Skip to main content
Log in

Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste

  • Special Issue Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cyclic voltammetry has been successfully used to study the oxidation of nicotinamide adenine dinucleotide (NADH) at single-wall carbon-nanotube-paste (CNTP) electrodes modified with p-methylaminophenolsulfate (p-MAP) and 3,4-dihydroxybenzaldehyde (3,4-DHB). Diffusion-like behaviour was observed for p-MAP-modified electrodes, and a diffusion coefficient of 2.4×10−6 cm2 s−1 was calculated for p-MAP in the paste. The behaviour of 3,4-DHB-modified CNTP electrodes was typical of that of surface-confined mediators. p-MAP electrocatalytic activity was first checked in solution, and a rate constant of 9.2 mol−1 L s−1 was obtained for the reaction between NADH and the mediator. The p-MAP-modified electrode did not have significant electrocatalytic activity for electro-oxidation of NADH, probably because of the formation of a complex between NADH and the confined mediator. In contrast, the 3,4-DHB-modified electrode had very good NADH electrocatalytic activity, with a heterogeneous rate constant of approximately 20×102 mol−1 L s−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Moiroux J, Elving PJ (1978) Anal Chem 50:1056–1062

    Google Scholar 

  2. Jaegfeldt H (1980) J Electroanal Chem 110:295–302

    Google Scholar 

  3. Moiroux J, Elving PJ (1979) J Electroanal Chem 102:93–108

    Google Scholar 

  4. Bartlett PN, Tebbutt P, Whitaker R.G. (1991) Prog React Kinet 16:55–155

    Google Scholar 

  5. Pariente F, Tobalina F, Moreno G, Hernandez L, Lorenzo E, Abruna HD (1997) Anal Chem 69:4065–4075

    Google Scholar 

  6. Gorton L, Torstensson A, Jaegfeldt H, Johansson G (1984) J Electroanal Chem 161:103–120

    Google Scholar 

  7. Matsue T, Yamada H, Chang HC, Uchida I, Nagata K, Tomita K (1990) Biochim Biophys Acta 1038:29–38

    Google Scholar 

  8. McNeil CJ, Spoors JA, Cocco D, Cooper JM, Bannister JV (1989) Anal Chem 61:25–29

    Google Scholar 

  9. Somasundrum M, Hall J, Bannister JV (1994) Anal Chim Acta 295:47–57

    Google Scholar 

  10. Lobo MJ, Miranda AJ, Tuñón P (1997) Electroanalysis 9:191–202

    Google Scholar 

  11. Antiochia R, Cass AEG, Palleschi G (1997) Anal Chim Acta 345:17–28

    Google Scholar 

  12. Antiochia R, Lavagnini I, Magno F (1999) Electroanalysis 11:129–133

    Google Scholar 

  13. Ogino Y, Takagi K, Kano K, Ikeda T (1995) J Electroanal Chem 396:517–524

    Google Scholar 

  14. Antiochia R, Lavagnini I, Magno F (2001) Electroanalysis 13:582–586

    Google Scholar 

  15. Tse DCS, Kuwana T (1978) Anal Chem 50:1315–1318

    Google Scholar 

  16. Jaegfeldt H, Torstensson A, Gorton L, Johansson G (1981) Anal Chem 53:1979–1982

    Google Scholar 

  17. Essaadi K, Keita B, Nadjo L, Contant R (1994) J Electroanal Chem 367:275–278

    Google Scholar 

  18. Xu F, Li H, Cross SJ, Guarr TF (1994) J Electroanal Chem 368:221–225

    Google Scholar 

  19. Tortensson A, Gorton L (1981) J Electroanal Chem 130:199–207

    Google Scholar 

  20. Kulys JJ (1981) Anal Lett 14:377–381

    Google Scholar 

  21. Persson B, Gorton L (1990) J Electroanal Chem 292:115–138

    Google Scholar 

  22. Kulys J, Gleixner G, Schuhmann W, Schmidt HL (1993) Electroanalysis 5:201–207

    Google Scholar 

  23. Mano N, Kuhn A (1999) J Electroanal Chem 477:79–88

    Google Scholar 

  24. Mano N, Kuhn A (1999) Electrochem Commun 1:497–501

    Google Scholar 

  25. Mano N, Kuhn A (2001) Biosens Bioelectron 16:653–660

    Google Scholar 

  26. Munteanu FD, Mano N, Kuhn A, Gorton L (2002) Bioelectrochem 56:67–72

    Google Scholar 

  27. Persson B, Lee HS, Gorton L, Skotheim T, Bartlett P (1995) Electroanalysis 7:935–940

    Google Scholar 

  28. Gorton L (1986) Chem Soc Faraday Trans 1 82:1245–1258

    Google Scholar 

  29. Bartlett PN, Simon E, Toh CS (2002) Bioelectrochem 56:117–122

    Google Scholar 

  30. Gründig B, Wittstock G, Rudel U, Strehlitz B (1995) J Electroanal Chem 395:143–157

    Google Scholar 

  31. Prieto-Simon B, Fabregas E (2004) Biosens Bioelectron 19:1132–1138

    Google Scholar 

  32. Gorton L (1995) Electroanalysis 7:23–45

    Google Scholar 

  33. Martinez R, Ramirez MT, Gonzales I (1998) Electroanalysis 10:336–342

    Google Scholar 

  34. Malinauskas A, Ruzgas T, Gorton L (2000) J Colloid Interface Sci 224:325–332

    Google Scholar 

  35. Valentini F, Amine A, Orlanducci S, Terranova ML, Palleschi G (2003) Anal Chem 75:5413–5421

    Google Scholar 

  36. Antiochia R, Lavagnini I, Magno F, Valentini F, Palleschi G (2004) Electroanalysis 16:1451–1458

    Google Scholar 

  37. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  38. Antiochia R, Lavagnini I, Pastore P, Magno F (2004) Bioelectrochem 64:157–163

    Google Scholar 

  39. Lavagnini I, Antiochia R, Magno F (2004) Electroanalysis 16:505–506

    Google Scholar 

  40. Nicholson RS, Shain I (1964) Anal Chem 36:706–723

    Google Scholar 

  41. Klinger RJ, Kochi K (1981) J Phys Chem 85:1731–1741

    Google Scholar 

  42. Alvarez P, Rodriguez-Granda P, Lobo-Castanon MJ, Mirando-Ordieres AJ, Tuñón-Blanco P (2003) Electrochem Comm 5:267–271

    Google Scholar 

  43. Andrieux CP, Saveant JM (1978) J Electroanal Chem 93:163–168

    Google Scholar 

Download references

Acknowledgements

The financial support of Italian Ministry of Education University and Scientific Research (PRIN 2002) is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccarda Antiochia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Antiochia, R., Lavagnini, I. & Magno, F. Electrocatalytic oxidation of NADH at single-wall carbon-nanotube-paste electrodes: kinetic considerations for use of a redox mediator in solution and dissolved in the paste. Anal Bioanal Chem 381, 1355–1361 (2005). https://doi.org/10.1007/s00216-005-3079-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-005-3079-6

Keywords

Navigation