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Abstract

We prove a class of modified paraboloid restriction estimates with a loss of angular deriva-
tives for the full set of paraboloid restriction conjecture indices. This result generalizes the
paraboloid restriction estimate in radial case from [Shao, Rev. Mat. Iberoam. 25(2009),
1127-1168], as well as the result from [Miao et al. Proc. AMS 140(2012), 2091-2102]. As
an application, we show a local smoothing estimate for a solution of the linear Schrédinger
equation under the assumption that the initial datum has additional angular regularity.

Keywords Linear adjoint restriction estimate - Local restriction estimate - Bessel function -
Spherical harmonics - Local smoothing
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1 Introduction

Let S be a non-empty smooth compact subset of the paraboloid,

{(né)/RxR":r:W},

where n > 1. We denote by do the pull-back of the n-dimensional Lebesgue measure d&
under the projection map (7, §) — &. Let f be a Schwartz function and define the inverse
space-time Fourier transform of the measure fdo
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(fdo)V(t,x) = / fr, &) g (£) (1.1)
S

=/f(lélz,S)ezmx-éﬂ\a%ds.
Rn

The classical linear adjoint restriction estimate for the paraboloid reads
1(fdo) lips wxmrey < CpgnsllfliLes:do. (1.2)
where 1 < p, g < oco. The famous restriction problem is to find the optimal range of p and
g such that the estimate (1.2) holds. It is known that the condition
2(n+1 n—+2 n
q > ( ) and <—,
n q p
is necessary for (1.2), see [24,29]. Here p’ denotes the conjugate exponent of p. The adjoint
restriction estimate conjecture on paraboloid reads as follows.

(1.3)

Conjecture 1.1 The inequality (1.2) holds true if and only if inequalities (1.3) are valid.

There is a large amount of literature on this problem. Forn = 1, Conjecture 1.1 was proved
by Fefferman-Stein [11] for the non-endpoint case and by Zygmund [36] for the endpoint
case. Conjecture 1.1 in high dimension case becomes much more difficult. For n > 2, Tomas
[33] showed (1.2) for ¢ > 2(n + 2)/n, and Stein [25] fixed the limit case ¢ = 2(n + 2)/n.
Bourgain [1] further proved estimate (1.2) for ¢ > 2(n + 2)/n — €, with some €, > 0; in
particular, €, = % when n = 2. Further improvements were made by Moyua-Vargas-Vega
[16] and Wolff [34]. Tao [31] used the bilinear argument to show that estimate (1.2) holds
true for ¢ > 2(n + 3)/(n + 1) with n > 2. This result was improved by Bourgain-Guth [2]
when n > 4. This conjecture is so difficult that it remains open up to now. For more details,
we refer the reader to [2,29-32,34].

On the other hand, the restriction conjecture becomes simpler (but not trivial) when a test
function has some angular regularity. For example, Conjecture 1.1 is proved by Shao [22]
when test functions are cylindrically symmetric and are supported on a dyadic subset of the
paraboloid in the form of

{(r,s)eRxR”: M < gl <2M, T =g, MeZZ}.

Indeed, many famous conjectures in harmonic analysis (such as Fourier restriction estimates,
Bochner-Riesz estimate etc.) have easier counterparts when the corresponding operators act

on radial functions. Let S"~! denote the unit sphere in R” and Lth = Lg (S"1), the

intermediate situation is to replace the L7 (R") by L:I,H erf,ph in (1.2). This intermediate
case has been settled for adjoint restriction estimates for a cone by the authors of [17]. More
precisely, if S is a non-empty smooth compact subset of the cone:

S={(r.&) eRxR": =&},
then for g > 2n/(n — 1) and (n + 1)/q < (n — 1)/ p’ we have

I(fdo) Ny @ire, 12, < CoanslfllLresdo- (1.4)

The Lgph-norm allows us to use spherical harmonic expanding, so the problem is converted to

L4 (£2)-bounds for sequences of operators { H } where each Hy, is an operator acting on radial

@ Springer



Linear adjoint restriction estimates for paraboloid 429

functions. The pioneering paper using such intermediate space is the Mockenhaupt Diploma
in which he proved weighted L? inequalities and then sharp Lr’;d (Lgph) — Lfad(Lgph)
estimates for the disc multiplier operator, see either Mockenhaupt [14] or Cérdoba [5]. Sharp
endpoint bounds for the disk multiplier were obtained by Carbery-Romera-Soria [4]. Miiller-
Seeger [15] established some sharp mixed spacetime Lfad(Lgph) estimates in order to study
a local smoothing of solutions for the linear wave equation. Cérdoba-Latorre [9] revisited
some classical conjecture including restriction estimate in harmonic analysis in this kind of
mixed space-time. Gigante-Soria [12] studied a related mixed norm problem for Schrédinger
maximal operators. Concerning the sphere restriction conjecture, Carli-Grafakos [7] also
treated the same problem for spherically-symmetric functions and Cho-Guo-Lee [8] showed
arestriction estimate for¢g > 2(n + 1)/nand s > (n +2)/q —n/2

/ IV f(E)do (&) <Cliflusen, xR (15)

S La (Rt

where do is the induced Lebesgue measure on S” and H* (S") denote the L>-Sobolev space
of order s on the sphere. An advantage of the proof consists in a fact that inequality (1.5) is
based on L2-spaces. The advantage of using the L2-based Hilbert space also allows us to use
effective the TT* arguments to obtain Strichartz estimate with a wider range of admissible
indexes by compensating with extra regularity in angular direction; see Sterbenz [21] for
wave equation, Cho-Lee [9] for general dispersive equations and the authors [18] for wave
equation with an inverse-square potential. Concerning other results in this direction, Cho-
Hwang-Kwon-Lee [10] studied profile decompositions of fractional Schrédinger equations
under the angular regularity assumption.

