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Abstract Sulfur dioxide (SO2) is probably one of the most

versatile and efficient additives used in winemaking due to

its antiseptic and antioxidant properties. This compound is

also important for minimizing phenolic polymerization

rate and color loss during wine aging. However, allergies

caused by SO2-derived compounds, namely the sulfites, are

becoming more frequent, causing symptoms such as head-

aches, nausea, gastric irritation, and breathing difficulties in

asthma patients. Consequently, the legislated maximum

concentration of SO2 allowed in wines has been gradually

reduced. For this reason, it is crucial in a competitive global

winemaking market strategy, to reduce or even eliminate

the use of SO2 as a preservative and to search for new

healthier and safe strategies. This work gives an overview

of the main methodologies that have been proposed so far

and that have potential to be used in winemaking as an

alternative to SO2. The addition of compounds such as

dimethyl dicarbonate, bacteriocins, phenolic compounds,

and lysozyme, and the use of physical methods, namely

pulsed electric fields, ultrasound, ultraviolet radiation, and

high pressure are discussed and critically evaluated.
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Introduction

The consumer demands for foods with high nutritional

quality, natural characteristics, microbiologically safe, and

minimally processed have increased, leading companies to

adopt new techniques of food conservation as alternatives

to the traditional ones.

The general use of SO2 for conservation dates back to the

end of the 18th century. It is used nowadays in various food

industries, especially in low pH foods, such as fruit juices

and fermentable drinks [1]. SO2 is probably one of the most

versatile and efficient additives used in winemaking due to

its antiseptic and antioxidant properties. This compound

inhibits the development of all types of microorganisms,

such as yeasts, lactic acid bacteria (LAB) and, to a lesser

extent, acetic acid bacteria. Its action prevents yeast haze

formation, undesirable secondary fermentation, Brettano-

myces growth, the development of mycodermic yeasts, and

various types of bacterial spoilage [1–3]. Besides its anti-

septic properties, SO2 in wine plays an important role

against oxidation. As antioxidant, SO2 can act in three dif-

ferent ways: by direct oxygen scavenging; by reacting with

hydrogen peroxide; and by reducing the quinones formed

during the oxidation process back to their phenol form [4, 5].

In addition, it prevents the wine browning by inactivation of

enzymes such as polyphenoloxidade (PPO), peroxidase

(POD), and proteases, and also by inhibition of the Maillard

reaction [1, 6–8]. Once in wine, SO2 may react with several

constituents, namely acetaldehyde, pyruvic acid, and

2-oxoglutaric acid. In a lesser extent, anthocyanins, cin-

namic acids, and reducing sugars may also react with SO2,

contributing for the modulation of the wine properties [5, 6].

The reaction with these compounds reduces the rate of

phenolic polymerization and, consequently, the color loss

usually observed during wine aging. In addition, SO2 has

also been described to protect the wine aroma [2].

In spite of all the advantages of the SO2, the sulfites

resulting from the addition of SO2 to wine have been

related to allergic reactions in some consumers [9–12].
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Most sulfite-sensitive individuals react to ingested sulfite in

quantities ranging from 20 to 50 mg and may experience a

range of symptoms, including dermatitis, urticaria, angio-

edema, abdominal pain, diarrhea, bronchoconstriction, and

anaphylaxis [9–11]. Nevertheless, reactions manifesting in

the skin, and particularly in the respiratory tract, account

for the majority of cases of sulfite sensitivity. However,

adverse reactions to sulfites in non-asthmatics are extre-

mely rare [11]. Asthmatics who are steroid-dependent or

who have a higher degree of airway hyper-reactivity may

be at greater risk of experiencing a reaction to sulfite-

containing foods. In this population, sulfite sensitivity

reactions could be severe, since SO2 derivatives can cause

the activation of proto-oncogenes, inactivation of tumor

suppressor genes, and even can play a role in the patho-

genesis of SO2-associated lung cancer [13].

Due to the health-related problems that have been asso-

ciated with SO2 use, the International Organization of Vine

and Wine (OIV) has been progressively reducing the

maximum concentration authorized in wines [14], which is

nowadays 150 mg/L for red wines and 200 mg/L for white

wines (Regulation (EC) No 607/2009). However, the use of

SO2 in winemaking is a complex subject. The use of SO2

excessive doses must be avoided not only for health reasons

but also because, from an enological point of view, it can

cause organoleptic alterations in the final product [1],

neutralize the aroma and even produce characteristic aroma

defects. Conversely, an insufficient concentration does not

ensure the adequate stability of the wine against an exces-

sive oxidation or microbial development, which can

compromise its quality. Due to the complex chemical

equilibrium of SO2 in wine, resulting in several SO2-com-

bined compounds, the establishment of the precise quantity

of SO2 required for an adequate treatment of the wine, with

a final safe level of free SO2 (10–20 mg/L), is difficult to

assess [6]. Thus, there is a great interest in the search for

other preservatives and innovative technologies, harmless

to health, that can replace or at least complement the action

of SO2, making possible to reduce its levels in wines. In this

work, a review of the most important practices that have

been so far studied to substitute or reduce the use of sulfur

dioxide in winemaking is described, and their potentialities

and limitations are pointed out. These methodologies, such

as addition of compounds, mainly natural compounds,

and physical methods, are summarized in Table 1.

