Skip to main content
Log in

Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The ammonia odor from the exhaled breath of renal patients is associated with high levels of blood urea nitrogen. Typically, in the liver, ammonia and ammonium ions are converted into urea through the urea cycle. In the case of renal dysfunction, urea is unable to be removed and that causes a buildup of excessive ammonia. As small molecules, ammonia and ammonium ions can be forced into the blood–lung barrier and occur in exhaled breath. Therefore, people with renal failure have an ammonia (fishy) odor in their exhaled breath. Thus, exhaled breath ammonia can be a potential biomarker for monitoring renal diseases during hemodialyis. In this review, we have summarized the source of ammonia in the breath of end-stage renal disease patient, cause of renal disorders, exhaled breath condensate, and breath sampling. Further, various biosensor approaches to detect exhaled ammonia from renal patients and other ammonia systems are also discussed. We conclude with future perspectives, namely colorimetric-based real-time breathing diagnosis of renal failure, which might be useful for prospective studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Collins AJ, Foley RN, Herzog C, Chavers BM, Gilbertson D, Ishani A, et al. Excerpts from the US Renal Data System 2009 Annual Data Report. Am J Kidney Dis. 2010;55:S1–420.

    Article  Google Scholar 

  2. Wetmore JB, Collins AJ. Global challenges posed by the growth of end-stage renal disease. Ren Replace Ther. 2016. doi:10.1186/s41100-016-0021-7.

    Google Scholar 

  3. Coresh J, Jafar TH. Disparities in worldwide treatment of kidney failure. Lancet. 2015;385:1926–8.

    Article  Google Scholar 

  4. Shafi T, Michels WM, Levey AS, Inker LA, Dekker FW, Krediet RT, et al. Estimating residual kidney function in dialysis patients without urine collection. Kidney Int. 2016;89:1099–110.

    Article  Google Scholar 

  5. Whittier WL, Sayeed K, Korbet SM. Clinical factors influencing the decision to transfuse after percutaneous native kidney biopsy. Clin Kidney J. 2016;9:102–7.

    Article  Google Scholar 

  6. de Lacy Costello B, Amann A, Al-Kateb H, Flynn C, Filipiak W, Khalid T, et al. A review of the volatiles from the healthy human body. J Breath Res. 2014. doi:10.1088/1752-7155/8/1/014001.

    Google Scholar 

  7. King J, Unterkofler K, Teschl G, Teschl S, Mochalski P, Koç H, et al. A modeling-based evaluation of isothermal rebreathing for breath gas analyses of highly soluble volatile organic compounds. J Breath Res. 2012. doi:10.1088/1752-7155/6/1/016005.

    Google Scholar 

  8. Phillips M, Cataneo RN, Chaturvedi A, Kaplan PD, Libardoni M, Mundada M, et al. Detection of an extended human volatome with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry. PLoS One. 2013. doi:10.1371/journal.pone.0075274.

    Google Scholar 

  9. Spanel P, Davies S, Smith D. Quantification of ammonia in human breath by the selected ion flow tube analytical method using H3O+ and O2 + precursor ions. Rapid Commun Mass Spectrom. 1998;12:763–6.

    Article  CAS  Google Scholar 

  10. Turner C, Španěl P, Smith D. A longitudinal study of ammonia, acetone and propanol in the exhaled breath of 30 subjects using selected ion flow tube mass spectrometry, SIFT-MS. Physiol Meas. 2006;27:321–37.

    Article  Google Scholar 

  11. Aguilar AD, Forzani ES, Nagahara LA, Amlani I, Tsui R, Tao NJ. A breath ammonia sensor based on conducting polymer nanojunctions. IEEE Sens J. 2008;8:269–73.

    Article  CAS  Google Scholar 

  12. Hibbard T, Killard AJ. Breath ammonia analysis: clinical application and measurement. Crit Rev Anal Chem. 2011;41:21–35.

    Article  CAS  Google Scholar 

  13. Davies S, Spanel P, Smith D. Quantitative analysis of ammonia on the breath of patients in end-stage renal failure. Kidney Int. 1997;52:223–8.

    Article  CAS  Google Scholar 

  14. Endre ZH, Pickering JW, Storer MK, Hu WP, Moorhead KT, Allardyce R, et al. Breath ammonia and trimethylamine allow real-time monitoring of hemodialysis efficacy. Physiol Meas. 2010;32:115–30.

    Article  Google Scholar 

  15. Ruzsanyi V, Baumbach JI, Sielemann S, Litterst P, Westhoff M, Freitag L. Detection of human metabolites using multi-capillary columns coupled to ion mobility spectrometers. J Chromatogr A. 2005;1084:145–51.

