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Abstract
We find algebraic parametrizations of extended solutions of harmonic maps of finite uniton
number from a surface to the orthogonal group O(n) in terms of free holomorphic data which
lead to formulae for all such harmonic maps. Our work reveals an interesting correspondence
between certain harmonic maps and the free Weierstrass representation of null curves and
minimal surfaces in 3- and 4-space.

Keywords Harmonic map · Null curve · Weierstrass representation · Non-linear sigma
model
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1 Introduction

Harmonic maps are smooth maps between Riemannian manifolds which extremize the
‘Dirichlet’ energy integral (see, for example [16,37]). They include many interesting classes
of mappings, including geodesics,minimal submanifolds and harmonic functions. Harmonic
maps from surfaces to Lie groups and their symmetric spaces are of particular interest, as they
admit an integrable systems formulation in terms of extended solutions, and they constitute
the chiral or non-linear σ -model of particle physics, see for example [41].
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Wegive an algorithm (Theorem3.8)which determines, inductively, algebraic parametriza-
tions of extended solutions of harmonic maps of finite uniton number from a surface to the
orthogonal group O(n) in terms of free holomorphic data; this determines all such har-
monic maps. In contrast to previous work, e.g. [34, Sect. 6], the holomorphic data is free.
The parametrizations involves no integration: to avoid that, the algorithm replaces the ini-
tial choice of data by new data; this gives global formulae for the parametrizations. These
formulae determine all harmonic maps locally by choosing the free holomorphic data to
be meromorphic functions on open subsets of M . There are two important cases where all
extended solutions, and so harmonic maps, are determined globally by our formulae:

(i) S1-invariant extended solutions for harmonic maps intoO(n). These relate to harmonic
maps which arise from twistor constructions; these have extended solutions which are invari-
ant under the natural S1-action of Terng, see [36, Sect. 7]. An early twistor construction was
that of Calabi who gave [10,11] a construction of all harmonic maps from the 2-sphere to
real projective spaces or spheres in terms of totally isotropic holomorphic maps. We give a
correspondence (Theorem 4.3) between S1-invariant extended solutions for harmonic maps
into O(n) of maximum uniton number and such totally isotropic holomorphic maps, and so,
harmonic maps to spheres. Using our algorithm, we can give totally explicit global formulae
for all these objects (Theorem 4.1).

(ii)The case n ≤ 6. In Sect. 4, bymodifying our algorithm in some cases (see, for example,
Sect. 4.8c), we find global formulae for all harmonic maps of finite uniton number and their
extended solutions from a surface to O(n). Our formulae have the following interesting
application:

A null curve is a holomorphic (or meromorphic) map from a surface to Cn whose deriva-
tive is null (isotropic). The real part of a null curve is aminimal surface inRn and all minimal
surfaces are given that way, locally. As well as the usual Weierstrass representation involving
integration, Weierstrass [38] gave a formula for such null curves inC3, called the free Weier-
strass representation; de Montcheuil [26] gave a similar formula forC4, thus giving (locally)
all minimal surfaces in R

3 and R
4 without integration. Our parametrizations for n = 5, 6

lead to correspondences between certain extended solutions for harmonic maps into O(n)

and null curves (Theorems 5.1, 5.3), where the free Weierstrass data appear very simply in
a matrix giving the extended solution.

The starting point is the seminal work of Uhlenbeck [36] who, by introducing a spectral
parameter λ, showed that all harmonic maps from a surface to the unitary group U(n) can be
obtained, locally at least, from certain maps into its loop group �U(n), namely the extended
solutions mentioned above. If there is an extended solution polynomial in λ, the harmonic
map is said to be of finite uniton number; all harmonic maps from a compact Riemann surface
with a globally defined extended solution, and so all harmonic maps from the 2-sphere, are
of finite uniton number. Further, Uhlenbeck gave a factorization of a polynomial extended
solution into certain linear factors called unitons. Using the Grassmannian model of the loop
group, Segal [30] showed how to represent an extended solution by a subbundle W of a
trivial bundle with fibre a Hilbert space, and showed how to find uniton factorizations from
a certain natural filtration of W . This was put into a general framework in [34], which led
to formulae for uniton factorizations including those of [14,22] (which had been found by
different methods). The minimum number of unitons needed to obtain a given harmonic map
is called its uniton number.

In [7], a different approachwas taken byBurstall andGuest using a finer classification than
that given by uniton number based on a Bruhat decomposition of the algebraic loop group.
This reduced the problemof finding harmonicmaps of finite uniton number and their extended
solutions into a compact Lie group to solving a sequence of ordinary differential equations
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in the Lie algebra, amounting to successive integrations. They also solve the corresponding
equations in the Lie group U(n) in some special cases of low dimension.