Addition of compounds

Dimethyl dicarbonate

Dimethyl dicarbonate (DMDC) is a chemical inhibitor of

microorganisms which has been proposed to be used

instead of SO2 in winemaking [15–17]. This compound

was recently approved in the European Union for use in

wines at a maximum amount of 200 mg/L at bottling for

wines with more than 5 g/L of residual sugar (Regulation

(EC) No 643/2006). Also, in the USA, it can be used during

the storage of wine in regular amounts up to 200 mg/L

[18].

DMDC acts by inhibiting some enzymes, notably the

alcohol-dehydrogenase and the glyceraldehyde-3-phos-

phate dehydrogenase, and by methoxycarbonylation of the

nucleophilic residues (imidazoles, amines, thiols) resulting

in the arrest of cellular growth [19]. The DMDC added to

wine is rapidly converted into methanol, as well as low

amounts of methyl carbonate and alkyl carbonates are also

formed resultant of the reactions of DMDC with poly-

phenols or organic acids. The concentration of methanol

formed from the addition of DMDC has been shown not to

produce toxicologically significant levels [15]. Also, very

low amounts of methyl carbamate, resulting from reactions

of DMDC with ammonium and amino acids are reported to

occur [20]. However, as the concentration of the resulting

derivatives are very low, they have no contribution to odors

or flavors in wine [20].

Its antimicrobial efficiency on wine depends on tem-

perature, ethanol content, pH, and essentially of the spe-

cies, strains, and initial cell concentration [21]. Several

studies reported that the activity of DMDC is more

effective against yeasts than against bacteria [15, 20–22].

Also, the DMDC was shown to be more effective against

yeast than SO2 because DMDC kills the yeast cells,

whereas the SO2 only promotes the inhibition of their

growth rendering them into a viable but non-culturable

(VBNC) state [15].

Delfini et al. [20] reported that concentrations in the

range of 250–400 mg/L inhibited a large number of yeasts,

like Saccharomyces cerevisiae, Candida guilliermondii,

Brettanomyces intermedius, Pichia membranaefaciens,

Saccharomyces bayanus, and Saccharomyces uvarum.

However, bacteria showed more resistance, since Aceto-

bacter aceti and Lactobacillus sp. were completely

inhibited only for quantities of 1,000 and 500 mg/L of

DMDC, respectively. Red wines containing DMDC pres-

ent an increase in color intensity, due to a possible inter-

action between DMDC and anthocyanins, which are the

substances responsible for wine color [20]. Costa et al.

[21] showed that for an initial inocula of 500 CFU/mL, the

minimal inhibitory concentration (MIC) for the yeast

species Schizosaccharomyces pombe, Dekkera bruxellen-

sis, Saccharomyces cerevisiae, and Pichia guilliermondii

was 100 mg/L, while for the most sensitive strains

(Zygosaccharomyces bailii, Zygoascus hellenicus, and

Lachancea thermotolerans), the MIC was 25 mg/L of

DMDC. However, for inoculation amounts of about 106
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CFU/mL, the maximum dose of DMDC legally authorized

(200 mg/L) was not effective against the most resistant

species.

DMDC appears to be a promising inhibitor of yeast

growth and consequently a good additive to stop the

alcoholic fermentation. However, it is important to refer

that due to the complete conversion in few hours of DMDC

into methanol [15], its effect is ephemeral and so the use of

this compound during wine storage should not be recom-

mended. Besides, the inability of DMDC to inhibit several

bacteria growth, using the maximum dose of DMDC leg-

ally authorized, and to protect the wine from oxidation

makes its use alone in winemaking not sufficient to fully

substitute SO2.

Bacteriocins

Bacteriocins, such as nisin, pediocin, and plantaricin, pro-

duced by specific LAB are small polypeptides that are

inhibitory to other bacterial species [16]. In addition to this,

some are food additives legally permitted. These com-

pounds have been reported to act primarily upon the

cytoplasmic membrane of gram-positive bacteria, render-

ing the cell permeable to small ionic components,

prompting cell lysis [23]. However, the effectiveness

against gram-negative bacteria is reduced, depending on

the species [23, 24]. Bacteriocins are considered the ideal

preservatives against gram-positive bacteria because they

have no color or smell and are non-toxic [25].

