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Abstract: In the first part, we have constructed several families of interacting wedge-
local nets of von Neumann algebras. In particular, we discovered a family of models
based on the endomorphisms of the U(1)-current algebra A(0) of Longo-Witten.

In this second part, we further investigate endomorphisms and interacting models.
The key ingredient is the free massless fermionic net, which contains the U(1)-current
net as the fixed point subnet with respect to the U(1) gauge action. Through the restric-
tion to the subnet, we construct a new family of Longo-Witten endomorphisms on A(0)

and accordingly interacting wedge-local nets in two-dimensional spacetime. The U(1)-
current net admits the structure of particle numbers and the S-matrices of the models
constructed here do mix the spaces with different particle numbers of the bosonic Fock
space.
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1. Introduction

As already explained in Part I [Tan11a], construction of interacting models of Quan-
tum Field Theory in (physical) four spacetime dimensions has been a long-standing
open problem, and recently the algebraic approach made progress [Lec08,GL07,GL08,
BS08,BLS11,Lec11] and two dimensional cases work particularly well: these works
constructed models of QFT with weaker localization property, and in one case such
models turned out to be strictly local and fully interacting [Lec08]. One should recall,
however, that the models in [Lec08] allow a complete interpretation in terms of particles
(asymptotic completeness) and the particle number is preserved under the scattering
operator. On the other hand, it is known that in four dimensions an interacting model
inevitably involves particle production [Aks65]. In the present paper, we construct a
further new family of interacting wedge-local two-dimensional massless models and
find that their S-matrices mix the spaces with different particle numbers.

In fact, the requirement to involve particle production non-perturbatively is already
not simple. On the one hand, an asymptotically complete model must behave like the
free theory and hence must be compatible with the Fock space structure at asymptotic
time. On the other hand, a particle production process properly means a violation of the
Fock structure at physical time. To overcome this difficulty, one would have to “deform”
the free theory in a somewhat involved way (cf. [Lec11]) or should rely on a nice trick.
Here we take the second way. Standard examples and techniques from Conformal Field
Theory provide such a trick.

Conformal Field Theory has been well studied particularly on the circle, which can
be seen as a chiral part of 1+1 dimensional theory. There are many important examples
of such models, or nets in operator-algebraic terms, and both field-theoretic and opera-
tor-algebraic techniques allow one to analyze their interrelationships. Our trick can be
briefly summarized as follows: we consider the free complex fermionic field ψ on the
circle; the field ψ admits a gauge group action by U(1), and the fixed point with respect
to this action is known to be isomorphic to the algebra of the U(1)-current J . Both
fields are free fields acting naturally on the Fock space (fermionic and bosonic, respec-
tively) but the correspondence between the spaces is quite involved. The passage to 1+1
dimensional models is simply the tensor product of two such chiral parts. Now, we can
easily “deform” the two-dimensional Dirac field (built up from the chiral parts ψ ⊗ 1
and 1⊗ ψ) in such a way that it commutes with the product action of the gauge group
U(1) × U(1). Hence the deformation restricts to the algebra of the conserved current
Jμ = (J 0, J 1) = (J ⊗ 1 + 1⊗ J,1⊗ J − J ⊗ 1), and this deformation is sufficiently
complicated so that the resulting S-matrix does not preserve the bosonic Fock structure,
thanks to the involved fermion-boson correspondence.

In Part I, we have constructed a family of two-dimensional massless models based
on the free current Jμ or more precisely its net A(0) ⊗ A(0) of von Neumann algebras
of observables. The main ingredient was endomorphisms of the algebra A(0)(R+) of
observables localized in the positive half-line R+ commuting with the translations. A
family of such endomorphisms has been studied first by Longo and Witten [LW11] in
order to construct Quantum Field Theory with boundary. We used those endomorphisms



Construction of Wedge-Local Nets of Observables. II 669

to construct two-dimensional models without boundary. In the present article, we study
the fermi net FerC generated by the free complex fermionic field ψ and its Longo-Wit-
ten endomorphisms. We construct endomorphisms of FerC which commute with the
gauge action of U(1), hence restrict to the fixed point subnet of A(0). It turns out that
the restricted endomorphisms cannot be implemented by second quantization opera-
tors, hence are different from the ones considered in [LW11]. We again knit them up to
construct S-matrices and wedge-local nets.

Then the fixed point with respect to the action of U(1) × U(1) is considered. We
find that its asymptotic behaviour is the same as the free (bosonic) current Jμ and the
S-matrix does not preserve the space of 1 + 1 particles (1 left and 1 right moving par-
ticle) in the sense of the Fock space structure. We stress that the Fock space particle
number has no intrinsic meaning as particles, because we are in a massless case where
just a scattering between two waves is considered. One has to pass to the massive case
to talk about particle production. We will discuss in more detail the implication of this
phenomenon at the end of Sect. 5.

This paper is organized as follows. In Sect. 2 we recall the standard notions of alge-
braic QFT and the scattering theory of two-dimensional massless models [Buc75,DT11].
Some simple observations are given about subtheories and inner symmetries. Main
examples of nets, the free complex fermionic net FerC and the U(1)-current net A(0),
are introduced in Sect. 3. Although it is well-known [KR87,Kac98,Reh98] that the fixed
point subnet FerC with respect to U(1) is A(0) at the field-theoretic level, we prove it
in the framework of algebraic approach. Section 4 is devoted to the construction of
new Longo-Witten endomorphisms on A(0). They are used in Sect. 5 to construct new
interacting wedge-local nets. Outlook and open problems are summarized in Sect. 6.

2. Preliminaries

2.1. Fermi nets on S1. Here we give a summary of one-dimensional nets, since they
will be our building blocks of the construction of two-dimensional interacting models.
In the first part, we considered local nets of von Neumann algebras on S1. Since we
need to exploit the free fermionic field in this second part, a generalized concept of nets
is recalled.

We follow the definition in [CKL08] and denote by Möb(2)(∼= SL(2,R) ∼= SU(1, 1))
the double cover of the Möbius group PSL(2,R). We denote by I the set of proper inter-
vals I ⊂ S1, where proper means that I is open and connected and neither a dense nor
empty set. A (Möbius covariant) fermi net is an assignment of von Neumann algebras
F0(I ) on HF0 to intervals I ∈ I on S1 satisfying the following conditions:

(1) Isotony. If I1 ⊂ I2, then F0(I1) ⊂ F0(I2).
(2) Möbius covariance. There exists a strongly continuous unitary representation U0

of the group Möb(2) such that for any interval I ∈ I it holds that

U0(g)F0(I )U0(g)
∗ = F0(gI ), for g ∈ Möb(2),

where the action of Möb(2) ∼= SU(1, 1) on S1 is defined through linear fractional
transformation.

(3) Positivity of energy. The generator of the one-parameter subgroup of the lift of
rotations in Möb in the representation U0 is positive.

(4) Existence of the vacuum. There is a unique (up to a phase) unit vector �0 in HF0
which is invariant under the action of U0, and cyclic for

∨
I�S1 F0(I ).
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(5) Z2-grading. There is a unitary operator �0 with �2
0 = 1 such that �0�0 = �0

and Ad�0(F0(I )) = F0(I ).
(6) Graded locality. If I1 ∩ I2 = ∅, then [F0(I1),Ad Z0(F0(I2))] = 0, where Z0 :=

1−i�0
1−i .

If the grading operator is trivial: Z0 = 1, then the net F0 is said to be local.
Among the consequences of these conditions are (see [CKL08]):

(7) Reeh-Schlieder property. The vector �0 is cyclic and separating for each F0(I ).
(8) Additivity. If I =⋃i Ii , then F0(I ) =∨i F0(Ii ).
(9) Twisted Haag duality on S1. For an interval I ∈ I, it holds that F0(I )′ =

Ad Z0(F0(I ′)), where I ′ is the interior of the complement of I in S1.
(10) Bisognano-Wichmann property. The modular group �it

F0(R+)
of F0(R+) with

respect to �0 is equal to U0(δ(−2π t)), where S1 is identified as the one-point
compactification of R as below and δ is the one-parameter group of dilations.

(11) Irreducibility. It holds that
∨

I∈I F0(I ) = B(HF0).

Each algebra F0(I ) is referred to as a local algebra (even for a fermi net). Note that if
the grading operator �0 is trivial, then the definition of fermi net coincides with the one
of local Möbius-covariant net. We identify the circle S1 and the compactified real line
R ∪ {∞} through the Cayley transform

t = −i
z − 1

z + 1
⇐⇒ z = − t − i

t + i
, t ∈ R, z ∈ S1 ⊂ C

and refer to the algebra F0(I ) for an interval I ⊂ R. The representation U0 of Möb(2) ∼=
SL(2,R) restricts indeed to a projective unitary representation of PSL(2,R) [CKL08].
Let ρ be the (4π periodic) lift of the rotations in PSU(1, 1) (acting by ρ(θ)z = eiθ z) to
Möb(2) and let us denote R0(θ) = U0(ρ(θ)) = eiθL0 . Under the identification between
S1 and R ∪ {∞}, one can talk about the translations and dilations of R, which are
included in Möb. In particular, the representation of translations (which we denote by
τ ) plays a crucial role. Let us denote T0(t) = U0(τ (t)).

A Longo-Witten endomorphism of a fermi net F0 is an endomorphism of the alge-
bra F0(R+) implemented by a unitary V0 which commutes with the translation T0(t).
A family of Longo-Witten endomorphisms has been found for the U(1)-current net and
the real free fermion net [LW11]. The examples will be explained later in detail.

Note that a Longo-Witten endomorphism is uniquely implemented up to scalar.
Indeed, since it commutes with translation, Ad V0 is an endomorphism of F0(R+ + t) for
any t ∈ R. If there is another unitary W0 which satisfies Ad W0(x) = Ad V0(x) for any
x ∈ F0(R+ + t), t ∈ R, then by the irreducibility W ∗

0 V0 must be scalar.

2.2. Subnets and the character argument. Let F0 be a fermi (or local) net on HF0 .
Another assignment A0 of von Neumann algebras {A0(I )}I∈I on HF0 is called a sub-
net of F0 if it satisfies isotony, Möbius covariance with respect to the same U0 for F0
and it holds that A0(I ) ⊂ F0(I ) for every interval I ∈ I. We simply write A0 ⊂ F0. In
this case, let us denote HA0 =

∨
I∈I A0(I )�0. Then it is immediate to see that A0(I )

and U0 restrict to HA0 , and by this restriction A0|HA0
becomes a fermi net with the

representation of covariance U0|HA0
. This restriction is also said to be a subnet of F0 if

no confusion arises.
For a fermi net F0 on S1, a gauge automorphism α0 is a family of automorphisms

{α0,I } of local algebras which satisfies the consistency condition
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α0,I2 |A0(I1) = α0,I1 for I1 ⊂ I2.

