference Cherednik–Matsuo correspondence it is equivalent to the
solution of the connection problem for the bispectral quantum KZ equations associated
to (D, κ) (cf. the proof of [64, Thm. 1.5]). In our notations it gives the following.
View the normalised intertwiners Aτ (ξ) (τ ∈ W0) as linear operators on V depending
meromorphically on ξ ∈ EC by identifying V 	 M(ξ) as vector spaces through φV

ξ .
Then for 1 ≤ i ≤ n and τ2 ∈ W0,

Csi (z, ξ)(A
τ−1
2

(ξ)�(siz, τ2ξ)
) = nsiτ2,τ2(z, ξ)

(
A

τ−1
2

(ξ)�(z, τ2ξ)
)

+nsisi∗ τ2,τ2
(z, ξ)

(
A

τ−1
2 si∗ (ξ)�(z, si∗τ2ξ)

)
(3.20)
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as V-valued meromorphic functions in (z, ξ) ∈ EC × EC, with n
si
τ1,τ2 (which is denoted

by msi
τ−1
1 ,τ−1

2
in [64]) given explicitly by

nsiτ2,τ2(z, ξ) = eαi
(
(αi , z), (̃αi∗ , τ2ξ)

) − ẽαi
(
(̃αi∗ , τ2ξ), (αi , z)

)

ẽαi
(
(̃αi∗ , τ2ξ),−(αi , z)

) ,

nsisi∗ τ2,τ2
(z, ξ) = eαi

(
(αi , z),−(̃αi∗ , τ2ξ)

)

ẽαi
(
(̃αi∗ , τ2ξ),−(αi , z)

) .

By the additional generic conditions (3.18) on γ ∈ Eκ
C,I , we can specialise ξ in the coef-

ficients nsiτ2,τ2(·, ξ) and nsisi∗ τ2,τ2(·, ξ) to γ to get coefficients nsiτ2,τ2(·, γ ), nsisi∗ τ2,τ2(·, γ ) ∈
F . We consider now two cases.

Case 1: si∗τ2 ∈ W I
0 .

Then in (3.20) we can specialise ξ to γ and apply φV
I,γ to obtain

CMI (γ )
si (z)�I

τ−1
2

(siz, γ ) = nsiτ2,τ2(z, γ )�I
τ−1
2

(z, γ ) + nsisi∗ τ2,τ2
(z, γ )�I

τ−1
2 si∗

(z, γ )

as identity between MI (γ )-valued meromorphic functions in z ∈ EC, cf. Proposition
3.13. This proves (2).

Case 2: si∗τ2 �∈ W I
0 . Then we rewrite (3.20) as

Csi (z, ξ)(A
τ−1
2

(ξ)�(siz, τ2ξ)
) = nsiτ2,τ2(z, ξ)

(
A

τ−1
2

(ξ)�(z, τ2ξ)
)

+G(z, ξ)
(S̃(si∗τ2ξ)Aunn

τ−1
2 si∗

(ξ)�(z, si∗τ2ξ)
)

(3.21)

with

G(z, ξ) := nsisi∗ τ2,τ2(z, ξ)

S̃(si∗τ2ξ)D
τ−1
2 si∗ (ξ)

. (3.22)

We first show that G(z, ξ) is regular at ξ = γ . Since τ2 ∈ W I
0 and si∗τ2 �∈ W I

0 we have
αi∗ = τ2(β) for some β ∈ RI

0 . So sβ ∈ W I
0 , hence

l(si∗τ2) = l(τ2sβ) = l(τ2) + l(sβ).

Consequently β = α j for some j ∈ I and l(si∗τ2) = l(τ2s j ) = l(τ2) + 1. Hence we
have

D
τ−1
2 si∗ (ξ) = D

τ−1
2

(ξ)Dsi∗ (τ2ξ)

= D
τ−1
2

(ξ)Dα j (ξ)

= D
τ−1
2

(ξ)(1 − ã−1
j q (̃α j ,ξ))(1 − b̃−1

j q (̃α j ,ξ))

by (3.4), and D
τ−1
2

(γ ) �= 0 in view of the generic conditions on γ ∈ Eκ
C,I . Note though

that (1 − ã−1
j q (̃α j ,ξ)) will be zero when specialising ξ to γ ∈ Eκ

C,I . We will show
though in a moment that this factor also occurs as factor in the connection coefficient
nsisi∗ τ2,τ2(z, ξ), hence they will cancel each other out in (3.22).
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Observe that