Table 1 Effects and disadvantages of wine conservation alternative methodologies

Methodologies Effects/potential effects Disadvantages

In wine In other food matrixes

Addition of

compounds

Dimethyl

dicarbonate

(DMDC)

Inhibits microorganisms growth

[15, 20, 21]

Inhibits microorganism growth in

apple ciders [22]

Less effective against bacteria

when compared with yeast

[15, 20–22]

Bacteriocins Inhibits bacterial growth [23, 24,

26, 28]; control of malolactic

fermentation [28]

– Do not affect yeast growth [27]

Phenolic

compounds

Inhibits microorganisms growth

[33–37]; expresses antioxidant

activity [1, 4, 5, 29]; does not

affect the consumption of

nitrogen compounds [30]; can

provide better sensory sensations

[29]

– Can provide negative changes in

color and aroma [31]

Lysozyme Inhibits bacterial growth [40–42,

88]; control of malolactic

fermentation [42]

– Low activity against gram-negative

bacteria and inactive against

yeasts [43]; binds with

polyphenolic components of red

wine [39, 40, 43]; leads to the

formation of wine haze [40]

Physical

methods

Pulsed

electric

fields (PEF)

Eliminates pathogenic

microorganisms [51, 60]; reduces

maceration time [64, 65];

increases phenolic compounds

extraction [60, 62, 63],

accelerates wine aging [67]

Antimicrobial activity in melon and

watermelon juices [53], apple

cider [54] and grape juice [55];

inhibits PPO in peach [56] and

strawberry juice [57]; inhibits

POD in orange juice [58]

–

Ultrasounds Accelerates wine maturation [80];

increases phenolic compounds

extraction [80]

Antimicrobial activity in apple

cider [75, 76] and orange juice

[73]; inhibits PPO in fruit juices

[69]

–

Ultraviolet Eliminates pathogenic

microorganisms [83]; production

of stilbene-enriched wine [89, 90]

Antimicrobial activity in apple

juices [82], mango nectar [84] an

chill brines [85]; inhibits PPO in

apple juice [82] and mango nectar

[84]

Less effective in red wine when

compared with white wine [83]

High pressure Eliminates pathogenic

microorganisms [106–108, 110]

Antimicrobial activity in pineapple

juice [95] and grape juice [105];

inhibits PPO and POD in

strawberry pulps [92]; inhibits

PPO in grapes [102, 103]

Depending of the treatment, may

activate some enzymes, leading to

a decrease in antioxidant activity

and anthocyanins content

[105, 109]
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Nisin is the only bacteriocin that can be obtained com-

mercially, and it has been shown to be effective to inhibit

the growth of spoilage bacteria in wines [16, 23, 24]. Rojo-

Bezares et al. [24] have studied the effect of nisin on

growth of lactic and acetic acid bacteria and yeast, showing

that nisin is an efficient antimicrobial agent against wine

LAB. Oenococcus oeni demonstrated a much higher sen-

sitivity to nisin, with a minimum inhibitory concentration

(MIC) of 0.024 lg/mL, whereas other LAB species have a

MIC of 12.5 lg/mL. Concerning yeasts, nisin demon-

strated to have a very poor effect on the tested strains, with

a MIC value higher than 400 lg/mL.

Pediocin and plantaricin are active against a number of

LAB, including malolactic strains of Lactobacillus, Leu-

conostoc, and Oenococcus spp [26, 27]. Nel et al. [26] have

shown that pediocin PD-1, when compared with nisin and

plantaricin 423, is most effective in removal of an estab-

lished biofilm of O. oeni from stainless steel surfaces in

Chardonnay must. Also, as nisin, pediocin does not affect

yeasts growth [27].

Yurdugül and Bozoglu [28] reported that bacteriocin-

like inhibitory substances isolated from Leuconostoc

mesenteroides subspp cremoris show effectiveness in the

control of malolactic fermentation (MLF), inhibiting wine

Lactobacillus species.

Since bacteriocins are very specific and only affect some

group of microorganisms, the combined use of these

compounds with metabisulfite has been proposed to control

the growth of spoilage bacteria in wine and therefore

allowing a decrease in the levels of sulfur dioxide currently

used by the wine industry [24]. Also, taking into account

the effectiveness of bacteriocins against bacteria and

DMDC against yeasts, a combination of these two com-

pounds seems promising to preserve the wine against

microbial spoilage and, consequently, substitute SO2

addition. However, it is important to note that the addition

of bacteriocins to wine is not yet authorized. Besides, its

antioxidant capacity and effect on wine organoleptic

properties are still unknown.

Phenolic compounds

Phenolic compounds are very important in wine since they

are responsible for several organoleptic properties, namely

color and astringency. The major phenolic compounds

present in wines are: phenolic acids, flavonoids, stilbenes,

and tannins. Also, for red wines, anthocyanins constitute an

important group of phenolic compounds responsible for the

red wine characteristic color. Wine phenolic compounds

are also associated with the beneficial effects related with

moderate wine consumption, especially in relation to car-

diovascular and degenerative diseases, due to the antioxi-

dant capacity of polyphenols. Their structures enable them

to scavenge and neutralize free radicals [1]. These com-

pounds are oxidized sequentially to semiquinones and

quinones, while oxygen is reduced to hydroperoxyl radicals

and hydrogen peroxide. This process is catalyzed by the

redox cycle Fe3?/Fe2?. Hydrogen peroxide is then reduced

by Fe2?, by the Fenton reaction, to hydroxyl radicals,

which oxidize hydroxyl groups of saturated compounds.