If a gauge automorphism α0 preserves the vacuum state 〈�0, ·�0〉, it is said to be an
inner symmetry. An inner symmetry α0 can be unitarily implemented by the formula
Vα0 x�0 = α0(x)�0, where x is an element of some local algebra F0(I ). We say that
a compact group G acts on the net F0 when there are automorphisms {α0,g}g∈G which
satisfy the composition law when restricted to local algebras. The fixed point subnet
with respect to this action of G is the subnet defined by FG

0 (I ) := F0(I )G .
Let F0 be a fermi net and A0 be a subnet. Recall that, for a Möbius covariant fermi

net, the Bisognano-Wichmann property is automatic. As a consequence, for each inter-
val there is a conditional expectation E0,I : F0(I ) → A0(I ) which preserves the
vacuum state 〈�0, ·�0〉 and is implemented by the projection PA0 onto HA0 (see
[Tak03, Thm. IX.4.2]). This projection PA0 contains much information of A0.

Consider the case where A0 = FG
0 is the fixed point subnet with respect to an action

α0 of a compact group G by inner symmetry. Then we have a unitary representation Vα0

of G on HF0 . If we write the set of invariant vectors with respect to Vα0 by HG
F0

, it holds

that HG
F0
= HA0 . Indeed, the inclusion HA0 ⊂ HG

F0
is obvious. On the other hand, for

x ∈ F0(I ), we have
(∫

G
α0(x) dg

)

�0 =
∫

G

(
Vα0(g)x�0

)
dg,

which implies that any vector in HG
F0

can be approximated from HA0 by the Reeh-
Schlieder property.

For later use, we put here a simple observation.

Proposition 2.1. In the situation above, if a Longo-Witten endomorphism is implemented
by W0 and W0 commutes with Vα0 , then Ad W0 restricts to a Longo-Witten endomorphism
of the fixed point subnet A0.

Proof. The unitary W0 commutes with the projection PA0 , hence also with the condi-
tional expectation E0 onto A0. ��

Let F0 be fermi (or local) net on HF0 . The Hilbert space HF0 is graded by the action
of the rotation subgroup R0(θ) = eiθL0 :

HF0 = C�0 ⊕
⊕

r∈ 1
2 N

Hr =
⊕

r∈ 1
2 N0

Hr

with Hr = {ξ ∈ HF0 : R0(θ)ξ = eirθ ξ} and the sum only going over N0 for a local net.
The conformal character of the net F0 is given as a formal power series of t = e−β :

trHF0
(e−βL0) =

∞∑

r∈ 1
2 N0

dim Hr · tr .

Let us assume that there is an action of G = U(1) by inner symmetry. We denote by
V0(θ) the implementing unitary. Then V0 and U0 commute and HF0 is graded also by
the gauge action V0(θ) = eiθQ0 :

HF0 = C�0 ⊕
⊕

r∈ 1
2 N,q∈Z

Hr,q =
⊕

q∈Z

H · ,q , with H · ,q :=
⊕

r∈ 1
2 N0

Hr,q
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and the character is given as a formal power series in t = e−β and z = e−E :

trHF0
(e−βL0−E Q0) =

∑

r∈ 1
2 N0,q∈Z

dim Hr,q · tr zq .

Recall that it holds that HG
F0

= HA0 . The operator Q0 acts by 0 on HG
F0

, hence

we can obtain the conformal character of A0 just by taking the coefficient of z0 in
trHF0

(e−βL0−E Q0).
Later in this paper we need to compare the size of two subnets. Let A0 ⊂ B0 ⊂ F0

be an inclusion of three fermi nets. If the conformal characters of A0 and B0 coincide,
then this means that the subspaces HA0 and HB0 coincide, since we have already an
inclusion HA0 ⊂ HB0 and the coefficients of the conformal character are the dimen-
sions of eigenspaces of L0. This in turn implies that two subnets A0 and B0 are the same
since the conditional expectations which are implemented by PA0 , PB0 are the same.
We will see such an argument in an example.

2.3. Scattering theory of waves inR2 (revisited). Here we just collect some basic notions
regarding scattering theory of two-dimensional massless models. As recalled in Part I
[Tan11a], this theory has been established by Buchholz [Buc75] and extended to the
wedge-local case [DT11]. A Borchers triple on a Hilbert space H is a triple (M, T,�)
of a von Neumann algebra M ⊂ B(H), a unitary representation T of R

2 on H and a
vector � ∈ H such that

• Ad T (t0, t1)(M) ⊂ M for (t0, t1) ∈ WR = {(x0, x1) ∈ R
2 : x1 > |x0|}, the standard

right wedge.
• The joint spectrum sp T is contained in the closed forward lightcone V + =
{(p0, p1) ∈ R2 : p0 ≥ |p1|}.

• � is a unique (up to scalar) invariant vector under T , and cyclic and separating
for M.

We recall that one interprets M as the algebra assigned to the wedge WR. Let W be the
set of wedges, i.e. the set of all W = gWR, where g is a Poincaré transformation, then
we define the wedge-local net W � W �→ M(W ) associated with the Borchers triple
(M, T,�) by M(WR + a) = T (a)MT (a)∗ and M(W ′

R + a) = T (a)M′T (a)∗. With
the help of the modular objects one can define a representation of the Poincaré group
extending the one of translations T [Bor92]. For details we refer to the first part.

Take a Borchers triple (M, T,�) and x ∈ B(H). We write x(a) = Ad T (a)(x) for
a ∈ R

2 and consider observables sent to lightlike directions with parameter T:

x±(hT) :=
∫

hT(t)x(t,±t) dt,

where hT(t) = |T|−εh(|T|−ε(t − T)), 0 < ε < 1 is a constant, T ∈ R and h is a non-
negative symmetric smooth function on R such that

∫
h(t) dt = 1. Then for x ∈ M, the

limits �out
+ (x) := s- limT→+∞ x+(hT) and �in−(x) := s- limT→−∞ x−(hT) exist. Fur-

thermore we set�in
+ (y

′) := JM�
out
+ (JMy′ JM)JM, �

out− (y′) := JM�
in−(JMy′ JM)JM

for y′ ∈ M′, where JM is the modular conjugation of M with respect to �. The proper-
ties of these asymptotic fields are summarized in [DT11,Tan11a]. For example, it holds
that �in

+ (y
′) = s- limT→−∞ y′+(hT) and �out− (y′) = s- limT→+∞ y′−(hT).
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Fig. 1. On the definition of the wedge-local net

Let H+ (respectively H−) be the space of the single excitations with positive momen-
tum, (respectively with negative momentum), i.e. H+ = {ξ ∈ H : T (t, t)ξ = ξ for
t ∈ R} (respectively H− = {ξ ∈ H : T (t,−t)ξ = ξ for t ∈ R}). For ξ+ ∈ H+,
ξ− ∈ H−, there are sequences of local operators {xn}, {yn} ⊂ M and {x ′n}, {y′n} ⊂
M′ such that s- limn→∞ P+xn� = s- limn→∞ P+x ′n� = ξ+ and s- limn→∞ P−yn� =
s- limn→∞ P+ y′n� = ξ−. We define collision states as in [DT11]:

ξ+
in×ξ− = s- lim

n→∞ �in
+ (x

′
n)�

in−(yn)�, ξ+
out×ξ− = s- lim

n→∞ �out
+ (xn)�

out− (y′n)�.

We denote by Hin (respectively Hout) the subspace generated by ξ+
in×ξ− (respectively

ξ+
out×ξ−). The isometry

S : Hout � ξ+
out×ξ− �−→ ξ+

in×ξ− ∈ Hin

is called the scattering operator or the S-matrix of the Borchers triple (M, T,�). We
say that the Borchers triple (M, T,�) is interacting if S is not equal to the identity
operator on Hout and asymptotically complete (with respect to waves) if it holds that
Hin = Hout = H.

We have studied the general structure of asymptotically complete local and wedge-
local nets (using Borchers triple) in [Tan11a, Sect. 3]. The point was that for a given
(strictly local) (M, T,�) we can construct the chiral net, and the original object M can
be recovered from the chiral net and a single operator S. Here we rephrase this obser-
vation from the point of view of constructing examples based on chiral components.
See also the general structure of asymptotically complete strictly local nets [Tan11a,
Sect. 3]

Proposition 2.2. Let F± be two fermi nets on S1 defined on H± and assume that there
is a unitary operator S on H+ ⊗H− commuting with T+ ⊗ T−, leaving H+ ⊗�− and
�+ ⊗ H− pointwise invariant, such that x ⊗ 1 commutes with Ad S(x ′ ⊗ 1), where
x ∈ F+(R−) and x ′ ∈ Ad Z+(F+(R+)), and Ad S(1⊗ y) commutes with 1⊗ y′, where
y ∈ F−(R+) and y′ ∈ Ad Z−(F−(R−)). Then the triple (see Fig. 1)

• MS := {x ⊗ 1,Ad S(1⊗ y) : x ∈ F+(R−), y ∈ F−(R+)}′′,



674 M. Bischoff, Y. Tanimoto

• T (t, x) := T+(
t−x√

2
)⊗ T−( t+x√

2
),

• � := �+ ⊗�−
is an asymptotically complete Borchers triple with the S-matrix S.

Proof. As in Part I [Tan11a], the conditions on T and � are automatic because they are
just tensor products of objects for fermi nets. Similarly, the condition that Ad T (a)MS ⊂
MS for a ∈ WR is easily seen from the assumption that T commutes with S and the
covariance of fermi nets.

What remains is the cyclicity and separating property of � for MS . Cyclicity is
immediate because we have

MS� ⊃ {x ⊗ 1 · S(1⊗ y)S∗ ·� : x ∈ F+(R−), y ∈ F−(R+)}
= {x ⊗ y ·� : x ∈ F+(R−), y ∈ F−(R+)}

by the assumed property of S, and the latter set is total in H+⊗H− by the Reeh-Schlieder
property for fermi nets. As for the separating property, we define:

M1
S := {Ad S(x ′ ⊗ 1),1⊗ y′ : x ′ ∈ Ad Z+(F+(R+)), y′ ∈ Ad Z−(F−(R−))}′′.

By an analogous proof, one sees that � is cyclic for M1
S . Furthermore, MS and M1

S
commute by assumption. Hence � is separating for MS . In other words, (MS, T,�) is
a Borchers-triple.

It is immediate that �out
+ (x ⊗ 1) = x ⊗ 1 and �in−(Ad S(1 ⊗ y)) = Ad S(1 ⊗ y)

(the latter follows since S commutes with T ). Similarly, we have �in
+ (Ad S(x ′ ⊗ 1)) =

Ad S(x ′ ⊗ 1) and �out− (1 ⊗ y′) = 1 ⊗ y′. From this, one concludes that the Borchers
triple (MS, T,�) is asymptotically complete and its S-matrix is S. ��

We remark that we see (MS, T,�) as a fermi (i.e. twisted local) net defined by
M(W ′

R) = Ad Z+ ⊗ Z−(M) and that the scattering theory of waves [Buc75] is consid-
ered to be an analogue of the Haag-Ruelle scattering theory and it is not intended to be
applied to fermionic nets. But we will not pay much attention to this restriction, since
our result is a construction of wedge-local nets with a free massless bosonic net as the
asymptotic net, and fermionic nets appear as auxiliary objects.