In this paper, we prove that estimate (1.2) holds for all p, g in (1.3) by compensating
with some loss of angular derivatives. Our strategy is to use a spherical harmonic expanding
as well as localized restriction estimates. In contrast to the radial case, e.g. [7,22], the main
difficulty comes from the asymptotic behavior of the Bessel function J, (r) when v > 1.
It is worth to point out that the method of treating cone restriction [17] is not valid since it
can not be used to exploit the curvature property of paraboloid multiplier e''¢ . We note
that the bilinear argument used in [22], which is in spirit of Carleson-Sjolin argument or
equivalently the 77* argument, can be used to deal with the oscillation of the paraboloid
multiplier. To use this argument, one needs to write the Bessel function J, (r) ~ cor1/2elr
when r >> 1. This expression works well for small v (corresponding to the radial case) but
it seems complicate to write the Bessel function in that form when v > 1. Indeed, as in
[37], one can do this when vZ2 & r, but it will cause more loss of derivative for the case
v<rs v2, since it is difficult to capture simultaneously the oscillation and decay behavior
of J,(r). Our new idea here is to establish a L;{x-localized restriction estimate by directly
analyzing the kernel associated with the Bessel function. The key ingredient is to explore
the decay and oscillation property of J,(r) for r >> v, and resonant property of paraboloid
multiplier. We also have to overcome low decay shortage of J,(r) (when v ~ r > 1) by
compensating a loss of angular regularity.

Before stating the main theorem, we introduce some notation. Incorporating the angular
regularity, we set the infinitesimal generators of the rotations on Euclidean space:

Qi i=x;0k —x,0;
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and define for s € R

A=) Q% 1QF = (=45

j<k
Hence Ay is the Laplace-Beltrami operator on S"~!. Define the Sobolev norm || - || HP (RY)
sp
by setting
o0
P _ _ 5/2 P n—1
IIgIIH;;}f(Rn) = / / [(1— Ag)/“g(ro)|Pdo r"~dr. (1.6)
0 sn—1

Given a constant A, we briefly write A +ecas Ay or A —eas A_for0 <e < L.
Our main result is the following one.

Theorem 1.1 Let n > 2. The following estimates hold for all Schwartz functions f
o ifqo = Q(n+ 1)/n)y and (n +2)/qo = n/pjy then

”(fda)vllLZOX(RxR") < Cp,qo,n,sllf(l-’?lz, 5)||H;)(;1"’0(Rg)a (1.7)

where og = (n — 2)(% _ qio) + q%"

e ifl <gq, p < oosatisfy (1.3), then
1£d0)” 15, xny < Coamsl(+ 19D llLrcsido. (1.8)

where s = s(q,n) = opax and 0 < o < 1 satisfying 1/qg = o/qo + (1 — «)/q1. Here
q1 = qn)y withqn) =2+ 12/4n+1—-k) ifn+ 1 = k(mod 3),k = —1,0,1 as in
Bourgain-Guth [2, Theorem 1].

Remark 1.1 Estimate (1.8) is an interpolation consequence of (1.7) and LP-estimates in
Bourgain-Guth [2]. Inequality (1.8) leads to the linear adjoint restriction estimate when
q € 2(n 4+ 1)/n, g(n)] with some loss of angular derivatives.

Remark 1.2 Since the sphere S" = {(z,&) : 7|2 + |12 = 1} is closely related to the
paraboloid in sense of Taylor expansion /1 — p2 =1 — %pz + O(p*) near p = 0, it seems
to be possible to show some modified version of (1.5) with H*:?(S")-norm on right hand
side.

As an application of the modified restriction estimate, we show a result on the local
smoothing estimate for the Schodinger equation for initial data with additional conditions
angular regularity by Rogers’s argument in [20]. Our result here extend [20, Theorem 1] from
g >2(n+3)/(n+1)tog > 2(n+1)/n under the assumption that initial data has additional
angular regularity.

More precisely, we have the following local smoothing result.

Corollary 1.1 Letn > 2, g > 2(n + 1)/n and s be as in Theorem 1.1. Then
itA
e 2 uoll 9o, 11xmmy = C |1+ 12D 10 | ey gr)- (1.9)
where o > 2n(1/2 — 1/q) —2/q and W*4(R") is the Sobolev space.

This paper is organized as follows: In Sect. 2, we introduce notation and present some basic
facts about spherical harmonics and Bessel functions. Furthermore, we use the stationary
phase argument to prove some properties of Bessel functions. Section 3 is devoted to the
proof of Theorem 1.1. In Sect. 4, we prove the key Proposition 3.1. We prove Corollary 1.1
in the final section.
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2 Preliminaries
2.1 Notation

We use A < B to denote the statement that A < CB for some large constant C which
may vary from line to line and depend on various parameters, and similarly employ A ~ B
to denote the statement that A < B < A. We also use A < B to denote the statement
A < C7'B. If a constant C depends on a special parameter other than the above, we shall
write it explicitly by subscripts. For instance, C. should be understood as a positive constant

not only depending on p, ¢, n and S, but also on €. Throughout this paper, pairs of conjugate

indices are written as p, p’, where L4 L —1withl < p < oo.Let R > 0 be a dyadic

number, we define the dyadic annulus in R” by
Ag:={xeR": R/2=<|x| <R}, Sg:=I[R/2,R]

For each M € 2%, we define Iy to be the class of Schwartz functions supported on a dyadic
subset of the paraboloid in the form of

{.&) eRxR": M < |§] <2M, 7 = [£]*}. (2.1)

2.2 Spherical harmonics expansions and Bessel function
We recall an expansion formula with respect to the spherical harmonics. Let

£E=pw and x =rf with w,0 €S\ (2.2)
For every g € L?(R"), we have the expansion formula

oo d(k)

gE) =Y are(p)Vie(w),

k=0 £=1

where

{Yk,l’ A Yk,d(k)}

is the orthogonal basis of the spherical harmonics space of degree k on S"~!. This space is
recorded by H¥ and it has the dimension

2k+n—2 _
d(k) = TC’JJF;_S ~ (k)" 2.