S̃(si∗τ2ξ) = S̃rem(ξ)
(
q2j ã

−1
j q (̃α j ,ξ), q2j b̃

−1
j q (̃α j ,ξ), q2j c̃

−1
j q (̃α j ,ξ), q2j d̃

−1
j q (̃α j ,ξ); q2j

)
∞,

S̃rem(ξ) :=
∏

α∈τ−1
2 (R+

0 )\{α j }

(
q2α ã

−1
α q (̃α,ξ), q2α b̃

−1
α q (̃α,ξ), q2α c̃

−1
α q (̃α,ξ), q2α d̃

−1
α q (̃α,ξ); q2α

)
∞

and S̃rem(γ ) �= 0 by the generic conditions on γ ∈ Eκ
C,I . The connection coefficient

nsisi∗ τ2,τ2(z, ξ) decouples,

nsisi∗ τ2,τ2
(z, ξ) = pα̃ j (−(̃α j , ξ))

pαi (−(αi , z))

with

pα(x) := θ
(
aαqx , bαqx , cαqx , dαqx ; q2α

)

θ
(
q2x ; q2α

) q
1

μα
(κα+κ

α(1) )x

and with p̃α̃(x) its dual version

p̃α̃(x) := θ
(
ãαqx , b̃αqx , c̃αqx , d̃αqx ; q2α

)

θ
(
q2x ; q2α

) q
1

μα
(̃κα̃ +̃κ

α̃(1) )x

(the decoupling formula in Remark 2.19(ii) is a special case). Combining these obser-
vations we conclude that the coefficient G(z, ξ) (see (3.22)) can be rewritten as

G(z, ξ) = ã j b̃ j

pi (−(αi , z))Dτ−1
2

(ξ)S̃rem(ξ)θ
(
q−2(̃α j ,ξ); q2j

)q
−2(̃α j ,ξ)− 1

μ j
(̃κα̃ j +̃κ

α̃
(1)
j

)(̃α j ,ξ)

× (
q2j ã j q

−(̃α j ,ξ), q2j b̃ j q
−(̃α j ,ξ), c̃ j q

−(̃α j ,ξ), d̃ j q
−(̃α j ,ξ); q2j

)
∞.

Hence G(z, ξ) is regular at ξ = γ .
Returning to the second term in the right hand side of (3.21), we next observe that

S̃(si∗τ2ξ)Aunn
τ−1
2 si∗

(ξ)�(z, si∗τ2ξ)

= W(z, si∗τ2ξ)

S(z)
Aunn
s j (ξ)

(
Aunn

τ−1
2

(s jξ)
∑

μ∈Q+

�μ(si∗τ2ξ)q−(μ,z)
)

(3.23)

since

Aunn
τ−1
2 si∗

(ξ) = Aunn
s j τ

−1
2

(ξ) = Aunn
s j (ξ)Aunn

τ−1
2

(s jξ)

by (3.4). Now φV
I,γ ◦Aunn

s j (γ ) : V → MI (γ ) is the zeromap (see the proof of Proposition
3.4), hence we conclude that

φV
I,γ

(
S̃(si∗τ2γ )Aunn

τ−1
2 si∗

(γ )�(z, si∗τ2γ )
)

≡ 0

as MI (γ )-valued holomorphic function in z ∈ EC.
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Thus specialising ξ to γ in (3.21) and applying the map φV
I,γ we obtain

CMI (γ )
si (z)�I

τ−1
2

(siz, γ ) = nsiτ2,τ2(z, γ )�I
τ−1
2

(z, γ ).

It thus remains to show that
nsiτ2,τ2(z, γ ) ≡ 1 (3.24)

as meromorphic function in z ∈ EC. To prove (3.24) first note that

nsiτ2,τ2(z, γ ) = eαi ((αi , z), (̃α j , γ )) − ẽαi ((̃α j , γ ), (αi , z))
ẽαi ((̃α j , γ ),−(αi , z))

since α j = τ−1
2 (αi∗). But j ∈ I , hence γ ∈ Eκ

C,I and αi ∈ W0(α j ) implies that

(̃α j , γ ) = κ̃α̃ j + κ̃2α̃ j = κ̃α̃i + κ̃2α̃i .

Consequently

nsiτ2,τ2(z, γ ) = eαi ((αi , z), κ̃α̃i + κ̃2α̃i ) − ẽαi (̃κα̃i + κ̃2α̃i , (αi , z))
ẽαi (̃κα̃i + κ̃2α̃i ,−(αi , z))

. (3.25)

By a direct computation the numerator in (3.25) can be rewritten as

eαi ((αi , z), κ̃α̃i + κ̃2α̃i ) − ẽαi (̃κα̃i + κ̃2α̃i , (αi , z))

= θ
(
d̃i /̃ai , q

2(αi ,z), ãi b̃i , ãi c̃i ; q2i
) − θ

(
ai q

(αi ,z), bi q
(αi ,z), ci q

(αi ,z), d̃i q
(αi ,z)/ai ãi ; q2i

)

θ
(
q2(αi ,z), d̃i /̃ai ; q2i

) .

