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Abstract: We classify all unitary modular tensor categories (UMTCs) of rank ≤ 4.
There are a total of 35 UMTCs of rank ≤ 4 up to ribbon tensor equivalence. Since the
distinction between the modular S-matrix S and −S has both topological and physical
significance, so in our convention there are a total of 70 UMTCs of rank ≤ 4. In particu-
lar, there are two trivial UMTCs with S = (±1). Each such UMTC can be obtained from
10 non-trivial prime UMTCs by direct product, and some symmetry operations. Explicit
data of the 10 non-trivial prime UMTCs are given in Sect. 5. Relevance of UMTCs to
topological quantum computation and various conjectures are given in Sect. 6.

1. Introduction

A modular tensor category (MTC) in the sense of V. Turaev determines uniquely a
(2+1)-topological quantum field theory (TQFT) [Tu] (a seemingly different definition
appeared in [MS1].) The classification of MTCs is motivated by the application of
MTCs to topological quantum computing [F,Ki1,FKW,FLW1,FKLW,P], and by the
use of MTCs in developing a physical theory of topological phases of matter [Wil,MR,
FNTW,Ki2,Wa,LWe,DFNSS]. G. Moore and N. Seiberg articulated the viewpoint that
rational conformal field theory (RCFT) should be treated as a generalization of group
theory [MS2]. The algebraic content of both RCFTs and TQFTs is encoded by MTCs.
Although two seemingly different definitions of MTCs were used in the two contexts
[MS1,Tu], the two notions are essentially equivalent: an MTC in [MS1] consists of
essentially the basic data of a TQFT in [Wal]. The theory of MTCs encompasses the
most salient feature of quantum mechanics in the tensor product: superposition. There-
fore, even without any applications in mind, the classification of MTCs could be pursued
as a quantum generalization of the classification of finite groups.

� The first author is partially supported by NSA grant H98230-08-1-0020.
�� The second and third authors are partially supported by NSF FRG grant DMS-034772.
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There are two natural ways to organize MTCs: one by fixing a pair (G, λ), where G
is a compact Lie group, and λ a cohomology class ∈ H4(BG; Z); and the other by fixing
the rank of an MTC, i.e. the number of isomorphism classes of simple objects. If a conjec-
ture of E. Witten were true, then every MTC would come from a Chern-Simons-Witten
(CSW) TQFT labelled by a pair (G, λ) [Witt,MS1,HRW]. Classification by fixing a
compact Lie group G has been carried out successfully for G=finite groups [DW,FQ],
G = T n torus [Ma,BM], and G = A, B,C, D simple Lie groups [FK,KW,TW]. In this
paper, we will pursue the classification by fixing the rank. This approach is inspired by
the study of topological phases of matter and topological quantum computing. Another
reason is that we have evidence that there might be exotic (2+1)-TQFTs other than CSW
theories [HRW].

Topological phases of matter are like artificial elements. The only known topolog-
ical phases of matter are fractional quantum Hall liquids: electron systems confined
on a disk immersed in a strong perpendicular magnetic field at extremely low tem-
peratures [Wil,DFNSS]. Electrons in the disk, pictured classically as orbiting inside
concentric annuli around the origin, organize themselves into some topological order
[Wen,WW1,WW2]. Therefore, the classification of topological phases of matter resem-
bles the periodic table of elements. The periodic table does not go on forever, and simpler
elements are easier to find. The topological quantum computing project is to find MTCs
in Nature, in particular those with non-abelian anyons. Therefore, it is important that
we know the simplest MTCs in a certain sense because the chance for their existence is
better.

There is a hierarchy of structures on a tensor category: rigidity, pivotality, sphericity.
We will always assume that our category is a fusion category: a rigid, semi-simple,
C-linear monoidal category with finitely many isomorphism classes of simple objects,
and the trivial object is simple. It has been conjectured that every fusion category has a
pivotal structure [ENO]. Actually, it might be true that every fusion category is spheri-
cal. Another important structure on a tensor category is braiding. A tensor category with
compatible pivotal and braiding structures is called ribbon. In our case a ribbon category
is always pre-modular since we assume it is a fusion category. For each structure, we
may study the classification problem. The classification of fusion categories by fixing
the rank has been pursued in [O1,O2]. Since an MTC has considerably more structures
than a fusion category, the classification is potentially easier, and we will see that this
is indeed the case in Sects. 3 and 4. The advantage in the MTC classification is that
we can work with the modular S matrix and T matrix to determine the possible fusion
rules without first solving the pentagon and hexagon equations. For the classification of
MTCs of a given rank, we could start with the infinitely many possible fusion rules, and
then try to rule out most of the fusion rules by showing the pentagon equations have no
solutions. However, pentagon equations are notoriously hard to solve, and we have no
theories to practically determine when a solution exists for a particular set of fusion rules
(Tarski’s theorem on the decidability of the first-order theory of real numbers provides a
logical solution). So being able to determine all possible fusion rules without solving the
pentagon equations greatly simplifies the classification for MTCs. As shown in [HH],
all structures on an MTC can be formulated as polynomial equations over Z. Hence
the classification of MTC is the same as counting points on certain algebraic varieties
up to equivalence. But all the data of an MTC can be presented over a certain finite
degree Galois extension of Q, probably over an abelian Galois extension of Q if nor-
malized appropriately. Therefore, the classification problem is closer to number theory
than to algebraic geometry. The argument in Sects. 3 and 4 is basically Galois theory
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plus elementary yet complicated number theory. To complete the classification, we need
to solve the pentagons and hexagons given the fusion rules. A significant complication
comes from the choices of bases of the Hom spaces when solving the pentagon equa-
tions. The choices of basis make the normalization of 6 j symbols into an art: so far no
computer programs are available to solve pentagons with a fusion coefficient > 1, but
one set of such fusion rules is solved completely [HH]. Currently, there are no theories
to count the number of solutions of pentagon equations for a given set of fusion rules
without solving the pentagons. For unitary MTCs, there is tension between two desirable
normalizations for 6 j symbols: to make the F matrix unitary, or to present all data of the
theory in an abelian Galois extension of Q. For the Fibonacci theory, unitarity of the F
matrix and abelianess of the Galois extension of Q cannot be achieved simultaneously,
but with different F matrices, each can be obtained separately [FW]. This is the reason
that we will only define the Galois group of a modular fusion rule and a modular data,
but not the Galois group of an MTC.

The main result of this paper is the classification of MTCs with rank=2, 3 and unitary
MTCs of rank=4. The authors had obtained the classification of all unitary MTCs of rank
≤ 4 in 2004 [Wa]. The delay is related to the open finiteness conjecture: There are only
finitely many equivalence classes of MTCs for any given rank. By Ocneanu rigidity the
conjecture is equivalent to: There are only finitely many sets of fusion rules for MTCs of
a given rank. Our classification of MTCs of rank ≤ 4 supports the conjecture. We also
listed all quantum group MTCs up to rank ≤ 12 in Sect. 5. Two well-known constructs
of MTCs are the quantum group method, and the quantum double of spherical tensor
categories or the Drinfeld center. The quantum double is natural for MTCs from subfac-
tor theory using Ocneanu’s asymptotic inclusions [EK]. It seems that this method might
produce exotic MTCs in the sense of [HRW].

Our main technique is Galois theory. Galois theory was introduced into the study
of RCFT by J. de Boer and J. Goeree [dBG], who considered the Galois extension
K of Q by adjoining all the eigenvalues of the fusion matrices. They made the deep
observation that the Galois group of the extension K over Q is always abelian. This
result was extended by A. Coste and T. Gannon who used their extension to study the
classification of RCFTs [CG]. Fusion rules of an MTC are determined by the modular
S-matrix through Verlinde formulas. It follows that the Galois extension K is the same as
adjoining to Q all entries of the modular S̃ matrix. When a Galois group element applies
to the S̃ matrix entry-wise, this action is a multiplication of S̃ by a signed permutation
matrix, which first appeared in [CG]. It follows that the entries of the S̃ matrix are the
same up to signs if they are in the same orbit of a Galois group element. For a given rank
≤ 4, this allows us to determine all possible S̃-matrices, therefore, all possible fusion
rules.

Note that the Galois group of a modular data does not change the fusion matrices,
but it can change a unitary theory into a non-unitary theory. For example, the Galois
conjugate of the Fibonacci theory is the Yang-Lee theory, which is non-unitary. We
might expect that for each modular data, one of its Galois conjugates would be realized
by a unitary MTC. This is actually false. For example, take a rank=2 modular data with

S̃ =
(

1 −1
−1 −1

)
, and T =

(
1 0
0 i

)
. No Galois actions can change the S̃ matrix, hence

the quantum dimension of the non-trivial simple object from −1 to 1, though the same
fusion rules can be realized by a unitary theory: the semion theory. Reference [Ro1] con-
tains a set of fusion rules which has non-unitary MTC realizations, but has no unitary
realizations at all.
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Table 1. Unitary MTCs of rank≤ 4

A 2

1

A 4 N 4

Z2 (A1, 3) 1
2

U

A 4 N 16 N 4

Z3 (A1, 2) (A1, 5) 1
2

U

A 10 A 8 N 8 N 4 N 6

Z2 × Z2 Z4 (A1, 3) (A1, 7) 1
2

Fib × Fib

U U U

The paper is organized as follows. In Sect. 2, we study the implications of the Verl-
inde formulas using Galois theory. In Sects. 3 and 4, we determine all self-dual modular
S̃ matrices of modular symbols of rank=2, 3, and unitary ones for rank=4. Rank=2 is
known to experts, and rank=3 fusion rules have been previously classified [CP]. For
modular data, Theorems 3.1 and 3.2 can also be deduced from [O1,O2]. In Sect. 5, we
determine all UMTCs of rank ≤ 4. In Sect. 6, we discuss some open questions about
the structure and application of MTCs. In the Appendix, together with S. Belinschi, we
determine all non-self dual unitary modular data of rank ≤ 4.

We summarize the classification of all rank ≤ 4 unitary MTCs into Table 1. There
are a total of 70 unitary MTCs of rank ≤ 4 (a total of 35 up to ribbon tensor equiv-
alence). The count is done in Sect. 5.4. Each such UMTC can be obtained from 10
non-trivial prime UMTCs by direct product, and some symmetry operations. The 10
non-trivial prime UMTCs are the semion MTC, the Fibonacci MTC or (A1, 3) 1

2
, the

Z3 MTC, the Ising MTC, the (A1, 2) MTC, the even half of an SU (2) MTC at level
5 or (A1, 5) 1

2
, the Z4 MTC, the toric code MTC, the (D4, 1) MTC, and the even half

of an SU (2) MTC at level 7 or (A1, 7) 1
2
. Their explicit data are listed in Sect. 5.3. Out

of the 10 non-trivial prime UMTCs, 9 are quantum group categories for a simple Lie
group: the semion=SU (2)1, the Fibonacci=(G2)1, the Z3=SU (3)1, the Ising=complex
conjugate of (E8)2, the (A1, 2)=SU (2)2, the Z4 = SU (4)1, the toric code= Spin(16)1,
the (D4, 1) = Spin(8)1, and the (A1, 7) 1

2
=complex conjugate of (G2)2. The Ising MTC

and the SU (2)2 MTC have the same fusion rules, but the Frobenius-Schur indicators of
the non-abelian anyon σ are +1,−1, respectively. The toric code MTC and the Spin(8)1
MTC have the same fusion rules, but the twists are {1, 1, 1,−1}, and {1,−1,−1,−1},
respectively. We choose q = e

π i
� in the quantum group construction. In the Ising case,

it is the q = e− π i
� theory for E8 at level=2. For notation and more details, see Sect. 5.3.

We do not know how to construct (A1, 5) 1
2

by cosets of quantum group categories.
The information for each rank is contained in one row of Table 1. Each box contains

information of the MTCs with the same fusion rules. The center entry in a box denotes
the realization of the fusion by a quantum group category or their products. We also use
Fib to denote the Fibonacci category (A1, 3) 1

2
. The upper left corner has either A or

N , where A means that all anyons are abelian, and N that at least one type of anyons is
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non-abelian. The right upper corner has a number which is the number of different uni-
tary theories with that fusion rule. If the lower right corner has a U , it means that at least
one type of anyons has universal braiding statistics for topological quantum computa-
tion. The detailed information about which anyon is abelian or non-abelian, universal or
non-universal is given in Sect. 6.3. It is worth noticing that the list of all fusion rules up
to rank=4 agrees with the computer search for RCFTs in [GK]. We believe this continues
to be true for rank=5. The rank= 6 list in [GK] is not complete.

Finally, we comment on the physical realization of UMTCs. The existence of abelian
anyons in ν = 1

3 FQH liquids is established theoretically with experimental support,
while non-abelian anyons are believed to exist at the ν = 5

2 and ν = 12
5 plateaus (see

[DFNSS] and the references therein). Current experimental effort is focused on FQH
liquids at ν = 5

2 . But the fermionic nature of electrons complicates direct application
of MTCs to FQH liquids because only anyonic properties of bosonic systems can be
described fully by MTCs. In other words, we need a refined theory, e.g. a spin MTC, to
describe a fermionic system [DW,BM].

2. Galois Theory of Fusion Rules

In this section, we study the implication of Verlinde formulas for fusion rules of MTCs.
For more related discussion, see the beautiful survey [G].

Definition 2.1. (1) A rank=n label set is a finite set L of n elements with a distinguished
element, denoted by 0, and an involution ˆ : L → L such that 0̂ = 0. A label i ∈ L
is self dual if î = i .
The charge conjugation matrix is the n × n matrix C = (δi ĵ ). Note that C is

symmetric and C2 = In, the n × n identity matrix.
(2) A rank=n modular fusion rule is a pair (N ; S̃), where N is a set of n n × n matri-

ces Ni = (nk
i, j )0≤ j,k≤n−1, indexed by a rank=n label set L, with nk

i, j ∈ Q , and

S̃ = (s̃i j )0≤i, j≤n−1 is an n × n matrix satisfying the following:
(a) s̃00 = 1, s̃i, ĵ = s̃i, j , and all s̃i,0’s are non-zero;

(b) If we let D =
√∑n−1

i=0 s̃2
i,0, then S = S̃

D is a symmetric, unitary matrix.

Furthermore, the matrices Ni in N and S̃ are related by the following:

Ni S̃ = S̃�i (2.1)

for all i ∈ L, where �i = (δabλia)n×n is diagonal, and λia = s̃ia
s̃0a

.
The identities (2.1) or equivalently the Verlinde formulas (2.3) below imply many

symmetries among nk
i, j : nk

0, j = δ jk, nk
i, j = nk

j,i = nk̂
î, ĵ

= n ĵ

i,k̂
.

The matrix Ni will be called the i th fusion matrix. From identities (2.1), the diagonal
entries in �i are the eigenvalues of Ni , and the columns of S̃ are the correspond-
ing eigenvectors. The non-zero number D will be called the total quantum order,
di = s̃i0 the quantum dimension of the i th label, and D2 = ∑n−1

i=0 d2
i the global

quantum dimension.
(3) A rank=n modular symbol consists of a triple (N ; S, T ). The pair (N ; S

s00
) is a

rank=n modular fusion rule with all nk
i, j ∈ N = {0, 1, 2, · · · } (here s00 is the (0,0)-

entry of the unitary matrix S = (si j )0≤i, j≤n−1), and the n×n matrix T = (δabθa)n×n
is diagonal, and θ0 = 1. Furthermore, S and T satisfy
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(i) (ST )3 = (D+s00)S2;
(ii) S2 = C;

(iii) θi ∈ U(1) and θî = θi for each i ,

where D± = ∑n−1
i=0 θ

±1
i d2

i . The following identity can be deduced:

D+ D− = D2. (2.2)

The complex number θi will be called the twist of the i th label. Note that s00 might
be − 1

D . A modular symbol is called unitary if each quantum dimension di is the
Frobenius-Perron eigenvalue of the corresponding fusion matrix Ni . In particular,
the quantum dimensions di ’s are positive real numbers ≥ 1.