It is clear that we have the orthogonal decomposition of L>(S"~1)
[e.¢]
L2(Sn—1) — @ Hk
k=0

It follows that

8@z = llar.e(o)llez - (2.3)
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Using the spherical harmonic expansion, as well as [19,28], we define the action of (1— Ay)*/?
on g as follows
oo d(k)
(1= AP =" (1 +k(k +n—2)"ar 1 (p) Vi (). 2.4)
k=0 £=1

Given s, s’ > 0and p, g > 1, define
”g”Hf,'qH,f,/’p = ”(1 - A)j((l - Aw)Tg) ”Lz(p)(RﬁLZ(Snﬂ))’

where u(p) = p" dp.
For our purpose, we need the inverse Fourier transform of ay ¢(p) Y, ¢(w). We recall the
Bochner-Hecke formula, see [13] and [26, Theorem 3.10]

oo d(k) 0

v . _nz2 n
800 =Y. S 2@ T [ nwCrrpaonias. @9
k=0 =1 0

Here v(k) =k + % and the Bessel function J,, (r) of order v is defined by

1
2)Y :
1,(r) = (r{ ) /em(l — §y@=Di2gg
L'+ 7)I(1/2) 1
where v > —1/2 and r > 0. It is easy to verify that there exists a constant C independent of
v such that

10, < o (1+ ! )- 2.6)
2T+ hrap\ " vl

To investigate a behavior of asymptotic bound on v and r, we recall the Schlifli integral

representation [35] of the Bessel function: for r € R™ and v > —%

g o0
J(r) = zi / irsimo=ive gg _ ST / e (rsinhtvs) g
g b/
A d

=: J,(r) — E,(r). 2.7

Clearly, E,(r) = 0 when v € Z™'. An easy computation shows that
. oo
|Ey(r)] = \M / emrsinhstv) gg) < C(r 4 v) 7L 2.8)
g 0
There is a number of references for the asymptotic behavior of a Bessel function, see e.g.

[9,23,25,35]. We recall some properties of a Bessel function for a convenience.

Lemma 2.1 (Asymptotics of Bessel functions) Let v >> 1 and let J, (r) be the Bessel function
of order v defined as above. Then there exists a large constant C and small constant ¢
independent of v and r such that:

o Whenr < 3, we have

|Ju(r)] < Ce™cF); 2.9)
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o When 5 <r < 2v, we have
11, < Cv™ 3 (w3 |r — v + )7 F; (2.10)
o Whenr > 2v, we have

L) =r2 Y ar et + Ew. ), @.11)
+

where |ax(v,r)| < C and |E(v,r)| < crL

3 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 by using some localized linear estimates whose proof
are postpone to the next section. Since inequality (1.7) is a special case of (1.8), we aim
to prove (1.8). Since (1.8) is a direct consequence of the Stein-Tomas inequality [25] for
the case p < 2, it suffices to prove (1.8) for the case p > 2. More precisely, we will only
establish the estimate for g > 2(n + 1)/n, (n +2)/q = n/p’ with p > 2

1(£d0) 13 @y < CognsI(1+120)° FllLr(s:do)- 3.1

Recall the notation Ly, and Ay in the Sect. 2.1. We decompose f into a sum of dyadic

supported functions
f=Y fu
M

where fM = fX{(T»S)i'f:K:|2’M§‘S|§2M} € ]LM It follows that

1(fdo) g @xmeny = H > (fudo)’
M

L]  (RxR")

1
v 4 q
- (Z H Z(fMdU) LY (RXAR))
R M WX
a\1
S (Z(Z”(fMdO)V”L;{x(RXAR)> ) , (32)
R M

To prove (3.1), we need localized linear restriction estimates.

Proposition 3.1 Assume f € LLj and R > 0 is a dyadic number. Then the following linear
restriction estimates hold true.

o Letq =2, then

. 1 n
1Cfdo) N2 gy S min {Rz, R? } 1A 11 22(5:d0) - (3.3)

° Letq:3p/with2§p§4ando:(n—2)(%—%)+§,0<6<< 1, then

. it n
||(fda)V||Ltq_x(RxAR)5mm{R<" G 2>+e’1eq]||(1+|sz|)f’]f||L,,(Sm). (3.4)

@ Springer



434 C. Miao et al.

We postpone the proof of Proposition 3.1 to the next section, and we complete the proof
of Theorem 1.1 by this proposition. By a scaling argument, we conclude from (3.3) that

. 1 n _nt2_n
1(fudo) iz agy S min [(RMDD, RM)E | M7= 5 78 iyl 2 5.0
For any (g, p) satisfying

qg>2m+1/n, (n+2)/g=n/p’ with p>2,

letor =2 — 3 - %, then we choose § = 3p’ such that

1_1—a+a 1_1—0{+a

q 2 ¢ p 2 p
From (3.4), we have that for g = 3p’ with2 < p <4ando = (n — 2)(% — %) + %

Vi
||(fMdU) ”Ltq_x(RXAR)
1 1 = n n+2 _n =
< min [ (RM) "G RanE T (4 121)7 fu .
D ; o
where 0 < € < 1. Therefore we obtain by an interpolation theorem
\2
I(fmdo) “L?,X(RXAR)
. n _n—1 172(n+l)
Smin{(RM)7, (RM)™ = T Y A+ 19) fu | sy - B

Here 0 < € := €éa < 1. According to (3.2), we obtain

Il (fda)v ||L;{X(RXR")

q
n _n—1py_ 2(n+l € -
< <Z (Zmin{(RM)q,(RM) 120D }||(1+|s2|) fM||L,,(S;d(,)) )
M

R

1
q

Since ¢ > 2(n + 1)/n, e < 1, and R, M are both dyadic number, we have

n _n=lp_ 204D
sup (Zmin{(RM)«(RM) T ’*6}) < oo,
R>0 M

n _n=lry_2(tD
ot (Zmin{(RM)q, RM)~ =70 Hf}) < o0,
R

M=>0

Note that for ¢ > 2(n+1)/n > p > 2, we have by the Schur lemma and embedding
inequality
1