Fe3? can also react with hydrogen peroxide recovering the

Fe2?. Radical intermediates can react with oxygen to form

an additional pathway to their reduction. [1, 4, 5].

In the last years, the addition of phenolic compounds

during winemaking, to replace SO2, has been studied due

to their antioxidant and antimicrobial properties. It was

reported that the addition of enological tannins can affect

the oxidative phenomena of musts and wines, probably as a

consequence of a double mechanism of enzyme inhibition

and radical-scavenging activity [29]. The addition of tan-

nins replacing the addition of SO2 was shown not to affect

the fermentative process [30], providing even a better

sensory perception when compared with the wine with SO2

[29]. However, Bautista-Ortin et al. [31] showed that the

use of two different enological tannins (gallotannins and

procyanidins) did not provide any improvement in the

chromatic and sensory characteristics of red wines, since

they caused a higher yellow color, resulting in lower rat-

ings of color and aroma sensory characteristics.

Phenolic extracts obtained from enological products

showed antimicrobial activity against the strains of

Staphylococcus aureus, Escherichia coli, and Candida

albicans [16, 32]. Also, phenolic compounds, such as

phenolic acids and flavonoids, can act effectively against

pathogenic bacteria [14, 16, 33–37]. A list of the different

wine phenolic compounds that were tested as wine addi-

tives presenting antimicrobial activity is shown in Table 2.

The antimicrobial effect of phenolic compounds is due

to their capacity to increase cytoplasmic membrane per-

meability, resulting in a leakage of bacterial cell constitu-

ents [34]. The different effects of the phenolic compounds

have been related to the differences in their structure,

lipophilic character, and particularly to the concentration

added [33, 34]. Recently, Garcia-Ruiz et al. [37] reported a

comparative study of the inhibitory potential of some

phenolic acids, stilbenes, and flavonoids on different LAB

strains isolated from wine. IC50 values of most phenolic

compounds were higher than those of SO2. Nevertheless,

flavonols and stilbenes showed the greatest inhibitory

effects (lowest IC50 values); phenolic acids and their esters

exhibited medium inhibitory effects, and the flavan-3-ols

showed the lowest effect on the growth of the LAB strains

studied.

The exploitation of wine production waste, such as

grape cane and pomace, in order to extract phenolic

compounds to incorporate in wine during the winemaking,
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can lead this wine conservation methodology to an eco-

nomically viable stage. However, despite the promising

results, the antimicrobial effect of phenolic compounds

appears to occur at higher doses than those usually found

in wines. Therefore, it should be considered that the

application of phenolic compounds as antimicrobial

agents in wines would be conditioned by possible changes

that effective concentrations of these compounds would

produce in the physico-chemical (viscosity) and organo-

leptic properties (color and aroma) of the wine [14].

Taking into account the antioxidant activity of the phe-

nolic compounds that can be added during winemaking

with the effectiveness of the conjugated effect of bacte-

riocins and DMDC, a combination of these three

approaches can be promising to confer antioxidant and

antimicrobial activity suitable for wine preservation with

no need to use SO2.

Lysozyme

Lysozyme is a 129-amino acid protein isolated from egg

albumen and has been shown to be an effective antimi-

crobial agent in many foods [38, 39]. Its use in winemaking

has been increasingly explored due to its maximum sta-

bility and activity at pH values in the range of 2.8–4.2 [39].

Lysozyme has recently been found to be useful to inhibit

bacterial growth in wines, controlling spontaneous LAB

growth that often causes spoilage or stuck fermentation

[23, 38, 40–42]. The efficacy of lysozyme to inhibit

undesirable LAB differs according to species and wine-

making conditions [38, 39, 41, 43]. Bacterial sensitivity to

lysozyme depends on the peptidoglycan structure constit-

uent of the cell wall, since it is highly active against gram-

positive bacteria, has low activity against gram-negative

bacteria, and is inactive against the eukaryotic cell walls

Table 2 Wine phenolic compounds tested to control the microorganisms growth in wine

Group Chemical structure Name References

Hydroxybenzoic acids

O

OH

R
1

OH

R

R1 = R=H—q-Hydroxbenzoic acid

R1 = H; R = OH—Protocatechuic acid

R1 = R = OH—Gallic acid

R1 = H; R = OCH3—Vanillic acid

R1 = R=OCH3—Syringic acid

[34]

[33, 34]

[33–35]

[33, 34]

[34]

Hydroxycinnamic acids
R

1

OH

R

O

OH

R1 = R=H—q-Coumaric acid

R1 = H; R = OH—Caffeic acid

R1 = H; R = OCH3—Ferulic acid

[34–36]

[33, 35, 36]

[34–36]

Flavanols

O

OH

OH

OH

OH

OH (?)—Catechin [33, 35]

Flavonols

O

OH

OH

OH

O

R

R
1

OH

R1 = OH; R = H—Quercetin

R1 = R = H—Kaempferol

R1 = R = OH—Myricetin

[33]

[35]

[35]

Stilbenes

OH

OH

OH

trans-Resveratrol [35]
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[43]. Delfini et al. [39] reported that several strains of wine

bacteria belonging to Oenococcus spp. proved to be sen-

sitive to lysozyme at low concentrations. Nevertheless,

Lactobacillus and Pediococcus strains survived at higher

lysozyme concentrations.

