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Abstract
Viable cell concentration (VCC) is one of the most important process attributes during mammalian cell cultivations. Current state-of-
the-art measurements of VCC comprise offline methods which do not allow for continuous process data. According to the FDA’s
process analytical technology initiative, process monitoring and control should be applied to gain process understanding and to ensure
high product quality. In this work, the use of an inline capacitance probe to monitor online VCCs of a mammalian CHO cell culture
process in small-scale bioreactors (250mL) was investigated. Capacitance sensors using single frequency are increasingly common for
biomass monitoring. However, the single-frequency signal corresponds to the cell polarization that represents the viable cell volume.
Therefore single-frequency measurements are dependent on cell diameter changes. Measuring the capacitance across various frequen-
cies (frequency scanning) can provide information about the VCC and cope with changing cell diameter. Applying multivariate data
analysis on the frequency scanning data successfully enabled direct online monitoring of VCCs in this study. The multivariate model
was trained with data from 5 standard cultivations. The model provided a prediction of VCCs with relative errors from 5.5 to 11%,
which is a good agreement with the acceptance criterion based on the offline reference method accuracy (approximately 10% relative
error) and strongly improved compared with single-frequency results (16 to 23% relative error). Furthermore, robustness trials were
conducted to demonstrate themodel’s predictive ability under challenging conditions. The process deviations in regard to dilution steps
and feed variations were detected immediately in the online prediction of the VCCwith relative errors between 6.7 and 13.2%. Thus in
summary, the presented method on capacitance frequency scanning demonstrates its suitability for process monitoring and control that
can save batches, time, and cost.

Keywords Mammalian cell culture . PAT . Capacitance frequency scanning . MVDA (multifrequency permittivity, impedance
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Introduction

Mammalian cell culture processes for the production ofmono-
clonal antibodies are challenging and complex processes that
are crucial in modern medicine to generate pharmaceutical
products such as anticancer drugs. Pharmaceutical companies
face a strong market demand and a high pressure to provide
safe products according to quality guidelines and legislations.

To improve and sustain high quality in pharmaceutical
products, the International Conference on Harmonization
(ICH) launched the “Quality by Design” (QbD) initiative
within the framework of the ICH Q8 guideline in 2004 [1].
The QbD approach involves, inter alia, the identification of
product attributes that are of significant importance to the
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product’s safety and establishment of robust control strategies
to ensure consistent process performance [2]. The initiative
focuses on the detection of critical process parameters
(CPPs) that have influence on critical quality attributes
(CQAs) of the product (e.g., glycosylation profile of a mono-
clonal antibody). Moreover, the CPPs should be monitored
and controlled online to achieve a constant and high product
quality.

The QbD concept of CPPs that influence CQAs in the
regulatory framework can be transferred and used also in the
perspective of a pharmaceutical manufacturer. Besides the
CQAs, a manufacturer focuses on selected process attributes
that are important for the process performance and the econ-
omy of the production. Thus, process attributes need to be
monitored and key process parameters (KPPs) that influence
the process attributes require to be well-controlled as well [3].

Process analytical technology (PAT) is a toolbox allowing
for the implementation of QbD. When the Food and Drug
Administration (FDA) launched the PAT initiative in 2004,
they aimed at establishing a consistent process performance,
process control, and a high product quality by monitoring and
controlling KPPs or CPPs that affect process attributes or
CQAs, respectively [4–6]. PAT tools are significant to fulfill
regulatory needs resulting in high product quality as well as
optimizing the process performance based on selected process
attributes.

From a pharmaceutical manufacturer perspective, the anti-
body titer and the process yield are some of the most important
process attributes to achieve an economic process. The viable
cell concentration (VCC) reflects the amount of viable cells in
a cell suspension that is responsible for the antibody produc-
tion. Thus, VCC is strongly linked to product titers and is
considered process attribute, too [3]. Monitoring the VCC
enables process optimization and control that leads to higher
titers and efficient processes. One example can be the adjust-
ment of the feeding rate based on online VCC values leading
to an optimal feed consumption in every process that reduces
medium costs in the production facility. Current state-of-the-
art VCC measurements comprise offline methods like trypan
blue assays. Major drawbacks are the low temporal resolution
of the VCC, and the temporal delay between sampling and
measurement. Further, operator-dependent measurement er-
rors can alter the results and increase risks of contaminations
[7, 8]. Offline measurements for important process attributes
conflict with the online control and QbD requirements bio-
pharmaceutical processes have to meet. In recent years, many
online PAT tools have been investigated in pharmaceutical
processes to monitor cell concentrations of mammalian cul-
tures (e.g., radio-frequency impedance, Raman spectroscopy,
or near-infrared spectroscopy) [9–14].

Radio-frequency impedance was selected as a preferred
tool for mammalian cell culture monitoring because of rela-
tively low implementation costs, a sensitivity to cell numbers,

and easy implementation into the sterile surrounding of a bio-
reactor [15–17]. Online radio-frequency impedance measure-
ments as a PAT tool have been used for many years in order to
measure the permittivity of mammalian cell cultivations and
derive information about cell growth and biomass [15,
18–21]. Therefore, the theory and principles of radio-
frequency impedance have been presented in various litera-
ture, so here only a short summary of the basic terminology
and theory will be given [19, 22, 23].

In the context of radio-frequency impedance, the terms
used to describe the same measurement approach differ from
author to author. The same approach is described as
(bio-)capacitance [15, 24, 25], dielectric spectroscopy [7, 17,
26], multifrequency permittivity [27], or impedance measure-
ments [7].

Impedance measurements provide capacitance and con-
ductivity as physical properties where capacitance and con-
ductivity are generally frequency-dependent. Combined with
the cell constant (which corresponds mainly to the electrode
geometry), capacitance leads to dielectric properties of the
analyte where the capacitance component delivers the permit-
tivity signal measured in picofarads per centimeter of the an-
alyte [28]. Therefore, in the following, themeasurement signal
of a capacitance sensor is referred to as permittivity.