P
1C£d0)Y s cieny S (Z I+ |Q|)°fM||Z,,(S;d(,)>
M

o
= “(1 + |Q|) f”Lp(s;da)'
Choosing g = go = (2(n 4 1)/n) and (n 4 2)/qo = n/p;, we have
O
1) N 0 ey S N A 12D F | Lo s,a0)

This implies (1.7). Interpolating this inequality with the restriction estimate by Bourgain-
Guth [2, Theorem 1], we prove (3.1). Hence, the proof of estimate (1.8) is completed.
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4 Localized restriction estimate

In this section we prove Proposition 3.1. We start our proof by recalling

(f(z.£)d0)" (1, x) = / g (&) EHIER) g, @.1)
R"

where g(&) = f(|€|%, ) € S(R") with supp g C {&€ : |&]| € [1,2]}. We apply the spherical
harmonic expansion to g to obtain

oo d(k)

gE) =Y ari(p)Yie(w).

k=0 ¢=1
Recalling v(k) = k + (n — 2)/2, we have by (2.5)

oo d(k)

(fdo)" (1, x) = 202 33 i1, 0) / =210 J, 6 Qe ) ()0 0(0)dp.

k=0 =1
4.2)
Here we insert a harmless smooth bump function ¢ supported on the interval (1/2,4)

into the above integral, since ax ¢(p) is supported on [1, 2]. Now we estimate the quantity
I(fdo)Y ||L:, (RxAR)* To this end, we first prove the following lemma.

Lemma4.1 Let u(r) = r"~'dr and w (k) be a weight specified below. For g > 2, we have

, oo dk)
_T( > Y wk) fe”” T (rp)ak ¢« (P)9(p)p" T pdp )
k=0 ¢=1

L{ R LY, (Sk)
1

2 )i
q/
Lp

n2 d(k)

,T(i":

k=0 (=1

72 1
o ()| oy rp)ar.e(0)p(p)p = 17 |

Ly (Sw)
4.3)

Proof Since g > 2, the Minkowski inequality and the Fubini theorem show that the left hand
side of (4.3) is bounded by

,, & d(k) 1
n 2
(XD ew] / P hayoaoee ol N
k=0 (=1 ®7 Lt se
We rewrite this by making the variable change p2 ~ p
oo d(k) 1
2
(ZZ‘”(")H/ 1 Tty (D) (PP (DIP"T . ) :
LI®/ | (s
k=0 ¢=1 ;(r)( R)
4.4

We use the Hausdorff-Young inequality with respect to ¢ and we change variables back to
obtain
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oo d(k) é
(XY 0w hweape@e R
k=0 (=1 77 e B0
O

Now we prove that the inequalities (3.3) and (3.4) with R < 1. For doing this, we need

Lemma4.2 Let g > 2 and R < 1, we have the following estimate

oo d(k)

ICf do)ll g, (RxAR)<Rq(ZZw(mHau(p)w(mHLq) , (4.5)

k=0 (=1

where w (k) = (1 4 k)2=D1/2=1/9),

We postpone the proof of this lemma for a moment. Note that for ¢" < 2 < p, we use
(4.5), (2.4), the Minkowski inequality and the Holder inequality to obtain

oo d(k)

10 d0) Nt e S RT|(X 2 0®lao)) w(p) H ,
’ k=0 =1 L)
S R4 ”g”Lq Hm (S 1 N R4 ”g”L;‘;HJ’;’P(Sn—I) s
where m = (n — 1)(7 — 7) In particular, for ¢ = 2 and 4 < g < 6, this proves (3.3) and

(3.4) when R < 1. Hence 1t suffices to consider the case R > 1 once we prove Lemma 4.2.
Proof of Lemma 4.2 By scaling argument in variables ¢, x and (4.2), we obtain

ICf dg)\/”Lq (RxAR)
oo d(k)

Y Y ity z(G)f T Ly (rp)ak.e(p)p @ (p) dp

k=0 £=1

S

.(4.6)
LT (RxAg)

By Sobolev’s embedding, (2.3) and (2.4), we have

s da)v||Lq L(RxAR)

oo d(k)

ZZ‘“(")‘/ 0 Ty rp)ar.e ()9 (P) T p 61,0‘2)i

k=0 £=1

L (R;L], m(slm

By Lemma 4.1, it is enough to show

1
n 2 2
Hr (Z py L"’)
k=0 £=1 P
1

./ oo d(k)
5( y Z w (k) | ax, z(,O)(P(P)HLq > :

k=

Liy (SR)
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Linear adjoint restriction estimates for paraboloid 437

Writing briefly v = v(k), and noting that R < r < 2R and 1 < p < 2, we have by (2.6)

oo d(k) )
-7 (n=2)/2+1/
o @;‘”(’“)”’“’WmakMWW ) g, e
" dek) ; q )
< (nz)q k LZ ) 2/ En_ld>q
< (R/ > ;w( ) 2up(y+%)r(%)’ lax.co)p w(p)HL/q)) 7 dr
0o d(k) .
n (ZR)V , 1
<R ) |
N q(}(ZO; w(k )[ Tt ) ] |ak.e(o)p <ﬁ(/0)”Lz>
L oo dk |
s a(ZZwuouakup)go(p)nﬁ,)
k=0 {=1

In the last inequality, we use the Stirling formula I' (v + 1) ~ \/v(v/e)" and the fact that
R<landv > (n—2)/2. O

Now we are in a position to prove Proposition 3.1 when R > 1. We first prove (3.3)
by making use of (4.1). Since supp ¢ C {£& : |&| € [1,2]}, we may assume |&,| ~ 1.
Then we freeze one spatial variable, say x,, with |x,| < R and free other spatial variables
x" = (x1,...,x,-1). After making the change of variables n; = &;, n, = |€]% with
j =1,...n—1, we use the Plancherel theorem on the spacetime Fourier transform in (¢, x”)
to obtain (3.3).