Some studies demonstrated that lysozyme is more active

in white wines than in red wines [38, 40, 43]. This could be

due to the large amount of polyphenolic components

present in red wine that can bind lysozyme [39, 40, 43].

Bartowsky et al. [40] studied the impact of lysozyme on the

chemical and sensorial properties of commercial red and

white wines. In this study, lysozyme retained 75–80%

activity in the white wine after 6 months, but no detectable

activity remained in red wines after 2 days. Upon addition

of lysozyme to the red wines, a rapid initial decrease (up to

17%) in red wine color density and phenolic content

occurred in association with the formation of a light pre-

cipitate. Despite lysozyme has greater activity in white

wine, its action can led to the formation of wine haze.

Wines treated with lysozyme showed no important

change in aroma [40] and lower volatile acidity and bio-

genic amine content [43]. Nevertheless, Lopez et al. [43]

showed that the use of lysozyme in different stages of

vinification is important to maintain low histamine levels in

wine, namely before the settling of the musts, at the

beginning of the alcoholic fermentation, and also during

the stabilization and conservation processes.

The combination of lysozyme with other compounds,

namely nisin [23] and hydrolysable tannins [29, 30], to

reduce or replace the use of SO2 in winemaking has also

been studied. Chang and Hancock [23] showed that a

mixture of lysozyme with nisin improved MIC values when

compared with the individual compounds for food spoilage

Lactobacillus sake, Lactobacillus curvtus, Brochothrix

thermoshpacta, Pediococcus acidilactici, and Leuconostoc

mesenteriodes. Also, the use of lysozyme and tannins on

musts prevents the development of undesirable bacterial

fermentations and influences the volatile compounds of

wine, resulting in wines with better sensory impact [29].

Although the use of lysozyme was approved by the OIV

more than a decade ago, its use involves significant addi-

tional costs for winemakers (enzyme purchase, clarifica-

tion, and fining procedures) [38]. In addition, its use in

wine production could present a risk for consumers allergic

to hen’s egg. Due to its allergenic character, the presence of

lysozyme should be mentioned in the wine bottle label,

even if used as a processing aid (maximum limit added of

500 mg/L, Regulation (EC) No 607/2009) [44].

Recently, the use of other antimicrobial enzymes to

control LAB in wine has also been investigated. A lytic

cocktail of Streptomyces spp. was described as a valid

alternative to lysozyme because of its higher activity

against resistant strains, lysing nearly all wine-relevant

strains of LAB and gram-negative acetic acid bacteria [45].

Also, the use of beta-glucanases has been shown as an

efficient way to control wine spoilages yeast [46, 47] with

no effects in wine enological parameters [47].

Physical methods

Pulsed electric fields

Pulsed electric fields (PEF) technology constitutes a fast,

non-thermal, and highly effective technique for the inac-

tivation of pathogenic microorganisms in foods without

modifying food quality [48, 49]. This technology involves

the application of short pulses (ls) of high electric field

strengths (up to 70 kV/cm) to products placed between 2

electrodes [49–51]. The short duration and high intensity

field strengths cause electroporation of cell membranes and

an increase in their permeability [51]. Namely, electric

high-voltage impulses generate a transmembrane potential

across the cell membrane which overlays the natural

membrane potential. If the difference between outer and

inner membrane potential rises above a critical value of

about 1 V, polarization and, in the end, breakdown of the

membrane is induced. At sufficient high field-strength and

duration of the pulses, vegetative microorganisms in liquid

media are inactivated due to irreversible membrane

destruction [52].

Several investigations in juice fruits have shown the

efficiency of PEF treatments on the inhibition of bacteria

and yeast growth [53–55]. However, lethality of the PEF

treatments depends of the food matrix, microorganisms,

and treatment conditions. It has also been reported that PEF

treatments decrease the activities of enzymes, such as PPO

[56, 57] and POD [58] due to changes in their secondary

structure [59].

The potential application of PEF technology to improve

wine safety and quality has been exploited in the last

decade. Puértolas et al. [51] investigated the PEF resistance

of different wine spoilage microorganisms such as Dekkera

anomala, Dekkera bruxellensis, Lactobacillus hilgardii,

and Lactobacillus plantarum. It was observed that in both

must and wine, yeasts were more PEF-sensitive than

bacteria, and a treatment of 186 kJ/kg at 29 kV/cm could

reduce 99.9% of the spoilage flora of the genera Bretta-

nomyces and Lactobacillus, limiting the risk of wine

deterioration by these microorganisms. This inactivation in

must or wine could be enough to avoid the contamination

of the processing contact surfaces and to control the

development of modifications during the wine aging in

barrels and storage in bottles [60].

