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The enzyme nucleoside diphosphate kinase (NDP kinase or
NDPK) was discovered in the 1950s as biochemical activity
that removes the terminal phosphate from a nucleoside tri-
phosphate (NTP) and adds it to a nucleoside diphosphate
(NDP). Thus, the correct biochemical name for the enzyme
is NTP/NDP transphosphorylase, and it is generally regarded
as a housekeeping enzyme required for nucleotide homeosta-
sis. At least four of the ten Nme gene family products (Nme1–

Nme4), also called group I Nme proteins, carry that enzymatic
activity. A far more complex story was started in the 1990s
when it became evident that enhanced cancer metastasis was
linked to reduced expression of a gene named nm23, which
turned out to be identical to humanNme1 = NDPKA. To date,
the function of Nme1 underlying its metastasis suppressor
activity has not been clarified. It is hoped that fundamental
cellular and molecular insights into the role of NDP kinase/
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Nm23/awd proteins in development may explain its patho-
physiological roles. Based on the reports made on the 9th
International Congress of the NDP Kinase/Nm23/awd Gene
Family in August 2013 in Boston, USA, experts in the field
have summarized their ideas and views in review articles or
contributed novel original research to a special issue of
Naunyn-Schmiedeberg’s Archives of Pharmacology. Within
this editorial article, we propose a novel, potentially unifying
hypothesis, which developed from studies from model organ-
isms, but may help to understand the role of Nme proteins in
cardiovascular diseases as well as in cancer.

Developmental studies in model systems

Studies of normal physiological functions ofNme genes using
model organisms provide an excellent opportunity to unravel
the underlying mechanism of Nme action. Indeed, studies
using model systems have suggested a basic, unifying princi-
ple of Nme actions: Nme (or at least the group I members
Nme1–4) is critical for vesicle and macromolecular transport,
and Nme proteins perform this cellular function by acting as a
scaffold.

Drosophila melanogaster

The only ortholog of the Nme genes in Drosophila, abnormal
wing discs (awd), was discovered soon after the human Nme1
(also known as Nm23H1 or NDPK A) metastasis suppressor
activity was identified (Dearolf et al. 1988; Nallamothu et al.
2009; Steeg et al. 1988). Early studies in Drosophila showed
that awd mutant larval brain exhibited mitotic defects corre-
lated with defective microtubule polymerization (Biggs et al.
1990). Subsequently, awd has been implicated in the process
of endocytosis in multiple tissues, including neurotransmitter
uptake at the neuromuscular junctions (Krishnan et al. 2001),
surface receptor internalization that modulates the chemotaxis
response in tracheal cell and border cell migration (Dammai
et al. 2003; Nallamothu et al. 2008), recycling of adherens
junction components (Woolworth et al. 2009), and promotion
of early-to-late endosome transition that is critical for Notch
signaling in follicle cells and in imaginal discs (Ignesti et al.
2014). These endocytic functions were associated with the
functions of dynamin and Rab5, suggesting a GTP-supplier
function for these monomeric GTPases.

Interestingly, awd protein activity is negatively regulated
by the kinase action of 5′ adenosine monophosphate-activated
protein kinase (AMPK) (Onyenwoke et al. 2012). AMPK is a
key regulator of cellular energy homeostasis (Hardie et al.
2003). It is activated during starvation. Previous studies have
shown thatAMPKαmutation could cause epithelial disruption
and proliferation in the follicle cells but only under energy
stress (Mirouse et al. 2007). Since loss of awd results in de-

localization of adherens junction and breakdown of epithelial
characteristics (Woolworth et al. 2009), the AMPK-awd axis
may the key component in the regulation of nutrient-
dependent epithelial integrity.