(4) A modular symbol (N ; S, T ) is called a modular data if there is an MTC whose
fusion rules, modular S̃-matrix, and T -matrix are given by N , S

s00
, T of the modular

symbol.
(5) Let� = {λi j }i, j∈L for a rank=n modular fusion rule, and let K = Q(λi j ), i, j ∈ L

be the Galois extension of Q. Then the Galois group G of the Galois field K over
Q is called the Galois group of the modular fusion rule.

We are interested in searching for n + 2 tuples (N0, . . . , Nn−1; S̃, T ) related in the
correct fashion. We will index the rows and columns of matrices by 0, 1, . . . , n − 1.
Since Ni S̃ = S̃�i , the columns of S̃ must be eigenvectors of Ni with eigenvalues λi,0,
λi,1, . . ., and λi,n−1, respectively. Looking at the first entries of these columns and of
Ni S̃, and using the only non-zero 1 of the first row of Ni , we see that λi,0 = di , and
d jλi, j = s̃i, j . It follows that K is the same as Q(s̃i j ), i, j ∈ L. Since S̃ is symmetric,
we see that for i �= j we have d jλi, j = diλ j,i , and s̃i, j = diλ j,i = d jλi, j for all i and
j . Let nk

i, j denote the ( j, k) entry of Ni . Since

Ni = 1

D2 S̃

⎛
⎜⎝
λi,0 0 · · · 0
0 λi,1 · · · 0

· · · · · · · · · · · ·
0 0 · · · λi,n−1

⎞
⎟⎠ S̃†,

we compute for 0 ≤ j, k ≤ n − 1,

nk
i, j =

n−1∑
m=0

s̃i,ms̃ j,ms̃k,m

dm
D−2 =

n−1∑
m=0

λi,mλ j,mλk,m
d2

m

D2 . (2.3)

The fusion matrices can also be described equivalently by fusion algebras. For a
rank=n fusion rule, each label i is associated with a variable Xi . Then the fusion ring
R is the free abelian ring Z[X0, . . . , Xn−1] generated by Xi ’s modulo relations (called
fusion rules) Xi X j = ∑n−1

i=0 nk
i, j Xk . The fusion algebra will be F = R ⊗Z K , where

K is the Galois field of the fusion rules above. We may replace K by C. If the modular
fusion rule is realized by an MTC, then Xi is an equivalence class of simple objects, and
the multiplication Xi X j is just the tensor product.

There are modular symbols that are not modular data.

Example 2.2. Take the following:

S = 1

2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠ ,
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and T = Diag(1, θ,−1). The fusion matrices Ni are determined by the formulas (2.3),
hence are independent of θ . They are the same as those of the Ising MTC in Sect. 5.3.
Therefore, for any θ ∈ U(1), we get a modular symbol. But only when θ is a 16th root
of unity, do we have modular data.

Very likely the modular symbol of an MTC determines the MTC , and we do not
know when a modular symbol becomes a modular data.

Proposition 2.3. If (N ; S, T ) is a modular data, then we have:

(1) θiθ j si j = ∑
k nk

î j
sk0θk .

(2)
∏

j θ
Ai j
j = θ

4
3

∑
j Ai j

i ,

where Ai j = 2n j

i î
ni

i j + n j
ii n

i
j î

.

(3) Let νk = 1
D2

∑
i, j∈L ni

k, j di d j
θ2

i
θ2

j
, then νk is 0 if k �= k̂, and is ±1 if k = k̂. νk is

called the Frobenius-Schur indicator of k.

(4) D+s00 = e
π ic

4 for some c ∈ Q. The rational number c mod 8 is called the topological
central charge of the modular data.

Proof. For (1), see [BK, Eq. (3.1.2)] on p. 47. For (2), it is [BK, Theorem 3.1.19] found
on p. 57. Formula (3) from [Ba] for RCFTs can be generalized to MTCs. (4) follows
from Theorem 2.5. �	

Proposition 2.3 (2) implies that the θi are actually roots of unity of finite order, which
is often referred to as Vafa’s Theorem. But from Example 2.2, we know that this is not
true for general modular symbols, in particular Q(θi )might not be algebraic for modular
symbols. This leads to:

Definition 2.4. Given a modular data (N ; S, T ), let KN be the Galois field Q(s̃i j ,

D, θi ), i, j ∈ L. Then the Galois group of KN over Q will be called the Galois group
of the modular data.

Theorem 2.5. (1) (de Boer-Goeree theorem): The Galois group of a modular fusion
rule is abelian.

(2) The Galois group of a modular data is abelian.

By the Kronecker-Weber theorem, there is an integer m such that KN ⊂ Q(ζm),

where ζm = e
2π i
m . The smallest such m for KN is called the conductor of KN , and the

order of T always divides N (we intentionally build N into the notation KN ). The Galois
group of Q(ζN ) is the cyclic group of units l such that gcd(l, N ) = 1. Each l acts on
KN as the Frobenius map σl : ζN → ζ l

N . Consequently, σl(T ) = T l and σl(S) = S P̃σ ,
where the signed permutation matrix P̃σ corresponds to the Galois element σ in the
Galois group of the modular fusion rule.

It is known that the fusion algebra of a rank=n MTC is isomorphic to the function
algebra of n points. A Galois group element σ of the associated modular fusion rule
induces an isomorphism of the fusion algebra. It follows that σ determines a permuta-
tion of the label set. When we have only a modular fusion rule, the two algebra structures
on the fusion algebra a priori might not be isomorphic to each other. But still a Galois
group element of the modular fusion determines a permutation of the label set and the
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de Boer-Goeree theorem holds. Actually what we are using in this paper are identi-
ties among modular S̃ entries up to some parity signs εi,σ = ±1 associated to each
Galois element σ . Such parity signs first appeared in [CG] for Galois automorphisms of
Q(λi, j , D).

First we note the following easy, but very useful fact that the ordered set of eigenvalues
of Ni determines the label i uniquely.

Proposition 2.6. There do not exist indices j �= k such that λi, j = λi,k for all i for any
modular fusion rule (N ; S̃).

Proof. If there were such indices, then the dot product of rows j and k of S̃ would be
D2 = ∑n−1

i=0 |s̃i, j |2 > 0, a contradiction. �	
Except (5), the following theorem is contained in [CG].

Theorem 2.7. Let G be the Galois group of a rank=n modular fusion rule (N ; S̃). Then

(1) the simultaneous action of the Galois group G on the set� = {λi j } gives an injec-
tive group homomorphism ι : G → Sn, where Sn is the permutation group of n
letters; for σ ∈ G, ι(σ )(i) is the associated element in Sn.

(2) For any σ ∈ G, the matrix P̃σ = dσ(0) S̃−1σ(S̃) is a signed permutation matrix;
furthermore, the map σ → P̃σ gives a group homomorphism from G to the signed
permutation matrices modulo ±1 which lifts ι.

(3) For each σ ∈ G, there are εi,σ = ±1 such that

σ(s̃ j,k) = 1

dσ(0)
εσ(k),σ s̃ j,σ (k). (2.4)

Moreover,

s̃ j,k = εσ( j),σ εk,σ s̃σ( j),σ−1(k), (2.5)

and

εσ−1(k),σ−1 = εσ(0),σ ε0,σ εk,σ . (2.6)

(4) The Galois group G is abelian.
(5) If n is even, then

∏n−1
i=0 εi,σ = (−1)σ . If n is odd, then D ∈ K , and σ(D) = εσ · D

dσ(0)
,

where εσ = ±1. We have
∏n−1

i=0 εi,σ = εσ · (−1)σ .

We are going to use σ for both the element of the Galois group G and its associated
element of Sn . When σ ∈ G applies to a matrix, σ applies entry-wise.

Proof. Let K = Q[{λi, j }0≤i, j≤n−1] be the Galois extension of Q generated by the eigen-
values of all the Ni and let G be the associated Galois group as above. The action of G
on the eigenvalues gives an injection G → Sn × Sn × · · · × Sn , where there are n − 1
factors. Note that we have not assumed the Ni have distinct eigenvalues, therefore this
map is not necessarily unique and is not necessarily a group homomorphism. This is not
a problem as we will resolve the ambiguity shortly. Just fix one such map for now. Let
(σ1, σ2, . . . , σn−1) denote the image of σ ∈ G under this injection. Note that a priori,
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there is no relationship between the σi . Let �i be the diagonal matrix with diagonal
entries λi, j , so

Ni = S̃�i S̃−1.

Let Pσi = (δi=σi ( j))0≤i, j≤n−1 be the permutation matrix corresponding to σi . Since
σ(λi, j ) = λi,σi ( j), we have σ(�i ) = P−1

σi
�i Pσi . Since Ni is rational we have

S̃�i S̃−1 = Ni = σ(Ni ) = σ(S̃)P−1
σi
�i Pσiσ(S̃)

−1.

Rewriting this gives

�i [S̃−1σ(S̃)P−1
σi

] = [S̃−1σ(S̃)P−1
σi

]�i .

Hence Bi,σ = S̃−1σ(S̃)P−1
σi

commutes with �i . It follows that Bi,σ is block diagonal,
with blocks corresponding to the equal eigenvalues of Ni . In formulas, if the ( j, k) entry
of Bi,σ is nonzero, then λi, j = λi,k . Let S̃−1σ(S̃) = Bi,σ Pσi = Cσ . Note two facts, if
the ( j, k) entry of Cσ is nonzero, then the ( j, σi (k)) entry of Bi,σ is nonzero and hence
λi, j = λi,σi (k). The second fact is that Cσ (as the notation suggests) does not depend on
i , only on σ . Suppose Cσ has 2 nonzero entries in column k, say the ( j, k) and (�, k)
entries. Then λi, j = λi,σi (k) = λi,� for all i , contradicting Proposition 2.6 above. If a row
or column of Cσ is all zeroes, then det(Cσ ) = 0, a contradiction. Hence Cσ has exactly
one nonzero entry in every row and in every column. Thus there is a unique permutation
σ ∈ Sn and a diagonal matrix Bσ such that Cσ = Bσ Pσ . Note that we are now using σ
for both the element of the Galois group and its associated element of Sn . Note that

Cσσ ′ = S̃−1σσ ′(S̃) = S̃−1σ(S̃)σ (S̃−1σ ′(S̃)) = Cσ σ (Cσ ′),

from which it follows that the map G → Sn is a group homomorphism. Thus we have
proved that the simultaneous action of the Galois group G on the eigenvalues λi, j of Ni
for all i gives an injective group homomorphism G → Sn .

Note that the squared length of column zero of S̃ is D2 = ∑n−1
i=0 d2

i , which must be
equal to the squared length of column σ(0). Hence

D2 =
n−1∑
i=0

d2
σ(0)λ

2
i,σ (0) = d2

σ(0)σ

(
n−1∑
i=0

λ2
i,0

)
= d2

σ(0)σ (D
2).

Rewriting gives

σ

(
1

D2

)
= d2

σ(0)

D2 .

It follows that G acts in the same way on the quantities {d j/D2}. The Verlinde formulas
(2.3) encode the symmetry of the Ni matrices, and give us the complete symmetry under
interchanging the last n − 1 Ni and simultaneously reordering the last n − 1 rows and
columns of all matrices. Thus nk

i, j is invariant under G and hence is necessarily rational
if we define it first to be only in R.

Transposing the identity S̃−1σ(S̃) = Cσ and inverting this identity gives the two
equations σ(S̃)S̃−1 = CT

σ and

C−1
σ = σ(S̃)−1 S̃ = D2

σ(D2)
σ (S̃)S̃−1 = d2

σ(0)C
T
σ .
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Hence the matrices dσ(0)Cσ and dσ(0)Bσ are orthogonal. Since Bσ is diagonal it follows
that

Bσ = 1

dσ(0)

⎛
⎜⎝
ε0,σ 0 · · · 0

0 ε1,σ · · · 0
· · · · · · · · · · · ·
0 · · · · · · εn−1,σ

⎞
⎟⎠

for some choices of εi,σ = ±1. The map σ �→ dσ(0)Cσ gives a group homomorphism
from G to the signed permutation matrices modulo ±1 which lifts the homomorphism
ι of (1).

Rewrite the definition of Cσ as σ(S̃) = S̃Bσ Pσ . Picking out the ( j, k) entry, we have
σ(s̃ j,k) = 1

dσ(0)
εσ (k),σ s̃ j,σ (k). Moreover, since the left-hand side is symmetric we get

S̃Bσ Pσ = P−1
σ Bσ S̃. In coordinates this condition becomes s̃ j,k = εkεσ( j)s̃σ( j),σ−1(k).

Consider the action of G on pairs ( j, k) defined by σ × ( j, k) �→ (σ ( j), σ−1(k)). Then
we see that |s̃ j,k | is constant on orbits of this action.

To see identity (2.6), we apply σ−1 to identity (2.4) and compare with identity (2.5).
Note that s̃σ−1(0),σ (0) = εσ(0),σ ε0,σ by identity (2.5).

Given σ1, σ2 ∈ G, consider first σ2σ1(s̃ j,k) = σ2(
1

dσ1(0)
εσ1(k),σ1 s̃ j,σ1(k))

= σ2(
1

dσ1(0)
εσ1(k),σ1 s̃σ1(k), j ) = 1

dσ2(0)λσ1(0),σ2(0)
εσ1(k),σ1εσ2( j),σ2 s̃σ1(k),σ2( j).

Then consider

σ1σ2(s̃ j,k) = σ1σ2(s̃k, j ) = σ1

(
1

dσ2(0)
εσ2( j),σ2 s̃k,σ2( j)

)

= σ1

(
1

dσ2(0)
εσ2( j),σ2 s̃σ2( j),k

)
= 1

dσ1(0)λσ2(0),σ1(0)
εσ2( j),σ2εσ1(k),σ1 s̃σ2( j),σ1(k).

Hence σ1σ2 = σ2σ1 using diλ j,i = d jλi, j , i.e. G is abelian.
Suppose now that the rank n = 2r is even. Then det(S̃)2 = D2n , hence det(S̃) =

±D2r . Since the determinant is a polynomial in the entries of the matrix det(σ (S̃)) =
±σ(D2)r , with the same sign as det(S̃). Hence det(S̃−1σ(S̃)) = d−n

σ(0). Since

det(Cσ ) = d−n
σ(0)(−1)σ

∏n−1
j=0 ε j,σ , we conclude

∏n−1
j=0 ε j,σ = (−1)σ . For odd rank

n = 2r + 1, det(S̃) = ±D2r+1, hence D ∈ K . Hence σ(D) = εσ D/dσ(0), εσ = ±1 and
one gets the formula

∏n−1
j=0 ε j,σ = εσ (−1)σ . �	

Note that the resulting Eqs. (2.5) for the entries s̃ j,k are unchanged if we replace Bσ
with −Bσ . We will use this to assume ε0 = 1 below.

Next we will use the fact that the θi ∈ U(1) to produce a series of twist inequalities
on the entries of S̃.

Theorem 2.8. Given a modular symbol (N ; S, T ) and S is a real matrix, then

(1) 2 maxi s̃2
i, j ≤ D|s̃ j j | + D2 for any j .

(2) If j �= k, then D ≤ 1
|s̃ j,k |

∑n−1
i=0 |s̃i, j s̃i,k |.

(3)
∑n−1

j=0
εσ( j) s̃ j,σ ( j)
θ j θσ( j)

= D−
∑

i : σ(i)=i θiεσ(i).
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Proof. Rewrite the twist equation as T S̃T S̃T = D+ S̃. Then taking the ( j, k) entry of
this formula gives

θ jθk

n−1∑
i=0

θi s̃i, j s̃i,k = D+s̃ j,k .

Since |D+| = D and |θi | = 1, the largest of the n+1 numbers |s̃i, j s̃i,k |, 0 ≤ i ≤ n−1, and
D|s̃ j,k | must be at most the sum of the other n. If j = k, then

∑
i s̃2

i, j = D2 > D|s̃ j j |.
Hence this inequality is trivial unless the largest is one of the first n and we get

2 max
i

s̃2
i, j ≤ D|s̃ j j | +

n−1∑
i=0

s̃2
i, j .