When an electric field is applied to cells within an ionic
solution, a charge separation occurs within the cells and the
poles of the cells polarize. The polarization occurs because the
electric field forces ions to move within the highly conducting
cellular cytoplasm until they reach the non-conducting cellular
membrane which impedes their further movement. The polar-
izability of the cell suspension corresponds to the permittivity
of the cell suspension. This means with higher cell concentra-
tions, more cells contribute to the polarization, leading to a
higher permittivity. Furthermore, the polarizability is frequen-
cy-dependent. In the case of mammalian cells with diameters
in the range of several micrometers, excitation frequencies
below 100 kHz leave enough time for the cells to completely
polarize, resulting in a high permittivity of the solution. An
increase in the excitation frequency leads to a decrease in
permittivity because the cells cannot polarize completely.
This loss in cellular polarization is referred to as β-dispersion.
Figure 1 illustrates the schematic overview of a β-dispersion
curve for spherical cells that describes the principle of permit-
tivity measurements. The frequency at which the rate of po-
larization is half complete is the characteristic frequency (fC).
Depending on the polarizability and the size of the cells, fC can
change. Dead cells and impurities of the cell broth are not
polarizable and therefore do not impact the capacitance mea-
surements [19, 29]. Moreover, before inoculation of the cells,
the signal of the medium is zeroed. Therefore, only changes
during cultivation due to the cell culture will be detected in the
permittivity signal. A cultivation broth does not consist of
many polarizable species or polarizable species appear in
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concentrations below the limit of detection of a capacitance
probe. Thus, the capacitance probe is a promising tool to
monitor cell growth online.

As a result of the measurement principle, the permittivity
signal measured at one frequency increases with higher VCCs
in a culture as well as with a larger cell diameter that can occur
during cell aging or as stress responses. The influences of
VCC and cell diameter on the permittivity signal are not dis-
tinguishable with one frequency measurement. Thus, single-
frequency measurements correlate with the viable cell volume
(VCV) instead of the VCC [17, 30]. With radio-frequency
impedance spectroscopy (here called capacitance frequency
scanning), the dielectric properties of a cell suspension are
measured with multiple frequencies resulting in a higher de-
gree of cell information. Recently, it was reported that apply-
ing capacitance frequency scanning and mathematic modeling
(e.g., Cole-Cole modeling of the β-dispersion curve or partial
least squares regression) on the frequency scanning data re-
vealed online information of the VCC, cell apoptosis, or nu-
trient limitations [24–27, 31–33].

Frequency scanning captures the permittivity at various
frequencies over the course of cultivation, delivering a large
amount of complex data. The interaction between different
effects that influence the measurement requires advanced
statistics/analysis such as multivariate data analysis (MVDA).

The handling of multivariate data and advantages of or-
thogonal partial least squares (OPLS) models have been
well-described in literature [34–36]. Unlike PLS models,
OPLS models separate the variation within the predictors into
two parts: one being correlated, predictive to the model re-
sponse; and one being uncorrelated, orthogonal to the model
response. However, OPLS and PLS result in identical models.
The main difference between OPLS and PLS is the easier
interpretability when using OPLS models [35]. By definition

of the OPLS algorithm, orthogonal components are orthogo-
nal to the target information. Besides noise, they mainly cover
changes due to matrix effects. Applying OPLS (or PLS) to
frequency scanning data will support the predictability of
VCCs as other potential polarizable species will not necessar-
ily follow the trend over time for VCC.

This work aims to demonstrate the superiority of frequency
scanning compared with single-frequency measurements in
terms of VCC determination. Within this study, a new quan-
titative multivariate model based on OPLS regressions is de-
veloped correlating offline VCC measurements of an indus-
trially relevant CHO fed-batch process to frequency scanning
data.

As a result, the model is able to display the correct VCC
throughout a cultivation reducing the need of manual sam-
pling. Moreover, in contrast to single frequency, the multivar-
iate model predicts the VCC in all cell growth phases includ-
ing the cell death phase. Lee et al. reported a direct data-driven
PLS modeling approach to achieve online VCC models for
batch cultivations with low cell counts, claiming the need to
verify their results in cultivations with higher cell counts such
as fed-batch or perfusion processes [26]. To the best of our
knowledge, this study presents for the first time a direct data-
driven model based on OPLS for VCCs greater than 10 mil-
lion cells/mL in a fed-batch process. Moreover, robustness of
the MVDA model is investigated with fed-batches including
deliberate process changes.

Material and methods

Cell lines and media

ADG44 CHO cell line expressing a monoclonal antibodywas
used in this study (Sartorius Stedim Cellca GmbH). Seed me-
dium (SM), basal medium for production (PM), and two dif-
ferent feeds, i.e., feed medium A (FMA) and feed medium B
(FMB), were used in all experiments (Sartorius Stedim Cellca
GmbH). All media and feeds were chemically defined.

Seed culture

The seed culture process comprised the thawing and passag-
ing of the cells before inoculation of the bioreactor. A cryo vial
of 1 mL CHO cell suspension with a concentration of 30
million cells/mL was thawed and transferred into 10 mL pre-
warmed seed medium (36.8 °C) that was stored in a 15-mL
falcon tube (Sarstedt). In order to remove the preservation
medium, the falcon tube was centrifuged at 190g for 3 min
(3–30K Centrifuge, Sigma). The supernatant was decanted
and the pellet re-suspended in 1 mL of seed medium. The cell
suspension was transferred into a single-use 0.5-L Erlenmeyer
flask (Corning) containing 150 mL pre-warmed seed medium.