2.4. Restriction of wedge-local nets. We consider a Borchers triple (M, T,�). It is in
some cases interesting to consider a subalgebra N of M. Let us denote HN := N�.

Proposition 2.3. If the subspace HN is invariant under T and Ad T (a)(N) ⊂ N for
a ∈ WR. Then (N|HN

, T |HN
,�) is a Borchers triple on HN.

Proof. The components N, T and � naturally restrict to HN. The conditions on T and
� are trivial, even restricted to HN. The cyclicity of� is immediate from the definition
of HN. Since � is already separating for M, so also it is for N. Endomorphic action of
T on N is in the hypothesis. ��

We call a triple (N, T,�) a (Borchers) subtriple of (M, T,�) if N is a subalgebra
of M, HN is invariant under T (a), Ad T (a)(N) ⊂ N for a ∈ WR, and N is invariant
under Ad�it

M, where �M is the modular operator of M with respect to �.
Recall that a Borchers triple (M, T,�) gives rise to a strictly local net if � is cyclic

for M ∩ Ad T (a)(M)′ for any a ∈ WR. We call such a triple therefore strictly local.
The following proposition shows that the concept of Borchers subtriple corresponds to
the one of a local subnet.
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Proposition 2.4. If a Borchers triple (M, T,�) is strictly local, any subtriple (N, T,�)
is again strictly local when restricted on N�.

Proof. Since N is invariant under the modular automorphism Ad�it
M, there is a condi-

tional expectation E from M onto N which preserves the state 〈�, ·�〉 and is imple-
mented by the projection PN (see [Tak03, Thm. IX.4.2] for the original reference and
[Tan11b, App. A] for an application to nets).

We have to show that � is cyclic for the relative commutant N ∩ Ad T (a)(N)′ on
the subspace HN. Let us denote M0,a := M ∩ Ad T (a)(M)′. We claim that E(M0,a)

is contained in N ∩ Ad T (a)(N)′. Indeed, by the definition of E , the image of E is
contained in N. Furthermore, if x ∈ M0,a , y ∈ Ad T (a)(N) ⊂ Ad T (a)(M), then

E(x)y = E(xy) = E(yx) = yE(x),

hence they commute and the image E(M0,a) lies in the relative commutant. Now we
have

(N ∩ Ad T (a)(N)′)� ⊃ E(M0,a)� ⊃ PNM0,a� = HN

by the assumed strict locality of (M, T,�). ��
Let (B,U,�) be an asymptotically complete local Poincaré covariant net on R

2

fulfilling the Bisognano-Wichmann property (see [Tan11a] for related definitions). We
recall that one can define the (out-) asymptotic algebras B+ ⊗ B− and the scattering
operator S which is a unitary operator, and that it is possible to recover the original net
by the formula

B(WR) = {x ⊗ 1,Ad S(1⊗ y) : x ∈ B+(R−), y ∈ B−(R+)}′′.
Note that (B(WR),U |R2 ,�) is an asymptotically complete, strictly local Borchers triple.
Here we exhibit a simple way to construct subtriples. Let A+,A− be (Möbius covariant)
subnets of B+,B−, respectively. If we define

N = {x ⊗ 1,Ad S(1⊗ y) : x ∈ A+(R−), y ∈ A−(R+)}′′,
then (N,U |R2 ,�) is a Borchers subtriple of (B(WR),U |R2 ,�). Indeed, conditions
regarding N,U |R2 ,� are immediate. As for the invariance of N under Ad�it

M, it suf-
fices to note that S and�it

M commute ([Tan11a, Lem. 2.4], cf.[Buc75]) and that A+(R−)
and A−(R+) are preserved by Ad�it

M because of Bisognano-Wichmann property.
The trouble is, however, that such Borchers triples constructed as above are not nec-

essarily asymptotically complete in general. Indeed, the out-asymptotic states span the
subspace A+(R−)�⊗A−(R+)�. It is easy to see that this coincides with the full space
N� if and only if it is invariant under S.

Since a clear-cut scattering theory is so far available only for asymptotically complete
nets, it is worthwhile to give a general condition to assure that subnets are asymptotically
complete. For simplicity, we consider the following situation: let A0 be a fermi net on H0
with an action of a compact group G by inner symmetry implemented by Vg . Suppose
that there is a unitary operator S on H0 ⊗H0 such that (MS, T,�) is a Borchers triple
where
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• MS := {x ⊗ 1,Ad S(1⊗ y) : x ∈ A0(R−), y ∈ A0(R+)}′′,
• T (t, x) := T0(

t−x√
2
)⊗ T0(

t+x√
2
),

• � := �0 ⊗�0,

as in Proposition 2.2.

Proposition 2.5. If S commutes with Vg ⊗ Vg′ , g, g′ ∈ G, then the triple

• NS := {x ⊗ 1,Ad S(1⊗ y) : x ∈ AG
0 (R−), y ∈ AG

0 (R+)}′′ (restricted to NS�),
• T (t, x) := T0(

t−x√
2
)⊗ T0(

t+x√
2
), (restricted to NS�),

• � := �0 ⊗�0

is an asymptotically complete Borchers triple with asymptotic algebra AG
0 ⊗ AG

0 and
scattering operator S|Ns�

.

Proof. As remarked above, (NS, T,�) is a Borchers triple on HNS , hence the
only thing to be proven is asymptotic completeness. We show that the subspace

AG
0 (R−)⊗AG

0 (R+)� is invariant under S.

We claim that AG
0 (R−)�0 coincides with the subspace HG

0 of invariant vectors under

{Vg}g∈G . Indeed, for any x ∈ A0, the averaging
∫

g Vgx�0 dg =
(∫

g αg(x) dg
)
�0 gives

a projection onto HG
0 . By the Reeh-Schlieder property, any vector in HG

0 can be approx-
imated by vectors in AG

0 (R−)�0. The converse inclusion is obvious.

Now it is easy to see that AG
0 (R−)⊗AG

0 (R+)� = HG
0 ⊗ HG

0 . This is the space
of invariant vectors under the action {Vg ⊗ Vg′ : g, g′ ∈ G}. Since S commutes with
Vg ⊗ Vg′ by assumption, this subspace is preserved under S. Then, as remarked before,

NS� coincides with AG
0 (R−)⊗AG

0 (R+)� and we obtain the asymptotic completeness.
The statement on S-matrix is immediate from the definition and by Proposition 2.2.

��

3. Examples of Fermi Nets

3.1. U(1)-current net A(0). Let U1 be the irreducible unitary positive-energy represen-
tation of Möb with lowest weight 1 on a Hilbert space denoted by H1

A(0) , which can be
identified with the one-particle space of the U(1)-current. This has the following concrete
realization: consider C∞(S1,R), where we write the periodic function f ∈ C∞(S1,R)

as a Fourier series

f (θ) =
∑

k∈Z

f̂keikθ , f̂k =
∫ 2π

0
e−ikθ f (θ)

dθ

2π
= f̂−k .

We introduce a semi-norm

‖ f ‖2 =
∞∑

k=1

k · | f̂k |2

and a complex structure, i.e. an isometry J w.r.t. ‖ · ‖ satisfying J2 = −1, by J :
f̂k �→ −i sign(k) f̂k , and finally we get the Hilbert space H1

A(0) = C∞(S1,R)/R
‖ · ‖
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by completion with respect to the norm ‖ · ‖, where R is identified with the constant
functions. By abuse of notation we denote also the image of f ∈ C∞(S1,R) in H1

A(0)

by f . The scalar product (linear in the second component) and the sesquilinear form
ω( · , · ) ≡ �〈 · , · 〉 are given by

〈 f, g〉 =
∞∑

k=1

k f̂k ĝ−k,

ω( f, g) = −i

2

∑

k∈Z

k f̂k ĝ−k = 1

2

∫ 2π

0
f (θ)g′(θ) dθ

2π
= 1

4π

∫

f dg,

respectively. The unitary action U1 of Möb on H1
A(0) is induced by the action on

C∞(S1,R) (U1(g) f ) = (g∗ f )(θ) := f (g−1(θ)).
For I ∈ I we denote by H(I ) the closure of the subspace of real functions with support

in I . This space is standard (i.e. H(I ) + iH(I ) is dense in H1
A(0) and H(I ) ∩ iH(I ) =

{0}) and the family {H(I )}I∈I is a local Möbius covariant net of standard subspaces
[Lon08,LW11].

We explain briefly the bosonic second quantization procedure in general. Let H1 be a
separable Hilbert space, the one-particle space, andω( · , · ) = �〈 · , · 〉 the sesquilinear
form. There are unitaries W ( f ) for f ∈ H1 fulfilling

W ( f )W (g) = e−iω( f,g)W ( f + g) = e−2iω( f,g)W (g)W ( f )

and acting naturally on the bosonic Fock space eH1
over H1. This space is given by

eH1 = ⊕∞n=0 Pn(H
1)⊗n , where Pn is the projection Pn(ξ1⊗· · ·⊗ξn) = 1/n!∑σ ξσ(1)⊗

· · · ⊗ ξσ(n) and the sum goes over all permutations. The set of coherent vectors eh :=
⊕∞n=0h⊗n/

√
n! with h ∈ H1 is total in eH1

and it holds 〈e f , eh〉 = e〈 f,h〉. The vacuum

is given by � = e0 and the action of W ( f ) is given by W ( f )e0 = e− 1
2 ‖ f ‖2

e f , in

other words the vacuum representation is characterized by φ(W ( f )) = e− 1
2 ‖ f ‖2

, where
φ( · ) = 〈�, ·�〉. For a real subspace H ⊂ H1, we define the von Neumann algebra

R(H) = {W ( f ) : f ∈ H}′′ ⊂ B(eH1
).

Let U be a unitary on the one-particle space H1, then eU := ⊕∞n=0U⊗n acts on coher-

ent states by eU eh = eUh and is therefore a unitary on eH1
, the second quantization

unitary.

We obtain the U(1)-current net A(0) on HA(0) := e
H1

A(0) with �0 = e0 by defin-
ing A(0)(I ) := R(H(I )) which is covariant with respect to U (g) := eU1(g). For f ∈
C∞(S1,R)we consider a self-adjoint operator J ( f ) given by the generator of the unitary
one-parameter group W (t · f ) = eit ·J ( f ) with t ∈ R. This defines the usual current (field
operator) smeared with the real test function f , which fulfills J ( f )�0 = f ∈ H1

A(0)

and

[J ( f ), J (g)] = 2iω( f, g) =
∑

k

k f̂k ĝ−k = i

2π

∫

f dg.