Caenorhabditis elegans

Like Drosophila, C. elegans has a single Nme gene named
ndk-1. Knockout of ndk-1 displayed sterility and a protruding
vulva (Masoudi et al. 2013). Vulva development inC. elegans
is largely determined by the canonical MAP kinase signaling.
Epistasis study demonstrated that ndk-1 acts downstream of,
or in parallel to, lin-45, the ortholog of the proto-oncogene
serine/threonine-protein kinase Raf, and upstream of mek-2
and mpk-1, the orthologs of the mitogen-activated kinases
MEK and mitogen-activated protein kinase (MAPK), respec-
tively. This placed the ndk-1 function at the same level as the
kinase suppressors of ras (Ksr).Ksr encodes a scaffold protein
that coordinates the MAPK relay system. Interestingly, it has
been shown that mammalian Nme1 protein binds Ksr and can
function as a protein kinase for this scaffold (Hartsough et al.
2002). However, in mammalian cells, the phosphorylation is
inhibitory, while in C. elegans, the interaction between ndk-1
and Ksr promotes MAPK signaling. Such difference may
reflect different tissue context, although whether the worm
ndk-1 protein can phosphorylate Ksr has yet to be determined.

In subsequent studies (Fancsalszky et al. 2014), the Takács-
Vellai group also discovered that ndk-1 is additionally in-
volved in the migration of distal tip cell and engulfment and
clearance of apoptotic corpses by gonadal sheath cells. These
functions were placed downstream of ced-10, the ortholog of
the monomeric GTPase Rac1, and showed a genetic interac-
tion with dyn, the ortholog of the monomeric GTPase
dynamin.

Danio rerio

The zebrafish is an excellent developmental model for organ-
ogenesis, because of the transparent body of the animal.
Taking advantage of this model, Wieland et al. have shown
that association of Nme2 (NDPK B) with the G protein βγ
dimer (Gβγ) is required for G protein function in vivo (Hippe
et al. 2009). This function in turn is critical for cardiac con-
tractility, as Nme2, but not Nme1, knockdown resulted in
cardiac phenotype characterized by a severely impaired car-
diac contractility of both chambers of the heart, pericardial
edema, and bradycardia (Hippe et al. 2011b). Such phenotype
is linked with the failure of heterotrimeric G protein subunits
and their resident caveolae to be transported to the cell surface.
Indeed, Nme2was found to associate with caveolae in normal
cells (Hippe et al. 2011a; Hippe et al. 2011b).

More recently, the same laboratory also demonstrated that
zebrafish larvae depleted of Nme2 displayed severe
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malformations specifically in vessels formed by angiogenesis.
Importantly, a similar phenotype was observed in Nme2-defi-
cient mice when the animals were subjected to oxygen-
induced retinopathy. In this model, the number of preretinal
neovascularizations inNme2 (−/−) mice was strongly reduced
in comparison with wild-type littermates (Feng et al. 2014).
This defect may be correlated with the observation that Nme2
depletion impaired vascular endothelial growth factor
(VEGF)-induced sprouting and hampered the VEGF-
induced spatial redistributions of the VEGF receptor type 2
(VEGFR2) and VE-cadherin at the plasma membrane.

Mus musculus

Somewhat surprising, the mice deficient in the Nme1 or the
Nme2 gene have not yielded profound developmental defects,
which is likely due to Nme isoform redundancy and/or com-
pensatory mechanisms. Nme1 (−/−) females cannot feed their
pups as a result of growth retardation of the mammary glands
and defects in the final step of mammary duct maturation of
the nipple leading to duct obstruction (Deplagne et al. 2011).

Nme2 (−/−) mice are phenotypically normal at birth with a
normal life span. They exhibit, however, a mild impairment of
heart contractility at the age of 6 months or older. Although T
and B cell development is normal inNme2 (−/−) mice, KCa3.1
channel activity and cytokine production are markedly defec-
tive in T helper 1 (Th1) and Th2 cells (Di et al. 2010). This
phenotype is consistent with the previous finding that the
Nme2 protein activates the potassium channel KCa3.1 via
histidine phosphorylation of the C terminus of the channel.
This activation is required for T cell receptor-stimulated Ca2+

influx and proliferation of activated naive human CD4 T cells
(Srivastava et al. 2006a).