    Article  CAS  Google Scholar 

  16. Ishida H, Satou T, Tsuji K, Kawashima N, Takemura H, Kosaki Y, et al. The breath ammonia measurement of the hemodialysis with a QCM-NH3 sensor. Biomed Mater Eng. 2008;18:99–106.

    CAS  Google Scholar 

  17. Norman M, Spirig C, Wolff V, Trebs I, Flechard C, Wisthaler A, et al. Intercomparison of ammonia measurement techniques at an intensively managed grassland site. Atmos Chem Phys. 2009;9:2635–45.

    Article  CAS  Google Scholar 

  18. Wojtas TJ, Bielecki Z, Stacewicz T, Mikołajczyk J, Nowakowski M. Ultrasensitive laser spectroscopy for breath analysis. Opto-Electron Rev. 2012;20:26–39.

    Article  CAS  Google Scholar 

  19. Smith D, Spanel P, Herbig J, Beauchamp J. Mass spectrometry for real-time quantitative breath analysis. J Breath Res. 2014. doi:10.1088/1752-7155/8/2/027101.

    Google Scholar 

  20. Righettoni M, Amann A, Pratsinis SE. Breath analysis by nanostructured metal oxides as chemo-resistive gas sensors. Mater Today. 2015;18:163–71.

    Article  CAS  Google Scholar 

  21. Zhang L, Meng F, Chen Y, Liu J, Sun Y, Luo T, et al. A novel ammonia sensor based on high density, small diameter polypyrrole nanowire arrays. Sensors Actuators B Chem. 2009;142:204–9.

    Article  CAS  Google Scholar 

  22. Wojkiewicz JL, Bliznyukc VN, Carquigny S, Elkamchi N, Redon N, Lasri T, et al. Nanostructured polyaniline-based composites for ppb range ammonia sensing. Sensors Actuators B Chem. 2011;160:1394–403.

    Article  CAS  Google Scholar 

  23. Häussinger D. Ammonia, urea production, and pH regulation. The Textbook of Hepatology: from basic science to clinical practice, 3rd ed. Oxford: Wiley-Blackwell; 2007.

  24. Narasimhan LR, Goodman W, Kumar C, Patel N. Correlation of breath ammonia with blood urea nitrogen and creatinine during hemodialysis. Proc Natl Acad Sci. 2001;98:4617–21.

    Article  CAS  Google Scholar 

  25. Imran M, Shah Y, Nundlall S, Roberts NB, Howse M. Is blood ammonia influenced by kidney function? A prospective study. Clin Biochem. 2012;45:363–5.

    Article  Google Scholar 

  26. Chawla LS, Egger PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med. 2014;371:58–66.

    Article  Google Scholar 

  27. Ricci Z, Cruz D, Ronco C. The RIFLE criteria and mortality in acute kidney injury: a systematic review. Kidney Int. 2008;73:538–46.

    Article  CAS  Google Scholar 

  28. Friedman DJ, Pollak MR. Genetics of kidney failure and the evolving story of APOL1. J Clin Invest. 2011;121:3367–74.

    Article  CAS  Google Scholar 

  29. Tizianello A, De Ferrari G, Garibotto G, Gurreri G, Robaudo C. Renal metabolism of amino acids and ammonia in subjects with normal renal function and in patients with chronic renal insufficiency. J Clin Invest. 1980;65:1162–73.

    Article  CAS  Google Scholar 

  30. Tizianello A, Deferrari G, Garibotto G, Robaudo C, Acquarone N, Ghiggeri GM. Renal ammoniagenesis in an early stage of metabolic acidosis in man. J Clin Invest. 1982;69:240–50.

    Article  CAS  Google Scholar 

  31. Hsu CY, Ordonez JD, Chertow GM, Fan D, McCulloch CE, Go AS. The risk of acute renal failure in patients with chronic kidney disease. Kidney Int. 2008;74:101–7.

    Article  CAS  Google Scholar 

  32. Moreau R, Lebrec D. Acute renal failure in patients with cirrhosis: perspectives in the age of MELD. J Hepatol. 2003;37:233–43.

    Article  Google Scholar 

  33. Vautz W, Nolte J, Fobbe R, Baumbach JI. Breath analysis—performance and potential of ion mobility spectrometry. J Breath Res. 2009. doi:10.1088/1752-7155/3/3/036004.

    Google Scholar 

  34. Beauchamp J. Current sampling and analysis techniques in breath research—results of a task force poll. J Breath Res. 2015. doi:10.1088/1752-7155/9/4/047107.