Garde-Cerdán et al. [8] have shown that when the must

is treated by PEF, the SO2 concentration could be reduced,
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or even eliminated without any important effect on the

content of volatile compounds of the final product. Besides,

the absence of SO2 in these conditions has no negative

impact on the sensory characteristics of wine. Also, the

PEF treatment of musts does not affect the contents of

nitrogen compounds, fatty acids, or nutritive compounds

for yeasts growth [61].

Other vantages that this technology can bring to wine-

making are the reduction of maceration time and the

increase in phenolic compounds extraction to the liquid

part of the must [60, 62, 63]. The process is based on the

fact that applications of external electric fields induce also

the electroporation of grape cell membranes, increasing the

diffusion of solutes [62]. Some studies have shown that the

maceration time can be reduced 48 h with PEF application

on musts [64]. Beyond that, the wine produced presented

higher color intensity, anthocyanin content, and total

polyphenols index, than the wine produced without PEF

treatment [65]. Puértolas et al. [66] showed also that a

better chromatic characteristics and higher phenolic

content can be obtained by a PEF treatment after the fer-

mentation process. These color characteristics were shown

to remain or even increase during aging under oxidative

conditions, at least if American oak barrels are used and the

resultant wine is stored in bottles. However, these differ-

ences in color and bouquet were not detected after

8 months of aging in bottle when triangular sensory tests

were performed.

The decrease of wine aging time seems also to be pos-

sible with PEF treatments. Chen et al. [67] demonstrated

that PEF treatments on wine change significantly the con-

tent of proanthocyanidins, catechin, and epicatechin, and

the trends were close to the evolution of wine during nat-

ural aging.

The capability of PEF to inactivate microorganisms

without causing any deleterious effect on flavor, color, or

nutrient value of must and wine, to improve the extraction

of phenolic compounds, along with the low energy con-

sumption and the short processing times required [60],

makes this technology a good alternative to reduce SO2 in

wine conservation. However, it should be noticed that the

wines obtained without addition of SO2 should have less

complex flavor than the wines produced with SO2 due to

the vast complexity of reactions of SO2 with wine com-

ponents [68].

Ultrasounds

In the last decade, ultrasounds have emerged as an alter-

native processing option to conventional thermal treat-

ments for pasteurization and sterilization of food products

[69]. The inactivation of pathogenic and spoilage micro-

organisms or enzymes by sonication is mainly caused by

physical (cavitation and other mechanical effects) and/or

chemical (formation of free radicals due to sonochemical

reactions) principles [52, 70, 71]. When high power ultra-

sound propagates in a liquid, cavitation bubbles are gen-

erated due to pressure changes. These micro bubbles

collapse violently in the succeeding compression cycles of

a propagated ultrasonic wave. This results in regions of

high localized temperatures, exceeding 5,500 �C and

pressures of up to 50 MPa, resulting in high shearing

effects [69, 71]. Consequently, intense local energy and

high pressure bring about a localized pasteurization effect

without causing a significant rise in macrotemperature [72].

Power ultrasound has been reported to be sufficient to

meet the mandatory 5 log reduction of food borne patho-

gens in fruit juices [69]. However, the effectiveness of an

ultrasound treatment is dependent on the type and number

of bacteria being treated and on the frequency of the

ultrasonic wave. Spores are relatively resistant to the

ultrasound treatments, thus extended periods of ultrasoni-

cation and conjunction of ultrasound with others technol-

ogies or preservatives would be required to render a

product free from spores [71]. According to Valero et al.

[73], to completely avoid microorganisms growth in orange

juice, it is necessary to combine ultrasound with other

processing methods with greater antimicrobial effect, as

well as to attain a very low initial concentration of bacteria,

yeasts, and/or molds in the juice. Ultrasound alone or in

combination with mild temperature is reported to be

effective against Escherichia coli in model solutions [74]

and apple cider [75], and also against Listeria monocyt-

ogenes in apple cider [76]. Tsukamoto et al. [77] showed

that the rate of inactivation of Saccharomyces cerevisiae

yeast cells by ultrasound irradiation depends on the wave

frequency and initial number of cells. The highest effect is

observed at higher frequencies and lower initial cell num-

ber. Confirming these observations, Borthwick et al. [78]

reported that yeast cell disruption was greater in a novel

compact 267 kHz sonicator than in a lower frequency

20 kHz probe sonicator at the same exposure time.

Besides its antimicrobial effect, ultrasound treatments

have been demonstrated promising characteristics for its

use in winemaking as a conservation technique instead of

SO2. Namely, ultrasound showed capacity to inhibit

enzymes, such as PPO in food [69], and have a minimal

effect on the degradation of key quality parameters, such as

color, ascorbic acid, and anthocyanin content of fruit juices

[72, 73]. Jiranek et al. [79] proposed the possibility of

ultrasound use in several stages of winemaking for wine

conservation. The use of ultrasound on musts was proposed

to reduce the load of spoilage organisms and enhance color

and flavor compounds into the wine. These authors also

mention that the ultrasound treatment may be used during

the fermentation stage to reduce contaminating organisms
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prior to inoculation with yeast and/or initiation of the MLF.