Interestingly, Nme1(−/−); Nme2(−/−) double knockout
mice are undersized, die perinatally, and exhibit a spectrum
of hematological phenotypes including severe anemia, im-
paired maturation of erythrocytes, and abnormal hematopoie-
sis in the liver and bone marrow (Postel et al. 2009). The
underlying molecular and cellular defects of this phenotype
are not yet clear, but it is reasonable to speculate that defective
chemotactic signaling regulated by receptor trafficking may
be involved.

Functions of the Nme family gene products related
to cardiovascular disease

Especially, Nme2 has been associated with functions in the
cardiovascular system. Hippe et al. 2007 reported that Nme2
forms a complex with the β subunit of the heterotrimeric Gs

protein in cardiomyocytes thereby regulating cardiac contrac-
tility. In a subsequent study, it was found that two distinct

functions of Nme2 are involved in that regulation (Hippe et al.
2011a). One requires the histidine kinase activity which phos-
phorylates His266 in Gβ (Cuello et al. 2003) and feeds into a
phosphorelay fueling GTP for G protein activation. The sec-
ond is apparently a scaffold function regulating the formation
of caveolae which does not require enzymatic activity but
complex formation with caveolins (Hippe et al. 2011a).

Nme2 as protein histidine kinase

As outlined in the review by Attwood and Wieland (2014),
phosphorylation and dephosphorylation of protein histidine
residues is quite common in signal transduction pathways in
prokaryotes and lower eukaryotes, like yeast fungi and plants.
In recent years, increasing evidence has been presented that
Nme2 can act as protein histidine kinase in mammals. The so
far described few substrates of the Nme2, the channels KCa3.1
and TRPV5 (Cai et al. 2014; Srivastava et al. 2006b), the G
protein β subunit (Cuello et al. 2003), and annexin 1 (Muimo
et al. 2000) fall into at least two subgroups. The histidine
phosphorylation of the channels follows the classical para-
digm in which phosphorylation of a protein alters its confir-
mation and/or activity. Both channels exhibit higher open
probability upon histidine phosphorylation, and this can be
reversed upon dephosphorylation by the phosphohistidine-
specific phosphatase PHP. As mentioned above, the impor-
tance of the regulation of these channels has been shown in
mouse models (Cai et al. 2014; Di et al. 2010). Although also
a substrate for PHP (Maurer et al. 2005), histidine-
phosphorylated Gβ does not show altered activity and thus
does not belong to the first category. His266 in Gβ apparently
serves as a storage site for a high energetic phosphate group
which can be retransferred onto GDP. The newly formed GTP
is subsequently used to activate the heterotrimeric G protein
(Hippe et al. 2007).

Nme2/caveolin interaction

The association of caveolin-1 and caveolin-3 with Nme2 has
first been detected in the zebrafish but later confirmed also in
mammalian cells (Hippe et al. 2009). Accordingly, Nme2 as
well as caveolin-3 (the prominent caveolin isoform in striated
muscle) depleted zebrafish exhibit an impaired cardiac con-
tractility (Hippe et al. 2011b; Hippe et al. 2009). Interestingly,
the Nme2 knockdown in the zebrafish also impaired vessel
formation by angiogenesis, a phenotype also seen under path-
ological conditions in Nme2 (−/−) mice (Feng et al. 2014).
Apparently, the VEGF-induced spatial redistribution of the
VEGFR2 is attenuated in Nme2-deficient endothelial cells.
As the VEGFR2 resides in caveolae and the absence of
caveolin-1 causes endothelial dysfunction as well as angio-
genesis defects (Lin et al. 2007; Sonveaux et al. 2004), it is
very likely that these defects are also related to the disturbed
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Nme2/caveolin interaction. Caveolin oligomers are already
formed in the endoplasmic reticulum (Hayer et al. 2010).
Thus, the reported facilitation of coat protein complex II
(COPII)-dependent vesicular transport from ER exit sites by
Nme2 (Kapetanovich et al. 2005) highlights a localization
where protein complexes of Nme2 with caveolins might
assemble.