When R > 1, inequality (3.4) is a consequence of the interpolation theorem and the
following proposition.

Proposition 4.1 Assume f € ILj and R > 1 is a dyadic number. For every small constant
0 < € K 1, we have the following inequalities

e For g =4, we have
_n—1 2
1 do) s @enmy S BT N0 +120) Flliscs: do. @.7)

e For g = 6, we have

1 o) Ny g S BT FNA+12)T Fllizcs: aon. 4.8)

Remark 4.1 It seems to be possible to remove the €-loss in (4.8), but we do not purchase this
option here because we do not need it in this paper.

To prove this proposition, we firstly show

Lemma 4.3 Assume f € 1Ly and R > 1. We have the following estimate

77+€
IS 400 g gy S RTT Ny (4.9)

where 0 < € < 1, and g(£§) = f (&%, &).

Proof By the scaling argument and (4.2), it suffices to estimate the quantity

oo d(k)

ZZI Yi 5(0)/ —itp? Jotoy (rp)ar.e(p)p2 9(p) dp

k=0 (=1

(4.10)

L} (RxAR)
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In the following, we consider the three cases. For the first two cases, we establish the estimates
for general ¢ > 4 so that we can use them directly for g = 6 later.

o Case 1: k € Q1 := {k : R < v(hb)}. Let w(k) = (1 4 k)2n—DU/2=1/q) again. We have
by a similar argument as in the proof of Lemma 4.2:

d(k)
-~ Z Z, Yi ((9)/ —itp? Joo (ro)ar,e()p 2 ¢(p) dp

ke £=1

L{ ,(RxAp)
d(k) . )
R OIPIIC! / O Iy )k (@)™ pdpl )

keQ =1

o—

L{R:L],\(Sr)
n— a® j
Z( X X o®|dw oancope)p" 2|, )

keQ =1

<

~

Ly S®)

Recall that for R > 1 and k € Qi, we have |J,¢)(r)] <

e~ ) by (2.9). Using
R <r <2Rand 1 < p < 2, we obtain

()
-5
F (X Y e Eoaoe@p L)
keQy =1 L (IR-2RD
2R R 2) d(k) 4 ‘1]
n—2)q 2 p—
S ( / (X Y owe O accen o)y ) " ‘dr)
2 keQ) (=1
() 1
‘CR( ) wte™® |arp)p (o) ||Lq)
ke (=1
(k) I
S e*"R( ) o] ari(p)ep) HLq) :
keQ) =1
By Minkowski’s inequality and Holder’s inequality, we obtain
w2 d(k) " 0, n
rTToy Y Yk,z(9)fe_”p Do (rp)ak,e(p)p2e(p) dp
keQ =1 L] (RxAg)
<eR|( S Zw(k)\ake(p)| w(p)H R .11)
k=0 (= Lh
Applying this with ¢ = 4 = p, we have
(k)
=YY ik Y®) / =0 Ty (rp)are ()0 9 (p) dp
keQ =1 L} (RxAp)
oo d(k)
ek (ZZ(H—k)(” D2y, z(p)}> ()
k=0 (=1 L

P

_n—l
5 R 4 e ”g”L;&)Hlf)"’l)/“v“(Snfl)'
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e Case2: k € Q := {k : v(k) ~ R}. Recalling g(§) = f(|£]?, &), and using the Sobolev
embedding, the Strichartz estimate and the fact supp g C {£ € R" : |§] € [1, 2]}, we
have for g > 4 and 2 = n(f — f)

lCf dﬁ)vlngl(Ran) S do) Lo mr @y S I8 Em @ S 1812200

(4.12)
where m = % > (Osincen >2.If g = @keﬂz HK, then
d(k)
lglZ2 @1y = D D lael
ke, (=1
d(k)
< R2(=1(1/2-1/q) Z Z(l +k)Z(n—l)(1/2—1/q)|ak’Z|2
ke =1
S RTDURSD g2 o 4.13)

(Ch 1)

Since suppg C {& € R" : |§] € [1, 2]} and p > 2, we have by Holder’s inequality and
(4.12)

d(k)

k —it
Yo (0 7 F0(p) dp|
T3 Y iR ®) / v rpae(P)pe(p) dp| 4 o
ke, =1 .
< gp—(n=D/2-1/g) ) 4.14
~ ”g||L5Ha()n—1)(%*$>~p(sn_l) (4.14)
In particular, when ¢ = p = 4, inequality (4.14) implies that
, d(k)
T ) i e ®)
ke, =1
oo
—ite’ g $g(p) dp|
/e vk (rp)ake(p)p? ¢(p) dp 13 (RAp)
0
—(n—1)/4
<R (n=1)/ ”g||L‘/‘7Hfu'17”/4‘4(§”")' (4.15)

e Case3: k € Q3 := {k : v(k) < R}. We need the following lemma about the oscillation
and decay property of a Bessel function. This lemma was proved by Barcelo-Cordoba

[3].

Lemma 4.4 (Oscillation and asymptotic property, [3]). Let v > 1/2 and r > v +v'/3. There
exists a constant number C independent of r and v such that

2 0
Jy(r) =\/;(r§(fv(f))1/4+hu(r>, (4.16)

where 0(r) = (r* — v?)!/2 — varccos £ — Z and
2 1 1
() = C m + ; 1[v+v1/3,2v](r) + ;1[2\),00)(7') . “4.17)
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Note that v(k) = k + (n — 2)/2 and k € Q3, we can write

Jo(r) = L) + L,(r) + hy(r),  where |h,(r)] Sr,

and
i6(r)
Ly = Y2
(=)

A simple computation yields to

6/(7") — (r2 _ v2)1/2r—1’
9”(7‘) — (}"22 _ VZ)*I/Z _ (1’2 _ 1)2)1/2}’722: (r2 _ v2)*1/2v2r’2, (418)
0" (r) = (2 — v2)73/2)2p2 (_3 + %> _