    Google Scholar 

  35. Beauchamp J, Herbig J, Gutmann R, Hansel A. On the use of Tedlar bags for breath-gas sampling and analysis. J Breath Res. 2008. doi:10.1088/1752-7155/2/4/046001.

    Google Scholar 

  36. Herbig J, Beauchamp J. Towards standardization in the analysis of breath gas volatiles. J Breath Res. 2014. doi:10.1088/1752-7155/8/3/037101.

    Google Scholar 

  37. Thekedar B, Szymczak W, Höllriegl V, Hoeschen C, Oeh U. Investigations on the variability of breath gas sampling using PTR-MS. J Breath Res. 2009. doi:10.1088/1752-7155/3/2/027007.

    Google Scholar 

  38. Ghimenti S, Lomonaco T, Bellagambi FG, Tabucchi S, Onor M, Trivella MG, et al. Comparison of sampling bags for the analysis of volatile organic compounds in breath. J Breath Res. 2015. doi:10.1088/1752-7155/9/4/047110.

    Google Scholar 

  39. Scott-Thomas AJ, Syhre M, Pattemore PK, Epton M, Laing R, Pearson J, et al. 2-Aminoacetophenone as a potential breath biomarker for Pseudomonas aeruginosa in the cystic fibrosis lung. BMC Pulm Med. 2010. doi:10.1186/1471-2466-10-56.

    Google Scholar 

  40. Mochalski P, Wzorek B, Sliwka I, Amann A. Suitability of different polymer bags for storage of volatile sulphur compounds relevant to breath analysis. J Chromatogr B Anal Technol Biomed Life Sci. 2009;877:189–896.

    Article  CAS  Google Scholar 

  41. Gilchrist FJ, Razavi C, Webb AK, Jones AM, Spaněl P, Smith D, et al. An investigation of suitable bag materials for the collection and storage of breath samples containing hydrogen cyanide. J Breath Res. 2012. doi:10.1088/1752-7155/6/3/036004.

    Google Scholar 

  42. Kang S, Paul-Thomas CL. How long may a breath sample be stored at –80 °C? A study of the stability of volatile organic compounds trapped onto a mixed Tenax: Carbograph trap adsorbent bed from exhaled breath. J Breath Res. 2016. doi:10.1088/1752-7155/10/2/026011.

    Google Scholar 

  43. Kumar S, Huang J, Abbassi-Ghadi N, Mackenzie HA, Veselkov KA, Hoare JM, et al. Mass spectrometric analysis of exhaled breath for the identification of volatile organic compound biomarkers in esophageal and gastric adenocarcinoma. Ann Surg. 2015;262:981–90.

    Article  Google Scholar 

  44. Corradi M, Poli D, Banda I, Bonini S, Mozzoni P, Pinelli S, et al. Exhaled breath analysis in suspected cases of non-small- cell lung cancer: a cross-sectional study. J Breath Res. 2015. doi:10.1088/1752-7155/9/2/027101.

    Google Scholar 

  45. Popa C, Banita S, Patachia M, Dumitras DC. Spectroscopic study of ammonia at subjects with kidney failure: a case control study. Rev Roum Chim. 2013;58:779–84.

    CAS  Google Scholar 

  46. Hibbard T, Crowley K, Kelly F, Ward F, Holian J, Watson A, et al. Point of care monitoring of hemodialysis patients with a breath ammonia measurement device based on printed polyaniline nanoparticle sensors. Anal Chem. 2013;85:12158–65.

    Article  CAS  Google Scholar 

  47. Wang J, Zhang W, Li L, Yu Q. Breath ammonia detection based on tunable fiber laser photoacoustic spectroscopy. Appl Phys B. 2011;103:263–9.

    Article  CAS  Google Scholar 

  48. Konvalina G, Haick H. Sensors for breath testing: from nanomaterials to comprehensive disease detection. Acc Chem Res. 2014;47:66–676.

    Article  CAS  Google Scholar 

  49. Nakhleh MK, Amal H, Awad H, Abu-Saleh N, Jeries R, Haick H, et al. Sensor arrays based on nanoparticles for early detection of kidney injury by breath samples. Nanomedicine Nanotechnol Biol Med. 2014;10:1767–76.

    Article  CAS  Google Scholar 

  50. Broza YY, Haick H. Nanomaterial-based sensors for detection of disease by volatile organic compounds. Nanomedicine. 2013;8:785–806.

    Article  CAS  Google Scholar 

  51. Güntner AT, Righettoni M, Pratsinis SE. Selective sensing of NH3 by Si-doped α-MoO3 for breath analysis. Sensors Actuators B Chem. 2016. doi:10.1016/j.snb.2015.09.094.