Fig. 1 Schematic overview of a ß-dispersion curve for spherical cells.
With increasing frequency, the permittivity of cells in suspension moves
from a low-frequency plateau that corresponds to a maximal cell
polarization down to a high-frequency plateau that corresponds to a
minimal cell polarization, respectively. This typical occurrence is
known as ß-dispersion. The extent of the polarization is measured by
the permittivity of the electrical double layer. Depending on the
polarizability of the cells, the characteristic frequency (fC) can change
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All seed cultures were kept in an orbital shaking incubator
(CERTOMAT® CT plus, Sartorius Lab Instruments GmbH)
at a temperature of 36.8 °C, a pCO2 of 7.5%, 85% humidity,
and a shaking rate of 120 rpm (rpm)with an orbital diameter of
50 mm. The cells were passaged 5 times in a rhythm of 3–
4 days before inoculation of the main culture.

Main culture

The main culture was inoculated with 0.3 million cells/mL
(day 0) and lasted 12 cultivation days. All experiments were
carried out in a small-scale multiparallel bioreactor system
(ambr® 250 modular, Sartorius Stedim Biotech GmbH) with
a maximum working volume of 250 mL per vessel. The pro-
cess temperature set point for all experiments was set to
36.8 °C ± 0.05 °C. The pH was controlled using CO2 addi-
tions to maintain a pH set point of 7.1. Once a day, the pHwas
measured offline and re-calibrated if the result deviated by
more than 0.05 units between the online and offline signals.

The set point for DO was set to 60% and the control loop
adjusted the DO by modulating air and oxygen additions. The
small-scale bioreactor was stirred at 855 rpm. On the inocula-
tion day, antifoam was added depending on the actual biore-
actor volume (0.001% of the total culture volume). During
subsequent cultivation, antifoamwas addedmanually depend-
ing on the foam level in the bioreactor.

FMA and FMB were added to the culture from day 3 in a
ratio of 10:1 (FMA:FMB) according to Table 1.

From day 5 on, glucose was supplied as a bolus feed to the
bioreactor once the glucose level dropped below 5 g/L to
achieve a daily maximal glucose concentration of 5 g/L.

Dilution experiment

The seed and main culture of the process with integrated di-
lution steps were conducted as described in the corresponding
section. The dilution with PM amounted to 30 vol.% of the
cell broth. Two dilution steps were applied at a process time of
123 h and 194 h. For the dilution, the calculated amount of cell
suspension was removed by sampling of the bioreactor and
the same amount of pre-warmed PM was pumped to the cul-
ture. The PM was pre-warmed in an orbital shaking incubator
(CERTOMAT®CT plus, Sartorius Lab Instruments GmbH) at
a temperature of 36.8 °C, a pCO2 of 7.5%, and 85% humidity

until the addition of the PM into the main bioreactor was
completed. Therefore, the temperature and pH were close to
process conditions. The pre-conditioning of DO was not nec-
essary, because the main bioreactor was fully controlled and
the DO set point was achieved in short process times.

Altered feed strategy

The seed and main culture of the process with applied altered
feed strategy were conducted as described in the correspond-
ing section with exception of the feed and glucose strategy.
Glucose was added on day 5 as a bolus once the glucose
concentration depleted below 4 g/L to keep the set point at
4 g/L glucose. The feed control recipe of FMA and FMB was
programmed according to Table 2.

Offline analytics

The viable cell concentration and the viability of the cell sus-
pension, as well as the cell diameter, were analyzed with the
trypan blue assay–based Cedex HiRes Cell Counter and
Analyzer system (Roche). The pH and the glucose concentra-
tion were measured offline in a blood gas analyzer (ABL800
Basic, Radiometer).

Online capacitance measurements

Frequency scanning measurements were conducted with an
impedance probe (FUTURA pico, Aber Instruments). The
sensor scanned the permittivity at 25 discrete frequencies be-
tween 50 and 20,000 kHz resulting in a new measurement
value for each frequency every 30 s. The probe was connected
via a connection hub to a PC, and the data was processed by
the FUTURA SCADA software (Aber Instruments). The data
was stored as CSV format and imported into an Excel® file
(Microsoft Corporation) for further treatment. The single-
frequency excited permittivity was measured in parallel at
the frequency signal of 607 kHz via the same impedance
probe. The single-frequency data was processed by the
FUTURA SCADA software (Aber Instruments), and it was
stored as CSV format for further data treatment in an Excel®

file (Microsoft Corporation).

Table 1 Feeding strategy of feedmediumA (FMA) and feedmediumB (FMB). Themediumwas added as volume percent of the cell broth. Day 0 was
the day of inoculation

Day 3 4 5 6 7 8 9 10 11

Volume FMA (%) 3.9 3.8 3.6 3.5 3.3 3.2 3.0 2.9 2.8

Volume FMB (%) 0.39 0.38 0.36 0.35 0.33 0.32 0.30 0.29 0.28
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Data analysis and data treatment

TheMVDAmodel was composed of frequency scanning data
from cultivations and the respective VCC offline measure-
ments. The time points when offline and online data were
available were identified and summarized. The data summary
was generated in Excel® (Microsoft Corporation) and
imported into the model building software (SIMCA®,
Version 15, Sartorius Stedim Data Analytics). The scanning
frequencies were marked as the model predictors and mean-
centered. The VCC was scaled to unit variance and marked as
the model response. OPLS was used to create all MVDA
models. For predictions, the full dataset of the frequency scan
of the selected fed-batch was imported into the OPLS model
and marked as the prediction set.

Single-frequency results were analyzed in Excel®

(Microsoft Corporation). A linear regression was applied
including the offline and corresponding online values up
to a diameter change greater than 0.5 μm compared
with the averaged previous diameter values was detect-
ed. Therefore, the linear regression model did not con-
tain any values from the end of the exponential growth
phase, the stationary growth phase, or the death phase.
The resulted equation from the linear regression was
used to predict the VCC values based on the single
frequency at 607 kHz.

The predicted VCC trajectories for both approaches
(single-frequency and frequency scanning) were plotted in a
graphing and analysis software (Origin® 2018, OriginLab
Corporation). Within this software, the data were smoothed
applying the Savitzky-Golay filter (second polynomial order)
over a window of 30 data points.

