Skip to main content
Log in

High temperature and heating effect on the oxidative stability of dietary cholesterol in different real food systems arising from eggs

  • Short communication
  • Published:
European Food Research and Technology Aims and scope Submit manuscript

Abstract

Cholesterol, a monounsaturated sterol present in food of animal origin, can be oxidized during food processing and storage, thus generating a series of oxidation products, collectively called oxysterols. These compounds are increasingly considered of potential interest in the onset and development of vascular disease due to their ability to trigger irreversible damage of vascular cells with consequent activation of phagocytes, up-regulation of the expression and synthesis of adhesion molecules and inflammatory cytokines. The understanding of the conditions, in the presence of which the cholesterol oxidation occurs in foods, could certainly help to prevent the accumulation of oxysterols, allowing to avoid harmful effects on human health. The aim of this work was to verify the presence of 7-ketocholesterol, the most representative of oxysterols family, in eggs and derivative obtained through different procedures of cooking. In the light of our results, we confirmed that the temperature and the lipid nature of the food matrix are closely related to the oxidative stability of cholesterol in foodstuffs. In particular, we tested 7-ketocholesterol formation in the presence of palm oil, rich in saturated fatty acids, or soybean oil, rich in polyunsaturated compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

References

  1. Hur SJ, Park GB, Joo ST (2007) Formation of cholesterol oxidation products (COPs) in animal products. Food Control 18:939–947. https://doi.org/10.1016/j.foodcont.2006.05.008

    Article  CAS  Google Scholar 

  2. Griffiths WJ, Abdel-khalik J, Hearn T, Yutuc E, Morgan AH, Wang Y (2016) Current trends in oxysterol research. Biochem Soc Trans 44:652–658. https://doi.org/10.1042/BST20150255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saldana T, Frankland Sawaya ACH, Nogueira Eberlin M, Bragagnolo N (2006) HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J Agric Food Chem 54:4107–4113. https://doi.org/10.1021/jf0532009

    Article  CAS  Google Scholar 

  4. Iuliano L, Micheletta F, Natoli S, Ginanni Corradini S, Iappelli M, Elisei W, Giovannelli L, Violi F, Diczfalusy U (2003) Measurement of oxysterols and a-tocopherol in plasma and tissue samples as indices of oxidant stress status. Anal Biochem 312:2017–2223. https://doi.org/10.1016/S0003-2697(02)00467-0

    Article  Google Scholar 

  5. Mol MJTM, de Rijke YB, Demacker PNM, Stalenhoef (1997) A. F. H. Plasma levels of lipid and cholesterol oxidation products and cytokines in diabetes mellitus and cigarette smoking: effects of vitamin E treatment. Atherosclerosis 129:169–176

    Article  CAS  PubMed  Google Scholar 

  6. Poli G, Biasi F, Leonarduzzi G (2013) Oxysterols in the pathogenesis of major chronic diseases. Redox Biol 1:125–130. https://doi.org/10.1016/j.redox.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Wielkoszyński T, Zalejska-Fiolka J, Strzelczyk JK, Owczarek AJ, Cholewka A, Furmański M, Stanek A (2018) Oxysterols increase inflammation, lipid marker levels and reflect accelerated endothelial dysfunction in experimental animals. Mediat Inflamm. https://doi.org/10.1155/2018/2784701

    Article  Google Scholar 

  8. Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Després J, Fullerton HJ, Howard VJ, Huffman MD, Isasi CR, Jiménez MC, Judd SE, Kissela BM, Lichtman JH, Lisabeth LD, Liu S, Mackey RH, Magid DJ, McGuire DK, Mohler ER, Moy CS, Muntner P, Mussolino ME, Nasir K, Neumar RW, Nichol G, Palaniappan L, Pandey DK, Reeves MJ, Rodriguez CJ, Rosamond WP, Sorlie D, Towfighi A, Turan TN, Virani SS, Woo D, Yeh RW (2016) Executive summary: heart disease and stroke statistics—2016 update a report from the American Heart Association. Circulation 133:447–454. https://doi.org/10.1161/CIR.0000000000000366

    Article  Google Scholar 

  9. Addis PB (1986) Occurrence of lipid oxidation products in food. Food Chem Toxic 24:1021–1030

    Article  CAS  Google Scholar 

  10. Javitt NB (2007) Oxysterols: novel biologic roles for the 21st century. Steroids 73:149–157. https://doi.org/10.1016/j.steroids