    Google Scholar 

  52. Jayasree T, Bobby M, Muttan S. Sensor data classification for renal dysfunction patients using support vector machine. J Med Biol Eng. 2015;35:759–64.

    Article  Google Scholar 

  53. Ogimoto Y, Selyanchyn R, Takahara N, Wakamatsu S, Lee SW. Detection of ammonia in human breath using quartz crystal microbalance sensors with functionalized mesoporous SiO2 nanoparticle films. Sensors Actuators B Chem. 2015;215:428–36.

    Article  CAS  Google Scholar 

  54. Guo D, Zhang D, Li N, Zhang L, Yang J. A novel breath analysis system based on electronic olfaction. IEEE Trans Biomed Eng. 2010;57:2753–63.

    Article  Google Scholar 

  55. Röck F, Barsan N, Weimar U. Electronic nose: current status and future trends. Chem Rev. 2008;108:705–25.

    Article  Google Scholar 

  56. Santini G, Mores N, Penas A, Capuano R, Mondino C, Trové A, et al. Electronic nose and exhaled breath NMR-based metabolomics applications in airways disease. Curr Top Med Chem. 2016;16:1610–30.

    Article  CAS  Google Scholar 

  57. Güntner AT, Koren V, Chikkadi K, Righettoni M, Pratsinis SE. E-nose sensing of low-ppb formaldehyde in gas mixtures at high relative humidity for breath screening of lung cancer? ACS Sens. 2016;1:528–35.

    Article  Google Scholar 

  58. Hill D, Binions R. Breath analysis for medical diagnosis. Int J Smart Sens Intell Syst. 2012;5:401–40.

    CAS  Google Scholar 

  59. Kotani A, Wakabayashi Y, Kohama M, Kusu F. Determination of ammonia in exhaled breath by flow injection analysis with electrochemical detection. Electrochemistry. 2012;80:340–4.

    Article  CAS  Google Scholar 

  60. Suslick K. An optoelectronic nose: “seeing” smells by means of colorimetric sensor arrays. MRS Bull. 2004;29:720–5.

    Article  CAS  Google Scholar 

  61. Lim SH, Feng L, Kemling JW, Musto CJ, Suslick KS. An optoelectronic nose for the detection of toxic gases. Nat Chem. 2009;1:562–7.

    Article  CAS  Google Scholar 

  62. Feng L, Musto CJ, Kemling JW, Lim SH, Zhong W, Suslick KS. Colorimetric sensor array for determination and identification of toxic industrial chemicals. Anal Chem. 2010;82:9433–40.

    Article  CAS  Google Scholar 

  63. Jurmanović S, Kordić S, Steinberg MD, Steinberg IM. Organically modified silicate thin films doped with colorimetric pH indicators methyl red and bromocresol green as pH responsive sol–gel hybrid materials. Thin Solid Films. 2010;518:2234–40.

    Article  Google Scholar 

  64. Penza M, Rossi R, Alvisi M, Signore MA, Serra E, Paolesse R, et al. Metalloporphyrins-modified carbon nanotubes networked films-based chemical sensors for enhanced gas sensitivity. Sensors Actuators B Chem. 2010;144:387–94.

    Article  CAS  Google Scholar 

  65. Reichardt C. Solvatochromic dyes as solvent polarity indicators. Chem Rev. 1994;94:2319–58.

    Article  CAS  Google Scholar 

  66. Mohr GJ. Chromo‐and fluororeactands: indicators for detection of neutral analytes by using reversible covalent‐bond chemistry. Chem Eur J. 2004;10:1082–90.

    Article  CAS  Google Scholar 

  67. Greene NT, Shimizu KD. Colorimetric molecularly imprinted polymer sensor array using dye displacement. J Am Chem Soc. 2005;127:5695–700.

    Article  CAS  Google Scholar 

  68. Kim HN, Guo Z, Zhu W, Yoon J, Tian H. Recent progress on polymer-based fluorescent and colorimetric chemosensors. Chem Soc Rev. 2011;40:79–93.

    Article  CAS  Google Scholar 

  69. Kowada Y, Ozeki T, Minami T. Preparation of silica-gel film with pH indicators by the sol-gel method. J Sol-Gel Sci Technol. 2005;33:175–85.

    Article  CAS  Google Scholar 

  70. Itagaki Y, Deki K, Nakashima SI, Sadaoka Y. Development of porphyrin dispersed sol–gel films as HCl sensitive optochemical gas sensor. Sensors Actuators B Chem. 2006;117:302–7.