Now any compact Lie group can be embedded in U(n), but this imposes conditions on the
data so that it can be hard to find, cf. [34, Sect. 6]. Using the framework of [7], we solve this
problem for O(n) and give an algorithm which is inductive on dimension, finding formulae
for extended solutions for the group O(n) from those for O(n − 2) to end up with algebraic
formulae for all harmonic maps of finite uniton number and their extended solutions from
a surface to O(n) of finite uniton number in terms of free holomorphic data. Our method is
to interpret the extended solution equations in the Lie group and replace the initial data of
Burstall and Guest, which had to be integrated in [7], by data which gives the solution by
differentiation and algebraic operations.

Note that it does not seem easy to extend our method to general compact Lie groups; how-
ever, a modification of our method has been developed for the symplectic group [27] where
harmonic maps and extended solutions were found in [28], but with constrained holomorphic
data.

The authors thank Fran Burstall, Joe Oliver, Rui Pacheco,Martin Svensson and the referee
for some useful comments on this paper.

2 Preliminaries

2.1 Harmonic maps into a Lie group

We recall the basic theory of harmonic maps from Riemann surfaces to Lie groups and
symmetric spaces. Throughout this paper, all manifolds, bundles, and structures on them,
will be taken to be C∞-smooth, and all manifolds will be without boundary. Throughout this
paper Mwill denote a Riemann surface, i.e., a connected 1-dimensional complex manifold,
equivalently a (smooth) oriented 2-dimensional manifold with a conformal structure. Since
harmonicity of amap from a 2-dimensionalmanifold only depends on the conformal structure
[17, Sect. 4B] (see also, for example, [40, Sect. 1.2]), the concept of harmonicity for a map
from a Riemann surface is well defined.

In the case of maps from a Riemann surface M to a Lie group G, we can formulate the
harmonicity equations in the following way [23,36]. For any smooth map ϕ : M → G, set
Aϕ = 1

2ϕ
−1dϕ; thus Aϕ is a 1-form with values in the Lie algebra g ofG; in fact, it is half the

pull-back of the Maurer–Cartan form of G. Now, any compact Lie group can be embedded
in the unitary group U(n); such an embedding is totally geodesic. From the composition
law [17, Sect. 5A], a smooth map into a totally geodesic submanifold N of a Riemannian
manifold P is harmonic into N if and only if it is harmonic as a map into P; thus it is
natural to first consider harmonic maps into U(n). Let Cn denote the trivial complex bundle
C
n = M × C

n , then Dϕ = d + Aϕ defines a unitary connection on C
n . We decompose

Aϕ and Dϕ into (1, 0)- and (0, 1)-parts; explicitly, in a (local complex) coordinate domain
(U , z), writing dϕ = ϕzdz + ϕzdz, Aϕ = Aϕ

z dz + Aϕ
z dz, D

ϕ = Dϕ
z dz + Dϕ

z dz, ∂z = ∂/∂z
and ∂z = ∂/∂z, we have

Aϕ
z = 1

2ϕ
−1ϕz , Aϕ

z = 1
2ϕ

−1ϕz , Dϕ
z = ∂z + Aϕ

z , Dϕ
z = ∂z + Aϕ

z . (2.1)

By the (Koszul–Malgrange) holomorphic structure [25] induced by ϕ wemean the unique
holomorphic structure onCn with ∂-operator given on each coordinate domain (U , z) by Dϕ

z ;
we denote the resulting holomorphic vector bundle by (Cn, Dϕ

z ). Uhlenbeck [36] provided
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the following nice formulation of harmonicity: a smoothmap ϕ : M → G is harmonic if and
only if, on each coordinate domain, Aϕ

z is a holomorphic endomorphism of the holomorphic
vector bundle (Cn, Dϕ

z ). We call harmonic maps ϕ and ϕ̃ with ϕ̃ = gϕ for some g ∈ U(n)

(left-)equivalent; if ϕ is replaced by an equivalent harmonic map ϕ̃, then all the quantities in
(2.1) are unchanged.

Let N = {0, 1, 2, . . .}. For any N ∈ N and k ∈ {0, 1, . . . , N }, let Gk(C
N ) denote the

Grassmannian of k-dimensional subspaces of CN ; it is convenient to write G∗(CN ) for the
disjoint union ∪k=0,1,...,NGk(C

N ). We shall often identify, without comment, a smooth map
ϕ : M → Gk(C

N ) with the rank k subbundle of CN = M × C
N whose fibre at p ∈ M is

ϕ(p); we denote this subbundle also by ϕ, not underlining this as in, for example, [9,21,22].
For a subspace V of Cn we denote by πV (resp. π⊥

V ) orthogonal projection from C
n to V

(resp. to its orthogonal complement V⊥); we use the same notation for orthogonal projection
from C

n to a subbundle. The Cartan embedding [12, p. 66] of the complex Grassmannian is
given by

ι : G∗(Cn) → U(n), ι(V ) = πV − π⊥
V ;

(2.2)

this is totally geodesic, and isometric up to a constant factor. We shall identify V with its
image ι(V ); since ι(V⊥) = −ι(V ), this identifies V⊥ with −V .