If j �= k then
∑

i s̃i, j s̃i,k = 0 and the nontrivial case is

D ≤ 1

|s̃ j,k |
n−1∑
i=0

|s̃i, j s̃i,k |.

We will refer to these as the twist inequalities.
Suppose σ ∈ G corresponds to signs εi as above. We drop σ for notational easiness.

Multiply the identity above by εσ( j)/(θ jθσ( j)), set k = σ( j), and sum over j . The result is

n−1∑
j=0

εσ( j)

n−1∑
i=0

θi s̃i, j s̃i,σ ( j) = D+

n−1∑
j=0

εσ( j)s̃ j,σ ( j)

θ jθσ( j)
.

Interchanging the sums and using the fact that s̃i,σ ( j) = εσ( j)εσ(i)s̃σ(i), j gives

n−1∑
i=0

θiεσ(i)

n−1∑
j=0

s̃i, j s̃σ(i), j = D+

n−1∑
j=0

εσ( j)s̃ j,σ ( j)

θ jθσ( j)
.

By orthogonality of the rows of S̃, the innermost sum on the left is zero if i �= σ(i) and
D2 = D+ D− if i = σ(i). Hence

n−1∑
j=0

εσ( j)s̃ j,σ ( j)

θ jθσ( j)
= D−

∑
i : σ(i)=i

θiεσ(i).

If σ is fixed point free, then
∑n−1

j=0
εσ( j) s̃ j,σ ( j)
θ j θσ( j)

= 0. �	

3. Rank=2 and 3 Modular S Matrices

In this section, we determine all possible modular S matrices for rank=2 and 3 modular
symbols. The rank=3 case first appeared in [CP], but our proof is new.

Theorem 3.1. The only possible rank=2 modular S̃ matrices of some modular symbols
are
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(1)
(

1 ε

ε −1

)
,

where ε2 = 1;
(2)

(
1 ϕ

ϕ −1

)
,

where ϕ2 = 1 + ϕ.

Proof. Since all labels are self-dual, S̃ is a symmetric real unitary matrix of the form(
1 d
d −1

)
. The fusion matrix N1 is of the form

(
0 1
1 m

)
, so we have d2 = 1+md. Simpli-

fying D+ D− = D2 leads to θ + θ−1 = 1 − d2 = −m · d. Since θ ∈ U(1), so |md| ≤ 2.

If d > 0, then d = m+
√

m2+4
2 , hence m = 0, 1. If d < 0, then d = m−√

m2+4
2 , hence

[Q(θ + θ−1) : Q] ≤ 2. It follows that θ = e
pπ i
q for some (p, q) = 1, and q is one

of {1, 2, 3, 4, 5, 6}. Direct computation shows there are no integral solutions p, q for

2 cos( pπ
q ) = −m · m−√

m2+4
2 except for q = 2, 5 and m = 0, 1. �	

Theorem 3.2. Then the only possible rank=3 modular S̃ matrices of some modular
symbols up to permutations are

(1)
⎛
⎝1 ε ε

ε ω ω2

ε ω2 ω

⎞
⎠ ,

where ε2 = 1, and ω3 = 1, ω �= 1.
(2)

⎛
⎝1 d 1

d 0 −d
1 −d 1

⎞
⎠ ,

where d2 = 2.
(3)

⎛
⎝ 1 d1 d2

d1 −d2 1
d2 1 −d1

⎞
⎠ ,

where d1 is a real root of x3 − 2x2 − x + 1 and d2 = d1/(d1 − 1) which is a
root of x3 − x2 − 2x + 1. The largest d1 = 2 cos(π/7)

2 cos(π/7)−1 = 2.246979604 . . . , and
d2 = 2 cos(π/7) = 1.801937736 . . ..
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Proof. The non-self dual case is given in the Appendix. Hence we assume all fusion
rules are self-dual, so S̃ is a real, symmetric, unitary matrix up to the scalar D. It fol-
lows that the fusion matrices Ni ’s are commutative, symmetric, integral matrices. One
approach to proving the theorem is to analyze case by case for the Galois groups of
fusion rules G ∼= 1,Z2,Z3. This strategy will be fully exploited in the rank=4 case in
the next section. Instead we will argue directly from the S̃-matrix in this section.

The fusion matrices N1, N2 are symmetric, and N1 N2 = N2 N1. Therefore, they can
be written as

N1 =
⎛
⎝0 1 0

1 m k
0 k l

⎞
⎠

and

N2 =
⎛
⎝0 0 1

0 k l
1 l n

⎞
⎠

such that

1 + ml + kn = k2 + l2.

There characteristic polynomials are

p1(x) = x3 − (� + m)x2 + (m�− k2 − 1)x + � = 0

and

p2(x) = x3 − (k + n)x2 + (nk − �2 − 1)x + k = 0,

respectively.
Next we turn to the S̃ matrix, which is of the following form:

S̃ =
⎛
⎝ 1 d1 d2

d1 s̃11 s̃12
d2 s̃12 s̃22

⎞
⎠ .

Orthogonality of the columns of the S̃ matrix translates into the equations

d1 + d1s̃11 + d2s̃12 = 0,

d2 + d1s̃12 + d2s̃22 = 0,

d1d2 + s̃12(s̃11 + s̃22) = 0.

The first two equations give s̃11 = −1 − d2s̃12/d1 and s̃22 = −1 − d1s̃12/d2. Plugging
these into the third equation gives

(d2
1 + d2

2 )s̃
2
12 + 2d1d2s̃12 − d2

1 d2
2 = 0,

hence

s̃12 = d1d2

1 ± D
.
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Thus

s̃11 = −1 − d2
2

1 ± D
,

and

s̃22 = −1 − d2
1

1 ± D
.

Thus the eigenvalues of N1 are

d1, b = s̃12

d2
= d1

1 ± D
, and c = s̃11

d1
= − 1

d1
− d2

2

d1(1 ± D)

and the eigenvalues of N2 are

d2, e = s̃12

d1
= d2

1 ± D
, and f = − 1

d2
− d2

1

d2(1 ± D)
.

We compute

d1b + d2 f = d1c + d2e = bc + e f = −1.

Since d1bc = −� and d2e f = −k, these are equivalent to

�

c
+

k

e
= �

b
+

k

f
= �

d1
+

k

d2
= 1.

Also note that

d1e = d2b.

Let’s deal with the case where � = 0 first. Then we have k2 = kn + 1. Hence k = 1
and n = 0. Thus the eigenvalues of N2 are 1, 1, and -1 and the eigenvalues of N1 are
(m +

√
m2 + 8)/2, 0, and (m − √

m2 + 8)/2. Since N1 has eigenvalues d1, b, c, and
d1 �= 0, hence c = 0 which implies m = 0. This gives (k, �,m, n) = (1, 0, 0, 0) and

S̃ =
⎛
⎝1 d 1

d 0 −d
1 −d 1

⎞
⎠ ,

where d2 = 2. The case k = 0 gives essentially the same solution, so we will henceforth
assume � and k are positive. Since p1(�) = −k2� ≤ 0 and p1(0) = � ≥ 0, we see that
the largest root of p1 is > �, one of the remaining roots is in (0, �) and the other root
is negative. Similarly the largest root of p2 is > k and the other roots are in (0, k) and
(−∞, 0).
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Case 1. The polynomial p1(x) is reducible. Since d1 > �, d1 cannot be an integer. Thus
p1 must split into a linear and an irreducible quadratic. Thus Q[d1, D] is a quadratic
extension of Q. Hence Q[d1, d2, D] has degree 2 or 4 over Q. Thus p2 is also reduc-
ible and also splits into a linear and an irreducible quadratic. Since the �/b + k/ f =
�/c + k/e = 1, the integral roots must be either b and f or c and e. Without loss, we
may assume the integer roots are b and f . Let

d2 = α + β
√

s and e = α − β
√

s

for rational (in fact integer or half-integer) α and β and integer s. Then since d1e = d2b
and c is the conjugate of d1 we have

d1 = b
α + β

√
s

α − β
√

s
and c = b

α − β
√

s

α + β
√

s
.

Hence � = −d1bc = −b3. Since f = −k/(d2e) = −k/(α2 − β2s) and −b2 = �/b =
1 − k/ f = α2 + 1 − β2s. Therefore solving 1 = k/d2 + �/d1 for k gives

k = d2 − �
d2

d1
= α + β

√
s + b3 e

b
= α + β

√
s − (α2 + 1 − β2s)(α − β

√
s)

= −α(α2 − β2s) + β[α2 + 2 − β2s]√s.

Since k is an integer, this forces α2 −β2s = −2, hence b2 = 1. Since � > 0, this means
� = 1 and b = −1. Also from the equations above we get k = 2α, d2 = α +

√
α2 + 2,

e = α − √
α2 + 2, f = α, d1 = α2 + 1 + α

√
α2 + 2 = d2

2/2, c = α2 + 1 − α
√
α2 + 2,

and D = α2 + 2 + α
√
α2 + 2. Thus

p1(x) = x3 − (2α2 + 1)x2 − (2α2 + 1)x + 1

and

p2(x) = x3 − 3αx2 + (2α2 − 2)x + 2α.

Thus (k, �,m, n) = (2α, 1, 2α2, α) and

S̃ =
⎛
⎝ 1 α2 + 1 + α

√
α2 + 2 α +

√
α2 + 2

α2 + 1 + α
√
α2 + 2 1 −α − √

α2 + 2
α +

√
α2 + 2 −α − √

α2 + 2 α2 + α
√
α2 + 2

⎞
⎠ .

Note that n = α must be a non-negative integer. Setting α = 0 gives the example found
above again. Thus we may assume α ≥ 1. Since d1 = d2

2/2, the equation for the θ ’s is

|1 + θ2d2
2 + (1/4)θ1d4

2 | = D = 1 + (1/2)d2
2 .

If a solution did exist, then we would have 1 + (1/2)d2
2 ≥ (1/4)d4

2 − d2
2 − 1, hence

17 ≥ (d2
2 − 3)2 or d2 ≤

√
3 +

√
17 = 2.66891 . . .. Since d2 ≥ 1 +

√
3 = 2.73205 . . .,

this cannot occur. Thus these S̃ matrices, for positive α, do not give a modular symbol.
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Case 2. The polynomial p1(x) is an irreducible cubic. By Case 1, we see that p2(x) is
also an irreducible cubic. Then there must be a Galois symmetry σ with σ(d1) = b,
σ(b) = c and σ(c) = d1. Hence σ(d2) = f , σ( f ) = e, and σ(e) = d2 since these roots
of p2 pair with the corresponding roots of p1. Applying σ to the identity d1e = d2b,
gives d2b = f c. Thus we must have f c = d1d2/(1 ± D). Since

f c = d1d2

(1 ± D)2
+

d2
1 + d2

2

d1d2(1 ± D)
+

1

d1d2
= d1d2

(1 ± D)2
+

D2 ± D

d1d2(1 ± D)
,

we compute

1 ± D = (1 ± D)2

d1d2
f c = 1 ± D(1 ± D)2

d2
1 d2

2

,

and hence
(

1 ± D

d1d2

)2

= 1.

Since D > 1, we get that

s̃12 = d1d2

1 ± D
= ±1,

and hence b = ±1/d2 and e = ±1/d1. Thus d1 and d2 are units in the ring of algebraic
integers. Hence k = � = 1 and hence m + n = 1. Without loss we may assume m = 1
and n = 0. Then p1(x) = x3 −2x2 − x +1 and p2(x) = x3 p1(1/x) = x3 − x2 −2x +1.
Then one computes

d1 = 2 cos(π/7)

2 cos(π/7)− 1
= 2.246979604 . . . ,

b = 1 − 1/d1, c = −1/(d1 − 1), d2 = d1/(d1 − 1) = 1.801937736 . . ., e = 1/d1, and
f = 1 − d1 and

S̃ =
⎛
⎝ 1 d1 d2

d1 −d2 1
d2 1 −d1

⎞
⎠ .

�	

4. Rank = 4 Modular S Matrices

First we introduce the following notation. For an integer m, define

φm = m +
√

m2 + 4

2
,

that is, φm is the unique positive root of x2 − mx − 1 = 0. Note that any algebraic
number φ whose only conjugate is −1/φ must be φm for some integer m. Also note the
only rational φm is φ0 = 1.
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Theorem 4.1. The only possible rank=4 modular S̃ matrices of unitary modular
symbols up to permutations are

(1) ⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 ω ω̄

1 −1 ω̄ ω

⎞
⎟⎠ ,

where ω = ±i ;
(2) ⎛

⎜⎝
1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ ;

(3) ⎛
⎜⎝

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

⎞
⎟⎠ ;

(4) ⎛
⎜⎝

1 ϕ 1 ϕ

ϕ −1 ϕ −1
1 ϕ −1 −ϕ
ϕ −1 −ϕ 1

⎞
⎟⎠ ,

where ϕ = 1+
√

5
2 is the golden ratio;

(5) ⎛
⎜⎜⎝

1 ϕ ϕ ϕ2

ϕ −1 ϕ2 −ϕ
ϕ ϕ2 −1 −ϕ
ϕ2 −ϕ −ϕ 1

⎞
⎟⎟⎠ ;

(6) ⎛
⎜⎜⎝

1 d2 − 1 d + 1 d
d2 − 1 0 −d2 + 1 d2 − 1
d + 1 −d2 + 1 d −1

d d2 − 1 −1 −d − 1

⎞
⎟⎟⎠ ,

where d is the largest real root of x3 − 3x − 1.

Proof. The non-self dual case is treated in the Appendix, so we will assume that S̃ is
real in the following. Since the fusion coefficients nk

i, j are totally symmetric in i, j and
k for self-dual categories, we will instead write ni, j,k in what follows. For notational
easiness, when the Galois group element σ is clear from the context, we simply write
εi,σ as εi . Identities for εi and s̃ jk that are not referenced are all from Theorem 2.7. All
the twist inequalities are from Theorem 2.8.
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Case 1. G contains a 4-cycle. By symmetry we may assume σ = (0 1 2 3) ∈ G. The
conditions s̃ j,k = εkεσ( j)s̃σ( j),σ−1(k) and ε1ε2ε3 = −1 give

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 ε1ε2d2 −ε2d3 ε1
d2 −ε2d3 −1 ε2d1
d3 ε1 ε2d1 −ε1ε2d2

⎞
⎟⎠ .

By symmetry under interchanging N1 and N3, we may assume ε2 = +1. Note that
σ 2(d2) = λ2,2 = −1/d2 �= d2. Hence the characteristic polynomial p2 of N2 is irreduc-
ible. Since σ 2(d1) = −d3/d2 < 0. Hence σ 2(d1) �= d1. Thus p1 is irreducible. Since
ε1/d3 is a root of p1, it follows that p3 is also irreducible.

We see that λ1,1 = ε1d2/d1, λ1,2 = −d3/d2, and λ1,3 = ε1/d3. In particular
d1λ1,1λ1,2λ1,3 = −1. Orthogonality of the rows of S̃ is equivalent to

d1 + ε1d1d2 − d2d3 + ε1d3 = 0, or
1

d1
+ λ1,3 = λ1,1 +

1

λ1,2
.

Write p1(x) = x4 −c1x3 +c2x2 +c3x −1. Then p4(x) = x4 −ε1c3x3 −c2x2 +ε1c1x −1.
Note that c1 = Trace(N1) ≥ 0 and ε1c3 = Trace(N3) ≥ 0. Multiplying together the
orthogonality condition above and five of its formal conjugates gives

128 + (c2
3 − c2

1)
2 − 16c1c3 + 12(c2

3 − c2
1)c2 + 32c2

2 = 0.

This equation forces c1 and c3 to be even. Let� = c1 −c3 and� = c1 +c3 (hence� and
� are even and congruent mod 4). Then solving the quadratic equation above for c2 we

see that we must have (�2−32)(�2+32) to be a square and c2 = 3��±
√
(�2−32)(�2+32)

16 .

It follows that |�| ≥ 6. If � and � are multiples of 4, then we see they are multiples
of 8 and either sign gives an integral c2. If � and � are both 2 mod 4, then there is a
unique choice of the sign for which c2 is integral.