Cancer-related functions of the Nme gene family

Nme1 as metastasis suppressor

Metastasis is the movement of tumor cells from their initial
site of origin to distant sites of the body and their progressive
colonization of those sites. Metastases, by direct organ com-
promise or by complications of their treatment, are the major
cause of cancer mortality. Differential expression of the Nme
gene family was first identified in experimental melanoma
metastasis. Nme1 was more highly expressed in poorly meta-
static sublines of the K-1735 murine melanoma than in relat-
ed, highly metastatic sublines (Steeg et al. 1988). Transfection
of Nme1 into a highly metastatic melanoma line had no effect
on primary tumor size but significantly reduced metastasis
(Leone et al. 1991), the founding definition of a metastasis
suppressor gene. Multiple confirmatory studies have been
published in several cancer histologies (reviewed in Marino
et al. (2012)), excluding leukemias, lymphomas, and neuro-
blastoma. Upon developing chemically induced liver cancer,
Nme1-deficient mice formed significantly greater lung metas-
tases than wild-type mice (Boissan et al. 2005), confirming a
metastasis suppressor activity. Recent articles have expanded
the breadth of metastasis suppression to Nme1 in UV
radiation-induced melanoma (Jarrett et al. 2013) and lung
cancer (Fan et al. 2013) and to Nme3 (also named Nm23-
DR) in colorectal cancer (Qu et al. 2013). The function of
Nme1 has also expanded to some aspects of tumorigenesis
(Jarrett et al. 2011). The potential role of Nme2 in
tumorigenesis and metastasis is discussed in the reviews by
Li et al. (2014) and Chowdhury (2014), respectively, in this
issue of Naunyn-Schmiedeberg’s Archives of Pharmacology.

Multiple aspects of metastasis have been implicated in
Nme1 suppression. Chiefly studied is tumor cell motility and
invasion, the latter being traversal of an extracellular matrix.
Invasion involves reversible changes in cell adhesion, motil-
ity, and proteolysis, often fueled by gene expression changes
in the epithelial-mesenchymal transition (EMT). Surprisingly,
no single set of pathways has been shown to be Nme1-depen-
dent. Rather, a bewildering host of adhesion molecules
(Boissan et al. 2010; Fournier et al. 2002; Kaetzel et al.
2014), motility factors, signaling pathways (Hartsough et al.
2002; Masoudi et al. 2013; Murakami et al. 2008; Otero 1997;

Otsuki et al. 2001; Roymans et al. 2000; Seong et al. 2007;
Tanaka et al. 2012; You et al. 2014), proteolytic events (Khan
et al. 2001), EMT hallmarks (Zhao et al. 2013), and other
transcriptional programs (Horak et al. 2007) have been func-
tionally linked toNme1. A new, important finding showed that
lysosomal cysteine cathepsins degraded Nme1 proteins under
the direction of C-Abl and Arg, limiting invasiveness (Fiore
et al. 2014). That invasion and motility may be fundamental to
Nme1’s biological effects is supported by reports that its
orthologs regulate these processes in Drosophila and
C. elegans (Fancsalszky et al. 2014; Nallamothu et al. 2008).

Colonization of a distant site is also a fundamental part of
cancer metastasis and may be the most amenable to transla-
tional development. For many cancer patients, evidence of
initial spread is apparent at the time of initial diagnosis and
surgery, such as involved lymph nodes. Thus, development of
a motility or invasion inhibitor may be unusable since it has
already occurred. Colonization of a distant site, evidenced by
imaging, may have started but remains incomplete in many
cancer patients. Experimental metastasis assays, in which
tumor cells are inoculated into the circulation and bypass
initial invasion steps, confirmed a metastasis suppressor ac-
tivity for Nme1. Intravidal microscopy showed that control
and Nme1 transfectants of a breast cancer cell line reached the
lung at comparable rates but that Nme1-overexpressing tumor
cells survived in a distant organ more poorly (Horak et al.
2007).