Using Sobolev embedding on sphere and Minkowski’s inequality, we estimate

d(k)
=YY ) / 0 g (ke () F 9 () dp
ke (=1 L} (RxAg)
o d(k)
SR (Z D+ ”/2‘/ 10 Ty (rp)ax.e(0)p 2 ¢ () dp’ )
keQs =1 L}R; LY ) (Sr))
n—3 4®)
SR (Z D a+" ”/Z\f = Iy (rp)ar.e(0)p % 9 (p) dp\ ) .
keQs £=1 LH(R; L4 (SR))
Since J,(r) = I, (r) + I, (r) + hy (r), it suffices to estimate two terms
d(k) 1/2
1 k (n 1)/2” ltp ]’l 2 d
<Z Y (+k) o rp)ace(o)pb o) dpl R4
ke =1
SRl ey 4.19)
LYH,* ()
and
d(k)

H( 2D+ ”/2‘/ 0 Loy (rp)ar.e ()02 ¢(p) dp‘ )
keQs (=1

LHR;LA(SR))

< p—l/2+e N 4.20
S LR (4.20)

For the first purpose, we consider the operator

o0

Ty(a)(t,r) = X /eiitpzhv(rp)a(p)p%w(p)dp
0

where |h,(r)| < C/r. By a similar argument as in the proof of Lemma 4.1, it is easy to see

ITo@ Nllgg, < R™ lagll @.21)
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Hence we have

d(k)

(n—1)/2 —itp? -
(X >a+h ” o e (pS (o) dp | LI L4<sk>>)
keQ3 (=1
~3/4 (n—1)/2 2
<R ( Z 2(1 +k) ”llk e(P)e(p) 4/2)
keQ3 (=1
dk) N7
<o Fa o),
ke t=1
SRMgl
~ 8 L;‘,H F A(S”*])

which implies (4.19).
Next we prove (4.20). To this end, let 8(p) = p%go(,o), we see that

o . o 1724
Do A+ /eiitﬂZlu(k)(rp)ak,z(P)ﬂ%W(P)dﬂ
fed =t 0 LA®:LESR))
d(k)
= H Z Z(l + k)= 1)/2/ 7”('0'270%)11)(@(rﬁl)lv(k)(rPZ)
keQs (=1

xa,¢(p)a, z(ﬂz)ﬂ(m)ﬂ(ﬁz)dpldm L@ L2050

< (T a2 [t 0T o

ke 22
d(k) N
X a a dp1d
Z} k.e(p1)ake(p2) B(p1)B(p2)dp1dp2 L%(R;L%(SR)))
d(k) d(k)
= ( Sa +k)("’”/2( f > arepnar () Y axe (p3)ax.e (p)B(p1)B(p2) B(p3)B(ps)
ke R =1 =1
(02— 22 2 1/2\2
/e*”(pl “PITPSTPD ALK (R, v; pi, 2, 3 p4)dp1dpzdp3dp4) ) (4.22)
R

where the kernel

K(R,v; p1, p2, 03, P4)

¥ X (%)l C P11 =6(par)+6(par)=0(par))

dr
O/ ((rp)? = v2) " ((rp2)? = v2) 7 (r3)? = v2) P ((rpa)? = v2)
(4.23)

Now we analyze the kernel K. Let
¢ (r; 1> P2, 03, p4) = 0(p17) — 0 (p2r) + 6 (p3r) — 0 (par).
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Hence if ,012 — pg = ,of — p32, we have by (4.18)

1 1
¢ = (pi — p3)r -
L (J(rpoz — 2+ 0P =02 ) =+ o) - =)
(b1 = p3)(p3 — p3)r°

(Varon =32+ irp? =2) (Vrpn)? =02 + Vrpn? —17)

1 1 )
X + .
<J (rp3)? = v+ (rp)? =02 rp)? =2+ (rpa)? — 02
Since k € 23, one has r >> v(k). Therefore we have
611 = 1of = P31 103 = P3l.
Applying integration by parts with respect to r to (4.23), we have for any N > 0

—-N

K(R, v p1, p2, p3, p4) S R (1+ Rlof = p3] - 03 — p31) (4.24)

when p7 — p3 = p3 — p3. Let bi ¢ (p) = 2ay,¢(/P)B(/P)//P- from (4.22) and (4.24), it
suffices to estimate

( > a +k)(”")/2(f8(p1 — P2+ p3 — P K (R, v(k); /D1, /P2, /P35 A/ P4)

k€Q3 R4
d(k) d (k) 1/2\2
X Y b (02) Y b (03)bi e (p)dprdpadpadps) )
=1 =1
=(>a+ k><"—1>/2(f KR v(K): /1. /P2 /03 /P1 — P2+ 3)
keQ3 R3
d(k) d(k) 1/2y2
X Y bee(oDbre(02) Y bie (p3)beer (p1 — p2 + /03)d/01d02d,03> )
=1 =1
=r(Ya+ k)“*””(f(l + Rlpi — pallps — o2 ™Y
k€Q3 R3
d(k) d(k) 1212
X D [breo0bie ()| Y (b (0s)bi, (o1 = p2 + p3)|dprdpadps) )
=1 =1
SE( T A+ ([ A Rip = pallos - pa)
ke R3

1282
Xbi(pDb(P2)bi(p3)bi(pr = p2 + p3)dprdpads) )

k) 12
where b (p) = ('Y |bk.e(p)|?) /. Then we aim to estimate
=1
/ b(p1)b(02)b(03)b(p1 — P2 + p3)
(1 + Rlp1 — p2llp3 — p2DN

dprdpadps S R (4.25)

R3
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Indeed once we have proved (4.25), we show

1722
d(k) 2

o0
_ _itp2 n
D> kb /e P Ly (rp)ak,e(p)p2 ¢(p)dp
0

keQs (=1 4
L{®R; L}(SR))

SR (A A T g2y

keQs
4\1/2
SR a+p” )
ke
2

d(k)

(3" S a+0am?)?

ke =1

d(k)

O b))
(=1

S, R71+2€

L4

which implies (4.20). Therefore, it remains to prove

b b b b —
/ (01)b(02)b(p3)b(01 '02+'03)d,01dp2dp3 < R‘1+€||b||i4. (4.26)

(L+ Rlp1 — p2| - lp3 — p2 DY

For R = 2% >» 1, we decompose the integral into

/ b(p1)b(p2)b(p3)b(p1 — p2 + P3)
(14 Rlp1 — pallps — p2 DV

R
(s x e
(G )eNi+j=ko} (G, /)eN%i+jSko)

/b(pz)dpz / b(p1)dp: / b(p3)b(p1 — p2 + p3)dps.

lp1—p2|~27" |p3—pa|~277

dpidp2dp3

4.27)

To estimate it, we need the following lemma.