It can be extended to complex test functions via J ( f + ig) = J ( f ) + iJ (g), and one
obtains the usual operator valued (z-picture) distribution J (z) with the relations
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J ( f ) =
∑

n∈Z

f̂n Jn =
∮

S1
f (z)J (z)

dz

2π i
, J (z) =

∑

n

Jnz−n−1,

[Jm, Jn] = mδm+n,0,

where the modes Jn = J (en) with en(θ) = einθ satisfy Jn�0 = 0 for n ≥ 0.
The space HA(0) is spanned by vectors of the form ξ = J−n1 · · · J−nk�0 with 0 <

n1 ≤ · · · ≤ nk with “energy” N =∑m nm , i.e. R(θ)ξ = eiNθ ξ . Therefore it is graded
with respect to the rotations

HA(0) = C�0 ⊕
⊕

n∈N

HA(0),n, HA(0),n =
n⊕

k=1

⊕

0<n1≤···≤nk
n1+···+nk=n

CJ−n1 · · · J−nk�0,

and dim HA(0),n is the number of partitions of n elements, whose generating function
p(t) is the inverse of Euler’s function φ(t) =∏∞

k=1(1− tk), and therefore the conformal
character of the U(1)-current net is given by (t = e−β ):

trH
A(0) (e

−βL0) =
∞∑

n=0

dim HA(0),n · tn =
∏

n∈N

(1− tn)−1

(a conformal character is defined as a formal power series, but it is often convergent for
|t | < 1 and here we used the formula (1− z)−1 = 1 + z + z2 · · ·). It will be convenient to
use the real parametrization x ∈ R ∼= S1 \ {−1} of the cut circle and use the conventions

f (s) =
∫

R

e−isp f̂ (p) d p.

By writing f (s) = f0(θ(s)), for f0 ∈ C∞(S1,R), where θ(s) = 2 arctan(s), the space
H1

A(0) above can be identified with the space L2(R+, p d p) in which the space S(R,R)

embeds by restriction of the Fourier transformation to R+. In other words H1
A(0) can be

seen as the closure of the space S(R,R)with complex structure J f̂ (p) = i sign(p) f̂ (p)
and the scalar product and sesquilinear form given by:

〈 f, g〉 =
∫

R+

f̂ (−p)ĝ(p)p d p,

ω( f, g) = −i

2

∫

R

f̂ (−p)ĝ(p)p d p = 1

4π

∫

R

f (x)g′(x) dx .

Using the above identification we denote for f ∈ S(R,R) by J ( f ) the smeared current
with J ( f )�0 = f ∈ H1

A(0) . In this parametrization commutation relations read:

[J ( f ), J (g)] = i

2π

∫

R

f (x)g′(x) dx =
∫

R

f̂ (−p)ĝ(p)p d p.
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3.2. The free complex fermion net FerC. We construct the net of the free complex fer-
mion on the circle, which can be seen as the chiral part of the net of the free massless
Dirac (or complex) fermion on two dimensional Minkowski space. The notations of this
section are basically in accordance with [Was98], but we use a different convention of
positive-energy, which leads to the conjugated complex structure. For giving a simple
description of the one-particle space, we consider first the Hilbert space L2(S1) and the
Hardy space H2(S1), namely

H2(S1) :=
{

f : analytic on the unit disk D, sup
0≤r<1

∫ 2π

0
| f (reiθ )|2 dθ <∞

}

.

Any function in H2(S1) has a L2-boundary value and can be considered as an element
of L2(S1). In this sense, H2(S1) is a subspace of L2(S1). Furthermore, it holds that

H2(S1) = { f ∈ L2(S1) : f̂n = 0 for n < 0},
where f̂n is the nth Fourier component of f . We denote the orthogonal projection onto
H2(S1) by P .

The group

SU(1, 1) :=
{(
α β

β α

)

∈ M2(C) : |α|2 − |β|2 = 1

}

acts on the circle S1 by g · z = αz+β
βz+α

and there is a unitary action of SU(1, 1) on L2(S1)

by

(U (g) f )(z) := (Vg f )(z) = 1

−βz + α
f (g−1 · z).

One sees that the projection P commutes with Vg , since Vg f is still an analytic function
for |α| > |β|.

Then one defines a new Hilbert space H1
FerC

= P L2(S1)⊕ (1− P)L2(S1): namely,

H1
FerC

is identical with L2(S1) as a real linear space and the multiplication by i is given

by−i(2P −1), or in other words, by−i on P L2(S1) and i on (1− P)L2(S1). Because
P and U (g) commute, the action of SU(1, 1) remains unitary on H1

FerC
.

Then for I ∈ I one takes real Hilbert subspaces K (I ) := L2(I ) of H1
FerC

. These
subspaces turn out to be standard [Was98, Thm. (p. 497)]. If I1 and I2 are disjoint
intervals, K (I1) are real orthogonal to K (I2), in other words K (I1) ⊂ K (I2)

⊥, where
K⊥ = {ξ ∈ H : �〈ξ, K 〉 = 0}. It turns out that I �→ K (I ) is a twisted-local Möbius
covariant net of standard subspaces.

We briefly explain the fermionic second quantization in general. Let H1 be a complex
Hilbert space and H = �(H1) be the antisymmetric (fermionic) Fock space obtained by
completing the exterior algebra with the inner product. For A ∈ B(H1) with ‖A‖ ≤ 1
we define �(A) to be A⊗k on Hk := �k(H1) ⊂ (H1)⊗k . The space is Z2 graded
by � := �(−1). We define Z = 1−i�

1−i and note that Z2 = �. For f ∈ H1 let a( f )
be the bounded operator obtained by continuing the exterior multiplication f ∧ ·. The
operators fulfill the complex Clifford relations a( f )∗a(g) + a(g)a( f )∗ = 〈 f, g〉 and
{a( f ), a(g)} = {a( f )∗, a(g)∗} = 0 for all f, g ∈ H1. For a standard subspace K ⊂ H1

we define the von Neumann algebra
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C(K ) = {c( f ) : f ∈ K }′′ ⊂ B(�H1),

where c( f ) = a( f ) + a( f )∗, which fulfills the real Clifford relations c( f )c(g) +
c(g)c( f ) = 2�〈 f, g〉. By � = 1 ∈ �0 we denote the vacuum which is cyclic and
separating for C(K ) for every standard subspace K ⊂ H1. Further Haag-Araki dual-
ity holds, i.e. C(K⊥) equals C(K )⊥ := ZC(K )′Z∗, the twisted commutant of C(K ).
For a unitary U on H1, �(U )c( f )�(U∗) = c(U f ) holds, which implies that C is
covariant with respect to the unitaries U (H1), i.e. �(U )C(K )�(U )∗ = C(U K ).

We note that in the case like the complex fermion the one-particle space is obtained
from a Hilbert space H1 (the space of test functions) and a projection P by H1

P =
PH1 ⊕ P⊥H1, and one gets a new representation of the complex Clifford algebra on
�(H1

P ) by aP ( f ) = a(P f ) + a(P⊥ f )∗, where a( f ) is the creation operator. For a
standard subspace K ⊂ H1

P which is invariant under the multiplication of iH1 in H1,
the von Neumann algebra C(K ) on �(H1

P ) coincides with the von Neumann algebra
{aP ( f ), aP ( f )∗ : f ∈ K }′′. Indeed, the one inclusion follows from c( f ) = aP ( f ) +
aP ( f )∗ and the other follows from Araki-Haag duality and {aP ( f ), c(g)} = 〈g, f 〉H1 =
�〈g, f 〉H1

P
−i�〈g, iH1 f 〉H1

P
= 0 for f ∈ K and g ∈ K⊥. We further note that the space

�(H1
P ) is as a real Hilbert space the same as �(H1) and can be identified canonically

with �(PH1)⊗�(P⊥H1).
We turn to the concrete case where H1 = L2(S1) and define the net FerC(I ) :=

C(K (I )) = {aP ( f ), aP ( f )∗ : f ∈ L2(I )}′′ (where here aP ( f ) := a(P f ) + a(P⊥ f )∗)
on HFerC

= �(H1
FerC

) ∼= �(P L2(S1))⊗�(P⊥L2(S1))which is isotonic by definition

and fulfills twisted duality, namely by Haag-Araki duality FerC(I ′) = C(K (I )⊥) =
C(K (I ))⊥ = FerC(I )⊥. In addition, the net FerC is Möbius covariant. Indeed, we can
take the representation�U (·) by promoting the one-particle representation U to the sec-
ond quantization operator. It is easy to see that the covariance of this net FerC follows
from the covariance of the net of standard spaces K . The representation�U has positive
energy as does the representation U , and leaves invariant the vacuum vector �0 of the
Fock space. Summing up, the net FerC is a fermi net (cf. [Was98]). This net is referred
to as the free complex fermi net on S1. The scalar multiplication by a constant phase
e−iϑ in the original structure of the one-particle space is still a unitary operator in the
new structure. Its promotion by the second quantization V (θ) implements an action of
U(1) on FerC by inner symmetry. This will be referred to as the U(1)-gauge action.

For r ∈ 1
2 + Z, let ψr = aP (e−r− 1

2
) and ψ̄r = aP (er− 1

2
)∗, where er ∈ L2(S1) with

er (θ) = eiθr . The ψr , ψ̄r are the modes of the free complex fermion, namely

{ψn, ψm} = {ψ̄m, ψ̄n} = 0

{ψ̄n, ψm} = δm+n,0,

ψ∗n = ψ̄−n,

and it holds thatψr�0 = ψ̄r�0 = 0 for r ∈ 1
2 +N0. Each ofψr or ψ̄r has norm 1 follow-

ing from the commutation relation. We can introduce the usual fields ( f, g ∈ L2(S1))
and operator valued distributions in the z-picture:

�( f ) =
∑

r∈ 1
2 +Z

f̂r�r =
∮

S1
f (z)z−

1
2�(z)

dz

2π i
, �(z) =

∑

r∈ 1
2 +Z

�r z−r− 1
2 ,
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ψ̄( f ) = ψ( f )∗ = aP (e− 1
2

f )∗, {ψ̄( f ), ψ(g)} =
∮

f (z)g(z)
dz

2π iz
,

where� is eitherψ or ψ̄ . The fieldsψ, ψ̄ are covariant, e.g. U (g)ψ( f )U (g)∗ = ψ( fg)

with fg(z) = 1
|α−βz| f (g−1z) for g =

(
α β

β α

)

∈ SU(1, 1).