The Galois group of p1 must be Z/4Z, otherwise it would contain the (0 1)(2 3).
Applying this to the orthogonality identity above gives 1/λ1,3 + d1 = λ1,2 + 1/λ1,1.
Multiplying this by the original identity gives 1

d1λ1,3
+ d1λ1,3 = 1

λ1,1λ1,2
+ λ1,1λ1,2.

Hence d1λ1,3 = (λ1,1λ1,2)
±1, either of which contradicts the product of all four roots

being −1. In particular, p1 cannot have complex roots, since complex conjugation would
give a transposition in the Galois group. Applying σ to the orthogonality identity gives
d1 + 1/λ1,1 = λ1,2 + 1/λ1,3.
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We know from the preliminary discussion that all three of the resulting Ni matrices

will be rational. Define P = 16c2−3��
�2+32

= ±
√
�2−32
�2+32

, then we compute

n1,1,1 = 5c1 − 3c3

8
− c1 − c3

8
P,

n1,1,2 = ε1(P − 1),

n1,1,3 = ε1

(
c1 + c3

8
− c1 − c3

8
P

)
,

n1,2,2 = c1 + c3

4
+

c1 − c3

4
P,

n1,2,3 = P,

n1,3,3 = c1 + c3

8
− c1 − c3

8
P,

n2,2,2 = ε1

(
2c2 − c2

3 + c2
1

4
− 2P

)
,

n2,2,3 = ε1

(
c1 + c3

4
+

c1 − c3

4
P

)
,

n2,3,3 = ε1(P + 1), and

n3,3,3 = ε1

(
5c3 − 3c1

8
− c1 − c3

8
P

)
.

Recall that the ni, j,k must be nonnegative integers. This restricts the ci . First looking at
n1,2,3, we see that P must be a positive integer. Hence c2 must be given by the upper
sign. This condition in fact guarantees integrality of all the ni, j,k . (The additional factors
of 2 in the denominator cancel out if c2 is integral and can be ignored.) Integrality of P
severely restricts �, since it requires all odd prime factors of �2 + 32 to be congruent
to 1 mod 8 (since 2 and −2 are both squares mod any such prime). In particular either
� = 0 or |�| ≥ 6. Since P �= 0, we see that �2 ≥ �2 + 64, hence |�| > |�|. Thus c3
must be positive and � > 0. Since we saw above ε1c3 ≥ 0, we see that ε1 = +1. Thus
rewriting the orthogonality relation gives d1/d3 = (d2 − 1)/(d2 + 1).

The twist inequality coming from the (0, 3) entry reads

D ≤
(

1 +
d1

d3

)
(1 + d2).

Plugging in the preceding identity simplifies this to D ≤ 2d2. Rearranging gives 3d2
2 ≥

d2
1 + d2

3 + 1 > d2
1 + d2

3 and plugging in the identity d1 = d3(d2 − 1)/(d2 + 1) yields
(

d3

d2 + 1

)2

<
3d2

2

2(d2
2 + 1)

<
3

2
.

To see why this is helpful, expand the equations Trace(Ni ) = ci for i = 1, 3 and use the
identity above to eliminate d1. The result is

c1 = d2
2 − 2d2 − 1

d2(d2 + 1)
d3 +

d2
2 + 2d2 − 1

d2 − 1
· 1

d3
, and

c3 = d2
2 + 2d2 − 1

d2(d2 + 1)
d3 − d2

2 − 2d2 − 1

d2 − 1
· 1

d3
.



362 E. Rowell, R. Stong, Z. Wang

Subtracting these gives

� = c1 − c3 = −4
d3

d2 + 1
+ 2

d2 + 1

d2d3
.

Hence � > −4 d3
d2+1 > −4

√
3/2 > −4.9. However, we saw above that either � = 0

or |�| ≥ 6. It follows that � ≥ 0. Since � ≥ 6 and c2 ≥ 3��/16, it follows that
c2 > � = c1 − c3. Thus p3(1) = c1 − c2 − c3 < 0. Thus d3 > 1. Hence we see
� < 2(d2 + 1)/(d2d3) < 4. It follows that � = 0, i.e., c1 = c3.

Since � = 0, � = 2c1 is a multiple of 8 and
(

P

32

)2

− 2
(c1

4

)2 = −1.

In this case the characteristic polynomials become

p1(x) = x4 − c1x3 + 2
√

2(c1/4)2 − 1x2 + c1x − 1,

p2(x) = x4 − 4
√

2(c1/4)2 − 1x3 − 6x2 + 4
√

2(c1/4)2 − 1x + 1, and

p3(x) = x4 − c1x3 − 2
√

2(c1/4)2 − 1x2 + c1x − 1.

In particular p1(x) > 0 for x ≥ c1. Hence d1 < c1. We have

p2(x) = (x2 − t1x − 1)(x2 − t2x − 1),

where t1 > 0 > t2 are the two roots of t2 − 4
√

2(c1/4)2 − 1t − 4 = 0. Since the larger
root of x2 − t x − 1 is an increasing function of t , d2 must correspond to t1. Hence

d2 = t1 +
1

d2
> t1 = 4

√
2(c1/4)2 − 1 +

4

t1
> 4

√
2(c1/4)2 − 1.

In particular, d2 > 4 since the square root above is integral. Finally the twist inequality
coming from the (0, 2) entry reads

D ≤ 2

(
1 +

d1d3

d2

)
.

Squaring and using the identity d3 = d1(d2 + 1)/(d2 − 1) to eliminate d3 gives the
inequality

4(d2 + 1)2d4
1 − 2d2(d

3
2 − 4d2

2 + d2 + 4)d2
1 − d2

2 (d2 − 1)2(d2
2 − 3) ≥ 0.

Dividing through by 4(d2 + 1)2d2
1 and rearranging gives

d2
1 ≥ d2

2(d2 + 1)2
(d3

2 − 4d2
2 + d2 + 4) +

d2
2 (d2 − 1)2(d2

2 − 3)

4(d2 + 1)2d2
1

.

The right-hand side of this inequality is an increasing function of d2 for d2 > 4 and a
decreasing function of d1, hence we may replace d1 by its upper bound c1 and d2 by the
lower bound above. The result is

4560 − 2138c2
1 + 264c4

1 − 8c6
1 + (608 − 276c2

1 + 32c4
1)

√
2c2

1 − 16 ≥ 0.
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Since the coefficient of the square root is nonnegative it follows that

4560 − 2138c2
1 + 264c4

1 − 8c6
1 + (608 − 276c2

1 + 32c4
1)c1

√
2 ≥ 0.

This polynomial in c1 is negative for c1 > 6
√

2, hence c1 ≤ 8. The only multiple of
4 in the range 3 ≤ c1 ≤ 8 for which the Pell equation above is satisfiable is c1 = 4.
This gives c1 = c3 = 4, c2 = 2, P = 32. However plugging in shows that the twist
inequality D ≤ 2(1 + d1d3/d2) does not actually hold in this case. Thus there are no
solutions in this case.

Case 2. G is the Klein 4-group. Let σ1, σ2, and σ3 be the elements of G which corre-
spond to (0 1)(2 3), (0 2)(1 3), and (0 3)(1 2), respectively. Let Bσ1 correspond to
signs εi with ε1ε2ε3 = 1 and Bσ2 correspond to signs δi with δ1δ2δ3 = 1. Then using
the usual identities gives

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 ε1 ε2d3 ε1ε2d2
d2 ε2d3 s̃2,2 s̃2,3
d3 ε1ε2d2 s̃2,3 ε1s̃2,2

⎞
⎟⎠ =

⎛
⎜⎝

1 d1 d2 d3
d1 s̃1,1 δ1d3 s̃1,3
d2 δ1d3 δ2 δ1δ2d1
d3 s̃1,3 δ1δ2d1 δ2s̃1,1

⎞
⎟⎠ .

Comparing these we see ε2 = δ1, s̃1,1 = ε1, and s̃2,2 = δ2, hence

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 ε1 ε2d3 ε1ε2d2
d2 ε2d3 δ2 ε2δ2d1
d3 ε1ε2d2 ε2δ2d1 ε1δ2

⎞
⎟⎠ .

Orthogonality of the rows of S̃ gives the three conditions

(1 + ε1)(d1 + ε2d2d3) = (1 + δ2)(d2 + ε2d1d3) = (1 + ε1δ2)(d3 + ε1ε2d1d2) = 0.

Suppose ε1 = +1, then we see d1 = −ε2d2d3, hence ε2 = −1 and the remaining
orthogonality relations become d2(1 +δ2)(1−d3) = d3(1 +δ2)(1−d2). We cannot have
d2 = d3 = 1, since this would make d1 = 1, hence δ2 = −1. This gives

S̃ =
⎛
⎜⎝

1 d2d3 d2 d3
d2d3 1 −d3 −d2
d2 −d3 −1 d2d3
d3 −d2 d2d3 −1

⎞
⎟⎠ .

The eigenvalues of N2 are d2 and −1/d2 each with multiplicity 2. Hence d2 = φm for
some integer m. The eigenvalues of N3 are d3 and −1/d3 each with multiplicity 2, hence
d3 = φn for some integer n. So

S̃ =
⎛
⎜⎝

1 φmφn φm φn
φmφn 1 −φn −φm
φm −φn −1 φmφn
φn −φm φmφn −1

⎞
⎟⎠ .
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The resulting Ni matrices are necessarily rational, but in this case they are all integral,
namely,

N1 = N2 N3 = N3 N2 =
⎛
⎜⎝

0 1 0 0
1 mn m n
0 m 0 1
0 n 1 0

⎞
⎟⎠ ,

N2 =
⎛
⎜⎝

0 0 1 0
0 m 0 1
1 0 m 0
0 1 0 0

⎞
⎟⎠ , and N3 =

⎛
⎜⎝

0 0 0 1
0 n 1 0
0 1 0 0
1 0 0 n

⎞
⎟⎠ .

Note that nonnegativity of the entries forces m, n ≥ 0 and hence φm, φn ≥ 1. The
strongest twist inequalities are the (0, 1) and (2, 3) cases which give D ≤ 4 or (φ2

m +
1)(φ2

n +1) ≤ 16. This gives, up to symmetry, the solutions (m, n) = (0, 0), (0, 1), (0, 2),
or (1, 1). These are all excluded since the resulting Galois group G is at most Z/2Z.
(These examples will return when we look at smaller Galois groups.)

Case 3. G contains a 3-cycle. Since we can exclude Cases 1 and 2 above, the image of
G in S4 cannot be transitive. It follows that G must fix the point j not on the 3-cycle.
Thus λi, j is rational (hence integral) for every i . Up to symmetry there are two cases for
the 3-cycle. We could have σ = (1 2 3) or σ = (0 1 2). If σ = (1 2 3), then the di
are integral. The identities s̃ j,k = εσ( j)εk s̃σ( j),σ−1(k) and ε1ε2ε3 = 1 give εi = 1 for all
i (since di = s̃0,i = εi s̃0,i+1 = εi di+1 for 1 ≤ i ≤ 2) and

S̃ =
⎛
⎜⎝

1 d1 d1 d1
d1 s̃1,1 s̃3,3 s̃2,2
d1 s̃3,3 s̃2,2 s̃1,1
d1 s̃2,2 s̃1,1 s̃3,3

⎞
⎟⎠ .

Orthogonality of the columns of S̃ gives s̃1,1 + s̃2,2 + s̃3,3 = −1 and s̃1,1s̃2,2 + s̃2,2s̃3,3 +
s̃3,3s̃1,1 = −d2

1 . The first of these gives −1/d1 = λ1,1 + λ1,2 + λ1,3 from which we see
−1/d1 is an algebraic integer. Hence d1 = 1 and λ1,i < 1. The second equation gives
λ1,1λ1,2 + λ1,2λ1,3 + λ1,3λ1,1 = −1. Hence λ1,1, λ1,2, and λ1,3 are the three roots of
g(x) = x3 + x2 − x + n for some integer n. This cubic must be irreducible and have
three real roots all less than 1. Irreducibility excludes n = 0 and n = −1. For the roots
of g to be less than 1, we must have g(1) > 0 or n + 1 > 0. Hence n ≥ 1. However, this
results in complex roots. Thus this case gives no solutions.

Thus we must have σ = (0 1 2) and λi,3 is integral for all i . The identities for s̃ j,k
give

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 ε1ε2d2 ε1 ε2d3
d2 ε1 ε2d1 ε1ε2d3
d3 ε2d3 ε1ε2d3 s̃3,3

⎞
⎟⎠ .

Since σ(d3) = λ3,1 = ε2d3/d1 and σ 2(d3) = ε1ε2d3/d2, we must have σ(d3) �= d3.
(Otherwise ε1 = ε2 = d1 = d2 = 1 which fails.) Thus d3 is a root of an irreducible
cubic g(x) = x3 − c1x2 + c2x − c3 and ε2d1 and ε1ε2d2 are ratios of roots of g. If g had
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Galois group S3, then the ratios of the roots of g would be roots of an irreducible sextic.
Thus g has Galois group Z/3Z and G = {1, σ, σ 2}. Note that

c1 = d3 + λ3,1 + λ3,2 = d3

d1d2
(d1d2 + ε2d2 + ε1ε2d1),

c2 = d3λ3,1 + λ3,1λ3,2 + λ3,2d3 = d2
3

d1d2
(ε2d2 + ε1 + ε1ε2d1), and

c3 = d3λ3,1λ3,2 = ε1
d3

3

d1d2
.

Orthogonality of the columns of S̃ gives

c1

c3
= ε2d1 + ε1ε2d2 + ε1d1d2

d2
3

= −1, and

c2

c3
= 1 + ε2d1 + ε1ε2d2

d3
= − s̃3,3

d3
= −λ3,3 ∈ Z.

Thus g(x) = x3 − cx2 + ncx + c for integer n, c. Since g has Galois group Z/3Z,

δ2 = 1

c2 discr(g) = (n2 + 4)c2 − 2n(2n2 + 9)c − 27

must be a square. The resulting ni, j,k are

n1,1,1 = ε2

2
(δ − nc − 1)− ε2δ

n2 + 3
,

n1,1,2 = ε1ε2

2(n2 + 3)
(−δ + nc − 2n2 + 3),

n1,1,3 = 1

2(n2 + 3)
(−nδ + (n2 + 2)c + 3n),

n1,2,2 = ε2

2(n2 + 3)
(δ + nc − 2n2 + 3),

n1,2,3 = ε1

n2 + 3
(3n − c),

n1,3,3 = ε2

2(n2 + 3)
(δ − nc + 2n2 − 3),

n2,2,2 = −ε1ε2

2
(δ + nc + 1) +

ε1ε2δ

n2 + 3
,

n2,2,3 = 1

2(n2 + 3)
(nδ + (n2 + 2)c + 3n),

n2,3,3 = ε1ε2

2(n2 + 3)
(−δ − nc + 2n2 − 3),

n3,3,3 = c + n3

n2 + 3
.

Integrality of n1,2,3 requires c ≡ 3n (mod n2 + 3). If we write c = 3n + a(n2 + 3) for
integer a, then we compute δ2 = (n2 + 3)2(a2(n2 + 4)+ 2an − 3). Hence δ = (n2 + 3)β,
where β is integral and β2 = a2(n2 + 4) + 2an − 3. Note that in particular this forces
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a �= 0. Rewriting it as β2 = (an + 1)2 + 4a2 − 4, we see that β ≡ an + 1 (mod 2). Thus
we compute

n1,1,1 = ε2

2
((n2 + 1)β − 3n2 − an(n2 + 3)− 1),

n1,1,2 = ε1ε2

2
(−β + an + 1),

n1,1,3 = 1

2
(−nβ + 3n + a(n2 + 2)),

n1,2,2 = ε2

2
(β + an + 1),

n1,2,3 = −ε1a,

n1,3,3 = ε2

2
(β − an − 1),

n2,2,2 = −ε1ε2

2
((n2 + 1)β + 3n2 + an(n2 + 3) + 1),

n2,2,3 = 1

2
(nβ + 3n + a(n2 + 2)),

n2,3,3 = ε1ε2

2
(−β − an − 1),

n3,3,3 = a + n,

and these are all integral. Nonnegativity of these entries gives further restrictions on the
parameters. Looking at n1,2,2 + n1,3,3 = ε2β, we see that ε2 is the sign of β (or β = 0,
but this gives a = ±1, n = −a, c = a and g(x) = (x − a)(x2 − 1) which is reducible).
Looking at n1,1,2 + n2,3,3 = −ε1ε2β, we see that ε1 = −1. Looking at n1,2,3 we see that
a > 0. Nonnegativity provides additional constraints on the parameters, but instead we
look at the twist inequalities.