Lemma 4.5 We have the following estimate for the integral

/ b(p2)dp2 / b(p1)dp: / b(o3)b(p1 —pa+p3)dpy <2~ b1,

lo1—pa|~27¢ lo3—pa|~277
(4.28)
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Proof We first have by Holder’s inequality

/ b(p3)b(p1 — p2 + p3)dp3

lp3—pa|~2~7
12
< / 1b(p3)Pdps f b(pr — pa + p3) 2y
p3—pa|~2-7 lo3—pa|~277
12
< / 1b(p3)IPdp3 / b(pr + p)Pp
p3—p2|~277 lo|~27J
12
< / 1b(p3)Pdps / b Pdo | 4.29)
p3—p2|~277 lo—p1|~271

Let 7 be the left hand side of (4.28). We estimate / by (4.29) and Holder’s inequality

1/2 12
[owr [ ([ w@ras) “senan( [ eeide) d

lo1=p21~271 |p1—p|~27J |p3—p2|~27

12 12
[ ([ wwra) peoan] ([ o)
L L

lpr—p2l~271 |p1—pl~2-i P2 p3—pal~2i

xi % (G * b1 7 1b])

Sblzs

ol P

S Iblzs

where x; = x;(p) = x(2Jp)and x € Cé’o([%, 4]). It is easy to see by the Young inequality

1/2 1/2 i
13 % 1P 2 S Wl bl e < 2772 1bl o

and

xi (O = 162101

234
S Il oo ePRbl

< Ml s * 1612 22 bl
S 27272 blg,
Collecting the above estimates, we obtain
1527 Dbl
This completes the proof of Lemma 4.5. O

Now we return to prove (4.26). Applying Lemma 4.5 to (4.27), we have

f b(p1)b(p2)b(p3)b(01 — p2 + p3)
(1+ Rlp1 — p2llpz — p2D)V

dp1dp2dp3

< < Z 2= (i+)) + RN Z 2(N*1)(i+j)> ”b”i“

{(i,j)eN2si+j>ko} {0, ))eNZ;i+j <ko}
SRTbI. (4.30)
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Hence we prove (4.26), and so, we finish the proof of (4.7). O
We next prove (4.8) in Proposition 4.1. We need to prove the following lemma.

Lemma4.6 Let R > 1 and f € 1Ly, we have the following estimate for every 0 < € < 1

n—1
v < Ri5ite _
I(f do) ”L?X(RXAR) SR llgll ] Tl - ]) (4.31)

where g(£) = f(]*, £).

Proof Tt suffices to estimate, by a scaling argument, the following quantity

oo d(k)

_72
233 i) / 0 g0 )ax e ()0 (0) dp (4.32)
k=0 ¢=1 LY (RxAR)
We divide the above integral into three cases.
eCase 1: k € Q1 :={k: R < v(k)}. Using (4.11) with ¢ = 6, we prove
. dk)
2303 0 / 1 gy 0)ak ()03 0(0) dp
keQy t=1 LY (RxAg)
oo d(k) 1
ekl ( (1+ 802D ag ¢ (p) go(p)” “llgll , a
o R P

e Case 2: k € Qp := {k : v(k) ~ R}. Applying (4.14) with ¢ = 6 and p = 2, we show

d(k)

=YY ik Ye®) f =1 Ty (rp)ar.e ()% 9 (p) dp
ke =1 L8 (RxAg)
SR, (4.33)

2H, H,? ey

e Case 3: k € Q3 := {k : v(k) < R}. We introduce the operator

T,(a)(t,r) = X(%) e_”'ozhv(rp)a(p)p%w(p)dp

where |h, (r)| < C/r and the operator

H,(a)(t,r) = X(%) e 1,(rp)a(p)p? p(p)dp.

where v = v(k) =k + (n — 2)/2. Since

L)y =5L)+ I-v(r) + hy(r),
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our aim here is to estimate

_n=2 a® T i n
T 3 Y @) [ e Sy (rp)are(p)p2 ¢(p) dp
ke (=1 0 LS (RxAR)

n=1 4,1 d) 2
5 R™3 *2 < Z Z 1+ k)Z(n_l)/?,( H Tv(k) (ak,f)(ts r) ||L,6(R'L6(SR))
keQs (=1 v

172
2
+”Hu(k)(ak,z)(t,r)||L?(R;L§(SR)))) :
By making use of (4.21) with ¢ = 6, we have
ITy(@)(t, )6 < R™lagll o5
t,r
This implies that
X 201—1)/3 2 172
n—
(kezm El(l +h) | Tow (@) . 1) | Lo .15 s )

d(k)
<& (2 a0 o)

ke (=1
< RO gll n=l ,

L2H,3 ©-1y

16/5
(4.34)

On the other hand, by (2.11), one has |1,,(r)| < r~Y2 whenk € Q3. Consider the operator
o0

Ho@(.r) = x(%) / =10 1,(rp)alp)p b o (p)dp,
0

where v = v(k) =k + (n — 2)/2 with k € Q3.
On the one hand, it is easy to see

R-1/2

1 Hy (@) (@, r)ll e xRy S llagllL.

On the other hand, we have the claim that for any € > 0
IHy @ 18 wury S R Nlagl 4. (4.35)

We postpone the proof of this claim to the end of this section. Hence, by the interpolation of
the above two estimates, for any € > 0, we obtain that

1Hy @)@ )16 ey S R llag]l 2.