We note that vectors of the form

ξ = ψ−r1 · · ·ψ−rk ψ̄−s1 · · · ψ̄−s��0

with 0 < r1 < · · · < rk and 0 < s1 < · · · < s� form a basis of HFerC
= �(H1

FerC
)

and that such a ξ is an eigenvector for the rotations, R(θ)ξ ≡ eiθL0ξ = eiNθ ξ with
N =∑k

j=1 r j +
∑�

j=1 s j and of the gauge action V (θ)ξ ≡ eiθQξ = ei(k−�)θ ξ . In each

vector of this basis the r th energy level can either be empty, be occupied byψ−r or ψ̄−r or
be occupied by both. The contribution of this level to the character trHFerC

(e−βL0−E Q)

is then 1, ztr , z−1tr or t2r , respectively, where t = e−β and z = e−E . By summing over
all possibilities one gets that the character of FerC is given by (cf. [Kac98,Reh98]):

trHFerC
(e−βL0−E Q) = trHFerC

(t L0 zQ) =
∏

r∈N0+ 1
2

(1 + ztr + z−1tr + t2r )

=
∏

r∈N0+ 1
2

(1 + ztr )(1 + z−1tr )

= p(t)
∑

q∈Z

zq t
q2

2 ,

where the last equality follows directly from the Jacobi triple product formula (see
[Apo76, Thm. 14.6])

∏

r∈N

(1 + zw2r−1)(1 + z−1w2r−1)(1− w2r ) =
∑

q∈Z

zqwq

by setting 2r−1 = 2n and t = w2. In particular, for the local net FerU(1)
C

the character is
given by tr

HU(1)
FerC

(e−βL0) = p(t), since it is the fixed point with respect to the U(1)-gauge

action and the conformal character is the coefficient of z0.

3.3. U(1)-current net as a subnet of FerC. In this section we use the well-known fact
that the Wick product : ψ̄ψ : of the complex fermionψ equals the U(1)-current and give
an analogue of the boson-fermion correspondence (see e.g. [Kac98, 5.2]) in the operator
algebraic setting. Let us denote by D0 the subspace of �(H1

P ) of vectors with finite
energy:

D0 := span

{

ψ−r1 · · ·ψ−rk ψ̄−s1 · · · ψ̄−sl�0 : k, l ∈ N0, ri , s j ∈ N +
1

2

}

.
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Then we define the unbounded operators on the domain D0:

Jn =
∑

r+s=n

: ψ̄rψs : =
∑

r<0

ψ̄rψn−r −
∑

r>0

ψn−r ψ̄r

=
∑

r

(
ψ̄rψn−r − 〈�0, ψ̄rψn−r�0〉

)

with r, s ∈ 1
2 + Z. Note that any vector in D0 is annihilated by ψr for sufficiently large

r , thus the action of Jn on such a vector can be defined and remains in D0. In particular,
we have Jn�0 = 0 for n ∈ N0.

Lemma 3.1. On D0 it holds that

1. [Jn, ψk] = −ψn+k and [Jn, ψ̄k] = ψ̄n+k ,
2. [Jm, Jn] = mδm+n,0.

Proof. Using [ab, c] = a{b, c} − {a, c}b, one obtains [ψ̄rψn, ψk] = −δr+k,0ψn and
[ψnψ̄r , ψk] = δr+k,0ψn from which directly follows [Jn, ψk] =∑r<0[ψ̄rψn−r , ψk] −∑

r>0[ψn−mψ̄r , ψk] = −ψn+k . Analogously one shows [Jn, ψ̄k] = ψ̄n+k .
From the Jacobi identity, it follows immediately that [Jn, Jm] commutes with all

ψk and ψ̄k and hence [Jn, Jm] is a multiple of the identity, therefore [Jn, Jm] =
〈�0, [Jn, Jm]�0〉1. It is

[Jn, Jp] =
∑

r<0

[Jn, ψ̄rψp−r ] −
∑

r>0

[Jn, ψp−r ψ̄r ]

= −
∑

r<0

(
ψ̄rψp−r+n − ψ̄r+nψp−r

)−
∑

r>0

(
ψp−r ψ̄r+n − ψp−r+nψ̄r

)
,

and in the case p "= −n, we get 〈�0, [Jn, Jp]�0〉 = 0, and otherwise

〈�0, [Jn, J−n]�0〉

=

⎧
⎪⎨

⎪⎩

∑
r<0〈�0, ψ̄r+nψ−r−n�0〉 =∑n− 1

2

r= 1
2
〈�0, {ψ̄r , ψ−r }�0〉 n > 0

−∑r>0〈�0, ψ−r−nψ̄r+n�0〉 = −∑−n− 1
2

r= 1
2
〈�0, {ψr , ψ̄−r }�0〉 n < 0

= n,

which completes the proof. ��
Let L0 be the generator of the rotation: R(θ) = eiθL0 . From its action (see the end

of Sect. 3.2), one verifies that D0 is a core for L0.

Lemma 3.2 (Linear energy bounds). It holds that [L0, Jn] = −n Jn on D0. For a trigo-
nometric polynomial f =∑n f̂nen, where the sum is finite and ξ ∈ D0, we have

‖J ( f )ξ‖ ≤ c f ‖(L0 + 1)ξ‖
‖[L0, J ( f )]ξ‖ ≤ c∂θ f ‖(L0 + 1)ξ‖,

where c f depends only on f .
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Proof. For the commutation relation, it is enough to choose an energy eigenvector ξ ∈
D0, i.e. L0ξ = Nξ . It is Jn L0ξ = N Jnξ and

L0 Jnξ = L0

(
∑

r<0

ψ̄rψn−rξ −
∑

r>0

ψn−r ψ̄rξ

)

= (N − n)Jnξ,

and the first statement follows.
We have seen that ψr and ψ̄r have norm 1 in Sect. 3.2. First we claim that ‖Jnξ‖ ≤

‖(2(L0 + 1) + |n|)ξ‖. Let ξ be again an eigenvector of L0, i.e. L0ξ = Nξ . From the
defining sum of Jn , one sees that only 2N + |n| + 2 terms contribute to Jnξ . Hence
we have ‖Jnξ‖ ≤ (2N + |n| + 2)‖ξ‖ = ‖2(L0 + 1) + |n|ξ‖. If the inequality holds for
eigenvectors, then for {ξr }with different eigenvalues, we have ξr ⊥ ξs and Jnξr ⊥ Jnξs ,
and hence

∥
∥
∥
∥
∥

Jn

∑

r

ξr

∥
∥
∥
∥
∥

2

=
∑

r

‖Jnξr‖2

≤
∑

r

‖(2(L0 + 1) + |n|)ξr‖2

=
∥
∥
∥
∥
∥
(2(L0 + 1) + |n|)

∑

r

ξr

∥
∥
∥
∥
∥

2

,

and the general case follows.
For a smeared field, we have

‖J ( f )ξ‖ =
∥
∥
∥
∥
∥

∑

n

f̂n Jnξ

∥
∥
∥
∥
∥
≤ 2c̃ f ‖(L0 + 1)ξ‖ + c̃∂θ f ‖ξ‖ ≤ (2c̃ f + c̃∂θ f )‖(L0 + 1)ξ‖,

where c̃ f =∑n | f̂n|. By defining c f = 2c̃ f + c̃∂θ f , we obtain the first inequality of the
statement. The rest follows by noting that [L0, J ( f )] = J (i∂θ f ). ��

For a smooth function f = ∑
n∈Z f̂nen ∈ C∞(S1), its Fourier coefficients f̂n are

strongly decreasing and, in particular, it is summable:
∑

n | f̂n| = c̃ f < ∞. Hence we
can naturally extend the definition of the smeared current to smooth functions using the
above estimate by

J ( f ) =
∑

n∈Z

fn Jn =
∑

r,s∈ 1
2 +Z

fr+s :ψr ψ̄s :,

and the same inequality in Lemma 3.2 holds. The operator is closable since we have
J ( f ) ⊂ J ( f )∗ and we still denote the closure by J ( f ). We note that from the above
definition it follows that J ( f ) is obtained by a limit

∑
n :ψ(hn)ψ̄(kn) : with suitable

functions such that
∑

n hn(θ)kn(ϑ)→ 2π f (θ)δ(θ −ϑ). This implies covariance of the
“field”, i.e. U (g)J ( f )U (g)∗ = J ( f ◦ g−1).

Recall that ‖ψr‖ = 1, hence the smeared field is still bounded: ‖ψ(g)‖ ≤ c̃g . We
claim that, for f, g ∈ C∞(S1) and ξ ∈ D0, ψ(g)ξ is in the domain of J ( f ). Indeed, for
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a trigonometric polynomial g, we have the estimate

‖J ( f )ψ(g)ξ‖ ≤ c f ‖(L0 + 1)ψ(g)ξ‖
≤ c f (c̃g‖ξ‖ + ‖[L0, ψ(g)]ξ + ψ(g)L0ξ‖)
≤ c f (c̃g(‖ξ‖ + ‖L0ξ‖) + c̃∂θ g‖ξ‖).

Then if we have a sequence of trigonometric polynomial gn converging to a smooth
function g ∈ C∞(S1), the sequence {J ( f )ψ(gn)ξ} is also converging.

Lemma 3.3. For ξ, η ∈ D0, it holds that

[J ( f ), ψ(g)]ξ = −ψ( f · g)ξ

[J ( f ), ψ̄(g)]ξ = ψ̄( f · g)ξ

〈J ( f̄ )ξ, J (g)η〉 = 〈J (ḡ)ξ, J ( f )η〉 + 2iω( f, g)〈ξ, η〉.
Proof. For trigonometric polynomials f, g, the statements can be proved easily from
Lemma 3.1. The general case is shown by approximating first f by polynomials, then
g, according to the convergence considered above (as for the third statement, obviously
the order of limits does not matter). ��

We need the following well-known result [DF77, Thm. 3.1]:

Theorem 3.4 (The commutator theorem). Let H be a positive self-adjoint operator and
A, B symmetric operators defined on a core D0 for (H + 1)2. Assume that there is a
constant C such that

‖Aξ‖ ≤ C‖(H + 1)ξ‖, ‖Bξ‖ ≤ C‖(H + 1)ξ‖,
‖[H, A]ξ‖ ≤ C‖(H + 1)ξ‖, ‖[H, B]ξ‖ ≤ C‖(H + 1)ξ‖,
〈Aξ, Bη〉 = 〈Bξ, Aη〉 for any ξ, η ∈ D0.

Then A and B are essentially self-adjoint on any core of H and any bounded functional
calculus of A and B commute.

Remark 3.5. In the original literature [DF77], this theorem is proved under the assump-
tion of certain operator inequalities. In fact, what is really used in the proof of
commutativity of bounded functions is the norm estimates ‖A(H + 1)−1‖ < C,
‖[H, A](H + 1)−1‖ < C etc. and they follow from the assumptions here. The essen-
tial self-adjointness of A and B can be proved by [RS75, Thm. X.37]. An analogous
application of this theorem with norm estimates can be found in [BSM90].

By the commutator theorem, we get that J ( f ) is self-adjoint for f ∈ C∞(S1,R)

and that all bounded functions of J ( f ) commute with all bounded functions of J (g) for
f, g ∈ C∞(S1,R) with disjoint support.

Let I be a proper interval and let us define the von Neumann algebra

B(I ) = {eiJ ( f ) : supp f ⊂ I }′′.
The local net B(I ) restricted to B(I )�0 can be identified with the U(1)-current net A(0)

on HA(0) , in particular we can identify B(I )�0 ∼= HA(0) .