The use of ultrasounds can stop or delay MLF or, on the

contrary, can accelerate yeast autolysis and promote MLF.

Ultrasounds treatments, as well as the PEF treatments,

have the capacity to increase the amount of phenolic

compounds in red wine and to accelerate its aging [80],

increasing the economics advantages of the use of this

technology in winemaking. Nevertheless, the works pub-

lished so far still require a practical evaluation of the fea-

sibility of ultrasound technology to reduce or substitute the

use of SO2 in winemaking.

Ultraviolet

Ultraviolet (UV) irradiation involves the use of radiation

from the electromagnetic spectrum from 100 to 400 nm

and is categorized as UV-A (320–400 nm), UV-B

(280–320 nm), and UV-C (200–280 nm) [81].

In the last decade, UV irradiation has been used as a

non-thermal method to disinfect water. This is very

effective for microbial decontamination of surfaces and

packaging in the food industry [82]. Several advantages

associated with UV irradiation have been described: (1) no

known toxic or by-products are formed during the treat-

ment, (2) it can be used for destroying organic contami-

nants, and (3) the treatment requires very little energy

when compared with thermal pasteurization processes [81].

UV-C has been used in food processing to inactivate

microorganisms (bacteria and yeasts) and enzymes (espe-

cially PPO) in many different types of liquid products, such

as fruit juices [82, 83] and nectars [84], and chill brines

[85] without significantly changing their quality attributes.

In this last medium, it has been shown that UV-C irradia-

tion reduces significantly LAB populations [85]. Enzymes

inactivation upon UV-C light exposure occurs as a conse-

quence of protein aggregations [86], while inactivation of

microorganisms is primarily due to DNA damage, which

destroys the reproductive capabilities and other functions

of the cell [70]. However, the penetration ability and ulti-

mate efficacy of UV-C irradiation depends, therefore, on

appearance and characteristics of the product such as color,

absorbance, density, suspended material, and soluble solids

which can prevent UV-C light from reaching the micro-

organisms in the liquid medium [83, 87, 88].

The use of UV irradiation as an alternative technology

to wine conservation has been evaluated recently by

Fredericks et al. [83]. In this work, yeasts, and lactic and

acetic acid bacteria were singly and co-inoculated into

white (Chardonnay) and red (Pinotage) wines that were

later treated with UV-C irradiation. The treatment showed

a wide spectrum of effective inactivation of wine micro-

organisms such as Brettanomyces, Saccharomyces, Aceto-

bacter, Lactobacillus, Pediococcus, and Oenococcus.

However, the degree of microbial inhibition obtained in

Pinotage wine was much lower than that found in Char-

donnay, which was attributed to the color of the product

affecting the efficiency of the treatment. This result might

be related to the fact that phenolic compounds in red wine

are capable of absorbing radiation in the UV region of the

electromagnetic spectrum, thus preventing the transmission

of radiation to the microorganisms [83]. This result opens

good perspectives for the use of UV treatments for white

wine preservation. However, its use in red wines seems to

be limited. Also, even for white wines, UV irradiation

should be used in the final stages of winemaking, i.e., when

wine presents low turbidity. The necessity of a high resi-

dence time of exposure of the wine media to the irradiation

light and the low volume required, even in continuous, is

nowadays a serious limitation of this technology.

Grapes stressed abiotically by postharvest treatment

with UV-C reach higher concentrations of stilbenes [89],

which can be used in a novel winemaking process to obtain

a white wine enriched in resveratrol [89, 90], a compound

with a large range of bioactive properties, namely anti-

cancer, anti-inflammatory, blood sugar-lowering, and car-

diovascular beneficial effects [91]. Consequently, the

alternative use of UV radiation in a very initial stage of

winemaking can be useful to increase the content of health

benefit compounds in wine.

High pressure

High (hydrostatic) pressure (HP) is a non-thermal pro-

cessing technique which subjects products to pressures

between 100 and 1000 MPa [92] instantly and uniformly,

independently of the product size and geometry [92, 93].

HP is considered a green technology, since it uses water as

a compression media and is energetically very efficient

[94]. In the last decade, HP technology use for the pro-

duction of microbiological safe foods has increased sig-

nificantly in the industry. Currently, most HP equipments

in industrial plants used for food processing work in a

batch process, whereby the product is placed in a high

pressure chamber and the vessel is closed, filled with

pressure transmitting medium and pressurized by pumping

pressure transmission medium into the vessel. This tech-

nology is now used in food products for microbial [95, 96]

and enzyme [97, 98] inactivation and also to modify the

functional properties of some food constituents [99, 100].

Microbial inactivation by HP is probably due to interfer-

ences in cellular structures and function, such as mem-

branes, ribosomes, and enzymes [101], leading to cell

leakage. Since HP acts by disrupting non-covalent bonds,

without affecting the covalent bonds [100], HP-treated

foods keep their original freshness, flavor, taste, and color.