(3.26)

Recall the well known theta function identity

θ(xν, x/ν, λμ,μ/λ; q) − θ(xλ, x/λ, μν,μ/ν; q) = −μ

λ
θ(xμ, x/μ, λν, λ/ν; q).

(3.27)
For an exhaustive discussion of (3.27) and its origin, see [47]. Using (3.27) with
(q, x, ν, λ, μ) specialised to

(q2i , ci
√
aibi ,

√
a−1
i bi ,

√
aibiq

−(αi ,z),
√
aibiq

(αi ,z))

we can rewrite (3.26) as

eαi ((αi , z), κ̃α̃i + κ̃2α̃i ) − ẽαi (̃κα̃i + κ̃2α̃i , (αi , z))

= −θ
(
aiq−(αi ,z), biq−(αi ,z), ciq−(αi ,z)d̃i q−(αi ,z)/ai ãi ; q2i

)

θ
(
q2(αi ,z), d̃i /̃ai ; q2i

) q2(αi ,z).
(3.28)

A direct computation shows that the right hand side of (3.28) equals

ẽαi (̃κα̃i + κ̃2α̃i ,−(αi , z)). (3.29)

Hence

nsiτ2,τ2(z, γ ) ≡ 1

as meromorphic function in z ∈ EC, as desired. ��
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3.6. The link to the spin- 12 XXZ boundary qKZ equations. We specialise the results of
the previous subsection to the initial data (D, κ) corresponding to the Koornwinder (or
C∨Cn) case of the Cherednik-Macdonald theory. The five tuple D = (R0,�0, •,�, �̃)

is then given as follows (we choose our notations to ensure that it matches with the
notations in Sect. 2.1). Take E = R

n (n ≥ 2) with the standard orthonormal basis
{ei }ni=1. The root system R0 is taken to be the root system of type Bn realised by

R0 = {±(ei ± e j )}1≤i< j≤n ∪ {±ei }ni=1.

As ordered basis we take

�0 = (α1, . . . , αn−1, αn) = (e1 − e2, . . . , en−1 − en, en).

We are considering the twisted theory • = t , hence μα = |α|2/2 and α̃ = α for all
α ∈ R0. The lattices are taken to be as small as possible,

� = Z
n = �̃

(the root lattice of R0). The affine simple root is α = c
2 − e1. The Weyl group W0 =

〈s1, . . . , sn−1, sn〉 is isomorphic to the hyperoctahedral group Sn � (±1)n . Furthermore
we have s0 = τ(e1)se1 and W = 〈s0, . . . , sn〉 	 W0 � Z

n .
The affine root system R(D) associated to D has five W -orbits

Wα0,W (2α0),Wα1,Wαn,W (2αn).

A multiplicity function κ : R(D) → R thus is determined by five values, which we
denote by

(ζ, υ, ζ ′, υ ′, κ) := (καn , κ2αn , κα0 , κ2α0 , κα1). (3.30)
The dual parameters are then obtained by interchanging υ and ζ ′. The Askey–Wilson
parameters {aα, bα, cα, dα} are {a, b, c, d} (see (2.7)) if α ∈ R0 is short. If α ∈ R0 is
long then {aα, bα, cα, dα} = {q2κ ,−1, q1+2κ ,−q}.

We take I := {1, . . . , n − 1}, so that
W0,I = 〈s1, . . . , sn−1〉 	 Sn .

Note that

Eκ
C,I = {(ξ + (n − 1)κ, ξ + (n − 3)κ, . . . , ξ + (1 − n)κ) | ξ ∈ C}.

Recall the spin representation
(
π
sp
(ξ), (C

2)⊗n
)
(see Proposition 2.1) and the elements

wε ∈ W0 (ε ∈ {±1}n) defined by (2.2), which are the minimal coset representativesW I
0

of W0/W0,I (see Lemma 2.3). By [65, Prop. 3.5] we have
(
π I

γ , MI (γ )
) 	 (

π
sp
(ξ), (C

2)⊗n) (3.31)

as H(κ)-modules, with γ ∈ Eκ
C,I given by

γ := (ξ + (n − 1)κ, ξ + (n − 3)κ, . . . , ξ + (1 − n)κ). (3.32)

The isomorphism MI (γ )
∼−→ (

C
2
)⊗n of H(κ)-modules maps the basis element

vwε (γ ) ∈ MI (γ ) to vε ∈ (
C
2
)⊗n for all ε ∈ {±1}n (see Lemma 2.3).