2.2 Extended solutions and the Grassmannianmodel

LetG be a compact connected Lie groupwith complexificationGC; denote the corresponding
Lie algebras by g and gC = g ⊗ C.

For any Lie group, we define the free and based loop groups by 	G = {γ : S1 → G :
γ smooth} and�G = {γ ∈ 	G : γ (1) = e}, respectively, where e denotes the identity ofG;
their corresponding Lie algebras 	g and �g are similarly defined. By an extended solution
[36] we mean a smooth map � : M → �G from a (Riemann) surface which satisfies
�−1�z = (1 − λ−1)A on each coordinate domain (U , z) for some map A : U → gC.
We frequently write �λ(z) = �(z)(λ) (z ∈ M , λ ∈ S1). Given an extended solution
� : M → �G, for any g ∈ G, ϕ = g�−1 is harmonic with the Aϕ

z of (2.1) equal to the
A just defined; ϕ and � are said to be associated to each other. Any harmonic map on a
simply connected domain has an associated extended solution. Any two extended solutions
� and ˜� associated to the same or equivalent harmonic map are related by a loop: ˜� = η�

where η ∈ �G: we shall say that such extended solutions are equivalent; we are interested
in finding harmonic maps and extended solutions up to equivalence.

We specialize to G = U(n) with complexification GC = GL(n,C) and corresponding
Lie algebras g = u(n) and gC = gl(n,C). Define the algebraic loop group to be the subgroup
�algU(n) of those γ ∈ �U(n) given by finite Laurent (i.e., Fourier) series: γ = ∑t

i=s λk Sk
where s ≤ t are integers and the Sk are n×n complexmatrices, and define	algU(n) similarly.
We say that � has finite uniton number if it is a map from M to �algU(n); more precisely,
the uniton number is defined to be t − s assuming Ss and St are non-zero. For r ∈ N, let
�rU(n) denote the set of polynomials of degree at most r :

�rU(n) =
{

γ ∈ �algU(n) : γ =
r

∑

k=0

λk Sk, Sk ∈ gl(n,C)

}

. (2.3)
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Harmonic maps into the orthogonal group and null curves 185

Following [36] a harmonic map ϕ : M → U(n) is said to be of finite uniton number
if it has an associated polynomial extended solution � : M → �rU(n). Then the (U(n))
(minimal) uniton number of ϕ is the minimum degree of such a�. Any harmonic map from a
compact surface M to U(n) which has an associated extended solution defined on the whole
of M is of finite uniton number at most n− 1 [36]; in particular, this applies to any harmonic
map from S2.

Now letH = H(n) denote the Hilbert space L2(S1,Cn). By expanding into Fourier series,
we have

H = linear closure of span{λi e j : i ∈ Z, j = 1, . . . , n},
where {e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)} is the
standard basis for C

n . Thus, elements of H are of the form v = ∑

i λ
ivi where each

vi ∈ C
n . If w = ∑

i λ
iwi is another element of H, its L2 inner product with v is given

by 〈v,w〉 = ∑

i viwi . The natural action of U(n) on C
n induces an action on H which is

isometric with respect to this L2 inner product. We consider the closed subspace

H+ = H(n)
+ = linear closure of span{λi e j : i ∈ N, j = 1, . . . , n}.

The action of �U(n) on H induces an action on subspaces of H; denote by Gr = Gr (n)

the orbit of H+ under that action, see [29] for a description of that orbit. The action gives a
bijective map

�U(n) � � → W := �H+ ∈ Gr . (2.4)

We will sometimes write Wλ = �λH+ when we need to consider dependence on λ ∈ S1.
Note that W = �H+ is ‘shift-invariant’, i.e., closed under multiplication by λ, indeed
λW = �λH+ ⊂ �H+ = W , so that � gives an isomorphism betweenH+/λH+ ∼= C

n and
W/λW .

The map (2.4) restricts to a bijection from the algebraic loop group �algU(n) to the set
of λ-closed subspaces W of H satisfying λrH+ ⊂ W ⊂ λsH+ for some integers r ≥ s;
it further restricts to a bijection from �rU(n) to the subset Grr ⊂ Gr of those λ-closed
subspaces W of H satisfying

λrH+ ⊂ W ⊂ H+ . (2.5)

Now let � : M → �U(n) be a smooth map and set W = �H+ : M → Gr . We can
regard W as a subbundle of the trivial bundleH := M ×H. Then Segal [30] showed that �
is an extended solution if and only if W satisfies two conditions:

{

(i) W is holomorphic subbundle of H , i.e., ∂z((W )) ⊂ (W ),

(ii) (W ) is closed under the operator λ∂z , i.e., λ∂z(W ) ⊂ (W ).
(2.6)

Here (·) denotes the space of smooth sections. We call W = �H+ the Grassmannian
model of the extended solution �. The assignment � → W = �H+ induces a one-to-one
correspondence between polynomial extended solutions � : M → �rU(n) and smooth
maps W : M → Grr satisfying (2.6).