This shows

d(k) 5 12
(kEZQ 521(1 + k2D Hyg (ar o) (8, 1) Lg(R;L§<sR>)>
L=

—1/24€ 4m) 2n—1)/3 2 \!/2
SRE(X S A+ a7, )
keQs (=1

SRV gl ua
L2

SR (4.36)
P w
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Collecting (4.34) and (4.36) yields

d(k)

=YY ik Ye®) / 10 T (rp)ar,e(0)p2 @ (p) dp
keQs ¢=1 LY (RxAR)
SRT gl .
L%HO)T'Z(S"—I)
This implies (4.31), which completes the proof of Lemma 4.6. O

The proof of claim (4.35) The same argument in the proof the (4.20) shows the claim (4.35).
Recall the kernel (4.23), it is enough to estimate the integral

I Hy(a)(z, r)||L4 (RxR?)
=J /e eTHPI=PHHIIRI K (R, v; pi, o2, p3, pa)a(o1)a(p2)a(p3)apa)
B(p1)B(02)B(p3) B (pa)drdpidprdp3dpa,
where B(p) = p%go(,o). For b(p) = 2a(,/p)B(/p)//p, therefore we obtain
15y (a) (1, r)||L4 (RxR")
=Rf4 8(p1 — p2 + p3 — P)K (R, v; \/P1, /P2, \/P3 /P3)D(01)b(02)D(03)b(p4)d p1d p2d p3d p4
:R{ K(R,v; /P, /P2, /03, /P1 = P2 F p3)b(p1)b(p2)b(p3)b(p1 — p2 + p3)d prd pad ps3

S RZUbIGL S R7* < llaglly,.

where we use the kernel estimate (4.24) and (4.26) in the first inequality. O

5 Local smoothing estimate
K. M. Rogers [20] developed an argument showing that a restriction estimate implies a
local smoothing estimate under some suitable conditions. For the sake of convenience, we
closely follow this argument to prove Corollary 1.1. In fact, by making use of the standard
Littlewood-Paley argument, it can be reduced to prove the claim

e 21— 26) ™ uoll g _qo,1)mmy S NFW2VOZ204 lug | g, VN> 1 (5.1)
where

supp F((1 — Ag)~/?ug) C (£ : €] < N}.

Here we denote by F the Fourier transform. We also use the notation hto express the Fourier
transform of 4. Let & = (1 — Ag) ™*/?ug. Denote by Py the Littlewood-Paley projector, i.e.

Pyh = ]—'_1<X (%)h) x € C2([1/2, 1)).
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By the Littlewood-Paley theory and the claim (5.1), one has fora > 2n(1/2 — 1/q) —2/q

it A
e “nll7

ltAP h‘

< itA
Y o S NP 0+ Z 190,11

2 2[2n(1/2—1 -2
S Nuolfg gy + Y N2V /q> 45| Pyuo| 74
N>1
< ol g + | (3 N9 [Pyl ) 2
~ 0 L,%(R") NUQ 19
N>1 X
2 2a 2 172 :
S Wolffygen, + | (3 N Pyl ) ]
N>1 X

= ||M()|| WQ(Rn)

Here we use Holder’s inequality for the third inequality, Sobolev imbedding for the fourth
one. Hence we have

”e”AMOHL"X([O 1xR1) ~ S - AO)S/ uU”WO“/(Rn)

Now we are left to prove claim (5.1). Assume supp f c [0, 1]. Note that

Ny /eilx—y\z/ff(y)dy, Ve R\{0).

Rn

(ir)r/?
On the other hand, we have for ¢ # 0

d f = /ei(tlé\zﬂf)f(g)dg _ 4 femH%'zf(S)dé%

Rn Rr

~ e () (5)

So we have for every dyadic number N

A _ CA A °
1€ £l qu-npeisvn SN [(¢F) (=5;)

_ 2n+4 . ~
<N n+ 7 eltAf

~

LT (1]~N% x| SN?)

L (r~N=2 xS

By making use of Theorem 1.1, we obtain for ¢ > 2(n 4+ 1)/n and "T*Z = %

LY (t]~N=2;]x|<1) S ”f||Lﬁ(r)(R+¥H$’P(S"7I))' (5.2)

This yields

‘A < 7n+2n+4
e f||L?.X(\I|NN2;\x|SN2) ~ N q ”f”LZ(r)(RJr;H;.p(Snil)).

This implies that

IleiZA(l Ag) s/2 f”L‘l (\t|~N2 |x\<N2) < N_n+ 4 ”f”Lp (53)

For the sake of convenience, we recall [20, Lemma 8]
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Lemma5.1 Letq > p1 > po, ¥ > land I C [0, R2]. If one has
1€ Fll 28 171y < CRONS llro

where R >> 1, and f is frequency supported in unite ball B". Then for all € > 0

; s+2n (- — L)+
1“2 Fll g @ zrary < CeR™ 07705 Flln .
Since ¢ > p wheng > 2(n + 1)/n, for any 0 < € < 1, we have by this lemma
q=>p q y y

1A = 20) ™ Fll 1 (rponzixerr)

2044 1_1
SN n+ 7 +2n(p qH_G”f”Lz

S NP £,
Using the scaling argument, if
suppfen C Byiny = {& ¢ €] € [0,2¢2N]}, V>0,
then
€21 = 80) 78 finllg, ot 2oty S NP @EN T | fiw] e 54
Since
supph C {€ : [§] € [N/2, N1} C Byoy, Yk =2,
we replace (1 — Ag)_s/sz,N by & to obtain

1/q
itA _ itApp —s5/2 q
e Sl g qo.11wmmy = (Zne (1 Ag) uo||L;,X([2_k,2_k+llan))
k>0 '

< (Z 2_k>1/‘11\,(2n(1/2—1/q)—2/q)4r luoll 4 - (5.5)
k=0

This proves inequality (5.1).
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