    Article  CAS  Google Scholar 

  71. Onida B, Fiorilli S, Borello L, Viscardi G, Macquarrie D, Garrone E. Mechanism of the optical response of mesoporous silica impregnated with Reichardt’s dye to NH3 and other gases. J Phys Chem B. 2004;108:16617–20.

    Article  CAS  Google Scholar 

  72. Bang JH, Lim SH, Park E, Suslick KS. Chemically responsive nanoporous pigments: colorimetric sensor arrays and the identification of aliphatic amines. Langmuir. 2008;24:13168–72.

    Article  CAS  Google Scholar 

  73. Askim JR, Suslick KS. Hand-held reader for colorimetric sensor arrays. Anal Chem. 2015;87:7810–6.

    Article  CAS  Google Scholar 

  74. Suslick K, Hulkower K, Sen A, Sroka M, McNamara W (2005) Method and apparatus for detecting ammonia from exhaled breath. US Patent 20050171449A1.

  75. Eambaipreuk A, Kladsomboon S, Kerdcharoen T (2011) Breath monitoring based on the optical electronic nose system. In: The 2011 Biomedical Engineering International Conference (BMEiCON-2011); pp. 63–66.

  76. Devadhasan JP, Kim S. An ultrasensitive method of real time pH monitoring with complementary metal oxide semiconductor image sensor. Anal Chim Acta. 2015;858:55–9.

    Article  CAS  Google Scholar 

  77. Devadhasan JP, Shao M, Kim S. CMOS image sensor for rapid chemical detection. J Life Sci Technol. 2014;2:20–3.

    Google Scholar 

  78. Shin W. Medical applications of breath hydrogen measurements. Anal Bioanal Chem. 2014;406:3931–9.

    Article  CAS  Google Scholar 

  79. Ma W, Liu X, Pawliszyn J. Analysis of human breath with micro extraction techniques and continuous monitoring of carbon dioxide concentration. Anal Bioanal Chem. 2006;385:1398–408.

    Article  CAS  Google Scholar 

  80. Sun X, Shao K, Wang T. Detection of volatile organic compounds (VOCs) from exhaled breath as noninvasive methods for cancer diagnosis. Anal Bioanal Chem. 2015;16:1–22.

    Google Scholar 

  81. Manne J, Sukhorukov O, Jager W, Tulipl J. Pulsed quantum cascade laser-based cavity ring-down spectroscopy for ammonia detection in breath. Appl Opt. 2006;45:9230–7.

    Article  Google Scholar 

  82. van der Schee MP, Fens N, Brinkman P, Bos LD, Angelo MD, Nijsen TM, et al. Effect of transportation and storage using sorbent tubes of exhaled breath samples on diagnostic accuracy of electronic nose analysis. J Breath Res. 2013. doi:10.1088/1752-7155/7/1/016002.

    Google Scholar 

  83. Newberry C, Tierney A, Pickett-Blakely O. Lactulose hydrogen breath test result is associated with age and gender. Biomed Res Int. 2016. doi:10.1155/2016/1064029.

    Google Scholar 

  84. Kushch I, Schwarz K, Schwentner L, Baumann B, Dzien A, Schmid A, et al. Compounds enhanced in a mass spectrometric profile of smokers’ exhaled breath versus non-smokers as determined in a pilot study using PTR-MS. J Breath Res. 2008. doi:10.1088/1752-7155/2/2/026002.

    Google Scholar 

  85. Schwarz K, Pizzini A, Arendacká B, Zerlauth K, Filipiak W, Schmid A, et al. Breath acetone—aspects of normal physiology related to age and gender as determined in a PTR-MS study. J Breath Res. 2009. doi:10.1088/1752-7155/3/2/027003.

    Google Scholar 

  86. Fens N, Schee MP, Brinkman P, Sterk PJ. Exhaled breath analysis by electronic nose in airways disease. Established issues and key questions. Clin Exp Allergy. 2013;43:705–15.

    Article  CAS  Google Scholar 

  87. Buszewski B, Ligor T, Jezierski T, Wenda-Piesik A, Walczak M, Rudnicka J. Identification of volatile lung cancer markers by gas chromatography-mass spectrometry: comparison with discrimination by canines. Anal Bioanal Chem. 2012;404:141–6.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the R and D Program for the Society of the National Research Foundation (NRF) funded by the Ministry of Science, ICT, and Future Planning (2013M3C8A3078806 and 2015M3A9E2031372).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanghyo Kim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, S.T., Devadhasan, J.P. & Kim, S. Recent analytical approaches to detect exhaled breath ammonia with special reference to renal patients. Anal Bioanal Chem 409, 21–31 (2017). https://doi.org/10.1007/s00216-016-9903-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-016-9903-3

Keywords

Navigation