Skip to main content
Log in

Effect of MANT-nucleotides on L-type calcium currents in murine cardiomyocytes

  • ORIGINAL ARTICLE
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Membranous adenylyl cyclases play a major role in G-protein-coupled receptor signalling and regulate various cellular responses, such as cardiac contraction. Cardiac apoptosis and development of cardiac dysfunction is prevented in mice lacking AC 5, a predominant isoform in the heart. In the search for a potent and selective AC 5 inhibitor, we recently identified 2′(3′)-methylanthraniloyl-inosine-5′-triphosphate(MANT-ITP) as the most potent AC 5 inhibitor with a K i of 13 nM. Therefore, AC inhibition of MANT-ITP was assessed in ventricular cardiomyocytes and compared to three other MANT-nucleotides to evaluate its effect on cardiac signalling. Basal and isoproterenol-induced L-type calcium currents (I Ca,L) in murine ventricular cardiomyocytes were recorded by whole-cell patch-clamp technique, using four different MANT-nucleotides. The effects of the MANT-nucleotides on I Ca,L were unexpectedly complex. All MANT-nucleotides exhibited an inhibitory effect on basal I Ca,L. Additionally, several MANT-nucleotides, i.e., MANT-ITPγS, MANT-ATP, and MANT-ITP, caused a strong initial increase in basal I Ca,L within the first 2.5 min that appeared to be unrelated to AC 5 inhibition. However, we detected a significant reduction on isoproterenol-induced I Ca,L with MANT-ITP, supporting the notion that AC 5 plays an important role in agonist-stimulated activation of I Ca,L. Collectively, MANT-nucleotides are useful tools for the characterization of recombinant ACs, for fluorescence studies and crystallography, but in intact cardiomyocytes, caution must be exerted since MANT-nucleotides apparently possess additional effects than AC 5 inhibition, limiting their usefulness as tools for intact cell studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Beetz N, Hein L, Meszaros J, Gilsbach R, Barreto F, Meissner M, Hoppe UC, Schwartz A, Herzig S, Matthes J (2009) Transgenic simulation of human heart failure-like L-type Ca2+-channels: implications for fibrosis and heart rate in mice. Cardiovasc Res 84:396–406

    Article  CAS  PubMed  Google Scholar 

  • Chester JA and Watts VJ (2007) Adenylyl cyclase 5: a new clue in the search for the “fountain of youth”? Sci STKE 2007:pe64.

  • Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol Ren Physiol 279:F400–F416

    CAS  Google Scholar 

  • Dessauer CW, Tesmer JJ, Sprang SR, Gilman AG (1999) The interactions of adenylate cyclases with P-site inhibitors. Trends Pharmacol Sci 20:205–210

    Article  CAS  PubMed  Google Scholar 

  • Eckstein F (2000) Phosphorothioate oligodeoxynucleotides: what is their origin and what is unique about them? Antisense Nucleic Acid Drug Dev 10:117–121

    Article  CAS  PubMed  Google Scholar 

  • Fischmeister R, Castro LR, Abi-Gerges A, Rochais F, Jurevicius J, Leroy J, Vandecasteele G (2006) Compartmentation of cyclic nucleotide signaling in the heart: the role of cyclic nucleotide phosphodiesterases. Circ Res 99(8):816–828

    Article  CAS  PubMed  Google Scholar 

  • Fuller MD, Emrick MA, Sadilek M, Scheuer T, Catterall WA (2010) Molecular mechanism of calcium channel regulation in the fight-or-flight response. Sci Signal 3(141):ra70

    Article  PubMed  Google Scholar 

  • Gille A, Seifert R (2003a) 2′(3′)-O-(N-methylanthraniloyl)-substituted GTP analogs: a novel class of potent competitive adenylyl cyclase inhibitors. J Biol Chem 278:12672–12679

    Article  CAS  PubMed  Google Scholar 

  • Gille A, Seifert R (2003b) MANT-substituted guanine nucleotides: a novel class of potent adenylyl cyclase inhibitors. Life Sci 74:271–279

    Article  CAS  PubMed  Google Scholar 

  • Gille A, Lushington GH, Mou TC, Doughty MB, Johnson RA, Seifert R (2004) Differential inhibition of adenylyl cyclase isoforms and soluble guanylyl cyclase by purine and pyrimidine nucleotides. J Biol Chem 279:19955–19969

    Article  CAS  PubMed  Google Scholar 

  • Göttle M, Geduhn J, König B, Gille A, Höcherl K, Seifert R (2009) Characterization of mouse heart adenylyl cyclase. J Pharmacol Exp Ther 329:1156–1165

    Article  PubMed  Google Scholar 

  • Hanoune J, Defer N (2001) Regulation and role of adenylyl cyclase isoforms. Annu Rev Pharmacol Toxicol 41:145–174

    Article  CAS  PubMed  Google Scholar 

  • Hartzell HC, Fischmeister R (1986) Opposite effects of cyclic GMP and cyclic AMP on Ca2+ current in single heart cells. Nature 323:273–275

    Article  CAS  PubMed  Google Scholar 

  • Hiratsuka T (1983) New ribose-modified fluorescent analogs of adenine and guanine nucleotides available as substrates for various enzymes. Biochim Biophys Acta 742:496–508

    Article  CAS  PubMed  Google Scholar 

  • Johnson JD, Walters JD, Mills JS (1987) A continuous fluorescence assay for cyclic nucleotide phosphodiesterase hydrolysis of cyclic GMP. Anal Biochem 162:291–295