Smaller molecules such as volatile compounds, pigments,
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vitamins, and other compounds, responsible for the sen-

sorial, nutritional, and health-promoting benefits, are

largely retained after HP treatment [92]. For example,

Cao et al. [92] showed that HP treatments from 400 to

600 MPa at room temperature can inactivate PPO, POD,

and b-glucosidase, while retaining monomeric and poly-

meric anthocyanins, and individual phenolic compounds in

strawberry pulp. Ludikhuyze et al. [102] and Castellari

et al. [103] reported the inactivation of grape and grape

must PPO, respectively, at pressures above 700 MPa. In

the enological sector, the use of HP treatments has already

been tested to preserve the quality and sustainability of

grape juice and must [104, 105], and also to preserve the

wine [106–108]. In 1995, Delfini et al. [107] demonstrated

that microorganisms added to the wine, such as Leuco-

nostoc oenos, Lactobacillus spp., Acetobacter, and Botrytis

cinerea, were killed with pressure treatments of 400 MPa

during 2 min at 20 �C. Another study reported that the

application of 500 MPa during 5 min resulted in a large

decrease in the initial microbial wine population, such as

Saccharomyces cerevisiae, Brettanomyces bruxellensis,

and Oenococcus oeni without resulting in changes in the

physiochemical or organoleptic properties of the wine

[108]. Recently, Mok et al. [106] reported the effect of

pressure treatments ranging from 100 to 350 MPa until

30 min on microorganism (aerobic bacteria, yeast, and

LAB) of wine. They showed that the microbial inactivation

increased with the pressure treatment and with time. It was

also reported that aerobic bacteria were more susceptible to

the HP treatments than yeasts and LAB [106]. However,

some studies conducted in muscadine grape juice demon-

strated that HP treatments, depending on pressure and time,

may activate some enzymes, such as PPO, leading to a

decrease in antioxidant capacity and anthocyanins content

[105, 109]. Nevertheless, the principal limitation of the HP

treatment is the current impossibility to be used in a con-

tinuous process. Therefore, the use of HP for wine con-

servation is only viable in the final stage of winemaking,

replacing the addition of SO2 before bottling, for a pressure

treatment after bottling. The requirement of packaging the

wine in a resistant and flexible package before the treat-

ment is expected to be a challenge for product presentation.

Recently, high pressure homogenization (HPH) has been

reported for a continuous treatment of must and wine [110].

In this technique, a pump is used to force the fluid into the

homogenizing valve, through a small orifice between the

valve and the valve seat. The fluid leaves the gap in the

form of a radial jet that stagnates on an impact ring [111].

This opens a new way for the utilization of high pressure

treatments in winemaking, since that HPH can be used for

the must and wine preservation. Puig et al. [110] showed

that the use of HPH at 200 MPa is capable of decreasing

the microbial load of musts without causing significant

sensorial changes to the wine. These results suggest that

HPH might also be an alternative process for the preser-

vation of wine, which can lead to the production of a wine

with lower amounts of SO2.

The application of high pressure process in winemaking

is still at an early stage of development, and the effect on

the physical–chemical characteristics of wine is still largely

unknown, namely in respect to color, antioxidant activity,

phenolic, and volatile compounds composition.

Conclusion

In this review, it was discussed the main methodologies

that have potential to be used for wine conservation, as an

alternative to SO2. The replacement or reduction of SO2

addition in the wine should be made by methodologies that

can ensure its microbiological safety while protecting

against oxidation and maintaining as much as possible its

organoleptic properties. The methodologies presented are

not harmful for the health and present promising properties

that allow to consider them as alternative methods for wine

conservation in substitution of SO2.

The addition of compounds such as DMDC, bacterio-

cins, phenolics compounds, and lyzozyme to the musts or

wines seems to be more versatile in terms of facility to use

in different stages of winemaking when compared with the

physical methods (PEF, ultrasound, UV-C, and high pres-

sure). These compounds can be added to the musts to

prevent oxidation reactions and eliminate pathogens. Also,

after fermentation, their addition allows to control the

microbiological growth of harmful species and to act as

antioxidant. Before bottling, they can maintain the micro-

biological safety and foster the longevity of the wine.

Beyond the capacity of wine preservation, the physical

methodologies described can also be used in several

winemaking stages, namely to improve the wine produc-

tion process, such as reduction of maceration time, to

increase the extraction of phenolic compounds, and to

accelerate wine aging. In addition, distinct wines with

bioactive properties can be obtained.

In spite of the promising results, the conservation effect

of SO2 in wines is quite extensive and up to now no other

methodology reported seems to be able, by itself, to replace

completely the use of SO2. The challenge for the academic

community and wine industry is the combination of these

or other new methodologies in a concerted strategic

approach, at different stages of winemaking, for the com-

plete SO2 replacement in order to produce healthier and

novel wines meeting the modern wine consumer demands.
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