The resulting trajectories were 1-point calibrated. As
the inoculation cell concentration is usually a known pa-
rameter, the offsets of trajectories were adjusted to the
corresponding inoculation cell concentration. For this pur-
pose, the first 30 predicted VCC points were averaged
after being smoothed. The difference between that aver-
aged predicted value and the inoculation cell concentra-
tion was added or subtracted from all predicted data
points of the corresponding batch.

For all predicted fed-batches, the root mean square error of
prediction (RMSEP) was calculated to investigate the quality
of the predicted values in comparison to the values observed

with the offline reference (Eq. 1). ypred describes the predicted
VCC value based on the applied model and yobs describes the
observed VCC value based on the offline reference method.
The number of observed and predicted value pairs is described
by n.
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In addition, a Batch Evolution Model (BEM) was created
by importing the mean-centered permittivity values of all fre-
quencies into the model building software (SIMCA®, Version
15, Sartorius Stedim Data Analytics). The BEM displays the
averaged trajectory of the selected dataset, and the standard
deviations serve as limits to monitor the trajectory of indepen-
dent cultivations online. The trajectories displayed in a BEM
are also known as golden batch trajectories. In this work, the
OPLS method was used to create the BEM. The selected ro-
bustness fed-batches that were monitored with the BEM were
imported as prediction sets. Thus, the setup enables an online
comparison of the current fed-batch compared with the golden
batch trajectory and can be used as alarm system once a devi-
ation occurs.

Validation of MVDA model

The OPLS model was validated applying a leave-one-batch-
out (LOB) approach. Five independent models (models A–E)
were created always leaving the complete dataset from one
batch out that was then used as the prediction set. Table 3
summarizes the different models that were created. Each stan-
dard fed-batch served once as a prediction set and was pre-
dicted with a model comprising all other corresponding stan-
dard fed-batches. The RMSEPwas calculated (models A–E in
Table 3) from these predictions compared with the actual data
values. The robustness trials (FB#6–8) served as prediction
sets for the final model including all standard cultivations
(model F in Table 3).

Within each OPLS model (e.g., model A), the root mean
square error of calibration (RMSEC) was calculated. For this
purpose, an identical calibration and validation dataset was
used. Each data point of the dataset was predicted by the
model resulting in the RMSEC.

Table 2 Feeding strategy of feedmediumA (FMA) and feed mediumB (FMB) for the altered feed strategy. The mediumwas added as volume percent
of the cell broth. Day 0 was the day of inoculation

Day 3 4 5 6 7 8 9 10 11

Volume FMA (%) 5.1 5.0 4.8 4.7 4.6 4.4 4.3 4.2 4.1

Volume FMB (%) 0.71 0.68 0.66 0.64 0.62 0.61 0.58 0.57 0.56
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Results and discussion

Establishment of a MVDA model using
a leave-one-batch-out approach

In this work, capacitance frequency scanning was applied to
an industrially relevant fed-batch process. After integration of
the inline sensor into the single-use bioreactor, standard culti-
vations were performed to create and validate the MVDA
model. The online data from the different frequencies served
as predictors in the model, and the offline reference represent-
ed the response. Therefore, the presented method to correlate
the permittivity information with VCC was a data-driven ap-
proach and did not need any further calculations like in previ-
ous approaches from literature (e.g., Cole-Cole modeling) [24,
25, 27].

In the following, the 5 standard fed-batch processes are
analyzed (FB#1–FB#5). The standard fed-batch processes
were conducted under the same culture conditions without
changes to the process parameters and cultivation strategy.
Typical sources of process variations as seed and medium lots
differed for each cultivation. Each step followed the internal
standard operating procedure (SOP) as described in the
“Material and methods” section. To further understand the
capabilities of the established frequency scanning MVDA
model, the LOB method was applied. Table 3 summarizes
the prediction results and the RMSEP for each cultivation
being discussed in the following chapters.

Figure 2 a represents the VCC trajectory and other process
parameters of one selected fed-batch (FB#4). The cell growth
represented in VCC started with a short lag phase (0–48 h),
followed by an exponential growth phase with a peak cell
concentration of 18 million cells/mL (48 –168 h) and finally
reached the stationary and death phases at the end of the pro-
cess. At the end of the exponential growth phase (for FB#4
after 150 h), a strong increase of the cell diameter was detected
in all standard fed-batches as exemplarily demonstrated in
Fig. 2 a. With inoculation of the main bioreactor, the viability

kept constantly high until day 8 of cultivation. After that day,
the viability decreased to 92% for FB#4. The end viabilities
for all standard fed-batches were in the range of 87% and 93%
(see Electronic SupplementaryMaterial (ESM) Table S1). The
peak cell concentrations, end cell concentrations on day 12,
the end viability, and the average cell diameter increase from
day 0 to day 12 are summarized in Table S1 (see ESM) for all
standard fed-batches.

Figure 2 b represents the predicted VCC trajectories of
FB#4 based on the permittivity of one frequency and on the
MVDA VCC model based on frequency scanning using the
LOBmethod. The VCC prediction based on the MVDAmod-
el represents the VCC offline values over the complete culti-
vation time within the accepted error range of 10% of the
offline reference method. The authors assume the measure-
ment error of the widely used and accepted offline method
to be at least 10%. This conservative estimation is based on
experimental experience and is in agreement with previous
literature reports [14]. However, for further discussion, 10%
error is taken as acceptance criterion for the MVDA VCC
model. Table 3 indicates the RMSEP and the relative errors
for the prediction of all standard fed-batches within the LOB
method. In this study, the RMSEP varied between roughly 1
and 2 million cells/mL corresponding to relative errors be-
tween 5.5 and 11% for the fed-batches FB#1 to FB#5
(Table 3). The coefficient of determination for all presented
models was above 94%. Therefore, the prediction error of the
frequency scanning model matches the uncertainty of the
offline reference method. Thus, frequency scanning is a suit-
able technique for online monitoring of VCC and facilitates
the implementation of advanced control strategies.