We saw above that a > 0, hence c = 3n + a(n2 + 3) ≥ n2 + 3n + 3 > 0. Thus
two of the roots d3, λ3,1 and λ3,2 of g must be positive. By symmetry, we may assume
d3 > λ3,1 > 0 > λ3,2. Then ε2 = 1 and we have

S̃ =
⎛
⎜⎝

1 d3/λ3,1 −d3/λ3,2 d3
d3/λ3,1 d3/λ3,2 −1 d3

−d3/λ3,2 −1 d3/λ3,1 −d3
d3 d3 −d3 nd3

⎞
⎟⎠ .

Let M = max(1/λ3,1, 1/|λ3,2|) so that Md3 = max(d1, d2). Since D2 = (n2 + 3)d2
3

and

1

d2
3

+
1

λ2
3,1

+
1

λ2
3,2

= n2 + 2,

the diagonal twist inequality coming from the (0, 0) entry gives

2M2 ≤ n2 + 3 +

√
n2 + 3

d3
.

This inequality allows only finitely many choices of the parameters.
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If n > 0, then g(−1/φn) = −φ−3
n < 0 and therefore λ3,2 > −1/φn . Thus M > φn

and we get

2φ2
n < n2 + 3 +

√
n2 + 3

d3
.

Further since d3λ3,1 = Mc and d3 > λ3,1, we have

d3 >
√
φnc ≥

√
φn(n2 + 3n + 3).

For n ≥ 2, we get a contradiction by noting that φn > n, hence these equations force

2n2 < n2 + 3 +
1√
n
,

a contradiction. For n = 1, plugging in gives a contradiction.
If n = 0, then β2 = 4a2−3, hence a = 1 and g(x) = x3−3x2 +3. Since s̃3,3 = 0, the

(3, 3) entry of the twist equation gives θ2
3 d2

3 (1 + θ1 + θ2) = 0, hence θ1 = θ̄2 = e±2π i/3.
The (0, 3) and (1, 3) entries give

θ3(1 + d1θ1 − d2θ2) = D+ = θ1θ3(d1 − d2θ1 + θ2).

This case is realized by (A1, 7) 1
2
.

If n < 0, then 1/M = λ3,1. One easily checks that M and d3 are increasing functions
of c, therefore it suffices to check that the inequality 2M2 ≤ n2 + 3 + (n2 + 3)1/2d−1

3 fails
for a = 1 and hence c = n2 +3n +3. The inequality fails for n ≤ −2. (To see this simply
compute both sides for n = −2. For n ≤ −3, note that g(−1/n) = −((n + 1)/n)3 < 0
and g((n + 1)2) = −(n + 1)4 + n + 2 < 0. Therefore M < −n and d3 > (n + 1)2. Hence
we have 2M2 > 2n2 > n2 + 4 and (n2 + 3)1/2/d3 < 1, but these combine to contradict
the inequality.) For n = −1, a = 1, the inequality holds, but the resulting polynomial
g(x) = x3 − x2 − x + 1 is reducible. Moving up to the next case n = −1, a = 3, the
inequality fails. Thus there are no solutions in this case.

With the cases above completed, we consider G which is not transitive and contains
no 3-cycle. Up to symmetry, it follows that G must be a subgroup of Z/2Z × Z/2Z =
〈(0 1), (2 3)〉.
Case 4. G contains the transposition σ = (2 3). In this case the parity condition gives
ε1ε2ε3 = −1. Three instances of the usual identity give d2 = s̃0,2 = ε2s̃0,3 = ε2d3,
d3 = s̃0,3 = ε3s̃0,2 = ε3d2, and d1 = s̃0,1 = ε1s̃0,1 = ε1d1. Since the di are positive
we conclude ε1 = ε2 = ε3 = 1, a contradiction. Thus we are left with only three
possibilities. Either G = Z/2Z = 〈(0 1)(2 3)〉, G = Z/2Z = 〈(0 1)〉, or G is trivial.

Case 5. G contains σ = (0 1)(2 3). Using the identities s̃ j,k = εσ( j)εk s̃σ( j),σ−1(k) and
ε1ε2ε3 = 1 gives

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 ε1 ε2d3 ε1ε2d2
d2 ε2d3 s̃2,2 s̃2,3
d3 ε1ε2d2 s̃2,3 ε1s̃2,2

⎞
⎟⎠ .
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Suppose first that ε1 = 1. Then, orthogonality of the first two columns of S̃ forces
ε2 = −1 and d1 = d2d3. Orthogonality of the last column with the first three gives the
equations

s̃2,2d2 + s̃2,3d3 = d2(d
2
3 − 1), s̃2,2d3 + s̃2,3d2 = d3(d

2
2 − 1), and s̃2,2s̃2,3 = −d2d3.

Looking at the cases d2 = d3 and d2 �= d3 separately, these solve to give

s̃2,2 = −1 and s̃2,3 = d1 = d2d3.

Hence

S̃ =
⎛
⎜⎝

1 d2d3 d2 d3
d2d3 1 −d3 −d2
d2 −d3 −1 d2d3
d3 −d2 d2d3 −1

⎞
⎟⎠ .

This is exactly the S̃ matrix of Case 2 above. Exactly as in that case, we get d2 = φm ,
d3 = φn , and d1 = d2d3. The Ni matrices and the twist inequalities are the same, hence
we conclude (m, n) = (0, 1), (0, 2), or (1, 1). (Here we exclude m = n = 0 since it
gives G trivial.) In the first case, (m, n) = (0, 1), the possible twist matrices are given
by θ3 = e±4π i/5, θ2 = ±i , and θ1 = θ2θ3. In the second case, (m, n) = (0, 2), no twist
matrix exists. (To see this, note that the (1, 1) and (3, 3) entries in the twist equation
give

θ2
1 (φ

2
2 + θ1 + θ2φ

2
2 + θ3) = D+,

−θ2
3 (φ

2
2 + θ1 + θ2φ

2
2 + θ3) = D+.

Thus θ1 = ±iθ3. The (0, 1) and (0, 3) entries give

θ1(1 + θ1 − θ2 − θ3) = D+,

θ3(1 − θ1 + θ2 − θ3) = D+.

Subtracting these and using the result above gives θ2 = ±i . Plugging these equations
into 1 + θ1φ

2
2 + θ2 + θ3φ

2
2 = D+, gives D+ = (1 ± i)(1 + θ3φ

2
2). Equating squared norms

gives θ3 + θ̄3 = 1 − φ2
2 . However 1 − φ2

2 = −2 − 2
√

2 < −2, so this is impossible.) In
the third case, (m, n) = (1, 1), the possible twist matrices are given by θ2 = e±4π i/5,
θ3 = e±4π i/5, and θ1 = θ2θ3.

Next consider the case ε1 = −1 so

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 −1 ε2d3 −ε2d2
d2 ε2d3 s̃2,2 s̃2,3
d3 −ε2d2 s̃2,3 −s̃2,2

⎞
⎟⎠ .

By symmetry under interchanging N2 and N3, we may assume ε2 = +1. Since σ is the
only nontrivial element of the Galois group, we conclude that

d1 − 1

d1
= n, d2 +

d3

d1
= r, and d3 − d2

d1
= s
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are integers. Hence d1 = φn . If n < 0, then d1 < 1 and since it is the largest root
d3 < d2. But then it follows that trace(N1) = d1 − 1/d1 + d3/d2 − d2/d3 < 0, an
impossibility. Further if n = 0, then the same argument shows d1 = 1 and d3 = d2.
However, looking at the eigenvalues of N2 shows σ(d2) = d3/d1 > 0 and looking at
N3 shows σ(d3) = −d2/d1 < 0. Thus n ≥ 1 and d1 is irrational. Since G = Z/2Z, it
follows that K = Q[d1]. Hence we can write d2 = ad1 + b and d3 = ãd1 + b̃ for rational
a, ã, b, b̃. Hence

r = d2 +
d3

d1
= (a + b̃)d1 + b + ã − nb̃, and s = d3 − d2

d1
= (ã − b)d1 + b̃ − a + nb.

Hence b̃ = −a, ã = b, r = na + 2b and s = nb − 2a. Note that in complex terms
this gives d2 + id3 = (a + ib)(d1 − i) and r + is = (a + ib)(n − 2i). In particular
D2 = 1 + d2

1 + d2
2 + d2

3 = (1 + d2
1 )(n

2 + r2 + s2 + 4)/(n2 + 4).
Since the columns of S̃ are of equal length s̃2

2,2 + s̃2
2,3 = 1 + d2

1 . Since s̃2,2/d2 is an
eigenvalue of N2, (s̃2,2/d2)σ (s̃2,2/d2) = s̃2,2s̃2,3/(d2d3) is an integer. Further s̃2,2 �= 0,
since s̃2,2 = 0 would force σ(s̃2,2) = 0 and hence s̃2,3 = 0. Thus

1 + d2
1

2d2d3
≥ |s̃2,2s̃2,3|

d2d3
≥ 1.

The twist inequality coming from the (0, 1) entry of S̃ gives

(1 + d2
1 )

1/2(1 + a2 + b2)1/2 = D ≤ 2 + 2
d2d3

d1

≤ 2 +
2d2d3

1 + d2
1

· 1 + d2
1

d1

≤ 2 +
1 + d2

1

d1
= (1 + d1)

2

d1
.

Rewriting this gives using

r2 + s2 ≤ (n2 + 4)
4d3

1 + 5d2
1 + 4d1 + 1

d2
1 (1 + d2

1 )
.

The twist inequality coming from the (0, 0) entry of S̃ is 2d2
1 ≤ D2 + D, hence

2d2
1 ≤ (1 + d1)

4

d2
1

+
(1 + d1)

2

d1
, or

d4
1 ≤ 5d3

1 + 8d2
1 + 5d1 + 1.

It follows that d1 < 7, hence 1 ≤ n ≤ 6. Together with the bound on r2 + s2 above, this
leaves only finitely many possibilities (110 of them, insisting that d2 and d3 be positive,
but finite).
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Since G = Z/2Z, the quantities

d2d3

d1
= r2 + nrs − s2

n2 + 4
,

d3

d2
− d2

d3
= n +

(n2 + 4)rs

r2 + nrs − s2 ,

s̃2,2

d2
+

s̃2,3

d3
= (n2 − 4)r3 − 12nr2s − 3(n2 − 4)rs2 + 4ns3

(r2 + s2)(r2 + nrs − s2)
,

s̃2,3

d2
− s̃2,2

d3
= 4nr3 + 3(n2 − 4)r2s − 12nrs2 − (n2 − 4)s3

(r2 + s2)(r2 + nrs − s2)
,

s̃2,2s̃2,3

d2d3
= (4 − 3n2)(r4 − 6r2s2 + s4)− 2n(n2 − 12)rs(r2 − s2)

(r2 + s2)2(r2 + nrs − s2)

are all integers. Only 6 of the 110 examples pass these integrality conditions. These
are (n, r, s) = (1, 2, 1), (1, 3,−1), (2, 2, 2), (3, 2, 3), (4, 2, 4), and (4, 3, 1). The cases
with n = s and r = 2 can be ignored since they give a = 0 and b = 1, hence d2 = 1,
d3 = d1, and s̃2,2 = −1. Thus s̃3,3 = 1. Invoking the symmetry under interchanging N1
and N3 puts us back in the case ε1 = 1. These are just the (0, n) examples discussed
above. The remaining two examples fail to give integral Ni matrices and also fail the
twist inequalities. Thus there are no new examples in this case.

Case 6. G contains the transposition σ = (0 1). Since we can exclude the cases above,
σ must be the only non-trivial element of G. Up to symmetry there are two cases. The par-
ity condition gives ε1ε2ε3 = −1. Since d2 = s̃0,2 = ε1ε2s̃1,2 and s̃1,2 = ε2s̃0,2 = ε2d2,
we conclude ε1 = 1 and ε3 = −ε2. Then s̃2,3 = ε2ε3s̃3,2 and the fact that S̃ is symmetric
forces s̃2,3 = s̃3,2 = 0. By symmetry we may assume ε2 = 1 and ε3 = −1. Thus we get

S̃ =
⎛
⎜⎝

1 d1 d2 d3
d1 1 d2 −d3
d2 d2 s̃2,2 0
d3 −d3 0 s̃3,3

⎞
⎟⎠ .

Note that λ2,2 = s̃2,2/d2 and λ3,3 = s̃3,3/d3 are integers. Note that orthogonality of
the third column of S̃ with the first forces λ2,2 < 0. Since d1 ≥ σ(d1) = 1/d1, we
conclude d1 ≥ 1. Thus orthogonality of the first and fourth columns of S̃ gives λ3,3 ≥ 0.
It is straightforward, though somewhat tedious, to build the Ni matrices in this case and
worry about their integrality and nonnegativity; however, there is an easier approach.
Since s̃2,3 = s̃3,2 = 0, the twist equation for the (2, 3) entry becomes

θ2θ3(d2d3 − θ1d2d3) = 0.

Thus we conclude θ1 = 1. Using this fact the (2, 2) entry becomes

θ2
2 (2d2

2 + θ2s̃2
2,2) = D+s̃2,2.

Since s̃2,2/d2 = λ2,2 < 0 is integral and |D+|2 = D2 = (λ2
2,2 + 2)d2

2 , equating the
squared norms of the sides of this equation gives

θ2 + θ̄2 = 1 − 2

λ2
2,2

.
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The left-hand side is an algebraic integer, hence we conclude λ2,2 = −1 and θ2 =
exp(±2π i/3). Similarly, the (3, 3) entry gives λ3,3 = 1 and θ3 = exp(±2π i/3). Equat-
ing the squared lengths of the last two columns of S̃ now gives d2

2 = d2
3 , hence d2 = d3.

This is a contradiction, since σ(d2) = λ2,1 = d2/d1 but σ(d3) = λ3,1 = −d3/d1.

Case 7. G is trivial. This case is also contained in [CZ].

In this case all the di and λi, j are integral. By symmetry, we may assume 1 ≤ d1 ≤
d2 ≤ d3. Since every column of S̃ must have squared length D2, we see that D2 must
be a multiple of d2

i for all i . If d1 = d2 = d3, then d2
1 must divide D2 = 3d2

1 + 1. Hence
d1 = d2 = d3 = 1. Up to symmetry orthogonality of the columns of S̃ forces

S̃ =
⎛
⎜⎝

1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

⎞
⎟⎠ ,

or

S̃ =
⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠ .

For the first S̃ matrix, this gives integral Ni matrices

N1 =
⎛
⎜⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠ , N2 =

⎛
⎜⎝

0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

⎞
⎟⎠ , and N3 =

⎛
⎜⎝

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

⎞
⎟⎠ .

The possibilities for the corresponding twist matrix are

T =
⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 1 0
0 0 0 −i

⎞
⎟⎠ ,

⎛
⎜⎝

1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 i

⎞
⎟⎠ ,

or their complex conjugates. (Note that this is the case m = n = 0 of the form found in
Cases 2 and 5.) For the second S̃ matrix, the compatible T matrices are listed in Table 2.

If the di are not all equal, then d1 < d3, hence 1 + d2
1 < d2

3 and d2
3 < D2 < 3d2

3 .
Thus we must have D2 = 2d2

3 , i.e., two of the s̃i,3 are zero and the other two are ±d3.
Of course s̃0,3 = d3. Suppose s̃ j,3 = ±d3 is the other nonzero entry in the last column.
Orthogonality of the first and last columns gives d3(1 ± d j ) = 0, hence the lower sign
is correct and d j = 1. Thus using symmetry we may assume j = 1. Orthogonality
of the remaining columns with the last column gives s̃1,1 = d1 = 1 and s̃2,1 = d2.
Orthogonality of the third column and the first two gives s̃2,2 = −2 and

S̃ =
⎛
⎜⎝

1 1 d2 d3
1 1 d2 −d3
d2 d2 −2 0
d3 −d3 0 0

⎞
⎟⎠ .