2.3 Complex extended solutions

Let 	+U(n)C (resp. 	∗U(n)C) denote the subgroup of 	U(n)C consisting of smooth maps
S1 → U(n)C = GL(n,C) which extend holomorphically to {λ ∈ C : |λ| < 1} (resp.
{λ ∈ C : 0 < |λ| < 1}); 	+u(n)C = 	+gl(n,C) is similarly defined. Following [7], by a

123



186 M. J. Ferreira et al.

complex extended solution we mean a smooth map � : M → 	∗U(n)C which satisfies, on
each coordinate domain (U , z),

λ�−1�z ∈ 	+u(n)C, (2.7)

and is holomorphic with respect to the complex structure induced from U(n)C = GL(n,C),
i.e., for fixed λ, the entries of M � z → �(z)(λ) ∈ U(n)C are holomorphic. Recall [29,
Theorem 8.11] that the product map �U(n) × 	+U(n)C → 	U(n)C is a diffeomorphism.
This gives the Iwasawa decomposition or loop group factorization of	U(n)C as the product
of the two given factors. It also gives an identification between �U(n) and the homogeneous
space 	U(n)C/	+U(n)C; thus �U(n) acquires the structure of a complex manifold. From
[15], given a complex extended solution�, its projection� = [�] onto�U(n) is an extended
solution; note that this is holomorphic with respect to the complex structure just defined.
Further, the corresponding Grassmannian model W = �H+ is also given by W = �H+.
Conversely, as in [7,15], any extended solution � is locally the projection of a complex
extended solution.

More generally, we shall say that a meromorphic map � : M → 	∗U(n)C is a meromor-
phic complex extended solution if it is a complex extended solution away from its poles. Then
we can extendW = �H+, and so � = [�], smoothly over the poles: indeed the columns of
� give meromorphic sections of W which span W mod λW , i.e., writing Y for the span of
the columns of � so that Y = �(Cn), then W = ∑∞

i=0 λi Y . Note that Y , and so W , extend
as in [34, Lemma 4.1(ii)]; in fact, the columns of � form ameromorphic basis for Y , cf. [14,
Sect. 7]. We will continue to write � = [�] for the projection of � onto �U(n) even when
� is meromorphic.

The process of finding � explicitly from � can be tricky in the general case; however, in
the finite uniton number case, � can be found explicitly fromW by the formulae in [34], see
the next section. Conversely, given an extended solution � : M → �U(n) of finite uniton
number (i.e., with values in �algU(n)), there is a meromorphic complex extended solution
� : M → 	∗U(n)C with � = [�]; this follows from Proposition 2.2 below.

2.4 Uniton factorizations from extended solutions

Letϕ : M → U(n) be a harmonicmap.Uhlenbeck called a subbundleα ofCn a uniton (forϕ)
if (i) α is holomorphic with respect to the Koszul–Malgrange holomorphic structure induced
by ϕ, i.e., Dϕ

z (σ ) ∈ (α) for all σ ∈ (α); and (ii) α is closed under the endomorphism
Aϕ
z , i.e., A

ϕ
z (σ ) ∈ (α) for all σ ∈ (α). She showed [36] that given a harmonic map ϕ and

a uniton α, the product ϕ̃ = ϕ(πα − π⊥
α ) gives a new harmonic map, a process she called

adding a uniton. If � is an extended solution, we say that α is a uniton for � if it is a uniton
for any associated harmonic map ϕ = g�−1 (g ∈ U(n)); then we have [36, Corollary 12.2]:
given an extended solution � : M → �U(n), a subbundle α of Cn is a uniton for � if and
only if ˜� = �(πα + λπ⊥

α ) is an extended solution.
Let � : M → �rU(n) be a polynomial extended solution (see Sect. 2.2). By a uniton

factorization of � we mean a product:

� = (πα1 + λπ⊥
α1

) · · · (παr + λπ⊥
αr

) (2.8)

where each αi is a uniton for the partial product �i−1 = (πα1 + λπ⊥
α1

) · · · (παi−1 + λπ⊥
αi−1

);
here we set �0 = I . Uhlenbeck [36] proved that any polynomial extended solution has a
uniton factorization. A tool for finding uniton factorizations was proposed by Segal [30],
namely that they are equivalent to certain filtrations; this was developed in [34] where the
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Harmonic maps into the orthogonal group and null curves 187

following terminology was introduced: Let H+ denote the trivial bundle M × H+ . By a
λ-filtration (Wi )of W we mean a nested sequence