Proposition 3.6. Let I be a proper interval, then B(I ) ⊂ FerU(1)
C

(I ).
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Proof. We see that B(I ) commutes with FerC(I ′) = {c(g) : g ∈ L2(I ′)}′′ because,
for f, g with disjoint supports, c(g) commutes with J ( f ) on a core by Lemma 3.3
and therefore any spectral projection of c(g) commutes with J ( f ), and hence with any
bounded functions of J ( f ).

Further because J ( f ) commutes by construction with the gauge action V (t) and is
in particular even because V (π) = �, it follows that B(I ) lies in the twisted commutant
FerC(I ′)⊥. By twisted Haag duality it is B(I ) ⊂ FerC(I ′)⊥ = FerC(I ) and therefore
B(I ) = B(I )U(1) ⊂ FerU(1)

C
(I ). ��

Since the covariance has been seen, we have the following.

Corollary 3.7. B is a subnet of FerU(1)
C

.

Now the following is straightforward.

Proposition 3.8. The U(1)-fixed point subnet of the complex free fermion net FerC is
the U(1)-current net, i.e. FerU(1)

C
= B ∼= A(0).

Proof. Let us see B as a subnet of the fermi net FerU(1)
C

on H
FerU(1)

C

≡ H · ,0. Further

B(I )� does not depend on I by the same proof of the Reeh-Schlieder property and is
clearly a subspace of H

FerU(1)
C

≡ H · ,0.

In fact they coincide, since we have confirmed that trH
A(0) (e

−βL0) = trH· ,0(e
−βL0) =

p(t), where e−β = t , namely, their conformal characters coincide (see also Sect. 2.2). ��
We finish this section by giving the parametrization in x-picture, where the action of

the translation is more natural. With

f (x) = 1√
2π

√∣
∣
∣
∣
∂θ(x)

∂x

∣
∣
∣
∣e

iθ(x)/2 f0(θ(x))

we identify L2(R) = L2(R, dx) with L2(S1) = L2([0, 2π ], dθ/(2π)) and therefore
the space H1

FerC
is given by P L2(R)⊕ P⊥L2(R) with P : f̂ (p) �→ �(p) f̂ (p) and it

can be identified in “momentum space” with L2(R+, 2π d p)⊕ L2(R+, 2π dq) by

f (x) �−→ P̂ f (p)⊕ P̂⊥ f (−q) p, q > 0.

The field operators are defined for f ∈ L2(R) by ψ( f ) = aP ( f ) and ψ̄( f ) =
aP ( f )∗. For � ∈ HFerC

we write its components

�m,n ∈ Hm,n := L2(Rm+n
+ , (2π)m+n d p1 · · · d pm dq1 · · · qn)−, (1)

where − means the antisymmetrization within p1, . . . , pm and q1, . . . , qn . By this
notation (ψ( f )�0)1,0(p) = f̂ (p) and (ψ̄( f )�0)0,1(q) = f̂ (q). Further the bi-
field : ψ̄( f )ψ(g) : = ψ̄( f )ψ(g) − 〈�0, ψ̄( f )ψ(g)�0〉1 creates from the vacuum
�0 a fermionic 1+1 particle state � f,g := : ψ̄( f )ψ(g) :�0 with (� f,g)1,1(p, q) =
− f̂ (q)ĝ(p) and it follows for h ∈ C∞(R,R) that for the U(1)-current J , it holds
(J (h)�0)1,1(p, q) = − 1

2π ĥ(p + q) which is obtained by taking a limit
∑

n � fn ,gn with
test functions

∑
n fn(x)gn(y) → h(x)δ(x − y). We make the important observation

that the J ( f )�0 generate the one-particle space which we can identify with H1
A(0) and

this is obviously a proper subspace of the fermionic 1+1-particle space H
1,1
FerC

.
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4. A New Family of Longo-Witten Endomorphisms on U(1)-Current Net

We use the description of H1
FerC

= P L2(S1) + P⊥L2(S1) which equals L2(S1) as a
real Hilbert space and is described in the beginning of Sect. 3.2. First we decompose
H1

FerC
into irreducible representations of SU(1, 1) in a compatible way with K (I ). Let

us define

H� := { f ∈ H1
FerC

: z
1
2 f (z) is real},

H� := { f ∈ H1
FerC

: z
1
2 f (z) is pure imaginary}.

By their definition, it is clear that H� and H� are real Hilbert subspaces of L2(S1).
In fact, they are complex subspaces with respect to the new complex structure. To see
this, we take another description of H�: in terms of Fourier components, it holds that
f ∈ H� if and only if fn = f−n−1. Recall that, on L2(S1), the new scalar multiplication
by i is given by i · fn = −i fn , i · f−n−1 = i f−n−1 for n ≥ 0. Hence this condition is
preserved under the multiplication by i and H� is a complex subspace. An analogous
argument holds for H�. Next we see that H� and H� are orthogonal. Note that because
of the change of the complex structure, for f (z) = ∑n fnzn and h(z) = ∑n hnzn the
inner product is written as follows:

〈 f, h〉 =
∑

n≥0

fnhn +
∑

n<0

fnhn .

Now f ∈ H� implies fn = f−n−1 and h ∈ H� implies hn = −h−n−1 for non-negative
n, hence it is easy to see that

〈 f, h〉 =
∑

n≥0

fnhn +
∑

n<0

fnhn = −
∑

n≥0

f−n−1h−n−1 +
∑

n<0

fnhn = 0.

In other words, these two complex subspaces are mutually orthogonal.
Furthermore, H� and H� are invariant under the action of SU(1, 1). We recall that

the action is given by (Vg f )(z) = 1
−βz+α

f
(
αz−β
−βz+α

)
. Then if z

1
2 f (z) is real then it holds

that

z
1
2 (Vg f )(z) = 1

z̄
1
2 (−βz + α)

(
αz − β
−βz + α

)− 1
2 ·
(
αz − β
−βz + α

) 1
2

f

(
αz − β
−βz + α

)

= 1

(−β + αz̄)
1
2 (αz − β) 1

2

·
(
αz − β
−βz + α

) 1
2

f

(
αz − β
−βz + α

)

and both factors are real. Similarly one shows that H� is preserved under Vg . It is
obvious that these two representations are intertwined by the multiplication by i in
the old complex structure. This is still a unitary map, thus they are unitarily equiva-
lent. One can see that each representation is indeed irreducible, and when restricted to
PSU(1, 1) = PSL(2,R), it is the projective positive energy representation with lowest
weight 1

2 .
It is easy to see that e�n := {en + e−n+1, n ≥ 0} and e�n := {i(en + e−n+1), n ≥ 0} form

bases of H� and H�, respectively, where en(z) = zn and the multiplication by i is given
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in the old structure. Now we describe the gauge action in terms of this basis. By the defi-
nition, for a given complex number α with modulus 1, the action is given by the multipli-
cation in the old structure. Hence ifα = cos θ+i sin θ , we have Uαe�n = cos θe�n +sin θe�n
and Uαe�n = − sin θe�n + cos θe�n . This means that Uα acts as the real rotation by θ in
this basis.

Construction of endomorphisms. We construct Longo-Witten endomorphisms on the
free fermion net FerC commuting with the gauge action. The key is the following theo-
rem. We recall that a standard pair (H̃ , T̃ ) is a standard subspace H̃ ⊂ H̃ of a Hilbert
space H̃ and a positive energy representation T̃ of R on H̃, such that T̃ (a)H̃ ⊂ H̃ for
a ≥ 0. If T̃ is maximally abelian, the standard pair is said to be irreducible and there is
a (up to unitary equivalence) unique irreducible standard pair.

Theorem 4.1 ([LW11, Thm. 2.6]). Let (H̃ , T̃ ) be a standard pair with multiplicity n,
i.e. it decomposes into an n-fold direct sum of irreducible standard pairs, each uni-
tarily equivalent to the unique standard pair (H, T ) and T (t) = eit P . Then a unitary
Ṽ commuting with the translation T̃ preserves H̃ if and only if Ṽ is a n × n matrix
(Vhk) (with respect to the decomposition of H̃ into an n direct sum as above) such that
Vhk = ϕhk(P), where ϕhk : R → C are complex Borel functions such that (ϕhk) is a
unitary matrix for almost every p > 0, each ϕhk is the boundary value of a function in
H(S∞) and is symmetric, i.e. ϕhk(−p) = ϕhk(p).

Consider the one-particle space H1
FerC

for FerC. The pair of the standard space

K (R+) = L2(R+) defined in Sect. 3.2 (under the identification of S1 and R ∪ {∞})
and the natural translation has multiplicity 2. If we take a matrix-valued function (ϕhk)

as above and take the second quantization operator �(V ) of the (matrix-valued) opera-
tor (Vkh) = (ϕhk(P)), then it implements a Longo-Witten endomorphism of FerC (see
[LW11]).

As the gauge group acts by real rotation

(
cos θ − sin θ
sin θ cos θ

)

, any matrix-valued

function of p which commutes with them must have the form

(
a(p) ib(p)
−ib(p) a(p)

)

.

If each component is symmetric, then a is symmetric and b is antisymmetric. Such

a matrix-valued function can be diagonalized by the matrix

(
1 i
i 1

)

and becomes
(

a(p) + b(p) 0
0 a(p)− b(p)

)

. We claim that such a and b exist. Indeed, let ϕ be a

inner function (not necessarily symmetric), namely the boundary value with modu-
lus 1 of a bounded analytic function on the upper half-plane H, and define a(p) =
1
2 (ϕ(p)+ϕ(−p)), b(p) = 1

2 (ϕ(p)−ϕ(−p)). Then it is obvious that a is symmetric and
b is antisymmetric. In addition, a(p)+b(p) = ϕ(p) and a(p)−b(p) = ϕ(−p), hence the
diagonalized matrix is unitary for almost every p. By the theorem of Longo-Witten, the

operator ϕ(P1) :=
(

a(P) ib(P)
−ib(P) a(P)

)

preserves the real Hilbert space H̃ := K (R+),

where P1 is the generator of the translation in H1
FerC

which has multiplicity 2 and P is
the generator of T of the irreducible standard pair (H, T ).

It is easy to see that the above diagonalization is given exactly by the decomposition
H1

FerC
= P L2(S1)⊕ (1− P)L2(S1).
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We recall that H1
FerC

can be identified with L2(R) as a real space. In L2(R) the

function ϕ(P1) f is the function with Fourier transform ϕ(p) f̂ (p) and we remark that
it also follows directly from the Paley-Wiener theorem that ϕ(P1) leaves L2(R+) ⊂
L2(R) invariant for ϕ inner. Further using that the space HFerC

decomposes in HFerC
=

⊕
m,n∈N0

Hm,n like in (1) with the gauge action given by V (θ)�m,n = ei(m−n)θ�m,n ,
the action of the Longo-Witten unitary Vϕ = �(ϕ(P1)) is given by

(Vϕ�)m,n(p1, . . . , pm, q1, . . . , qn)

= ϕ(p1) · · ·ϕ(pm)ϕ(−q1) · · ·ϕ(−qn)�m,n(p1, . . . , pm, q1, . . . , qn).