The online single-frequency permittivity trajectory and the
trajectory based on the VCC prediction model reveal the great
potential of the measurement approach itself (Fig. 2b): Each
feed addition can be monitored online resulting in dips,
starting with the first feed after 72 h of cultivation time.
Moreover, the impact of the feed in the permittivity signal
increased over time resulting in stronger dips in the stationary

Table 3 Overview of generated MVDA VCC models

Model Included
fed-batches (FB)

RMSEC
(10E6 cells/mL)

Predicted
fed-batch
(FB)

RMSEP
(10E6 cells/mL)

Relative
error (%)

R2 (%) Q2 (%) Principle components
(predictive + orthogonal)

A FB#2–FB#5 1.37 FB#1 1.17 6.6 95.3 95.0 1 + 2

B FB#1, FB#3–5 1.41 FB#2 1.27 8.3 95.6 95.0 1 + 2

C FB#1, FB#2, FB#4, FB#5 1.52 FB#3 0.99 5.5 94.3 93.8 1 + 2

D FB#1–3, FB#5 1.27 FB#4 1.04 5.7 96.2 95.7 1 + 2

E FB#1–4 1.00 FB#5 2.22 11.0 97.3 97.1 1 + 2

F FB#1–5 1.36 FB#6 1.33 6.7 95.4 95.0 1 + 2

F FB#1–5 1.36 FB#7 1.78 8.8 95.4 95.0 1 + 2

F FB#1–5 1.36 FB#8 2.71 13.2 95.4 95.0 1 + 2
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and apoptotic phases. The feed dips in the permittivity signal
of single-frequencymeasurements were showing a decrease in
the VCC higher than the pure dilution effect of the cells. It can
be concluded that the permittivity signal might include infor-
mation about metabolic cell changes. This effect was de-
scribed by Ansorge et al. who were able to correlate feed-
related changes in the permittivity to the cell metabolism
[18]. However, this result needs to be confirmed in future
experiments. The MVDA trajectory did not show such strong
feed dips at the end of the cultivation. The OPLS algorithm
excludes orthogonal information (noise) that does not corre-
late to the VCC. Therefore, the cross-sensitivity to other cell
metabolic effects is reduced.

The permittivity trajectory of the single-frequency mea-
surement correlated with the offline VCC within the exponen-
tial growth phase up to a significant cell diameter change (Fig.
2b). In the apoptotic cell culture phase at the end of the culti-
vation, the permittivity and the offline values were no longer
correlated. The strong increase in the cell diameter resulted in
a higher VCV and therefore a higher single-frequency permit-
tivity signal compared with the VCC reference. This result is
in good agreement with previous publications and confirms
the expectations based on the literature [17]. The next section
provides a more detailed comparison of the single-frequency
measurements versus the MVDA analysis of the frequency
scan.

Comparison of the MVDAmodel and single-frequency
measurements

In analogy to the MVDA analysis for the frequency scanning,
the LOB method was applied to the single-frequency

measurements. Therefore, five separate linear regressions
consisting of 4 fed-batches each were created. The individual
left out fed-batch served as prediction set. The single-
frequency measurement at 607 kHz and the offline VCC ref-
erence up to a cell diameter change greater than 0.5 μm were
used to create a linear regression model. The criterion of the
cell diameter change was selected based on the previously
discussed literature indicating an impact of the cell diameter
on single-frequencymeasurements [17]. The selected criterion
was in agreement with observations concerning the cell diam-
eter behavior in all standard fed-batches that can be seen ex-
emplarily in Fig. 2 a for FB#4. The total diameter change of
the cells over the complete cultivation time ranged from 1.9 up
to 4.6 μm (see ESM Table S1). The equation from the linear
regression model was used to predict the VCC of each fed-
batch. Table S2 (see ESM) gives an overview of the different
linear regressions presented in this work.

In Fig. 3, the predicted VCCs for each fed-batch using the
LOB method are plotted against the VCC reference data
points for the frequency scanning VCC model (Fig. 3a) and
for the single-frequency correlations (Fig. 3b). The dotted
straight line through the origin with the same distance to the
x-axis and y-axis at every point corresponds to a perfect cor-
relation between the observed and predicted values. The gray
lines in the figure indicate the 10% acceptance criterion for the
VCC prediction. A prediction within this error range is com-
parable to the current state-of-the-art measurement method
and indicates a successful implementation of the online sensor
approach for VCC predictions. In the MVDA model, there
was a strong consistency between predicted and observed
VCC values with few exceptions for all tested standard culti-
vations (Fig. 3a). As already mentioned previously, the

Fig. 2 Results of the standard fed-batch cultivation FB#4. a Viable cell
concentration (VCC), viability and cell diameter trajectories for the
investigated fed-batch process over a cultivation time of 12 days
(288 h). b Corresponding online permittivity signal (single frequency),

the prediction based on the multivariate model (frequency scanning) and
the offline reference VCC values for FB#4. The indicated error bars for
the offline reference VCC values describe the prediction error acceptance
criterion of 10%
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RMSEP for the multivariate analysis resulted to be between 1
and 2 million cells/mL with relative errors between 5.5 and
11% for the fed-batches FB#1 to FB#5 (Table 3).

Figure 3 b displays the results of the LOB method applied
to the single-frequency measurements. However, the single
frequency did not provide a correlation within the 10% accep-
tance criterion over the complete cultivation time. In the ex-
ponential growth phase below VCCs of 15 million cells/mL, a
good correlation was given. With higher VCCs, the observed
and predicted values were not comparable to each other and
out of the 10% acceptance range. Empty symbols indicate the
VCC values that were not included into the linear regression
because of the diameter change greater than 0.5 μm.

The RMSEP for the single-frequency analysis (between 3
and 4 million cells/mL) was much higher compared with the
RMSEP values achieved with the MVDAmodel (Table 3 and
ESM Table S2). The relative error for the prediction based on
single frequency ranged from 15.8 to 22.7%. The accuracy of
the single-frequency measurement was not comparable to the
offline reference method.