W = Wr ⊂ Wr−1 ⊂ · · · ⊂ W0 = H+
of λ-closed subspaces of H+ with λWi−1 ⊂ Wi ⊂ Wi−1 (i = 1, . . . , r). Two examples
of λ-filtrations are the Segal filtration (WS

i ) [30] and the Uhlenbeck filtration (WU
i ) [36,

Sect. 2.2] given by WS
i = W + λiH+ and WU

i = (λi−rW ) ∩ H+. These are obtained by
applying the following steps (called λ-steps in [34]) for i = r , r − 1, . . . , 2, 1, starting with
WS

r = WU
r = W :

WS
i−1 = WS

i + λi−1H+ and WU
i−1 = (λ−1WU

i ) ∩ H+
= (λ−1WU

i ) ∩ H+ + λi−1H+ . (2.9)

If we apply these steps alternately, we get a filtration called an alternating filtration [34,
Example 4.5]. Starting with an Uhlenbeck step on W = Wr , this is given by

Wr−2k+1 = λ−kW ∩ H+ + λr−2k+1H+ ,

Wr−2k = λ−kW ∩ H+ + λr−2kH+ (k = 1, 2, . . .). (2.10)

Let W = �H+ for an extended solution � and let (Wi ) be a λ-filtration of W . Then [34,
Sect. 3] the Wi satisfy (2.6) so Wi = �iH+ for some extended solution �i . Let P0 : H+ →
C
n denote evaluation at λ = 0, i.e., P0(

∑

λi Li ) = L0. Then [34, Proposition 2.3], setting

αi = P0�
−1
i−1Wi (i = 1, 2, . . . , r) (2.11)

gives a uniton factorization (2.8) with partial products given by the �i ; all uniton factor-
izations are given this way [34, Sect. 3]. The formula (2.11) gives explicit formulae for any
uniton factorization; these include the formulae of [14,22] for the Segal and Uhlenbeck fac-
torizations. Applying (2.11) to the alternating filtration gives the alternating factorization
which has the useful property in the O(n) case that adjacent unitons combine to give real
quadratic factors, see [34, Sect. 6.1]. We shall use this factorization in Sect. 4.3ff.

2.5 Maps into complex Grassmannians and S1-invariant maps

Recall the Cartan embedding (2.2). Let � be an extended solution and set W = �H+. Then
� satisfies the symmetry condition:

�λ�−1 = �−λ (λ ∈ S1) (2.12)

if and only if W−λ = Wλ (λ ∈ S1) . In this case, the corresponding harmonic map ϕ =
�−1 satisfies ϕ2 = I and so is a (harmonic) map into a complex Grassmannian G∗(Cn);
conversely, it follows from [36, Sect. 15] that any harmonic map ϕ : M → G∗(Cn) of finite
uniton number is of the form ϕ = �−1 for some polynomial extended solution � satisfying
(2.12), see [34, Sect. 5.1] where bounds on the degree of � are given. See [21] for more
information and explicit formulae.

As a special case of the above, an extended solution � : M → �U(n) is called S1-
invariant if

�λμ = �λ�μ (λ,μ ∈ S1), (2.13)

equivalently, W = �H+ satisfies Wλμ = Wλ (λ, μ ∈ S1) . Note that this implies (2.12),
so that �−1 is a harmonic map into a complex Grassmannian. In fact (cf. [34, Proposition
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2.10]), an extended solution �is S1-invariant if and only if it has a uniton factorization (2.8)
with nested unitons:

0 = α0 ⊂ α1 ⊂ α2 ⊂ · · · ⊂ αr ⊂ αr+1 = C
n (2.14)

for some r . Further, the αi are holomorphic subbundles of Cn which form a superhorizontal
sequence (see, for example [34, Definition 3.13]), i.e., for all i ∈ {0, 1, . . . , r}, ∂z(s) ∈
(αi+1) for all s ∈ (αi ). The corresponding Grassmannian model W = �H+ is given by

W = α1 + λα2 + · · · + λr−1αr + λrH+ , (2.15)

and the corresponding harmonic map ϕ = �−1 is the map into a complex Grassmannian
given by

ϕ =
[r/2]
∑

i=0

ψ2i where ψi = α⊥
i ∩ αi+1 (i = 0, 1, . . . , r) . (2.16)

The map (ψi ) → ϕ can be interpreted as a twistor fibration, see [7, Sect. 3] and [8] for the
general theory, [35] for further constructions, and Sect. 3.1 for the real case.

An example of an S1 -invariant extended solution with r = n − 1 is given by setting
αi = the (i − 1) th associated curve f(i−1) [34, Definition 4.2] of a full holomorphic map
f : M → CPn−1.