However equality of the squared lengths of the last two columns now gives D2 = 2d2
3 =

2d2
2 + 4 or d2

3 = d2
2 + 2, an impossibility. �	
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5. Realization of Fusion Rules and Classification of MTCs

In this section, for each modular fusion rule (N ; S̃) in Theorems 3.1, 3.2, 4.1, we will
first determine all modular symbols with this fusion rule which also satisfy (1), (2) of
Proposition 2.3, then classify all MTCs realizing each such modular symbol.

For each modular fusion rule (N ; S̃), there are two choices of compatible S matri-
ces: S = 1

D S̃ or − 1
D S̃. When the two modular symbols are realized by (2+1)-TQFTs,

respectively, one TQFT is obtained from the other by tensoring the trivial theory with
S = (−1). The quantum invariant of the 3-sphere will be 1

D or − 1
D , respectively. Also

the topological central charge c of the two theories will differ by 4. Another symme-
try for modular symbols is complex conjugation: to change (N ; S, T ) to (N ; S†, T †).
Complex conjugation of a modular symbol gives rise to a different modular symbol if
one of the S, T is not a real matrix.

Given an S̃ matrix, we can obtain all fusion matrices by using the Verlinde formulas.
Instead of listing fusion matrices, we will present them as fusion rules. In the following,
we will not list trivial fusion rules such as 1⊗ x = x and those that can be obtained from
obvious identities such as x ⊗ y = y⊗x . We will also write x ⊗ y as xy sometimes. Then
we use relations (3)(i)-(iv) of Definition 2.1 together with (1) (2) of Proposition 2.3 to
determine the possible T -matrices. As Example 2.2 illustrates, Proposition 2.3 is nec-
essary to get finitely many solutions in some cases. We find that there are finitely many
modular symbols (N ; S, T ) of rank≤ 4 satisfying Proposition 2.3. Modulo the symme-

try S → −S, these modular symbols are classified in Table 2. In the table, ζm = e
2π i
m .

The labels will be {1, X} for rank=2, {1, X,Y } for rank=3, and {1, X,Y, Z} for rank=4.
They will correspond to rows 1, 2, 3, 4 of the S̃ matrices. The # is the number of modu-
lar symbols satisfying Proposition 2.3 modulo the symmetry S → −S. The column P
stands for primality, and the column G is the Galois group of the modular fusion rule.

With modular symbols determined, we turn to realizing each of them with MTCs.
First let us consider the S̃-matrices corresponding to Theorem 4.1(3)-(5). In each of
these cases there is a rank=2 tensor subcategory corresponding to the objects label-
ling columns 1 and 3 of the S̃ matrix. Further inspection shows that the submatrix of
S̃ corresponding to rows and columns 1 and 3 is invertible. It is obvious that the ten-
sor subcategory generated by the trivial object and the object labelling column 3 is a
modular subcategory. For the S̃-matrices of Theorem 4.1(3),(4) these rank=2 modular
subcategories are equivalent to the UMTCs corresponding to Theorem 3.1(1), while the
modular subcategory corresponding to the S̃-matrix of Theorem 4.1(5) is equivalent to
(one of) the UMTCs coming from Theorem 3.1(2). By [M2, Theorem 4.2] this implies
that the MTCs corresponding to these S̃ matrices are direct products of rank=2 MTCs.
For this reason we will not write down realizations or complete data for these MTCs as
they can be deduced from their product structure.

MTCs realizing the remaining 8 nontrivial modular symbols are prime, i.e. they do
not have non-trivial modular subcategories. To complete the classification, we need to
solve the pentagon and hexagon equations for all 8 modular symbols. The solutions of
the pentagon equations are organized into the F-matrices whose entries are called 6 j
symbols. The solutions of hexagons are given by the braiding eigenvalues.

5.1. F-matrices. Given an MTC C, a 4-punctured sphere S2
a,b,c,d , where the 4 punctures

are labelled by a, b, c, d, can be divided into two pairs of pants (=3-punctured spheres)
in two different ways. In the following figure, the 4-punctured sphere is the boundary
of a thickened neighborhood of the graph in either side, and the two graphs encode the
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Table 2. Rank≤ 4 unitary modular symbols

S̃ matrix Fusion rules T matrix #s P G

S̃ = (1) (1) 1 Yes 1

Thm 3.1(1) X2 = 1 Diag(1,±i) 2 Yes 1

Thm 3.1(2) X2 = 1 + X Diag(1, (ζ5)
±2) 2 Yes Z2

Thm 3.2(1) X2 = X∗, X X∗ = 1,
(X∗)2 = X

Diag(1, ζ±1
3 , ζ±1

3 ) 2 Yes Z2

Thm 3.2(2) X2 = 1 + Y ,
XY = X , Y 2 = 1

Diag(1, (ζ16)
2k+1,−1) 8 Yes Z2

Thm 3.2(3) X2 = 1 + X + Y ,
XY = X + Y ,
Y 2 = 1 + X

Diag(1, (ζ7)±5, (ζ7)
±1) 2 Yes Z3

Thm 4.1(1) X2 = Y = (X∗)2,
X X∗ = 1 = Y 2,
XY = X∗, X∗Y = X

Diag(1,−1, (ζ8)±m , (ζ8)
±m ), m=1,3 4 Yes Z2

Thm 4.1(2) X2 = 1, XY = Z ,
X Z = Y , Y 2 = 1,
Y Z = X , Z2 = 1

Diag(1,−1, ε1, ε1), ε
2
1 = 1 2 Yes 1

Thm 4.1(3) X2 = 1, XY = Z ,
X Z = Y , Y 2 = 1,
Y Z = X , Z2 = 1

Diag(1, θ1, θ2, θ1θ2), θ
2
i = −1 3 No 1

Thm 4.1(4) X2 = 1 + X ,
XY = Z ,
X Z = Y + Z , Y 2 = 1,
Y Z = X , Z2 = 1 + X

Diag(1, θ1, θ2, θ1θ2), θ1 = (ζ5)
±2, θ2 = ±i 4 No Z2

Thm 4.1(5) X2 = 1 + X ,
XY = Z ,
X Z = Y + Z ,
Y 2 = 1 + Y ,
Y Z = X + Z ,
Z2 = 1 + X + Y + Z

Diag(1, θ1, θ2, θ1θ2), θ1 = (ζ5)
±2, θ2 = (ζ5)

±2 3 No Z2

Thm 4.1(6) X2 = 1 + X + Y ,
XY = X + Y + Z ,
X Z = Y + Z ,
Y 2 = 1 + X + Y + Z ,
Y Z = X + Y ,
Z2 = 1 + X

Diag(1, ζ±2
9 , (ζ9)

±6, (ζ9)
∓6) 2 Yes Z3

two different pants-decompositions of the 4-punctured sphere. The F-move is just the
change of the two pants-decompositions.

When bases of all pair of pants spaces Hom(a ⊗ b, c) are chosen, then the two pants
decompositions of S2

a,b,c,d determine bases of the vector spaces Hom((a ⊗ b)⊗ c, d),

and Hom(a ⊗ (b ⊗ c), d), respectively. Therefore the F-move induces a matrix Fa,b,c
d :

Hom((a ⊗ b)⊗ c, d) → Hom(a ⊗ (b ⊗ c), d), which are called the F-matrices. Con-
sistency of the F matrices are given by the pentagon equations.

For each quadruple (a, b, c, d), we have an F-matrix whose entries are indexed by
a pair of triples ((m, s, t), (n, u, v)), where m, n are the labels for the internal edges,
and s, t, u, v are indices for a basis of the Hom(x ⊗ y, z) spaces with dim > 1. For
the MTCs in our paper, none of the Hom(a ⊗ b, c) has dim > 1, so we will drop the
s, t, u, v from our notation. If one of the a, b, c in Fa,b,c

d is the trivial label, then we may

assume Fa,b,c
d is the identity matrix. But we cannot always do so if d is the trivial label.
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In the following, any unlisted F matrix is the identity.

��
��

��
��

��
��

��
a b c

d

Fabc
d

��
��
��
��
��
��
��

a b c

d

m n

5.2. Braidings and twists. The twist of the simple type Xi will be denoted by θi , and it
is defined by the following positive twist:

θi

The braiding eigenvalues are defined by the following diagram:

a b

c

Rab
c

��������

��������

a b

c

The consistency equations of the braidings are given by two independent families of
hexagon equations. If c is the trivial label, and label a is self-dual, then Raa

1 = νaθ
−1
a ,

where νa is the Frobenius-Schur indicator of a.

5.3. Explicit data. In this section, we give the explicit data for at least one realization
of each prime modular fusion rule. Since each modular symbol can have up to 4 MTC
realizations, we will present the complete data for only one of them. We choose one with
the following properties:

(1) The (0, 0) entry of the S matrix is 1
D , where D is the total quantum order.

(2) In a category with a generating non-abelian simple object X , we choose a theory
with the positive exponent of the twist θX being the smallest. This is inspired by
anyon theory that the simple object with the smallest exponent is the most relevant
in physical experiments.

If a modular symbol (N ; S, T ) is realized by an MTC, then the modular symbol
(N ;−S, T ) is also realized by an MTC. The modular symbol (N ; S̃†, T †) is realized
by complex conjugating all F matrices and braidings of (N ; S, T ). So in the following
each group of data will be for 4 MTCs if any of S, T, F and braidings are not real;
otherwise there will be two. We choose the F matrices to be unitary, and real if possible.

In anyon theory, labels will be called anyon types. The smallest positive exponent of
a twist θi will be called the topological spin of the anyon type i . Topological spins are the



On Classification of Modular Categories 375

conformal dimensions modulo integers of the corresponding primary field if the MTC
has a corresponding RCFT. The last line of the data lists all quantum group realizations
of the same theory. We did not list the Frobenius-Schur indicators of anyons because
they can be calculated by the formula in Proposition 2.3. In the following data, only the
semion s and the (A1, 2) non-abelian anyon σ have Frobenius-Schur indicator=−1.

5.3.1. Semion MTC We will use s to denote the non-trivial label.
Anyon types: {1, s}
Fusion rules: s2 = 1
Quantum dimensions: {1, 1}
Twists: θ1 = 1, θs = i
Total quantum order: D = √

2
Topological central charge: c = 1
Braidings: Rss

1 = i

S-matrix: S = 1√
2

(
1 1
1 −1

)

F-matrices: Fs,s,s
s = (−1)

Realizations: (A1, 1), (E7, 1)

5.3.2. Fibonacci MTC We will use ϕ to denote the golden ratio ϕ = 1+
√

5
2 and τ the

non-trivial label.
Anyon types: {1, τ }
Fusion rules: τ 2 = 1 + τ
Quantum dimensions: {1, ϕ}
Twists: θ1 = 1, θτ = e

4π i
5

Total quantum order: D = 2 cos( π10 ) =
√

5
2 sin( π5 )

Topological central charge: c = 14
5

Braidings: Rττ1 = e− 4π i
5 , Rτττ = e

3π i
5

S-matrix: S = 1√
2+ϕ

(
1 ϕ

ϕ −1

)

F-matrices: Fτ,τ,ττ =
(
ϕ−1 ϕ−1/2

ϕ−1/2 −ϕ−1

)

Realizations: (A1, 3) 1
2
, (G2, 1), complex conjugate of (F4, 1)

5.3.3. Z3 MTC We will useω for both a non-trivial label and the root of unityω = e2π i/3.
No confusions should arise.

Anyon types: {1, ω, ω∗}
Fusion rules: ω2 = ω∗, ωω∗ = 1, (ω∗)2 = ω

Quantum dimensions: {1, 1, 1}
Twists: θ1 = 1, θω = θω∗ = e

2π i
3

Total quantum order: D = √
3

Topological central charge: c = 2

Braidings: Rω,ω
∗

1 = Rω
∗,ω

1 = e− 2π i
3 , Rω,ωω∗ = Rω

∗,ω∗
ω = e− 4π i

3

S-matrix: S = 1√
3

⎛
⎝1 1 1

1 ω ω2

1 ω2 ω

⎞
⎠
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F-matrices: Fa,b,c
d = (1) for any a, b, c, d

Realizations: (A2, 1), (E6, 1)

5.3.4. Ising MTC We will use 1, σ, ψ to denote the non-trivial labels.
Anyon types: {1, σ, ψ}
Fusion rules: σ 2 = 1 + ψ, σψ = ψσ = σ,ψ2 = 1
Quantum dimensions: {1,√2, 1}
Twists: θ1 = 1, θσ = e

π i
8 , θψ = −1

Total quantum order: D = 2
Topological central charge: c = 1

2

Braidings: Rσσ1 = e− π i
8 , Rψψ1 = −1, Rψσσ = Rσψσ = −i, Rσσψ = e

3π i
8

S-matrix: S = 1
2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠

F-matrices: Fσ,σ,σσ = 1√
2

(
1 1
1 −1

)
,Fψ,σ,ψσ = (−1),Fσ,ψ,σψ = (−1)

Realizations: complex conjugate of (E8, 2)

5.3.5. (A1, 2) MTC We will use 1, σ, ψ to denote the non-trivial labels again.
Anyon types: {1, σ, ψ}
Fusion rules: σ 2 = 1 + ψ, σψ = ψσ = σ,ψ2 = 1
Quantum dimensions: {1,√2, 1}
Twists: θ1 = 1, θσ = e

3π i
8 , θψ = −1

Total quantum order: D = 2
Topological central charge: c = 3

2

Braidings: Rσσ1 = −e− π i
8 , Rψψ1 = −1, Rψσσ = Rσψσ = i, Rσσψ = e

π i
8

S-matrix: S = 1
2

⎛
⎝ 1

√
2 1√

2 0 −√
2

1 −√
2 1

⎞
⎠

F-matrices: Fσ,σ,σσ = − 1√
2

(
1 1
1 −1

)
,Fψ,σ,ψσ = (−1),Fσ,ψ,σψ = (−1)

Realizations: (A1, 2)

5.3.6. (A1, 5) 1
2

MTC We will use 1, α, β to denote the non-trivial labels. Note that
1, α, β are special labels for 1,Y, X in Theorem 3.2(3) of Table 2.

Anyon types: {1, α, β}
Fusion rules: α2 = 1 + β, αβ = α + β, β2 = 1 + α + β
Quantum dimensions: {1, d, d2 − 1}, where d = 2 cos(π7 )

Twists: θ1 = 1, θα = e
2π i

7 , θβ = e
10π i

7

Total quantum order: D =
√

7
2 sin( π7 )

Topological central charge: c = 48
7

Braidings: Rαα1 = e− 2π i
7 , Rββ1 = e− 10π i

7

Rββα = e− 2π i
7 , Rαβα = Rβαα = e

9π i
7

Rβββ = e− 5π i
7 , Rαββ = Rβαβ = e

6π i
7 , Rααβ = e− 4π i

7
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S-matrix: S = 1
D

⎛
⎝ 1 d d2 − 1

d −d2 + 1 1
d2 − 1 1 −d

⎞
⎠

F-matrices: see the end of this subsection
Realizations: (A1, 5) 1

2

5.3.7. Z4 MTC We will use 1, ε, σ, σ ∗ to denote the non-trivial labels.
Anyon types: {1, ε, σ, σ ∗}
Fusion rule: ε2 = σσ ∗ = 1, σ 2 = (σ ∗)2 = ε, σε = σ ∗, σ ∗ε = σ

Quantum dimensions: {1, 1, 1, 1}
Twists: θ1 = 1, θε = −1, θσ = θσ ∗ = e

π i
4

Total quantum order: D = 2
Topological central charge: c = 1

Braidings: Rε,ε1 = −1, Rσ,σε = Rσ
∗,σ∗

ε = e
π i
4 , Rσ,σ

∗
1 = Rσ

∗,σ
1 = e− π i

4 ,
Rσ,εσ ∗ = Rε,σσ ∗ = Rσ

∗,ε
σ = Rε,σ

∗
σ = −i

S-matrix: S = 1
2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 −i i
1 −1 i −i

⎞
⎟⎠

F-matrices: Fσ,σ,σσ ∗ = Fσ
∗,σ ∗,σ ∗

σ = Fε,σ,εσ = Fε,σ
∗,ε

σ ∗ = Fσ,ε,σ
∗

ε = Fσ
∗,ε,σ

ε = (−1)
Realizations: (A3, 1), (D9, 1)

5.3.8. Toric code MTC The fusion rules are the same as Z2 × Z2, but the theory is not
a direct product. We will use 1, e,m, ε to denote the non-trivial labels.