Nme1 protein may interrupt the metastasis process by
binding metastasis-promoting proteins in a scavenger like
function. The number of validated protein/protein interactions
(PPI) of the Nme protein family is large and growing. It
includes viral proteins capable of causing invasion and me-
tastasis (Banerjee et al. 2014; Murakami et al. 2005; Qin et al.
2011; Subramanian et al. 2001), oncogenes (Fishbach and
Settleman 2003; Ignesti et al. 2014; Iwashita et al. 2004;
Jarrett et al. 2013; Murakami et al. 2008), and other factors
promoting aggressiveness and metastasis (D’Angelo et al.
2004; Horak et al. 2007; Reymond et al. 1999). Some of these
interactions were disputed as they relied exclusively on the
use of antibodies whose specificity was suspect. Alternatively,
interactions of Nme1 protein and other proteins may be indi-
rect, part of a signaling complex. But even when reliable
antibodies are available, the fact that two proteins can be co-
precipitated from cell lysates does not ensure that they exist in
a complex in a given intact cells. Cell lysis, for example, may
disrupt subcellular compartmentalization and thus allow for
PPIs actually not present in the native environment. For these
reasons, independent lines of evidence should be presented to
allow for the conclusion that two proteins are part of a larger
protein complex and actually interact. An example for many
of such independent lines of evidence would be the binding of
h-prune to Nme1 and Nme2 in mammalian tumorigenic cells.
Starting from a genetic interaction model based on homology
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to prune and Drosophila awd (Reymond et al. 1999), it was
found that the phosphorylation of NmeI serine residues 122
and 125 by casein kinase I was regulating this PPI (Garzia
et al. 2008), thereby enhancing WNT signaling and vesicular
trafficking. The resulting increase in cell motility finally prop-
agates cell escape from the primary tumor site and metastases
(Carotenuto et al. 2014; Carotenuto et al. 2013; Garzia et al.
2008). In a review in this issue of Naunyn-Schmiedeberg’s
Archives of Pharmacology (Vlatkovic et al. 2014), the authors
raised a pivotal question to all PPI studies, “the issue of false
or incorrect syllogisms in PPI functional studies.” Based on
the arguments raised by Vlatkovic et al., the manifold of
proposed interactions of Nme proteins with other proteins
have to be carefully reevaluated for mis- or overinterpretation
of the actual data. Often, the proposed direct interaction is
more a “tip of an iceberg” situation where one partner is sitting
on the top; the others, although detected by the used functional
assays, are located somewhere else. Such results therefore
give only very limited insights in the complex situation “be-
low the surface of the water” (Galasso and Zollo 2009).
Therefore, systems biology analyses based on in vivo obser-
vations may be an appropriate approach to validate the hy-
potheses regarding the multiple Nme protein family interac-
tion partners and the related functions.

Another potential contribution of the Nme family to cancer
progression lies in its interaction with DNA causing genomic
instability (Kaetzel et al. 2014). The disruption of an Nme
ortholog in E. coli was reported to produce a mutator pheno-
type and thus was opening research in that field (Lu et al.
1995). Due to artifactual binding of Nme to DNA and DNA-
binding proteins, this line of research has been fraught with
missteps but, recently, some consistent patterns have emerged.
Interactions of Nme with dynamin have been reported in
multiple species and may extend to other aspects of the
endocytosis, e.g., Rab5-dependent processes (Baillat et al.
2002; Dammai et al. 2003; Ignesti et al. 2014). The knock-
down of Nme1 in vitro caused abnormal chromosomal ploidy
resulting from a failure in cytokinesis (Conery et al. 2010),
which can be attributed to the provision of GTP (Boissan et al.
2014). As discussed by Kaetzel et al. 2014, Nme1 apparently
increases genetic stability in melanoma, possibly by a 3′–5′
exonuclease activity as well as NTP fueling to DNA polymer-
ases. In line with this interpretation,Nme1 promoted the repair
of UV-induced DNA damage to limit melanoma formation
(Jarrett et al. 2011; Yang et al. 2009; Zhang et al. 2011).