When dealing with such numbers, one should keep in mind
that single-frequency measurements do not correlate to VCC if
cell diameter changes occur [17, 30]. Therefore, the error of this
method is strongly dependent on the data point selection and
distribution. Many data points within the death phase of the cells
(with higher cell diameter) will increase the error values for VCC
predictions automatically as they were not considered in the lin-
ear regression (empty symbols). Using linear regression models
to predict the values in the death phase necessarily results in high
deviations. To better compare the single-frequency VCC predic-
tion and theMVDAVCCmodel, the RMSEP of the values after
a significant cell diameter change of 0.5 μm that served as crite-
rion for the linear regression was calculated. Table S3 (see ESM)

summarizes the RMSEP and relative errors for the VCC values
after the cell diameter change. The superiority of the frequency
scanning MVDA model compared with the single-frequency
prediction is clearly demonstrated for the stationary and death
phases of the cells. The RMSEP for the MVDA VCC model
ranged from 1 to 3 million cells/mL (rel. errors between 5.4
and 15.2%) whereas the RMSEP for the single-frequency pre-
diction was calculated to be between 4 and 6 million cells/mL
(rel. errors between 25 and 34%). The relative error of the VCC
prediction in the cultivation period with an increased diameter
was only for the MVDAmodel inside the acceptable range with
one exception of FB#5 with 15.2% that was only close to the
acceptance criterion. The exception is probably caused by VCC
variations within the standard process and a small amount of
cultivations in the calibration set. The results can likely be im-
proved by a larger set of calibration runs in future.

To conclude, the results of the LOB method demonstrate
that the MVDAmodel provides significant benefits compared
with single-frequency measurements in predicting VCCs over
the complete culture time for the presented fed-batch process.
The frequency scanning itself is a powerful tool for monitor-
ing the process attribute VCC with a high accuracy and with
reduced cross-sensitivity to cell diameter changes. For future
applications, use of frequency scanning in combination with
MVDA for VCC onl ine moni tor ing is therefore
recommended.

MVDA model properties including all standard
cultivations

The previous section demonstrates that the MVDA model
based on standard cultivations predicts the VCC of an inde-
pendent fed-batch with a high accuracy. For future

Fig. 3 Observed versus predicted plot. a Comparison of the observed
viable cell concentration (VCC) and the predicted VCC from the
prediction set (PS) based on the leave-one-batch-out (LOB) method for
the multivariate data analysis. b Comparison of the observed VCC and

the predicted VCC from the PS based on the LOB method for the single-
frequency correlations. The empty symbols reflect the measurement
values that were excluded from the correlations based on linear regression
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applications, the MVDA model will be trained and extended
with every successful cultivation. In accordance with future
applications, the most robust model containing all 5 cultiva-
tion training sets is described and used for further analysis and
robustness trials.

Figure 4 a shows the regression plot and therefore the in-
fluence of each frequency on the MVDA VCC model. The
frequencies can be divided into 3 different regions that are
indicated by different hills or valleys. Within each region,
the resolution of the permittivity measurement is different.
The information within one valley or hill might represent the
same effect in different resolutions. Therefore, the information
might correlate to the same effect within one region. In the
investigated frequency range, three affected sub-ranges are
revealed. The three different sub-ranges support the amount
of selected principle and orthogonal components of the
MVDA model (Table 3). For all MVDA VCC models, 1 pre-
dictive and 2 orthogonal components were used. In addition to
the regression plot (Fig. 4a), the R2/Q2-summary of fit plot
supports the selection of components (see ESM Fig. S2). It
is common to stop adding principle component in case an
additional component does not result in an improvement of
more than 10%. Moreover, the comparison of R2/Q2 and
RMSEC/RMSEP (Table 3) should be roughly similar. Based

on the presented results, 1 predictive and 2 orthogonal com-
ponents were used for all MVDA VCC models (Table 3).

In comparison to single-frequency measurements at
607 kHz, the result of three different sub-ranges indicates that
frequency scanning delivers additional information in lower
frequencies. This additional information is included in the
MVDAmodel and improves the predictability of VCC values.
The analysis of the score contribution plots in a point-to-point
comparison of two data points within one fed-batch
underlined the increase of information in lower frequencies
compared with the single frequency at 607 kHz. Figure S1
(see ESM) demonstrates the score contribution plot for each
frequency in a point-to-point comparison for the cultivation
days 5 and 12 in FB#3. The VCC values on the selected days
were in a comparable range (11.51 million cells/mL for day 5
and 11.79 million cells/mL for day 12), but a strong change in
the cell diameter was detected (14.7μm for day 5 and 18.4μm
for day 12). A strong effect at low frequencies, especially at
50 kHz, was identified. Therefore, the information from low
frequencies might include information about the cell diameter
changes in the late exponential growth phase, the stationary
phase, and the death phase.

The use of multiple frequencies and a MVDA VCC model
resulted in a higher accuracy of VCC predictions especially in

Fig. 4 Overview of the
multivariate model containing all
standard fed-batches FB#1 to
FB#5. a Contribution of each of
the 25 measured frequencies to
the multivariate model. b Score
plot indicating the distribution of
the fed-batch cultivations (FB#1–
FB#5) dependent on the
predictive principle component
(x-axis) and the first orthogonal
principle component (y-axis). The
ellipse around the plotted data
points indicates the 95%
confidence bound based on
Hotelling’s T2 statistics
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the death phase of each cultivation (Fig. 3). Furthermore, in
future applications, it might be possible to follow the approach
to reduce the amount of detection frequencies from 25 fre-
quencies down to one frequency per identified valley or hill.
A reduction of frequencies enables an improved process con-
trol by a higher measurement frequency and results in smaller
databases for the online calculations.