Anyon types: {1, e,m, ε}
Fusion rules: e2 = m2 = ε2 = 1, em = ε, eε = m,mε = e
Quantum dimensions: {1, 1, 1, 1}
Twists: θ1 = θe = θm = 1, θε = −1
Total quantum order: D = 2
Topological central charge: c = 0
Braidings: Rε,ε1 = −1, Re,m

ε = 1, Rm,e
ε = −1, Re,e

1 = Rm,m
1 = 1,

Rε,me = 1, Rm,ε
e = −1, Re,ε

m = 1, Rε,em = −1

S-matrix: S = 1
2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠

F-matrices: Fa,b,c
d = (1) for all a, b, c, d

Realizations: (D8, 1), D(Z2)—quantum double of Z2

5.3.9. (D4, 1) MTC The fusion rules are the same as Z2 × Z2, but the theory is not a
direct product. We will use 1, e,m, ε to denote the non-trivial labels again.

Anyon types: {1, e,m, ε}
Fusion rules: e2 = m2 = ε2 = 1, em = ε, eε = m,mε = e
Quantum dimensions: {1, 1, 1, 1}
Twists: θ1 = 1, θe = θm = θε = −1
Total quantum order: D = 2
Topological central charge: c = 4
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Braidings: Rε,ε1 = −1, Re,m
ε = −1, Rm,e

ε = 1, Re,e
1 = Rm,m

1 = −1, Rε,me =
1, Rm,ε

e = −1, Re,ε
m = 1, Rε,em = −1

S-matrix: S = 1
2

⎛
⎜⎝

1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

⎞
⎟⎠

F-matrices: Fa,b,c
d = (1) for all a, b, c, d

Realizations: (D4, 1)

5.3.10. (A1, 7) 1
2

MTC We will use 1, α, ω, ρ to denote the non-trivial labels. Note that
1, α, ω, ρ are special labels for 1, Z ,Y, X in Theorem 4.1(6) of Table 2.

Anyon types: {1, α, ω, ρ}
Fusion rules: α2 = 1 + ω, αω = α + ρ, αρ = ω + ρ, ω2 = 1 + ω + ρ
ωρ = α + ω + ρ, ρ2 = 1 + α + ω + ρ
Quantum dimensions: {1, d, d2 − 1, d + 1}, where d = 2 cos(π9 ) and d3 = 3d + 1

Twists: θ1 = 1, θα = e
2π i

3 , θω = e
4π i

9 , θρ = e
4π i

3

Total quantum order: D = 3
2 sin( π9 )

Topological central charge: c = 10
3

Braidings: Rαα1 = e− 2π i
3 , Rωω1 = e− 4π i

9 , Rρρ1 = e− 4π i
3

Rαωα = Rωαα = e
7π i

9 , Rωρα = Rρωα = e
4π i

9 , Rρρα = −1

Rαρω = Rραω = e
2π i

9 , Rωρω = Rρωω = e− 2π i
3 , Rααω = e

5π i
9 , Rρρω = e− π i

9 , Rωωω = e
7π i

9

Rαωρ = Rωαρ = e− 8π i
9 , Rαρρ = Rραρ = e− π i

3 , Rρωρ = Rωρρ = e
7π i

9 , Rωωρ = e
2π i

9 ,

Rρρρ = e− 2π i
3

S-matrix: S = 1
D

⎛
⎜⎜⎝

1 d d2 − 1 d + 1
d −d − 1 d2 − 1 −1

d2 − 1 d2 − 1 0 −d2 + 1
d + 1 −1 −d2 + 1 d

⎞
⎟⎟⎠

F-matrices: see below
Realizations: (A1, 7) 1

2
, complex conjugate of (G2, 2)

The list of all F matrices for an MTC can occupy many pages. But they are needed
for the computation of quantum invariants using graph recouplings, the Hamiltonian
formulation of MTCs as in [LWe] or the study of anyon chains [FTL]. For the MTCs
(A1, k) 1

2
with odd k, all the data of the theory can be obtained from [KL]. For k = 5,

choose A = ie− 2π i
28 , the label set is L = {0, 2, 4} in [KL] and 0 = 1, 4 = α, 2 = β.

For k = 7, set A = ie
2π i
36 , the label set is L = {0, 2, 4, 6} in [KL] and 0 = 1, 6 =

α, 2 = ω, 4 = ρ. The twist is given by θa = (−1)a Aa(a+2), and the braiding Rab
c =

(−1)
a+b−c

2 A− a(a+2)+b(b+2)−c(c+2)
2 . The formulas for 6 j symbols can be found in Chap. 10 of

[KL]. The F matrices from [KL] are not unitary, but the complete data can be presented
over an abelian Galois extension of Q. To have unitary F matrices, we need to normalize
the θ symbols as θ(i, j, k) = √

di d j dk .
The (A1, k) 1

2
, k odd, MTCs have peculiar properties regarding the relation between

the bulk (2 + 1)-TQFTs and the boundary RCFTs. To realize (A1, k) 1
2
, k odd, using the

Kauffman bracket formalism, we set A = ie± 2π i
4(k+2) . In order to follow the convention

above, we choose A = ie− 2π i
4(k+2) if k = 1 mod 4, and A = ie

2π i
4(k+2) if k = −1 mod 4.
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Note that in both cases A is a 2(k + 2)th root of unity. We have

(A1, k) = (A1, k) 1
2

× the semion, (5.1)

if k = 1 mod 4, and

(A1, k) = (A1, k) 1
2

× the semion, (5.2)

if k = −1 mod 4. The central charge of (A1, k) is 3k
k+2 , which implies that the central

charge of (A1, k) 1
2

is ck = 1 − 3k
k+2 if k = 1 mod 4, and ck = 1 + 3k

k+2 if k = −1 mod 4.
In Table 3, we list all unitary quantum groups categories of rank≤ 12 from the

standard construction. For notation, see [HRW].

Remark 5.1. The following serves as a guide to Table 3.

(1) In general we will list these categories as (Xr , k) for the category obtained from a
quantum group of type Xr at level k. Observe that the corresponding root of unity
is of order � = mk + h, where m = 1 for X = A, D, or E ; m = 2 for X = B,C or
F and m = 3 for X = G, and h is the dual Coxeter number.

(2) The category (Ar , k) has a modular subcategory (Ar , k) 1
r+1

generated by the objects
with integer weights provided gcd(r +1, k) = 1. These are found on line 5 of Table 3
where

L = {(1, 2s + 1), (2s, 2), (2, 4), (2, 5), (2, 7), (3, 3), (4, 3), (6, 3) : 1 ≤ s ≤ 11}.
(3) We include the examples of pseudo-unitary categories coming from low-rank coin-

cidences for quantum groups of types F4 and G2 at roots of unity of order coprime
to 2 and 3 respectively.

(4) This list includes different realizations of equivalent categories. We eliminate those
coincidences that occur because of Lie algebra isomorphisms such as sp4

∼= so5
etc., and do not include the trivial rank= 1 category.

(5) NSD means the category contains non-self-dual objects.
(6) “c.f. (Xr , k)” means the categories in question have the same fusion rules as those

of (Xr , k).
(7) We include the three categories coming from doubles of finite groups with rank≤12,

although they are not strictly speaking of quantum group type.

5.4. Classification. In this section, we explain Table 1. We identify MTCs whose label
sets differ by permutations. For the trivial MTCs, the two MTCs are distinguished by
the S matrices: S = (±1).

For the Z2 fusion rule, unitary MTCs are the semion MTC and those from the two
symmetries S → −S and complex conjugate.

For the Fibonacci fusion rule, unitary MTCs are the Fibonacci MTC and those from
the two symmetries S → −S and complex conjugate.

For the Z3 fusion rule, all unitary MTCs are the one listed in the last subsection and
those from the two symmetries S → −S and complex conjugate.

For the Ising fusion rule, there are a total of 16 theories divided into two groups
according to the Frobenius-Schur indicator of the non-abelian anyon X, X2 = 1 + Y .
There are 8 unitary MTCs with Frobenius-Schur indicator=1. Their twists are given
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Table 3. Unitary Quantum Group Categories of rank ≤ 12

(Xr , k) Rank Notes �

(Ar , 1), r ≤ 11 r + 1 r ≥ 2 NSD, abelian r + 2

(A1, k), k ≤ 11 k + 1 k + 2

(A2, 2) 6 NSD 5

(A2, 3), (A3, 2) 10 NSD 6

(Ar , k) 1
r+1

, (r, k) ∈ L 1
r+1

(k+r
k

)
r ≥ 2 NSD k + r + 1

(Br , 1) 3 c.f. (A1, 2) 4r

(Br , 2), r ≤ 8 r + 4 finite braid image? 4r + 2

(B2, 3) 10 12

(Cr , 1) r ≤ 11 r + 1 c.f. (A1, r) 2(r + 2)

(C3, 2) 10 12

(D2r , 1) 4 r even c.f. Dω(Z2) 4r − 1

(D2r+1, 1) 4 c.f. (A3, 1) 4r + 1

(Dr , 2), r = 4, 5 11, 12 r = 5 NSD 8, 10

(E6, k), k = 1, 2 3, 9 NSD 13, 14

(E7, k), 1 ≤ k ≤ 3 2, 6, 11 19, 20, 21

(E8, k), 2 ≤ k ≤ 4 3, 5, 10 32, 33, 34

(F4, k), 1 ≤ k ≤ 3 2, 5, 9 20, 22, 24

(G2, k), 1 ≤ k ≤ 5 2, 4, 6, 9, 12 15, 18, 21, 24, 27

F4 10 c.f. (E8, 4) 17

G2 5, 8, 10 11, 13, 14

Dω(Z2) 4 prime

Dω(Z3) 9 prime

Dω(S3) 8 c.f. (B4, 2)

by θX = e
mπ i

8 for m = 1, 7, 9, 15. The Ising MTC is the simplest one with m = 1
and central charge c = 1

2 . The theory m = 1,m = 15 are complex conjugate of each
other, so are the m = 7, 9. The other 4 MTCs are obtained by choosing −S. There are

8 unitary MTCs with Frobenius-Schur indicator=−1. Their twists are θX = e
mπ i

8 for
m = 3, 5, 11, 13. The SU (2) at level k = 2 is the simplest one with m = 3 and central
charge c = 3

2 . The MTCs m = 3 and m = 13 are complex conjugate, so are m = 5, 11.
The other 4 are those with −S. The Ising MTC is not an SU (2) theory. It can, however,
be obtained as a quantum group category as the complex conjugate of E8 at level=2.
Note that the F matrices in each group of 8 are the same, but their braidings are different.
The SU (2) level=2 theory has F X X X

X = −Fσσσσ with the other F matrices the same as
the Ising theory.

For the (A1, 5) 1
2

fusion rule, all unitary MTCs are the one listed in the last subsection
and those from the two symmetries S → −S and complex conjugate.

For the Z2 × Z2 fusion rules, there are two groups of theories depending on whether
or not the theory is a product. There are 4 theories which are not direct products, and 6
product theories. The toric code MTC has another version, which could also be called
the toric code: it has θe = θm = −1. All F matrices are 1. The braidings Ree

1 = Rmm
1 =

Rem
ε = −1, Rme

ε = 1, and others are the same as the toric code. Another two are the
−S versions. The product theories are the products of the semion MTC and its complex
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conjugate. There are 4 possible theories, but two of them are the same: semion × com-
plex conjugate is the same as complex conjugate × semion. Hence there are 3 theories
here. With the −S versions, we have 6 product theories.

For the Z4 fusion rule, the Galois group action of the MTC listed above is Z4. Its

actions give rise to 4 theories with θX = θX∗ = e
mπ i

4 for m = 1, 3, 5, 7. They all have
the same F matrices. The −S versions give a total of 8.

For the (A1, 3) fusion rule, this is the product of the semion fusion rule with the
Fibonacci fusion rule. There are 4 product theories from semion, Fibonacci and their
complex conjugates. These 4 theories are different, and the other 4 come from their −S
versions. Let us choose the product of the semion with the Fibonacci as a representative
theory, then we have 4 anyons, 1, ϕ, τ, s, where τ is the Fibonacci anyon, and ϕ is the
same as τ tensoring the semion s.

For the (A1, 7) 1
2

fusion rule, all unitary MTCs are the ones listed in last subsection
and those from the two symmetries S → −S and complex conjugate.

The analysis of the Fibonacci × Fibonacci fusion rule is the same as that of the
semion × semion fusion rule.

6. Conjectures and Further Results

In this section we briefly discuss several conjectures concerning the structure and appli-
cation of MTCs.

6.1. Fusion rules and the finiteness conjecture. Since topological phases of matter are
discrete in the space of theories, therefore, MTCs, encoding the universal properties of
topological phases of matter, should also be discrete.

It is conjectured [Wa]:

Conjecture 6.1. If the rank of MTCs is fixed, then there are only finitely many equiva-
lence classes of MTCs.

By Ocneanu rigidity, this is equivalent to there are only finitely many modular fusion
rules realizing by MTCs of a fixed rank.

Proposition 6.2. There are only finitely many equivalence classes of unitary MTCs with
total quantum order D ≤ c, where c is any given universal constant.

Proof. For a unitary rank=n MTC, all quantum dimensions dr ≥ 1, r ∈ L. So D ≥ √
n.

If D ≤ c, then n ≤ c2. By Verlinde formula 2.3, we have nk
i, j = | ∑n−1

r=0
sir s jr s∗

kr
s0r

| ≤
D

∑n−1
r=0

1
dr

≤ nD ≤ c3 for any i, j, k. Therefore, there are only finitely many possible
fusion rules. By Ocneanu rigidity, there are only finitely many possible MTCs. �	

6.2. Topological qubit liquids and the fault-tolerance conjecture. Topological phases
of matter are quantum liquids such as the electron liquids exhibiting the FQHE, whose
topological properties emerged from microscopic degrees of freedom. This inspires the
following discussion.

Let � be a triangulation of a closed surface �, �� be its dual triangulation: vertices
are centers of the triangles in �, and two vertices are connected by an edge if and only
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if the corresponding triangles of � share an edge. The dual triangulation �� of � is
a celluation of � whose 1-skeleton is a tri-valent graph. It is well-known that any two
triangulations of the same surface� can be transformed from one to the other by a finite
sequence of two moves and their inverses: the subdivision of a triangle into 3 new trian-
gles; and the diagonal flip of two adjacent triangles that share an edge (=the diagonal).
Dualizing the triangulations into celluations, the two moves become the inflation of a
vertex to a triangle and the F move.

Definition 6.3. (1) Given an integer k > 0, a k-local, or just local, qubit model on
(�, ��) is a pair (H�, H�), where H� is the Hilbert space ⊗e∈��C

2, and H� is
a k local Hamiltonian in the following sense: H� is a sum of Hermitian operators
of the form id ⊗ · · · ⊗ id ⊗ Ok ⊗ id ⊗ · · · ⊗ id, where Ok acts on ≤ k qubits.

(2) A modular functor V is realized by a topological qubit liquid if there is a sequence
of triangulations {�i }∞i=1 of � whose meshes → 0 as i → ∞, an integer k, and
uniform local qubit models on (�, ��i ) such that

(i) the groundstates manifold of each H�i is canonically isomorphic to the mod-
ular functor V (�) as Hilbert spaces;

(ii) the mapping class group acts as unitary transformations compatibly;
(iii) there is a spectral gap in the following sense: if the eigenvalues of the Ham-

iltonians H�i are normalized such that 0 = λi
0 < λi

1 < · · ·, then λi
1 ≥ c for

all i , where c > 0 is some universal constant.