In the remainder of this subsection we assume that γ ∈ Eκ
C,I (see (3.32)) is

generic and satisfies (3.18) (this gives generic conditions on ξ and κ). The isomor-
phism MI (γ )

∼−→ (C2)⊗n allows to transfer the definitions and results of this section
to the setting of the XXZ spin chain (see Sect. 2) in the following way.

Let ε, ε′ ∈ {±1}n and σ ∈ W0, then
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(1) The vector bI
w−1

ε
(γ ) ∈ MI (γ ) (Corollary 3.6 and Proposition 3.4) is mapped to

bε ∈ (
C
2
)⊗n (Lemma 2.4);

(2) The quantum affine KZ equations associated to MI (γ ) (Definition 3.8) become the
boundary quantum KZ equations (2.6) associated to the XXZ spin- 12 chain;

(3) The power series solution �I
w−1

ε
(·, γ ) (Proposition 3.13) of the quantum affine KZ

equations become the power series solution �ε(·) (Theorem 2.7) of the boundary
qKZ equation (2.6). In particular, Theorem 2.7 is a special case of Proposition 3.13.

(4) The connection coefficient mI,σ
wε,wε′ (·, γ ) (Sect. 3.5) equals Mσ

cm;ε,ε′(·, ξ) (Sect. 2.4).

We are now ready to prove Theorem 2.10 as a consequence of the explicit expressions
of the connection matrix of the quantum affine KZ equation for principal series modules
(see Theorem 3.15).

Proof of Theorem 2.10. Recall that Mσ
cm(z, ξ) is the linear operator on

(
C
2
)⊗n defined

by

Mσ
cm(z, ξ)vε′ :=

∑

ε∈{±1}n
Mσ

cm;ε,ε′(z, ξ)vε

=
∑

ε∈{±1}n
mI,σ

wε,wε′ (z, γ )vε.

Fix i ∈ {1, . . . , n} and note that i∗ = i . By Theorem 3.15 we have

Msi
cm(z, ξ)vε′ = vε′ if siwε′ �∈ W I

0 , (3.33)

and

Msi
cm(z, ξ)vε′ = mI,si

wε′ ,wε′ (z, γ )vε′ + mI,si
wε′′ ,wε′ (z, γ )vε′′ if siwε′ ∈ W I

0 , (3.34)

where ε′′ ∈ {±1}n is such that siwε′ = wε′′ . Let W0 	 Sn � (±1)n act on {±1}n by
permutations and sign changes. We need the following simple lemma. ��
Lemma 3.17. Let ε ∈ {±1}n and 1 ≤ j < n.

(i) s jwε ∈ W I
0 ⇔ (ε j , ε j+1) ∈ {(+1,−1), (−1,+1)}, in which case s jwε = ws j ε .

(ii) snwε = wsnε ∈ W I
0 .

Proof. (ii) is trivial in view of the explicit expression (2.2) of wε ∈ W I
0 . The

explicit expression (2.2) of wε immediately implies that s jwε = ws j ε if (ε j , ε j+1) ∈
{(+1,−1), (−1,+1)}. Suppose that (ε j , ε j+1) = (+1,+1). Then

s jwε = wεsk

for some 1 ≤ k ≤ j < n since

s j (sr sr+1 · · · sn−1sn) =
{

(sr sr+1 · · · sn−1sn)s j if j + 1 < r ≤ n,

(sr sr+1 · · · sn−1sn)s j−1 if 1 ≤ r < j.

Hence s jwε �∈ W I
0 .

Suppose that (ε j , ε j+1) = (−1,−1). Then we need in addition the equality

s j
(
(s j+1s j+2 · · · sn)(s j s j+1 · · · sn)

) = (
(s j+1s j+2 · · · sn)(s j s j+1 · · · sn)

)
sn−1

in W0 to conclude that s jwε = wεsk for some 1 ≤ k < n, hence s jwε �∈ W I
0 . ��
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Continuing with the proof of Theorem 2.10, we conclude from (3.33), (3.34), Lemma
3.17 and the explicit expressions for the connection coefficients mI,si

wε,wε′ (·, γ ) (see The-
orem 3.15) that for all ε′ = (ε′

1, . . . , ε
′
n) ∈ {±1}n ,

Msi
cm(z, ξ)vε′ = R(i)((αi , z), (αi , wε′(i)γ ))i,i+1vε′

if 1 ≤ i < n with ε′(i) := (ε′
1, . . . , ε

′
i−1, 1,−1, ε′

i+1, . . . , ε
′
n) and

R(i)(x, y) :=

⎛

⎜⎜⎜
⎝

1 0 0 0

0
eαi (x,y)−̃eαi (y,x)