In addition to PPI and DNA interactions, also the protein
kinase activity of Nme1 is discussed to be relevant for its
antimetastatic actions. Compared to Nme2, there are even
fewer known substrates of the kinase activity of Nme1. ATP
citrate lyase, the first confirmed substrate of Nme1 acting as
protein histidine kinase (Wagner and Vu 1995), is also a
substrate to PHP. Its phosphorylation correlates to higher
enzymatic activity and to the viability of neuronal cells in

culture (Klumpp et al. 2009). Nevertheless, evidence from
in vivo models supporting the importance of this regulation
is missing. A second substrate for Nme1 is KSR which is
however phosphorylated on an important serine residue
(Hartsough et al. 2002). As the phosphorylation of KSR
regulates its scaffold function, the finding that in C. elegans
the interaction of KSR with Nme1 is relevant for Ras activa-
tion (Masoudi et al. 2013) highlights the possibility that Nme
isoenzymes might also be important kinases on other amino
acid side chains. Lapek et al. (2014) describe in this issue of
Naunyn-Schmiedeberg’s Archives of Pharmacology an unbi-
ased screen for so far unidentified phosphorylation on histi-
dine and aspartic acid residue in proteins in a prostatic human
epithelial cell model in non-tumorigenic, tumorigenic, and
metastatic state. In the latter, the expression of human Nme1
(and Nme2) was reduced. Although it is not clear that the loss
of phosphorylated proteins detected in the tumorigenic and
metastatic cells is due to the reduced presence of Nme iso-
forms, some of the proteins might turn out to be indeed so far
unknown protein substrates for phosphorylation by Nme.

Translational advances in cancer therapy based on targeting
Nme-dependent processes

Ever since its discovery in 1988, a goal of Nme research has
been to elevate its expression in micrometastatic tumor cells
and prevent their metastatic colonization in cancer patients.
An inhibition of the Nme enzymatic activity by small mole-
cule inhibitors was initially intended, but the available poly-
phenols such as ellagic acid (Buxton 2008), although widely
discussed to be beneficial in cancer therapy, are unspecific
kinase inhibitors and show low potency. Gene therapy ap-
proaches were successful preclinically (Li et al. 2006; Li et al.
2009) but remain clinically intractable. Avariety of alternative
approaches have been pursued. First, elevation of tumor cell
expression of Nme1 protein was demonstrated in vitro and
in vivo by high-dose medroxyprogesterone acetate (MPA)
(Ouatas et al. 2002; Ouatas et al. 2003), with concomitant
inhibition of metastasis (Palmieri et al. 2005). The validity of
this approach as therapeutic option was tested in a phase II
trial for advanced breast cancer. The experimental regimen
could not be validated as patients failed to achieve the neces-
sary plasma levels of MPA (Miller et al. 2014). Other com-
pounds have been reported to elevate tumor cell Nme1 ex-
pression as well (Jiang et al. 1988; Lin et al. 2002; Liu et al.
2000; Natarajan et al. 2002) and thus are additional candidates
at least for preclinical testing. A cell permeable Nme1 con-
struct suppressed development of pulmonary metastases in
mice and diminished already established metastases, with a
prolongation of overall survival (Lim et al. 2011). A peptide
that disrupts the interaction of Nme1 and h-Prune has been
identified, and preclinical studies were performed in breast
and prostate cancers as well as neuroblastoma (Carotenuto
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et al. 2014; Carotenuto et al. 2013; D’Angelo et al. 2004). The
results obtained by Carotenuto et al. (2014) (presented in this
issue of Naunyn-Schmiedeberg’s Archives of Pharmacology)
which showed the effectiveness and safety of the peptide
expression treatment in a mouse prostate cancer model of
metastasis support its use in further clinical testing. For exam-
ple, an in situ delivery of the peptide to patients affected by
prostate cancer and undergoing prostatectomy would present
an interesting therapeutic option.