    Article  PubMed  Google Scholar 

  11. Alba G, Reyes-Quiroz ME, Saenz J, Geniz I, Jimenez J, Martin-Nieto J, Pintado E, Sobrino F, Santa Maria C (2016) 7-Keto-cholesterol and 25hydroxy-1-cholesterol rapidly enhance ROS production in human neutrophils. Eur J Nutr 55(8):2485–2492. https://doi.org/10.1007/s00394-015-1142-4

    Article  CAS  PubMed  Google Scholar 

  12. Dinh TTN, Blanton JR Jr, Brooks JC, Miller MF, Thompson LD (2008) A simplified method for cholesterol determination in meat and meat products. J Food Compos Anal 21:306–314

    Article  CAS  Google Scholar 

  13. Wang M, Long W, Li D, Wang D, Zhong Y, Mu D, Song J, Xia M (2017) Plasma 7-ketocholesterol levels and the risk of incident cardiovascular events. Heart 103(22):1788–1794. https://doi.org/10.1136/heartjnl-2016-310914

    Article  CAS  PubMed  Google Scholar 

  14. Zanardi E, Novelli E, Ghiretti GP, Chizzolini R (2000) Oxidative stability of lipids and cholesterol in salame Milano, coppa and Parma ham: dietary supplementation with vitamin E and oleic acid. Meat Sci 55:169–175. https://doi.org/10.1016/S0309-1740(99)00140-0

    Article  CAS  PubMed  Google Scholar 

  15. Rodriguez-Estrada MT, Garcia-Llatas GM, Lagarda J (2014) 7-ketocholesterol as marker of cholesterol oxidation in model and food system: when and how. Biochem Biophys Res Commun 446:792–797. https://doi.org/10.1016/j.bbrc.2014.02.098

    Article  CAS  PubMed  Google Scholar 

  16. Schweizer RAS, Zürcher M, Balazs Z, Dick B, Odermatt A (2004) Rapid hepatic metabolism of 7-ketocholesterol by 11β-hydroxysteroid dehydrogenase type 1 species-specific differences between the rat, human, and hamster enzyme. J Biol Chem 279:18415–18424. https://doi.org/10.1074/jbc.M313615200

    Article  CAS  PubMed  Google Scholar 

  17. Ansorena D, Barriuso B, Cardenia V, Astiasaràn I, Lercker G, Rodriguez-Estrada MT (2013) Thermo-oxidation of cholesterol: effect of the unsaturation degree of the lipid matrix. Food Chem 141:2757–2764. https://doi.org/10.1016/j.foodchem.2013.04.129

    Article  CAS  PubMed  Google Scholar 

  18. Tarladgis BG, Watts BM, Younathan MT, Dugan L (1960) A distillation method for the quantitative determination of malonaldehyde in rancid foods. J Am Oil Chem Soc 37(1):44–48. https://doi.org/10.1007/bf02630824

    Article  CAS  Google Scholar 

  19. Osada K, Kodama T, Yamada K, Sugano M (1993) Oxidation of cholesterol by heating. J Agric Food Chem 41:1198–1202

    Article  CAS  Google Scholar 

  20. Min J, Lee S, Khan MI, Yim DG, Seol K, Lee M, Jo C (2015) Monitoring the formation of cholesterol oxidation products in model system using response surface methodology. Lipids Health Dis 14:77. https://doi.org/10.1186/s12944-015-0074-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boselli E, Cardenia V, Rodriguez-Estrada MT (2012) Cholesterol photosensitized oxidation in muscle foods, Eur J Lipid Sci Technol 114(6):644–655. https://doi.org/10.1002/ejlt.201100352

    Article  CAS  Google Scholar 

  22. Cardenia V, Rodriguez-Estrada MT, Boselli E, Lercker G (2013) Cholesterol photosensitized oxidation in food and biological system. Biochimie 95:473–481. https://doi.org/10.1016/j.biochi.2012.07.012

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppe Martino.

Ethics declarations

Conflict of interest

Denise Innosa declares no conflict of interest. Andrea Ianni declares no conflict of interest. Fiorentina Palazzo declares no conflict of interest. Francesco Martino declares no conflict of interest. Francesca Bennato declares no conflict of interest. Lisa Grotta declares no conflict of interest. Giuseppe Martino declares no conflict of interest.

Compliance with ethics requirements

This article does not contain any studies with human or animal subjects.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Innosa, D., Ianni, A., Palazzo, F. et al. High temperature and heating effect on the oxidative stability of dietary cholesterol in different real food systems arising from eggs. Eur Food Res Technol 245, 1533–1538 (2019). https://doi.org/10.1007/s00217-019-03266-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00217-019-03266-4

Keywords

Navigation