    Article  CAS  PubMed  Google Scholar 

  • Lohmann SM, Fischmeister R, Walter U (1991) Signal transduction by cGMP in heart. Basic Res Cardiol 86:503–514

    Article  CAS  PubMed  Google Scholar 

  • Lohse MJ, Engelhardt S, Eschenhagen T (2003) What is the role of β-adrenergic signaling in heart failure? Circ Res 93:896–906

    Article  CAS  PubMed  Google Scholar 

  • Mou TC, Gille A, Fancy DA, Seifert R, Sprang SR (2005) Structural basis for the inhibition of mammalian membrane adenylyl cyclase by 2′(3′)-O-(N-Methylanthraniloyl)-guanosine 5′-triphosphate. J Biol Chem 280:7253–7261

    Article  CAS  PubMed  Google Scholar 

  • Mou TC, Gille A, Suryanarayana S, Richter M, Seifert R, Sprang SR (2006) Broad specificity of mammalian adenylyl cyclase for interaction with 2′,3′-substituted purine- and pyrimidine nucleotide inhibitors. Mol Pharmacol 70:878–886

    Article  CAS  PubMed  Google Scholar 

  • Newton M, Niewczas I, Clark J, Bellamy TC (2010) A real-time fluorescent assay of the purified nitric oxide receptor, guanylyl cyclase. Anal Biochem 402:129–136

    Article  CAS  PubMed  Google Scholar 

  • Ni Q, Shaffer J, Adams JA (2000) Insights into nucleotide binding in protein kinase A using fluorescent adenosine derivatives. Protein Sci 9:1818–1827

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Takagi G, Kawabe J, Yang G, Lee MC, Hong C, Liu J, Vatner DE, Sadoshima J, Vatner SF et al (2003) Disruption of type 5 adenylyl cyclase gene preserves cardiac function against pressure overload. Proc Natl Acad Sci USA 100:9986–9990

    Article  CAS  PubMed  Google Scholar 

  • Okumura S, Suzuki S, Ishikawa Y (2009) New aspects for the treatment of cardiac diseases based on the diversity of functional controls on cardiac muscles: effects of targeted disruption of the type 5 adenylyl cyclase gene. J Pharmacol Sci 109:354–359

    Article  CAS  PubMed  Google Scholar 

  • Ono K, Trautwein W (1991) Potentiation by cyclic GMP of β-adrenergic effect on Ca2+ current in guinea-pig ventricular cells. J Physiol 443:387–404

    CAS  PubMed  Google Scholar 

  • Pierre S, Eschenhagen T, Geisslinger G, Scholich K (2009) Capturing adenylyl cyclases as potential drug targets. Nat Rev Drug Discov 8(4):321–335

    Article  CAS  PubMed  Google Scholar 

  • Pinto C, Papa D, Hübner M, Mou TC, Lushington GH, Seifert R (2008) Activation and inhibition of adenylyl cyclase isoforms by forskolin analogs. J Pharmacol Exp Ther 325:27–36

    Article  CAS  PubMed  Google Scholar 

  • Pinto C, Hübner M, Gille A, Richter M, Mou TC, Sprang SR, Seifert R (2009) Differential interactions of the catalytic subunits of adenylyl cyclase with forskolin analogs. Biochem Pharmacol 78:62–69

    Article  CAS  PubMed  Google Scholar 

  • Remmers AE (1998) Detection and quantitation of heterotrimeric G proteins by fluorescence resonance energy transfer. Anal Biochem 257:89–94

    Article  CAS  PubMed  Google Scholar 

  • Rochais F, Abi-Gerges A, Horner K, Lefebvre F, Cooper DM, Conti M, Fischmeister R, Vandecasteele G (2006) A specific pattern of phosphodiesterases controls the cAMP signals generated by different Gs-coupled receptors in adult rat ventricular myocytes. Circ Res 98(8):1081–1088

    Article  CAS  PubMed  Google Scholar 

  • Rottländer D, Matthes J, Vatner SF, Seifert R, Herzig S (2007) Functional adenylyl cyclase inhibition in murine cardiomyocytes by 2′(3′)-O-(N-methylanthraniloyl)-guanosine 5′-[γ-thio]triphosphate. J Pharmacol Exp Ther 321:608–615

    Article  Google Scholar 

  • Sadana R, Dessauer CW (2009) Physiological roles for G protein-regulated adenylyl cyclase isoforms: insights from knockout and overexpression studies. Neurosignals 17:5–22

    Article  CAS  PubMed  Google Scholar 

  • Taha HM, Schmidt J, Göttle M, Suryanarayana S, Shen Y, Tang WJ, Gille A, Geduhn J, König B, Dove S et al (2009) Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, edema factor, with 2′(3′)-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. Mol Pharmacol 75:693–703

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Vatner DE, O’Connor JP, Ivessa A, Ge H, Chen W, Hirotani S, Ishikawa Y, Sadoshima J, Vatner SF (2007) Type 5 adenylyl cyclase disruption increases longevity and protects against stress. Cell 130:247–258

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by a graduate scholarship of the Elite Network of Bavaria (to M.H.) and Deutsche Forschungsgemeinschaft grant 529/5-2 (to R.S.). We are very grateful to the reviewers for their constructive and helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Herzig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hübner, M., Dizayee, S., Matthes, J. et al. Effect of MANT-nucleotides on L-type calcium currents in murine cardiomyocytes. Naunyn-Schmiedeberg's Arch Pharmacol 383, 573–583 (2011). https://doi.org/10.1007/s00210-011-0626-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-011-0626-x

Keywords

Navigation