Figure 4 b shows the score plot including all standard cul-
tivations regarding the first two principle components (PC1
and PC2). PC1 is the predictive component located on the x-
axis, and PC2 is the first orthogonal component on the y-axis.
Each fed-batch is colored individually. The scores of each
cultivation can be separated based on the cultivation time of
each score. The scores in the lag phase and the exponential
growth phase did not distribute in PC2 within one fed-batch.
However, the scores of each fed-batch in the declining phase
distributed in PC2. In agreement with the statements above,
this result indicates that the MVDAmodel improves the VCC
predictability especially during the death phase because of
additional information described by further PCs based on dif-
ferent frequencies. Moreover, the score plot displays the dis-
tribution of the standard cultivations that were carried out.
Each standard cultivation started from a separate seed train
and was carried out at a different time leading to different
medium charges and other variances. All these variances rep-
resented the accepted variation according to SOPs in the pre-
sented fed-batch process. The process parameters were not
changed between runs. However, a variation within PC2 from
process to process was detected. FB#2 and FB#5were divided
and distinguishable with an offset in the PC2. This difference
was also reflected by comparing the RMSEC for the model
containing FB#1 –FB#4 (1 million cells/mL) and the resulting
RMSEP (2 million cells/mL) of FB#5 (Table 3). Thus, for
FB#5, the RMSEP was more than doubled compared with
the RMSEC of the corresponding multivariate model.
Therefore, FB#5 seems to be an important fed-batch that
needs to be included into the MVDA model even though
FB#5 was performed according to the same protocol as all
other fed-batches. This result is in agreement with the higher
relative error for FB#5 that was previously detected when
predicting the VCCs only after the cell diameter change of
0.5 μm (see ESM Table S3). To conclude, there are variations
from process to process that should be accounted for in the
model building process. A sufficient number of standard cul-
tivations are necessary to create a robust and optimized
MVDAmodel that is able to describe variations between stan-
dard fed-batches according to SOPs. This is in good agree-
ment with other publications which stated that a robust model
should contain at least 5 batches [16, 26]. In this work, a
single-use, small-scale bioreactor was used for all standard
cultivations. The benefit of using small-scale, single-use sys-
tems is fast turnover times with low experimental costs.
Therefore, this approach provides a rapid and an economic

method to achieve a sufficient number of cultivations for a
robust MVDA model that can be used for future online mon-
itoring and control of the process. The automated small-scale
bioreactor enables the possibility to develop a robust model in
one single run using several bioreactors at the same time and
setting up a design of experiment (DoE). Thus, the presented
approach can be applied in early process development where
DoEs and multiparallel small-scale bioreactors are commonly
used. However, the scalability of the establishedMVDAmod-
el to other bioreactors should be investigated in the future. The
application of the MVDA VCC model in large-scale bioreac-
tors is critical to move from early process development to-
wards production. Therefore, it might be possible that the
MVDA VCC model needs to be further developed during
scale-up by including larger bioreactor scales into the model.
This approach is commonly used for advanced models and
leads to strong and robust predictions of the target value.

Robustness test —dilution series

The robustness trials were applied to ensure that the prediction
of the MVDA VCC model is not based on any correlation to
standard process behavior or process time. The first robust-
ness trial consisted of two dilution steps of the cell broth dur-
ing one cultivation (FB#6). The cell broth was diluted by
30 vol.% with pre-warmed PM. The advantage of using a
dilution with PM as first robustness trial was to implement
simple changes to the permittivity signal without significantly
influencing the process parameters and cell biology.
Therefore, the change in the permittivity was expected to be
related predominantly to the dilution steps itself and therefore
the VCC changes.

The dilutions were applied after 123 h and 194 h of culti-
vation time (Fig. 5). As described previously, cell diameter
changes can have an impact on the permittivity signal.
Therefore, the timing of each dilution was selected to cover
process changes in the exponential growth phase (constant
cell diameter) and in the stationary phase (incl. cell diameter
changes), respectively.

Besides a low-frequency disturbance (probably caused by
grounding issues of the used setup with temporarily electro-
magnetic interference) and CO2 supply perturbations, the di-
lution steps were detectable in the online signal (Fig. 5). The
CO2 supply perturbations had no apparent effect on the com-
plete cultivation and can be seen as unintended robustness
tests. The influence of the CO2 supply perturbations on the
cells was visible in the permittivity signal, leading to an in-
creased real-time process understanding on the cellular level.
Each offline reference sample that was measured after the
dilution steps was matching to the predicted online VCC val-
ue. Moreover, the RMSEP of the MVDA VCC model for the
complete cultivation was calculated to be 1 million cells/mL
(Table 3). The prediction resulted in a relative error of 6.7%
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for FB#6. The predicted VCCs for the diluted fed-batch pro-
cess were within the 10% acceptance criterion and comparable
to the offline reference. Moreover, process disturbances (e.g.,
CO2 supply perturbations) were detected in the online signal
immediately. Therefore, the online signal can be used for early
fault detection. Such an alarm system will enable fast correc-
tive actions to minimize process deviations that might lead to
process failures and lost batches.

This result indicates that the MVDA model based on the 5
standard cultivations is a robust tool for VCC online monitor-
ing. The process changes were detected immediately even
though no induced process variation was previously included
in the MVDA VCC model.

Robustness test—varying feeding strategy

The dilution in the previous robustness trial was selected as
being a significant process deviation with direct impact on the
VCC and immediate detection in the offline reference method.
To further investigate the MVDA model regarding its behav-
ior towards less obvious process deviations, different feeding
strategies were applied to the standard cultivation. The feed
was slightly decreased compared with the standard feeding
strategy (Tables 1 and 2). Even small process disturbances
(e.g., different nutrient levels in the cell culture) in the expo-
nential growth phase might influence the investigated process
attribute (VCC) in a later stage of the cultivation or the quality
attributes of the product itself [37 –40]. Thus, the feed robust-
ness trial aims at investigating the model robustness with
changes having an indirect impact on the cell growth. For this
purpose, a multivariate BEM based on the frequency scanning
data and deviations in the univariate offline parameter were
compared.