ẽαi (y,−x)
eαi (x,y)

ẽαi (−y,−x) 0

0
eαi (x,−y)
ẽαi (y,−x)

eαi (x,−y)−̃eαi (−y,x)
ẽαi (−y,−x) 0

0 0 0 1

⎞

⎟⎟⎟
⎠

,

and

Msn
cm(z, ξ)vε′ = K ((αn, z), (αn, wε′(n)γ ))nvε′

with ε′(n) := (ε′
1, . . . , ε

′
n−1,+1) and

K (x, y) :=
( eαn (x,y)−̃eαn (y,x)

ẽαn (y,−x)
eαn (x,y)

ẽαn (−y,−x)
eαn (x,−y)
ẽαn (y,−x)

eαn (x,−y)−̃eαn (−y,x)
ẽαn (−y,−x)

)

.

If 1 ≤ i < n then
(
Z, α∨

i

) = Z, so [64, (1.9) and Prop. 1.7] gives

eαi (x, y) − ẽαi (y, x)

ẽαi (y,−x)
= θ

(
q2κ , qy−x ; q)

θ
(
qy, q2κ−x ; q)q(2κ−y)x = Bcm(x,−y),

eαi (x,−y)

ẽαi (y,−x)
= θ

(
q2κ−y, q−x ; q)

θ
(
q2κ−x , q−y; q)q2κ(x−y) = Acm(x, y),

hence

Msi
cm(z, ξ)vε′ = Pi,i+1Rcm(zi − zi+1, (αi , wε′(i)γ ))i,i+1vε′

(see Theorem 2.10 for the definitions of Acm(x, y), Bcm(x, y) and Rcm(x, y)). For i = n
a direct computation using (3.30) gives

eαn (x, y) = C(x, y)

(see (2.9) for the definition of C(x, y)), hence

Msn
cm(z, ξ)vε′ = Kcm(zn, (αn, wε′(n)γ ))nvε′

(see Theorem 2.10 for the definition of Kcm(x, y)). So the following lemma completes
the proof of Theorem 2.10.

Lemma 3.18. Let 1 ≤ i < n, ε ∈ {±1}n and γ ∈ Eκ
C,I (see (3.32)).

(1) If (εi , εi+1) ∈ {(+1,−1), (−1,+1)} then
(αi , wε(i)γ ) = 2ξ − 2κ(ε1 + ε2 + · · · + εi−1).
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(2) (αn, wε(n)γ ) = ξ − κ(ε1 + ε2 + · · · + εn−1).

Proof. Write Vε :={ j ∈ {1, . . . , n} | ε j =−1}={ j1, . . . , jr } with j1< j2< · · · < jr .
(1) Suppose that (εi , εi+1) = (+1,−1) and let 1 ≤ t ≤ r be the index such that jt = i+1.
Using the expression

wε = (s jr s jr+1 · · · sn) · · · (s j2s j2+1 · · · sn)(s j1s j1+1 · · · sn)
(see (2.2)) we obtain

w−1
ε(i) (αi ) = w−1

ε (αi ) = ei−t+1 + en−t+1.

Then

(αi , wε(i)γ ) = γi−t+1 + γn−t+1 = 2ξ + (4t − 2i − 2)κ

= 2ξ + 2κ(t − 1) − 2κ(i − t)

= 2ξ − 2κ(ε1 + · · · + εi−1).

If (εi , εi+1) = (−1,+1) thenwe apply the result of the previous paragraph to ε ′ := siε
to conclude that

(αi , wε(i)γ ) = (αi , wε′(i)γ )

= 2ξ − 2κ(ε′
1 + · · · + ε′

i−1)

= 2ξ − 2κ(ε1 + · · · + εi−1).

(2) Suppose that εn = +1, so that jr < n. Then

w−1
ε(n) (αn) = w−1

ε (αn) = en−r

hence

(αn, wε(n)γ ) = γn−r

= ξ + κ(1 − n + 2r) = ξ + κr − κ(n − 1 − r)

= ξ − κ(ε1 + ε2 + · · · + εn−1).

If εn = −1 then we apply this result to ε′ := snε to reach the same conclusion,

(αn, wε(n)γ ) = (αn, wε′(n)γ )

= ξ − κ(ε′
1 + ε′

2 + · · · + ε′
n−1)

= ξ − κ(ε1 + ε2 + · · · + εn−1).

This completes the proof of the lemma. ��
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