Another translational approach is based on the identifica-
tion of genes which expression patterns were inversely related
to that of Nme1 protein. The lysophosphatidic acid receptor 1
(LPA1, EDG2, LPAR1) was inversely expressed to Nme1 in
multiple cancer cell lines as well as in human breast tumors.
The use of LPA1 antagonist was validated in two preclinical
models to suppress metastasis in breast cancer without
effecting primary tumor formation (Marshall et al. 2012).
The analysis of proliferation rates and activation of the MAP
kinase pathway in micrometastatic tumor cells in distant or-
gans suggested an induction of metastatic dormancy as un-
derlying mechanism. Orally available forms of this compound
are now in advanced preclinical testing. Other inverse expres-
sion correlates of Nme1 have been reported and stand as far as
preclinical research leads (Bosnar et al. 2006; Ma et al. 2008;
McCorkle et al. 2014; Zhao et al. 2004). The identification of
novel metastasis suppressive or metastatic colonization pre-
ventive drug candidates will require testing in adjuvant setting
trials. These trials are large, costly, and lengthy. Newer pro-
posed trial designs may facilitate such testing (Steeg 2012).

Future perspectives: a potential unifying theme

The function of Nme protein as an endocytic factor was noted
more than 10 years ago in Drosophila (Dammai et al. 2003;
Krishnan et al. 2001). More recent genetic studies have further
supported a more general role in vesicular transport (Feng
et al. 2014; Hippe et al. 2011a; Hippe et al. 2011b; Hippe
et al. 2009). It is therefore reasonable to contemplate that
elucidating the molecular mechanism underlying such ances-
tral physiological function could help clarify many of the
current seemingly endless arrays of cellular functions. Some
recent findings may point the way. As mentioned, Nme2 has
been shown to be part of the COPII complex required for
vesicle transport from the endoplasmic reticulum to the Golgi
apparatus (Kapetanovich et al. 2005). The authors suggested
that Nme2 participates in the formation of a proteinaceous
scaffold along which ER exit sites are organized. Another
possibility is that ER-to-Golgi transport requires microtubules
(Presley et al. 1997). Interestingly, one of the earliest observed
properties of Nme, in this case awd and the bovine NDPK,
was its association with microtubules (Biggs et al. 1990;

Nickerson and Wells 1984). More directly related to endocy-
tosis, it was recently demonstrated thatNme1 (and Nme2) was
localized at clathrin-coated pits and interacted with the
proline-rich domain of dynamin. In vitro, Nme1 and Nme2
were recruited to dynamin-induced tubules, stimulated GTP
loading on dynamin, and triggered fission in the presence of
ATP and GDP (Boissan et al. 2014). This finding, combined
with the intriguing property of Nme4 (a mitochondria-specific
Nme protein) in bridging two lipid bilayers (Schlattner et al.
2014; Schlattner et al. 2013), could suggest a scaffolding role
of the Nme proteins to bring together proteins and lipid com-
ponents that are involved in vesicle fusion and/or fission. In
line with this interpretation, Nme3 associated with membra-
nous structures, most likely mitochondria (Negroni et al.
2000).

In a broader context, it is very likely that Nme proteins
serve their myriad of cellular functions by playing the role of a
scaffold. Depending of the partners in different tissue and
subcellular contexts, the Nme scaffolds can exert different
functions, which may include endocytosis, macromolecular
transport, signal transduction, and various enzymatic func-
tions including NTP supply, protein kinase, or nuclease activ-
ity. With this scaffold hypothesis, we also propose a potential
unifying theme for many of the antimetastatic actions of Nme
proteins consistent with their developmental roles: Likely,
Nme proteins provide spatial and temporal control of signaling
or modify the activity of other scaffold proteins. Thus, reports
of Nme binding to multiple aspects of the cytoskeletal ma-
chinery may all involve a common motility-related activation
scaffold. This raises the question whether the instability of
metastatic tumor cells may be at least partially accounted for
by the loss of organized scaffolding, setting established sig-
naling pathways inherent in differentiation into disarray. If
true, it will be important to understand the regulation of Nme
expression levels as well as the properties whichNme proteins
use to exert their scaffolding function. These hypotheses
suggest a myriad of new studies that need to be undertaken
with appropriate controls to address this potentially important
Nme activity in vivo. As discussed herein for a variety of
examples, developmental studies using model organisms with
the help of advanced cell biology and proper systems biology
may set the gold standard for future Nme-related research.
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