2.6 Themethod of Burstall and Guest for U(n)

The starting point for the theory in [7] is a finer classification than that provided by uniton
number by using ‘canonical elements’: Let G be a compact connected semisimple Lie group
with complexification GC; denote the corresponding Lie algebras by g and gC = g ⊗ C.
Let δ1, . . . , δ� be a choice of simple roots for some Cartan subalgebra t. Then a canonical
element (for g) [7,8] is an element ξ ∈ t such that δ j (ξ) = 0 or i (= √−1) for all j .
The eigenvalues of ad ξ are of the form ik where k is an integer with −r ≤ k ≤ r where
r = r(ξ) = max{k : gk(ξ) �= 0}; we define gk = gk(ξ) to be the corresponding eigenspace;
we then have gC = ∑r

k=−r gk .
We now apply this to u(n): we shall denote the eigenspace gk(ξ) of ad ξ in u(n)C =

gl(n,C) by gC

k = gC

k (ξ) to distinguish it from the o(n) case in Sect. 3.2. According to [6,
Proposition A1], the canonical elements of u(n) are of the form ξ = i diag(ξ1 +λ0, . . . , ξn +
λ0) where λ0 ∈ R and the ξi are non-negative integers satisfying

ξi − ξi+1 = 0 or 1, ξn = 0. (2.17)

Note that this implies that ξ1 = r(ξ). As in [7, p. 562], essentially by considering the
centreless group U(n)/Z(U(n)), with Lie algebra su(n), we may take λ0 = 0, so that by a
canonical element of �rU(n) we mean a diagonal matrix ξ = i diag(ξ1, . . . , ξn) where the
ξi are non-negative integers satisfying (2.17). We have a corresponding canonical geodesic
γξ : S1 → U(n) defined by γξ (λ) = diag(λξ1 , . . . , λξn ), thus γξ ∈ �rU(n).

The canonical element ξ is determined by the (r + 1)-tuple (t0, t1, . . . , tr ) of positive
integers where t j := #{i : ξi = j}; we call (t0, t1, . . . , tr ) the type of ξ . Note that

∑r
j=0 t j =

n; we shall see that the type determines the block structure of the n × n-matrices below.
In particular, gC

k = {B = (bi j ) ∈ gl(n,C) : bi j = 0 if ξi − ξ j �= k}, i.e., gC

k consists of
matrices with entries zero unless they are on the kth block superdiagonal: ξi − ξ j = k (if
k is negative this is below the diagonal). As in [36, Corollary 14.4], r ≤ n − 1; equality is
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Harmonic maps into the orthogonal group and null curves 189

attained by type (1, 1, . . . , 1), in which case ξi = r +1− i and ξi − ξ j = j − i . The example
at the end of Sect. 2.5 is of this type.

Write 	+
algU(n)C = 	+

algGL(n,C) := 	+U(n)C ∩ 	algU(n)C and similarly for

	+
algu(n)C = 	+

alggl(n,C). To apply the above to find polynomial extended solutions, and
so harmonic maps of finite uniton number into U(n), we need

Definition 2.1 Define a finite-dimensional Lie subgroup AC
ξ of 	+

algGL(n,C) by

AC
ξ = {A = (ai j ) ∈ 	+

algGL(n,C) :
ai j = δi j if ξi ≤ ξ j , otherwise ai j is polynomial in λ of degree at most ξi − ξ j − 1}.

In the sequel, [ ] denotes the projection 	U(n)C → �U(n) onto the first factor in the
Iwasawa decomposition of Sect. 2.3.

Proposition 2.2 Let ˜� : M → �r̃U(n) be a polynomial extended solution for some r̃ ∈ N.
Then there is an equivalent extended solution� : M → �rU(n)with 0 ≤ r ≤ r̃ , a canonical
element ξ = i diag(ξ1, . . . , ξn) of �rU(n) and a meromorphic map A : M → AC

ξ such that
� = [Aγξ ].

Further, A and ξ are uniquely determined by �.
All harmonic maps ϕ : M → U(n) of finite uniton number have such an associated

extended solution � .

Given a canonical element ξ of type (t0, . . . , tr ), we shall say that A : M → AC
ξ ,

� = [Aγξ ] and the associated Grassmannian model W = �H+ are of canonical type,
specifically, of type ξ , or of type (t0, . . . , tr ). Note that � = Aγξ is a meromorphic extended
solution with � = [�], see Sect. 2.3, and � and � are both polynomial of degree r in λ.

Proof Define a finite-dimensional Lie subalgebra aC
ξ of 	+

alggl(n,C) by

aC
ξ = {b = (bi j ) ∈ 	+

alggl(n,C) : bi j = 0 if ξi ≤ ξ j ,

otherwise bi j is polynomial in λ of degree at most ξi − ξ j − 1}; (2.18)

this is the u0ξ of [7, Proposition 2.7] for g = u(n). It is the Lie algebra of AC
ξ and the

exponential map B → A = exp B = ∑∞
i=0 B

i/i ! maps aC
ξ to AC

ξ . From [7, Theorem 4.5

and p. 560], given ˜�, there is an equivalent extended solution � : M → �rU(n), canonical
element ξ = i diag(ξ1, . . . , ξn) of �rU(n) and discrete subset D of M such that a complex
extended solution � : M\D → 	+

algGL(n,C) with [�] = � is given by � = Aγξ where

A = exp B for some holomorphic map B : M\D → aC
ξ ; thus A is a holomorphic map

from M\D to AC
ξ . Uniqueness of ξ is from the Bruhat decomposition, cf. [7, Corollary

2.2]; uniqueness of B and so A follows from [7, Proposition 2.7]. Alternatively, Suppose
[˜Aγξ ] = [Aγξ ] for A, ˜A : M\D → AC

ξ . Then ˜Aγξ = Aγξ B for some B : M → 	+U(n)C.