A process control chart of the offline VCC for FB#1 to
FB#5 was generated applying two respectively three standard
deviations as control limits (Fig. 6). This control chart was
used to compare the offline VCC of the feed variation trials
FB#7 and FB#8. The offline VCC values were mainly inside
the range of two standard deviations for the complete culture
time. FB#7 showed two outliers outside the two standard de-
viations after 120 h and 144 h of cultivation time. However,
remembering the minimum of 10% acceptance criterion, these
outliers are not considered critical for the processes.
Moreover, in the literature, deviations up to 3 standard devia-
tions are a common acceptance criterion [41]. Applying three
standard deviations to the presented offline reference results in
no critical outliers for any of the two batches. For FB#8, the
offline VCC was within the two standard deviations for the
complete cultivation time except of the measurement value at
240 h that was still within the three-standard-deviation range.
For both cultivations, no consecutive outliers were detected.
Consecutiveness of outliers can serve as trigger for alarm
functions and reduces the likelihood of false alarms due to
single-event faulty measurements. In summary, offline VCC
measurements did not detect induced process variations based
on the varying feeding profiles.

The online monitoring capabilities were tested by applying
the BEM to the fed-batches with the altered feeding profile
(Fig. 7). The multivariate BEM displays an average trajectory
for the frequency scanning data dependent on the process time
with two standard deviations. Compared with the offline ref-
erence in Fig. 6, a strong deviation in both altered feed fed-
batches (FB#7 and FB#8) was detected. After 140 h of culti-
vation, both fed-batches were outside the alarm limits of two
standard deviations. Compared with the univariate control
chart based on offline VCC reference, the BEM allowed for
a significantly earlier detection of the induced process

Fig. 5 Prediction results based on
the multivariate model including
all standard cultivations for the
dilution robustness trial (FB#6).
Dilutions were applied after 123 h
and 195 h of cultivation time. The
online prediction of the viable cell
concentration (VCC) was
compared with the offline
reference method. The indicated
error bars for the offline reference
VCC values describe the
prediction error acceptance
criterion of 10%
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deviation. Therefore, applying the onlinemonitoring enables a
fast identification of process deviations in regard to the inves-
tigated process attribute (VCC).

Applying MVDA and using the offline reference VCC
values to build the model are an indirect measurement meth-
od. The absolute error of the reference method rises with in-
creasing VCC. Therefore, the VCC prediction in the death
phase of the cell culture results inevitably in higher prediction
errors compared with the beginning of a process. Considering
a common reference VCC measurement device (in industry
and academia), the error of the MVDA VCC model is compa-
rable to the reference uncertainty over the complete culture
time and can be equally used for decision-making processes
in the death phase of a cell culture.

Table 3 summarizes the predictions of FB#7 and FB#8
based on the MVDA VCC model including all standard culti-
vations (FB#1 –FB#5). The relative errors of the prediction
were calculated to be 8.8% for FB#7 and 13.2% for FB#8.
Both fed-batches were predicted with low errors, and FB#7
was below to the 10% acceptance criterion for VCC predic-
tions even though the MVDA model used for the predictions

was simply based on standard cultivations only. The relative
error of FB#8 was slightly higher but still comparable to the
offline reference system error. The prediction accuracy and
model robustness can likely further be improved by including
the process robustness trials into the MVDA model in future.

In summary, combining MVDA and frequency scanning
can lead to be a powerful tool for future control strategies with
implemented alarms saving batches, costs, time, and re-
sources. Furthermore, the use of the single-use, small-scale
bioreactor enables investigations of purposely induced pro-
cess deviations by reducing medium and maintenance costs
for each cultivation (including the dilution trial and the
changed feed strategies). This result leads to the conclusion
that theMVDAVCCmodel provides high accuracy evenwith
changing process conditions.

Conclusion

Within this work, the superiority of frequency scanning over
single-frequency measurements was demonstrated,

Fig. 6 Comparison of viable cell
concentration (VCC) offline
reference values of the feed
variated processes (FB#7 and
FB#8) and the standard
cultivations (FB#1–FB#5). The
VCC values for the standard
cultivations were averaged and
the 2 and 3 standard deviations
were plotted

Fig. 7 Batch Evolution Model
(BEM) created from all standard
cultivation (FB#1–FB#5). The
BEM displays the golden batch
trajectory based on the zeroed
permittivity data for all
frequencies. The zeroed
permittivity frequency scans of
the fed-batches with a varied feed
strategy (FB#7 and FB#8) were
included as prediction sets and
monitored online in the BEM
over the complete cultivation time
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particularly during the death phase of the investigated fed-batch
process. The relative errors for the data points ranged between
5.4 and 15.2% for theMVDAVCCmodel after the cell diameter
changed (more than 0.5 μm compared with the averaged previ-
ous cultivation days). In contrast to this, the single-frequency
VCC prediction resulted in relative errors between 25 and
34%. Including the complete cultivation time, theMVDAmodel
predicted the VCC with relative errors between 5.5 and 11% in
standard cultivations. The robustness of the MVDA model was
successfully proven resulting in relative errors between 6.7 and
13.2%. A BEM model provided immediate information about
process deviations that were difficult to detect in the correspond-
ing offline reference on its own.

The use of a small-scale, single-use bioreactor provided a
fast and economic development of a robust MVDA model
with a sufficient amount of standard cultivations. Moreover,
the use of the small-scale bioreactor enabled the proof of
model robustness with deliberately induced process devia-
tions. In the small scale, medium and maintenance costs for
each cultivation were reasonably low.

To conclude, the combination of a capacitance probe as an
inline monitor tool with MVDA enabled predictions of the
VCC as a major process attribute for cell cultivation process-
es. Thus, the method presented here is recommended for fu-
ture monitoring and control strategies such as feed control or
the endpoint determination of a cultivation process based on
online VCC predictions. The various monitoring and control
possibilities of the presented method lead to economic, safe,
and robust mammalian cell culture processes according to
FDA’s PAT and QbD approaches.
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