Lemma 4.2. Let ι : � ∈ L2(R+, p d p) ≡ H1
A(0) ↪→ H1,1 ⊂ HFerC

be the embedding

given by ι(�)1,1(p, q) = − 1
2π �(p + q). A second quantization Longo-Witten unitary

Vϕ commuting with the gauge action V ( · ) satisfies VϕιH1
A(0) ⊂ ιH1

A(0) if and only if
Vϕ = V (θ)T (t) with t ≥ 0.

Proof. The translations commute with the gauge action and it follows immediately that
they leave H1

A(0) invariant. We note that ϕ(p)ϕ(−q)�(p + q) belongs to H1
A(0) only if

it can be written as a function of g(p + q). This means that ϕ(p)ϕ(−q) = ϕ̃(p + q) for
p, q ≥ 0, where ϕ̃ is another function. Then, putting q = 0 and p = 0 respectively, we
see that ϕ(p)ϕ(0) = ϕ̃(p) for p ≥ 0 and ϕ(0)ϕ(−q) = ϕ̃(q) for q ≥ 0, in particular
ϕ̃(0) = 1. Multiplying each side of these equations, one sees that ϕ̃(p + q) = ϕ̃(p)ϕ̃(q)
because |ϕ(0)| = 1. Then it follows that ϕ̃(p) = eiκp for some κ ≥ 0, and ϕ(p) =
ei(κp+θ) for some θ ∈ R (in fact, the arguments here should be treated with care because
the relation is given only almost everywhere, but both ϕ and ϕ̌ analytically continue and
in the domain of analyticity it holds everywhere).

Such a ϕ is a Longo-Witten unitary only for κ ≥ 0. The constant factor eiθ corre-
sponds to the factor V (θ). ��
Theorem 4.3. Let ϕ be an inner function as above. The endomorphism implemented by
the second quantization Vϕ of the operator constructed above restricts to the U(1)-cur-
rent subnet. The restriction cannot be implemented by any second quantization operator
if ϕ(p) "= ei(κp+θ).

Proof. The operator Vϕ restricts to the subnet A(0) by the general argument in Proposi-
tion 2.1. It cannot be implemented by a second quantization operator, since any second
quantization operator preserves the particle number, while Vϕ does not for non-expo-
nential ϕ as we saw above, and a Longo-Witten endomorphism is uniquely implemented
up to scalar (see Sect. 2.1). ��
Remark 4.4. By the construction in [LW11], each unitary V = Vϕ |H

A(0) related to an
inner function ϕ from above gives rise to a local, time-translation covariant net of von
Neumann algebras on the Minkowski half-space M+ = {(t, x) ∈ R

2 : x > 0}. This
net is associated with the U(1)-current net A(0) and defined by A(0)

V (O) = A(0)(I1)∨
V A(0)(I2)V ∗, where O = I1 × I2 = {(t, x) ∈ R

2 : t − x ∈ I1, t + x ∈ I2} is a double
cone with O ⊂ M+ corresponding uniquely to the two intervals I1 and I2 with disjoint
closures. In the case where ϕ is not exponential Vϕ does not come from second quanti-
zation—in contrast to the unitaries constructed by Longo and Witten in [LW11]—and
therefore gives new examples.
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5. Interacting Wedge-Local Net with Particle Production

5.1. Construction of scattering operators. In the previous section we saw that, in the

basis {en + e−n, en − e−n} the matrix operator

(
a(P) ib(P)
−ib(P) a(P)

)

implements a Lon-

go-Witten endomorphism if a is symmetric and b is antisymmetric, and after the simul-

taneous diagonalization it becomes

(
ϕ(P) 0

0 ϕ̌(P)

)

, where ϕ is an inner function and

ϕ̌(p) = ϕ(−p) (note that if ϕ extends to an analytic function ϕ(z) on H, then ϕ̌(z) =
ϕ(−z) also extends to H, hence ϕ̌ is again an inner function). By the same argument one

sees that

(
ϕ̌(P) 0

0 ϕ(P)

)

implements an endomorphism since ˇ̌ϕ = ϕ.

With respect to the basis after diagonalization, we split the Hilbert space H1
FerC

=:
H+ ⊕ H− and the generator of translation P1 =: P+ ⊕ P−. Then the tensor product
space can be written as follows:

H1
FerC

⊗H1
FerC

= (H+ ⊗H+)⊕ (H+ ⊗H−)⊕ (H− ⊗H+)⊕ (H− ⊗H−) .

According to this decomposition into a direct sum of four subspaces, we define an
operator

Mϕ := ϕ(P+ ⊗ P+)⊕ ϕ̌(P+ ⊗ P−)⊕ ϕ̌(P− ⊗ P+)⊕ ϕ(P− ⊗ P−).

Then this restricts to the subspace H1
FerC

⊗H+ = (H+ ⊕H−)⊗H+ and it is ϕ(P+ ⊗
P+)⊕ ϕ̌(P− ⊗ P+), or we can decompose it with respect to the spectral measure of P+:

∫

R+

(
ϕ(pP+) 0

0 ϕ̌(pP−)

)

⊗ dE+(p).

Similarly, the restriction to H1
FerC

⊗H− is written as

∫

R+

(
ϕ̌(pP+) 0

0 ϕ(pP−)

)

⊗ dE−(p).

Using the two-point set Z2 = {+,−} we define

ϕ+(p,+) := ϕ(p), ϕ+(p,−) = ϕ̌(p), ϕ−(p,+) = ϕ̌(p), ϕ−(p,−) = ϕ(p).

By defining the spectral measure E1 = E+ ⊕ E− on H1, Mϕ can be simply written as

Mϕ =
∫

R+×Z2

(
ϕ+(pP+, ι) 0

0 ϕ−(pP−, ι)

)

⊗ dE1(p, ι),

where ι = ±.
As in [Tan11a], we construct the scattering matrix first on the unsymmetrized Fock

space, then restrict it to the antisymmetric space. For an operator A on H1
FerC

⊗H1
FerC

, we

denote by Am,n
i, j on (H1

FerC
)⊗m⊗(H1

FerC
)⊗n the operator which acts only on the i th factor

in (H1
FerC

)⊗m and j th-th factor in (H1
FerC

)⊗n as A. As a convention, Am,n
i, j equals the iden-

tity operator if m or n is 0. Let us denote simply ϕ̃(p, ι) :=
(
ϕ+(p, ι) 0

0 ϕ−(p, ι)

)

and
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ϕ̃(P1, ι) :=
(
ϕ+(P+, ι) 0

0 ϕ−(P−, ι)

)

. From the observation above, it is straightforward

to see that

(Mϕ)
m,n
i, j =

∫ (

1⊗ · · · ⊗ ϕ̃(p j P1, ι j )

i-th
⊗ · · · ⊗ 1

)

⊗ dE1(p1, ι1)⊗ · · · ⊗ dE1(pn, ιn)

(the case where m or n is 0 is treated separately). Then we define, as in [Tan11a],

Sm,n
ϕ :=

∏

i, j

(Mϕ)
m,n
i, j ,

Sϕ :=
⊕

m,n

Sm,n
ϕ .

Let H�
FerC

be the unsymmetrized Fock space based on H1
FerC

. Note that Sϕ is defined

on H�
FerC

⊗ H�
FerC

, and it naturally restricts to HFerC
⊗ H�

FerC
, H�

FerC
⊗ HFerC

and
HFerC

⊗HFerC
. This Sϕ will be interpreted as the scattering matrix. In order to confirm

this, we have to take the spectral decomposition of Sϕ only with respect to the right or
left component. Namely,

Sϕ :=
⊕

m,n

∏

i, j

(Mϕ)
m,n
i, j

=
⊕

m,n

∏

i, j

∫ (

1⊗· · ·⊗ϕ̃(p j P1, ι j )

i-th
⊗· · ·⊗1

)

⊗ dE1(p1, ι1)⊗· · ·⊗ dE1(pn, ιn)

=
⊕

m,n

∫ ∏

i, j

(

1⊗· · ·⊗ϕ̃(p j P1, ι j )

i-th
⊗· · ·⊗1

)

⊗ dE1(p1, ι1)⊗· · · ⊗ dE1(pn, ιn)

=
⊕

n

∫ ⊕

m

∏

j

(
ϕ̃(p j P1, ι j )

)⊗m ⊗ dE1(p1, ι1)⊗ · · · ⊗ dE1(pn, ιn)

=
⊕

n

∫ ∏

j

⊕

m

(
ϕ̃(p j P1, ι j )

)⊗m ⊗ dE1(p1, ι1)⊗ · · · ⊗ dE1(pn, ιn)

=
⊕

n

∫ ∏

j

�(ϕ̃(p j P1, ι j ))⊗ dE1(p1, ι1)⊗ · · · ⊗ dE1(pn, ιn) ,

where the integral and the product commute in the third equality since the spectral
measure is disjoint for different values of p’s and ι’s, and the sum and the product com-
mute in the fifth equality since the operators in the integrand act on mutually disjoint
spaces, namely on (H1

FerC
)⊗m ⊗H�

FerC
for different m. In the final expression, all oper-

ators appearing in the integrand are the second quantization operators, thus this formula
naturally restricts to the partially antisymmetrized space HFerC

⊗H�
FerC

.
Now we define

• Mϕ := {x ⊗ 1,Ad Sϕ(1⊗ y) : x ∈ FerC(R−), y ∈ FerC(R+)}′′,
• T (t, x) := T0(

t−x√
2
)⊗ T0(

t+x√
2
),

• � := �0 ⊗�0.
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As the net FerC is fermionic by nature, the interpretation of the scattering theory of
[Buc75] is not clear. Nevertheless, we can show the following by an almost same proof
as in [Tan11a, Lem. 5.2, Thm. 5.3].

Lemma 5.1. The triple (Mϕ, T,�) is a Borchers triple.

Proof. To apply Proposition 2.2, it is immediate that Sϕ commutes with translation
since it is defined through the spectral measure as above. It preserves HFerC

⊗ �0 and
�0 ⊗ HFerC

pointwise, since these subspaces correspond to the case where m or n is
0 in the above decomposition and Sϕ acts as the identity operator by definition. What
remains to show is the commutation property.

As we saw above, the operator Sϕ can be written as

Sϕ =
⊕

n

∫ ∏

j

�(ϕ̃(p j P1, ι j ))⊗ dE1(p1, ι1)⊗ · · · ⊗ dE1(pn, ιn).

The point is that the operators which appear in the integrand implement Longo-Witten
endomorphisms as we saw above since p j ≥ 0 in the support of the integration.