Then B = γ −1
ξ

˜Bγξ where ˜B = A−1
˜A; the matrix B is the product of block upper-triangular

matrices, so is block upper-triangular, i.e. bi j = δi j (ξi ≤ ξ j ). On the other hand, the entries
of B below the block diagonal are given by bi j = λξ j−ξi˜bi j (ξi > ξ j ) which, since ˜B ∈ AC

ξ ,
has degree at most (ξ j − ξi ) + (ξi − ξ j − 1) = −1, a contradiction to B having values in
	+U(n)C unless bi j = 0. Hence B = I and uniqueness is established.

Since � : M → �rU(n) is holomorphic map to a projective algebraic variety, B, and so
A and � = Aγξ , are meromorphic on M as in [7, p. 560].
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All harmonicmaps of finite uniton number have a polynomial associated extended solution
˜� : M → �r̃U(n), and so an associated extended solution � : M → �rU(n) given as
described. ��
Remark 2.3 (i) The method of Burstall and Guest applies to centreless groups, see [13]

for a study of extended solutions into groups with centre, using a related notion of
‘I -canonical element’.

(ii) The matrices B in aC
ξ are nilpotent, and the matrices A in AC

ξ are block unitriangular
by which we mean upper block-triangular with identity matrices on the block diagonal;
in particular A − I is nilpotent. The exponential map B → A = exp B is given by a
finite power series in B; further, it is surjective with inverse given A → log A, a finite
power series in A − I .

(iii) We exemplify the form of A by showing it for types (1, 1, 1, 1, 1, 1) (so r = 5) and
(1, 2, 2, 1) (so r = 3), respectively: the superscript in the notation a[k]

i j show the max-
imum degree ξi − ξ j − 1 of the polynomial ai j ; observe that this equals k − 1 on the
kth block superdiagonal (k = 1, 2, . . . , r ):

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a[0]
12 a[1]

13 a[2]
14 a[3]

15 a[4]
16

0 1 a[0]
23 a[1]

24 a[2]
25 a[3]

26

0 0 1 a[0]
34 a[1]

35 a[2]
36

0 0 0 1 a[0]
45 a[1]

46

0 0 0 0 1 a[0]
56

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a[0]
12 a[0]

13 a[1]
14 a[1]

15 a[2]
16

0 1 0 a[0]
24 a[0]

25 a[1]
26

0 0 1 a[0]
34 a[0]

35 a[1]
36

0 0 0 1 0 a[0]
46

0 0 0 0 1 a[0]
56

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (2.19)

(iv) The Grassmannian modelW = �H+ is given byW = AγξH+ and so by (2.15) where
αi is the span of the columns c j of A with ξ j < i (these αi are functions of λ as well
as of points of M); clearly, the αi are nested. The columns of the matrix A provide a
canonical (a sort of ‘reduced echelon form’) meromorphic basis for Y = AγξC

n (and
so for W ), adapted to the nested sequence (αi ). In the S1-invariant case, the αi do not
depend on λ and are the subbundles (2.14).

(v) � = [Aγξ ] satisfies the symmetry condition (2.12), and so �−1 is a harmonic map into
a Grassmannian, if and only if A is a function of λ2, i.e., its entries only involve poly-
nomials with even powers of λ. Further � is S1-invariant if and only A is independent
of λ. Both statements follow from (iv), Sect. 2.5, and the uniqueness of A.

We now give a converse to Proposition 2.2. As above, denote the columns of A by
c1, . . . , cn so that c j = (a1 j , . . . , anj )T. We write

∑

j : P( j) to mean the sum over all j
satisfying the condition P( j); for example,

∑

j : ξ j>ξk
means the sum over all columns c j in

the blocks to the left of the block containing ck . Primes ′ denote derivatives with respect to
any local complex coordinate on M . Recall the concept of ‘complex extended solution’ from
Sect. 2.3.

