Skip to main content
Log in

Particulate matter analysis at elementary schools in Curitiba, Brazil

  • Original Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sandstro TM, Nowak D, Van Bree L (2005) Eur Respir J 26:187–188

    Article  Google Scholar 

  2. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, Ferris BG Jr, Speizer FE (1993) N Engl J Med 329:1753–1759

    Article  CAS  Google Scholar 

  3. Brunekreef B, Holgate ST (2002) Lancet 360:1233–1242

    Article  CAS  Google Scholar 

  4. Kaushik CP, Ravindra K, Yadav K, Mehta S, Haritash AK (2006) Environ Monit Assess 122:27–40

    Article  CAS  Google Scholar 

  5. Pope CA, Dockery DW (2006) J Air Waste Manage 56:709–742

    CAS  Google Scholar 

  6. Adler KB, Fischer BM (1994) Ann N Yk Acad Sci 725:128–145

    Google Scholar 

  7. Fubini B, Mollo L, Giamello E (1995) Free Radic Res 23:593–561

    Article  CAS  Google Scholar 

  8. Gilmour PS, Brown DM, Lindsay TG, Beswick PH, MacNee W, Donaldson K (1996) Occup Environ Med 53:817–822

    Article  CAS  Google Scholar 

  9. Berube KA, Jones TP, Williamson BJ, Winters C, Morgan AJ, Richards RJ (1999) Atmos Environ 33:1599–1614

    Article  CAS  Google Scholar 

  10. Pearson RL, Wachtel H, Ebi KL (2000) J Air Waste Manage Assoc 50:175–180

    CAS  Google Scholar 

  11. Peng CY, Lin TS (2007) Bull Environ Contam Toxicol 78:95–98

    Article  CAS  Google Scholar 

  12. Poupard O, Blondeau P, Iordache V, Allard F (2005) Atmos Environ 39:2071–2080

    Article  CAS  Google Scholar 

  13. Blondeau P, Iordache V, Poupard O, Genin D, Allard F (2005) Indoor Air 15:2–12

    Article  CAS  Google Scholar 

  14. Mendell MJ, Heath GA (2005) Indoor Air 15:27–52

    Article  CAS  Google Scholar 

  15. Kuruvilla J, Saritha K, Kevin C, Myoungwoo K, Amol K (2007) J Air Waste Manage Assoc 57:394–406

    Google Scholar 

  16. Meza-Figueroa D, De la O-Villanueva M, De la Parra ML (2007) Atmos Environ 41:276–288

    Article  CAS  Google Scholar 

  17. Mi Y-H, Norbäck D, Tao J, Mi Y-L, Ferm M (2006) Indoor Air 16:454–464

    Article  CAS  Google Scholar 

  18. Zhao ZH, Elfman L, Wang ZH, Zhang Z, Norbäck D (2006) Indoor Air 16:404–413

    Article  CAS  Google Scholar 

  19. Godoi RHM, Godoi AFL, Worobiec A, Andrade SJ, de Hoog J, Santiago-Silva MR, Van Grieken R (2004) Microchim Acta 145:53–56

    Article  CAS  Google Scholar 

  20. Godoi RHM, Kontozova V, Van Grieken R (2006) Atmos Environ 40:1255–1265

    Article  CAS  Google Scholar 

  21. Environmental Institute of Paraná (2008) Instituto Ambiental do Paraná (IAP). http://www.iap.pr.gov.br/. Accessed 26 Feb 2008

  22. Ro CU, Osan J, Szaloki I, de Hoog J, Worobiec A, Van Grieken R (2003) Anal Chem 75:851–859

    Article  CAS  Google Scholar 

  23. Bondarenko B, Treiger R, Van Grieken R, Van Espen P (1996) Spectrochim Acta B 51:441–456

    Article  Google Scholar 

  24. Koblinger L, Hofmann W (1985) Phys Med Biol 30:541–556

    Article  CAS  Google Scholar 

  25. Raabe OG, Yeh HC, Schum GM, Phalen RF (1976) Lovelace Foundation Report LF-53

  26. Koblinger L, Hofmann W (1990) J Aerosol Sci 21:661–674

    Article  Google Scholar 

  27. Cheng YS (2003) Aerosol Sci Technol 37:659–671

    Article  CAS  Google Scholar 

  28. Spolnik Z, Belikov K, van Meel K, Adriaenssens E, de Roeck F, van Grieken R (2005) Appl Spectrosc 59:1465–1469

    Article  CAS  Google Scholar 

  29. John K, Crist K, Kim M, Karnae S, Kulkarni A (2007) J Air Waste Manage 57:394–406

    CAS  Google Scholar 

  30. Carter JD, Ghio AJ, Samet JM, Devlin RB (1997) Toxicol Appl Pharmacol 146:180–188

    Article  CAS  Google Scholar 

  31. Singh M, Jaques PA, Sioutas C (2002) Atmos Environ 36:1675–1689

    Article  CAS  Google Scholar 

  32. Liu QT, Diamond ME, Gingrich SE, Ondov JM, Maciejczyk P, Gary AS (2003) Environ Pollut 122:51–61

    Article  CAS  Google Scholar 

  33. Mason B (1966) Principles of geochemistry. Wiley, New York

    Google Scholar 

  34. Cooper JA, Redline DC, Sherman JR, Valdovinos LM, Pollard WL, Scavone LC, Badgett-West C (1987) PM10 source composition library for the South Coast Air Basin, vols I & II. El Monte, CA

  35. Abrahams PW (2002) Sci Total Environ 291:1–32

    Article  CAS  Google Scholar 

  36. Menetrez MY, Foarde KK (2004) Indoor Built Environ 13:75–82

    Article  Google Scholar 

  37. Brunekreef B, Forsberg B (2005) Eur Respir J 26:309–318B

    Article  CAS  Google Scholar 

  38. Kleeman MJ, Schauer JJ, Cass GR (2000) Environ Sci Technol 34:1132–1142

    Article  CAS  Google Scholar 

  39. Funasaka K, Miyazaki T, Tsuruho K, Tamura K, Mizuno T, Kuroda K (2000) Environ Pollut 110:127–134

    Article  CAS  Google Scholar 

  40. Abt E, Suh HH, Catalano P, Koutrakis P (2000) Environ Sci Technol 34:3579–3587

    Article  CAS  Google Scholar 

  41. Gray HA, Cass GR (1998) Atmos Environ 32:3805–3825

    Article  CAS  Google Scholar 

  42. Pandya R, Solomon G, Kinner A, Balmes J (2002) Environ Health Perspect 110(Suppl 1):103–112

    CAS  Google Scholar 

  43. Woisetschlager G, Dutz M, Paul S, Schreiner M (2000) Mikrochim Acta 135:121–130

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo H. M. Godoi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Avigo, D., Godoi, A.F.L., Janissek, P.R. et al. Particulate matter analysis at elementary schools in Curitiba, Brazil. Anal Bioanal Chem 391, 1459–1468 (2008). https://doi.org/10.1007/s00216-008-2031-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-008-2031-y

Keywords

Navigation