The scheme for the local qubit models should be independent of the geometry of
the surface �, and have a uniform local description. The modular functor determines a
unique topological inner product on V (�). We require that the restricted inner products
from H�i to the groundstates of H�i agree with the topological inner product on V (�).
To identify the Hilbert space H�i of one triangulation with another, we consider the two
basic moves: F move and inflation of a vertex. The F move does not change the number
of qubits, so the two Hilbert spaces H�i have the same number of qubits. We require that
the identification be an isometric. For the inflation of a vertex, the inflated celluation has
3 new qubits, so we need to choose a homothetic embedding with a universal homothecy
constant.

The action of the mapping class group is defined as follows: consider the moduli space
of all triangulations of � that two triangulations are equivalent if there dual graphs ��
are isomorphic as abstract graphs. By a sequence of diagonal flips, we can realize a Dehn
twist. Each diagonal flip is an F move, and their composition is the unitary transforma-
tion associated to the Dehn twist.

Conjecture 6.4. (1) Every doubled MTC C can be realized as a topological qubit liquid.
(2) The groundstates V (�) ∼= H�i ⊂ H�i form an error-correction code for each

triangulation �i .

6.3. Topological quantum compiling and the universality conjecture. Every unitary
MTC gives rise to anyonic models of quantum computers as in [FKLW]. Quantum
gates are realized by the braiding matrices of anyons, i.e. the afforded representations
of the braid groups. Topological quantum compiling is the question of realizing desired
unitary transformations by braiding matrices in quantum algorithms, in particular for
those algorithms which are first described in the quantum circuit model such as Shor’s
famous factoring algorithm.
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To choose a computational subspace, we will use the so-called conformal block basis
for the Hilbert space V (D2, ai ; a∞) of a punctured disk, where a∞ labels the boundary.
Conformal block basis is in one-one correspondence to admissible labelings m, n, . . . , p
of the internal edges of the following graph subject to the fusion rules at each trivalent
vertex. As explained in Sect. 5.1, the tri-valent vertices also need to be indexed if mul-
tiplicities nk

i, j > 1.

���������������������a1 a2 a3

a∞

n
m

p

am

The braiding of two anyons ai , ai+1 in a conformal block basis state is represented
by stacking the braid on top of the above graph at i, i + 1 positions.

Definition 6.5. An MTC C has property F if for every object X in C and every m the
representation ρm

X of Bm on V (D2, X, · · · , X; a∞) factors over a finite group for any
a∞ ∈ L.

The following is conjectured by the first author (see [NR]):

Conjecture 6.6. Let C be an MTC.

(a) If C is unitary, then it has property F if and only if (di )
2 ∈ N for each simple object

Xi or, equivalently, if and only if the global quantum dimension D2 ∈ N.
(b) In general, C has property F if and only if (FPdim(Xi ))

2 ∈ N for each simple object
Xi , where FPdim is the Frobenius-Perron dimension, i.e. the Frobenius-Perron
eigenvalue of the fusion matrix Ni .

The verification of this conjecture for UMTCs of rank≤ 4 is summarized in Table 4.

Theorem 6.7. The following anyons are universal in the sense of [FKLW]:
the Fibonacci anyon τ , the (A1, 5) 1

2
anyons α, β, the (A1, 7) 1

2
anyons α,ω, ρ, the

two anyons ϕ, τ in (A1, 3) (see 5.4 for notation), and the two τ ’s in Fib × Fib.

Table 4. Unitary prime MTCs rank≤4

Realization PSL(2,Z), Relations Property F? Universal Anyons

VectC 1, S = T = 1 Yes

(A1, 1) PSL(2, 3), T 4 = I Yes

(A1, 3) 1
2

PSL(2, 5), T 5 = I No τ

(A2, 1) PSL(2, 3), T 3 = I Yes

(A1, 2) PSL(2, 8), T 16 = (T 2 ST )3 = I Yes

(A1, 5) 1
2

PSL(2, 7), T 7 = (T 4ST 4S)2 = I No α,β

(A3, 1) PSL(2, 8), T 8 = (T 2 ST )3 = I Yes

D(Z2) PSL(2, 2), T 2 = I Yes

(A1, 7) 1
2

PSL(2, 9), T 9 = (T 4ST 5S)2 = I No α, ω, ρ
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Universal anyonic quantum computation can also be achieved with the anyon τ × τ

in Fib × Fib, but images of the representations of the braid groups from this anyon are
not as large as possible.

Anyons that correspond to ϕ, τ, α, β, ω, ρ in other versions are also universal.

Proof. We deduce the proof from [FLW2,LRW,LWa].
Universality of ϕ and τ is given in [FLW2]. The anyons α are both the fundamen-

tal representations of (A1, k) up to abelian anyons. The universality of fundamental
representation anyons are established in [FLW2]. Therefore, both α’s are universal.

To prove that β, ω, ρ are universal, we first show that their braid representations
are irreducible. By inspecting the braiding eigenvalues in Section 5.3, we see that they
satisfy the conditions of [TW][Lemma 5.5] [HRW][Proposition 6.1]. It follows that the
braid representations are irreducible. Universality now can be proved following [FLW2
or LRW]. �	

Appendix. Non-Self Dual Rank≤ 4 MTCs with S. Belinschi

Every rank=1, 2 MTC is self-dual, so we will start with rank=3.

A.1. Nonselfdual rank=3. The three labels will be 0, 1, 2 such that 0̂ = 0, 1̂ = 2, 2̂ = 1.
The modular S̃ matrix is of the form:

⎛
⎝1 d d

d x x̄
d x̄ x

⎞
⎠ .

s̃22 = s̃11, s̃12 = s̃11 follows from s̃î, j = s̃i, j . Unitarity of S implies

1 + d2 = 2|x |2, (A.1)

d2 + x2 + x̄2 = 0, (A.2)

1 + x + x̄ = 0. (A.3)

The fusion matrix N1 has eigenvalues d, x
d ,

x̄
d . Their sum d + x+x̄

d = d − 1
d is an

integer. Their product |x |2
d = 1+d2

2d = 1
2 (

1
d + d) is also an integer. Therefore, d is an

integral multiple of 1
2 , so d is an integer.

Let θ be the twist of label 1, hence of label 2. Using identity (2.2), we get

1 − 2d2 + θ + θ−1 = 0. (A.4)

Therefore, 2d2 ≤ 3. Since d �= 0, the only possible integers are d2 = 1, hence |x | = 1.

Then 1 + x + x̄ = 0 leads to x = e± 2π i
3 .

A.2. Nonselfdual rank=4. Now we turn to the non-self dual rank=4 case. The 4 labels
will be denoted as 1,Y, X, X∗, where Y is self dual and X, X∗ dual to each other. Taking
into account all symmetries among nk

i, j , we can write the non-trivial fusion matrices as:
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NY =
⎛
⎜⎝

0 1 0 0
1 n1 n2 n2
0 n2 n3 n4
0 n2 n4 n3

⎞
⎟⎠ ;

NX =
⎛
⎜⎝

0 0 1 0
0 n2 n3 n4
0 n4 n5 n6
1 n3 n7 n7

⎞
⎟⎠ ;

NX∗ =
⎛
⎜⎝

0 0 0 1
0 n2 n4 n3
1 n3 n7 n7
0 n4 n6 n5

⎞
⎟⎠ .

The modular S̃ matrix is of the form:

S̃ =
⎛
⎜⎝

1 d1 d2 d2
d1 x y y
d2 y z z̄
d2 y z̄ z

⎞
⎟⎠ , where x, y are real, and z is not real.

We will work on unitary modular symbols, so d1 ≥ 1, d2 ≥ 1. The argument for the
general case should have only minor changes.

The identity NX NY = NY NX leads to the identities:

1 + n1n3 + n2(n5 + n7) = n2
2 + n2

3 + n2
4, (A.5)

n1n4 + n2(n6 + n7) = n2
2 + 2n3n4, (A.6)

n1n4 + n2(n5 + n6) = n2
2 + 2n3n4. (A.7)

NY NX∗ = NX∗ NY gives no new identities. But NX NX∗ = NX∗ NX gives us:

n2n4 + n4n6 = n2n3 + n4n5, (A.8)

n5 = n7, (A.9)

n2
4 + n2

6 = 1 + n2
3 + n2

7. (A.10)

Case 1. n4 = 0. If n4 = 0, then n2n3 = 0. First if n2 = 0, then 1 + n1n3 = n2
3 which

implies n3 = 1, n1 = 0. It follows that n1 = n2 = n4 = 0, n3 = 1. This leads to
n2

6 = 2 + n2
7 which has no solutions. Secondly if n3 = 0, then n2

6 = 1 + n2
7 which implies

n6 = 1, n7 = 0. Hence n3 = n4 = n5 = n7 = 0, n6 = 1. This leads to n2 = 1, and n1
is arbitrary. To rule out this case, notice that the labels 1, X, X∗ have exactly the same
fusion rules as the rank=3 non-self dual theory. Therefore, it is a pre-modular category
with the same fusion rules, which is necessarily modular by [Br]: Suppose otherwise,
then (d2, z, z̄) would be a d2 times (1, d2, d2) as vectors, contradicting z is not real. It
follows d2 = 1, z = ω for some ω3 = 1. Comparing the squared lengths of row 1 and
row 3 of the S̃ matrix, we see that y2 = d2

1 . Also note that d2
1 = 3 + n1d1. Equality of

the squared lengths of row 1 and row 2 implies x2 + 2d2
1 = 3. Since x is real, this does

not hold if d1 > 0.

Case 2. n4 �= 0. If n2 = 0, then n1 = 2n3, 1 + n1n3 = n2
3 + n2

4. Hence 1 + n2
3 = n2

4
which implies n4 = 1, n3 = 0. So we have n1 = n2 = n3 = 0, n4 = 1, n5 = n6 = n7.
The labels 1,Y form a subcategory the same as the Z2 theory, hence d2

1 = 1, x2 = 1. If
x = −1, then y = 0, and d1d2 = 0 which is a contradiction. If x = 1, then y2 = d2

2 .
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So d2
2 = d2

1 = 1. Using d2
2 = 1 + n3d1 + 2n5d2 below, we see that n3, n5, hence

n6 = n7 = 0. So we have n1 = n2 = n3 = n5 = n6 = n7 = 0, n4 = 1, which is the Z4
fusion rule.

Suppose n4 �= 0, n2 �= 0.
The fusion rules in Table 4 gives us the following identities:

d2
1 = 1 + n1d1 + 2n2d2, (A.11)

d1d2 = n2d1 + (n3 + n4)d2, (A.12)

d2
2 = n4d1 + (n5 + n6)d2, (A.13)

d2
2 = 1 + n3d1 + 2n5d2. (A.14)

Combining equations, we have

(n4 − n3)d1 + (n6 − n5)d2 = 1. (A.15)

If n4 = n3, then n6 = 1 + n2
7 which implies n6 = 1, n7 = 0. Hence n5 = 0. By

Eq. (A.15), n5 = n6 which is a contradiction.
If n5 = n6, then n2

4 = 1 + n2
3 which implies n3 = 0, n4 = 1. Solving all equations,

we get n1 = n2 = n3 = 0, n4 = 1, n5 = n6 = n7, which is the Z4 fusion rule.
So we may assume from now on n2 �= 0, n4 �= 0, n4 �= n3, n5 �= n6. By Eq. (A.8),

we have

n4(n5 − n6) = n2(n4 − n3). (A.16)

Hence we have

d2 = n4

n2
d1 − n4

n2(n4 − n3)
. (A.17)

Plugging into (A.15) and simplifying, we have

d2
1 = (n1 + 2n4)d1 − n3

n4 − n3
. (A.18)

The orthogonality of S̃ gives us:

x2 + 2y2 = 1 + 2d2
2 , (A.19)

y2 + 2|z|2 = 1 + d2
1 + d2

2 , (A.20)

(1 + x)d1 + 2yd2 = 0, (A.21)

yd1 + (1 + z + z̄)d2 = 0, (A.22)

d1d2 + (x + z + z̄)y = 0, (A.23)

d2
2 + y2 + z2 + z̄2 = 0. (A.24)

Note that y cannot be 0. Suppose otherwise, then x = −1, so d2 = 0, a contradiction.
The eigenvalues of NY are d1,

x
d1
,

y
d2
,

y
d2

. Their sum d1 + x
d1

− (1+x)d1
d2

2
= d1 − d1

d2
2

+

( 1
d1

− d1
d2

2
)x is an integer. The eigenvalues of NX are d2,

y
d1
, z

d2
, z̄

d2
. Their sum d2 + y

d1
+ z+z̄

d2

is an integer.
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If 1
d1

− d1
d2

2
= 0, then d2

1 = d2
2 . By Eq. (A.12), ±d1 = n2 + n3 + n4, then d1, d2 are

integers. But the sum of the eigenvalues of NY d1 − 1
d1

is also an integer, so d1 = ±1.
It follows that ±1 = n2 + n3 + n4, but n2, n4 are both �= 0, a contradiction.

If 1
d1

− d1
d2

2
�= 0, then x and subsequently all y, z + z̄, |z|2 are in Q(d1, d2). So all

x, y, z + z̄, |z|2, z2 + z̄2 are in Q(d1, d2). By Eq. A.15, Q(d1, d2) is a degree≤ 2 Galois
extension of Q. Therefore, the Galois group of the characteristic polynomial p1(t) of
NY is either trivial or Z2. If it is trivial, then all eigenvalues d1,

x
d1
,

y
d2
,

y
d2

and d2 are
integers. So d1, d2, x, y are all integers.

From the unitary assumption, d1, d2 ≥ 1. Since x
d1
,

y
d2

are integers, |x | ≥ d1, |y| ≥
d2. Equation (A.19) implies x = ±1, y = ±d2. Since x

d1
is an integer, |x | = d1 = 1.

Then 2yd2 = −2 implies d2 = 1, contradicting 1
d1

− d1
d2

2
�= 0.

Therefore the Galois group of p1(t) is Z2. Since p1(t) has a pair of repeated roots, then
p1(t) is (t − m)2q1(t) for some irreducible quadratics q1(t) and integer m or (q1(t))2.
Assume q1(t) = t2 + bt + c, where b, c are integers. Note that d1 has to be an irrational
root of p1(t). If p1(t) has integral roots m, then y

d2
= m, so y2 ≥ d2

2 . x = d1
x
d1

= c

implies |x | ≥ 1. By Eq. (A.19), y2 ≥ d2
2 implies x2 ≤ 1, hence |x | = 1, y2 = d2

2 . It
follows from Eq. (A.21) that d1 = d2

2 . By Eq. (A.13), (n4 − 1)d1 + (n5 + n6)d2 = 0.
Since n4 ≥ 1, it follows that n4 = 1, n5 = n6 = 0, contradicting n5 �= n6.

Hence p1(t) = q1(t)2, and d1 = x
d1

, i.e. x = d2
1 ≥ 1, and y2 ≤ d2

2 . So the roots

of p1(t) are d1, d1,
y

d2
,

y
d2

. Then d1 + y
d2

and d1 y
d2

are both integers. By Eqs. A.22,A.23,
d1d2

y + x = −(z + z̄) = yd1
d2

+ 1 is an integer. On the other hand, d1d2
y + x = x( d2

d1 y + 1),

so x = d2
1 would be a rational number s if d2

d1 y + 1 �= 0. Then d1 = √
s, which is also

−b±√
b2−4c

2 , but not a rational number, hence b = 0, a contradiction. If d2
d1 y + 1 = 0,

then y = − d2
d1

. Substituting this and x = d2
1 into Eq. (A.21), we get d2

1 = 2
d2

2
d2

1
− 1. By

Eq. (A.15), d2
d1

∈ Q, hence d2
1 would be a rational number s again, a contradiction.

Putting everything together, we have the only desired modular S̃ matrix.
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