Let x ′ ∈ FerC(R+) and consider x ′ ⊗ 1 as an operator on HFerC
⊗H�

FerC
. We have

Ad Sϕ(x
′ ⊗ 1) =

⊕

n

∫

Ad

⎛

⎝
∏

j

�(ϕ̃(p j P1, ι j ))

⎞

⎠ (x ′)⊗ dE1(p1, ι1)

⊗ · · · ⊗ dE1(pn, ιn).

Although this formula is not closed on HFerC
⊗ HFerC

, the left hand side obviously
restricts there. One sees that the integrand remains in FerC(R+).

Recall the operator Z0 which gives the graded locality of FerC. One has to remind
that Z0 = 1−i�0

1−i where�0 = �(−1), hence Z0 commutes with any second quantization
operator. Then by the disintegration above (and the corresponding disintegration with
respect to the left component), it is easy to see that Z0 ⊗ 1 commutes with Sϕ .

Let us check the commutation property of the assumptions in Proposition 2.2. Note
that Ad Z0(x)⊗ 1 and Ad Z0(x) ∈ FerC(R+)

′ for x ∈ FerC(R−). Since Z0 ⊗ 1 and Sϕ
commute as we saw above, to prove the first commutation relation, it is enough to show
that [Ad Z0(x)⊗1,Ad Sϕ(x ′ ⊗1)] = 0 for x ∈ FerC(R−) and x ′ ∈ FerC(R+). As oper-
ators acting on HFerC

⊗H�
FerC

, this is done by the above disintegration of Ad Sϕ(x ′ ⊗1).
Then both operators naturally restrict to HFerC

⊗ HFerC
, and we obtain the claim (cf.

[Tan11a, Lem. 5.2, Thm. 5.3]). The second commutation relation for Proposition 2.2
can be proven analogously. ��

Finally we arrive at a new family of interacting Borchers triples with asymptotic
algebra A(0) ⊗A(0).

Theorem 5.2. Let us define

• Nϕ := {x ⊗ 1,Ad Sϕ(1⊗ y) : x ∈ FerU(1)
C

(R−), y ∈ FerU(1)
C

(R+)}′′,
• T (t, x) := T0(

t−x√
2
)⊗ T0(

t+x√
2
),

• � := �0 ⊗�0.

Then the triple (Nϕ, T,�), restricted to Nϕ�, is an asymptotically complete, interact-
ing Borchers triple with the asymptotic algebra A(0) ⊗ A(0) and scattering operator
Sϕ |Nϕ�

. It also holds that Nϕ� = A(0)(I+)⊗A(0)(I−)� for arbitrary intervals I+, I−.
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Proof. Substantial arguments are already done: In Lemma 5.1 we constructed Borchers
triples with FerC⊗ FerC as the asymptotic algebra. We have seen in Sect. 3.3 the U(1)-
current net A(0) is the fixed point subnet of FerC with respect to the action of U(1).
From the construction in Sect. 5.1 and Theorem 4.3, it is easy to see that Sϕ commutes
with the product action of the inner symmetries. Then all the statements of the theorem
follow from the general consideration of Proposition 2.5. ��

5.2. Action of the S-matrix on the 1+1 particle space. In this Section we want to ana-
lyze the action of the S-matrix of the models constructed in Sect. 5.1 on the 1+1 particle
space H1

A(0) ⊗H1
A(0) , i.e. one left and one right moving particle, where we use the word

particle in the sense of Fock space excitations. We note that on the n+0 and 0+n particle
spaces Hn ⊗ C�0 and C�0 ⊗Hn , respectively, the S-matrix S acts trivially. A typical
vector in H1

A(0)⊗H1
A(0) is of the form� := J ( f )�0⊗ J (g)�0 which we express as the

function �(p, p̄) = f̂ (p)ĝ( p̄). The embedding ι : L2(R+, p d p) ⊗ L2(R+, p̄ d p̄) ∼=
H1

A(0) ⊗H1
A(0) ↪→ H1,1⊗H1,1 ⊂ HFerC ⊗HFerC is given by ι(�)1,1;1,1(p, q, p̄, q̄) =

1
(2π)2

�(p + q, p̄ + q̄). We have an analogue of Lemma 4.2.

Proposition 5.3. Let ϕ be some inner function. The unitary Sϕ satisfies Sϕ(H1
A(0) ⊗

H1
A(0) ) ⊂ H1

A(0) ⊗H1
A(0) if and only if ϕ(p) = ei(kp+θ).

Proof. The action of Sϕ on � ∈ H1 ⊗H1 is given by

Sϕ�(p + q, p̄ + q̄) = ϕ(p · p̄)ϕ̌(q · p̄)ϕ̌(p · q̄)ϕ(q · q̄)�(p + q, p̄ + q̄),

which is again in H1
A(0) ⊗H1

A(0) if it can be written as a function �̃(p + q, p̄ + q̄), in
particular if ϕ(p · p̄)ϕ̌(q · p̄)ϕ̌(p · q̄)ϕ(q · q̄) = ϕ̃(p + q, p̄ + q̄). Setting p̄ = 1 and
q̄ = 0, we have ϕ(p)ϕ̌(q) = ϕ̃(p + q, 1). The rest follows as Lemma 4.2. ��
Remark 5.4. In the case ϕ(p) = eiκp, one gets the models obtained in [DT11] using
warped convolution.

Proposition 5.5. Let e be the projection on H1
A(0) ⊗ H1

A(0) , then eSϕe = ϕ̃(P ⊗ P),
where ϕ̃ is boundary value of an analytic function in H with |ϕ̃(p)| ≤ 1 and P is the
generator of translation restricted to the one-particle space (which gives rise to the
irreducible standard pair).

Proof. It can be checked that

(e0 f )(p, q) = 1

p + q

∫ p+q

0
f (p + q − x, x) dx

is the projection on H1
A(0) ⊂ H1,1. Then the action of eSϕ on a f ∈ H1

A(0) ⊗H1
A(0) can

be calculated to be ϕ′(P ⊗ 1, 1⊗ P) with

ϕ′(p, q)= 1

p · q

∫ p

0

∫ q

0
ϕ((p−x) · (q−y))ϕ(x · y)ϕ̌((p−x) · y)ϕ̌(x · (q−y)) dy dx,

and it is easy to check that with ϕ̃(p) := ϕ′(p, 1), it holds that ϕ′(p, q) = ϕ̃(p · q) for
all p, q > 0. That |ϕ̃(p)| ≤ 1 can be checked directly or follows from the fact that Sϕ
is unitary. ��
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Remark 5.6. It is a general feature of asymptotically complete Borchers triples with
asymptotic algebra A(0) ⊗A(0) that the restriction of the scattering matrix S to eSe is a
functional calculus of P ⊗ P . Indeed, both e and S commute with the translation T , but
T is maximally abelian when restricted to H1

A(0) ⊗H1
A(0) , hence there is a function ϕS

such that eSe = ϕS(P ⊗ 1,1⊗ P). Furthermore, both e and S commute with boosts,
so does ϕS and one obtains the form eSe = ϕ′S(P ⊗ P).

We note that the proof above shows that |ϕ̃(M2/2)| is the probability that an improper
state in H1

A(0) ⊗H1
A(0) with mass M2 is scattered elastically in the sense of Fock space

particles, where

ϕ̃(p) = 1

p

∫ p

0

∫ 1

0
ϕ((p − x)(1− y))ϕ(xy)ϕ̌((p − x)y)ϕ̌(x(1− y)) dy dx .

As we discussed in 3.1, the Hilbert space of the U(1)-current net, and hence the
tensor product of two copies of it, admit the bosonic Fock space structure, hence we
can consider the particle number. Although we admit that this concept does not have an
intrinsic meaning, we claim that it is possible to interpret this as the number of massless
particles.

An evidence comes from the comparison with massive cases. In [Lec08] Lechner has
constructed a family of massive interacting models parametrized by so-called scattering
functions, and later he reinterpreted them as deformations of the massive free field
[Lec11]. If one applies the same deformation procedure to the derivative of the massless
free field whose net is A(0) ⊗ A(0) (with scattering functions satisfying S2(0) = 1),
he obtains the Borchers triples with A(0) ⊗ A(0) as the asymptotic net constructed in
[Tan11a].1 Hence the models in [Tan11a] should be considered as the massless versions
of the models in [Lec08]. Likewise, it can be said that the models constructed in the
present paper are the deformed (in an appropriate sense) version of the massless free
field.

In massive case, there is a mass gap in the spectrum of the spacetime translation and
the one-particle space of the Fock space has an intrinsic meaning. In massless case, such
an intrinsic interpretation is lost but there is still the Fock space structure. Thus we think
that, if the two-particle space in the Fock structure is not preserved by the S-matrix, as
in the case where ϕ is not exponential (see Proposition 5.3), then it represents massless
particle production.

6. Conclusion and Outlook

In this paper we have constructed a new family of Longo-Witten endomorphisms on
A(0) through the inclusion A(0) = FerU(1)

C
⊂ FerC. We combined them to construct

interacting wedge-local nets with A(0)⊗A(0) as the asymptotic algebra and showed that
their S-matrices do not preserve the n-particle space of the bosonic Fock space. Particle
production is a necessary feature of interacting models in higher dimensions [Aks65],
thus this result opens up some hope for algebraic construction of higher dimensional
interacting models.

However, there are at least two shortcomings with the present method. The first is that
we proved only wedge-locality of the models. As already shown in [Tan11a], a wedge-
local net can be dilation-covariant and at the same time interacting. On the other hand, a

1 Private communication with Gandalf Lechner and Jan Schlemmer. This will be presented elsewhere.
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strictly local dilation-covariant (asymptotically complete) net is necessarily not interact-
ing [Tan11b]. Hence, interaction of wedge-local nets could be just a false-positive and
strict locality is desired. The second is the fact that the concept of particle in massless
case is not intrinsically defined. Although the Fock space structure is easily understood,
its interpretations should be treated with care.

These issues could be overcome by considering massive cases. As for strict locality,
it has been shown that the deformation of the massive free field by a suitably regular
function is again strictly local [Lec08,Lec11]. On the other hand, in massless situation,
even the simplest case ϕ(p) = −1 (where ϕ is an inner symmetric function used in
[Tan11a] to deform directly A(0) ⊗ A(0)) is already not strictly local [Tan11a]. Hence
we believe that strict locality should be addressed in massive models. Furthermore, for
a massive asymptotically complete model, the notion of particle production is intrinsic.
Fortunately, it is known that the construction in [Tan11a] coincides with the deformation
of the massive free field as we remarked in the last section, hence a further correspon-
dence between massive and massless cases are expected. We hope to investigate this
problem in a future publication.

Of course, interacting models in higher dimensions are always one of the most impor-
tant issues. Although conformal nets themselves are not interacting [BF77], some new
constructions based on CFT could be possible and ideas from the present article could
be useful.

Acknowledgements. We thank our supervisor Roberto Longo for his constant support and useful sugges-
tions. Y. T. thanks Gandalf Lechner and Jan Schlemmer for discussions on the relation between the present
construction and the deformation of [Lec11].
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