Proposition 2.4 Let ξ be a canonical element of �rU(n). Let A : M → AC
ξ be a holomorphic

map, and set � = Aγξ . Then � is a complex extended solution if and only if the columns of
A satisfy

c′
k =

∑

j : ξ j>ξk

λξ j−ξk−1ρ′
jkc j (r > ξk ≥ 0) (2.20)

123



Harmonic maps into the orthogonal group and null curves 191

where ρ jk is the coefficient of the term of degree ξ j − ξk − 1 in a jk .
This equation is equivalent to

a′
ik =

∑

j : ξi≥ξ j>ξk

λξ j−ξk−1ρ′
jkai j (r ≥ ξi > ξk ≥ 0). (2.21)

Equation (2.21) holds if and only if it holds mod λξi−ξk−1 and is equivalent to

a′
ik =

∑

j : ξi>ξ j>ξk

λξ j−ξk−1ρ′
jkai j mod λξi−ξk−1 (r ≥ ξi > ξk + 1 ≥ 1). (2.22)

We shall call any of the above three equations the extended solution equation (for A).

Proof On a coordinate domain (U , z), set

P = λ�−1�z , equivalently, λ�z = �P. (2.23)

Then P is algebraic, i.e., its entries p jk are polynomial in λ and λ−1 (with coefficients
holomorphic in z); further, from the block structure of A, P is strictly upper block-triangular,
i.e., p jk = 0 for ξ j ≤ ξk , so (2.23) reads

λ(λξk ck)
′ =

∑

j : ξ j>ξk

p jkλ
ξ j c j , equivalently, c′

k =
∑

j : ξ j>ξk

λξ j−ξk−1 p jk c j (r > ξk ≥ 0).

(2.24)
Taking the i th row, since A is block unitriangular, ai j = 0 for ξi < ξ j , so (2.24) is equivalent
to

a′
ik =

∑

j : ξi≥ξ j>ξk

λξ j−ξk−1 p jkai j (r ≥ ξi > ξk ≥ 0). (2.25)

Suppose that � is a complex extended solution. Then, from (2.7), each pik is polynomial
in λ (with no λ−1). We prove by induction on ξi − ξk that (*): each pik is of degree 0 and
equals ρ′

ik .
First, if ξi − ξk = 1, since ai j = δi j when ξ j = ξi , (2.25) reads a′

ik = pik , which
establishes (*) since a′

ik has degree 0.
Now suppose that (*) holds for ξi − ξk ≤ s for some s ≥ 1. Then for ξi − ξk = s + 1,

(2.25) reads

a′
ik = λs pik +

∑

j : ξi>ξ j>ξk

λξ j−ξk−1 p jkai j .

By the induction hypothesis, all the terms in the sum have degree at most (ξ j − ξk − 1) +
0 + (ξi − ξ j − 1) = ξi − ξk − 2 = s − 1 whereas the left-hand side a′

ik has degree at most
ξi − ξk − 1 = s. Then equating coefficients of degree ≥ s establishes (*) for ξi − ξk = s + 1,
and the induction step is complete.

Equation (2.20) follows. Equation (2.21) is the i th row of (2.20) and so is equivalent to it.
Now, by definition of ρik , the term ofmaximumpossible degree ξi −ξk−1 on the left-hand

side of (2.21) equals the term of that degree, λξi−ξk−1ρ′
ikaii = λξi−ξk−1ρ′

ik , on the right-hand
side—all other terms in that sum are of degree atmost (ξ j−ξk−1)+(ξi−ξ j−1) = ξi−ξk−2.
Hence (2.21) holds if and only if it holds mod λξi−ξk−1, andwe canmiss out terms of degree
ξi − ξk − 1, i.e., those with with ξi = ξ j , in the summation. In particular, (2.21) is equivalent
to (2.22).

Conversely, suppose that (2.20) holds. Then (2.23) holds with each p jk polynomial in λ, so
that (2.7) holds and � is a complex extended solution. ��
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Let ξ be a canonical element of �rU(n) and let (AC
ξ )0 = AC

ξ ∩ U(n), the group of block

unitriangular n× n matrices with complex entries. Let SolCξ (resp. (SolCξ )0) denote the space

of meromorphic maps A from M toAC
ξ (resp. (AC

ξ )0) which satisfy the Eq. (2.20) away from
the poles of A. Combining Propositions 2.2 and 2.4, we have

Corollary 2.5 Let ξ be a canonical element of �rU(n). The assignment A → � = [Aγξ ]
defines a one-to-one correspondence between SolCξ and the space of extended solutions

� : M → �rU(n) of type ξ . It restricts to a one-to-one correspondence between (SolCξ )0

and the space of S1-invariant extended solutions � : M → �rU(n) of type ξ . ��
Remark 2.6 (i) In (2.21), we take the sum from the diagonal block onwards, as the entries

ai j are zero to the left of that block. However, since we only need this equation to hold
mod λξi−ξk−1, we may additionally omit any entries in that diagonal block; in (2.22),

we omit all such entries.
(ii) An extended solution � of some type ξ can be deformed to an S1-invariant solution

of the same type, called its S1-invariant limit, see [7, Sect. 2], and [1] for a treatment
of smoothness. For any μ ∈ C, define Aμ : M → AC

ξ by Aμ(z)(λ) = A(z)(μλ)

(z ∈ M, λ ∈ C). If A satisfies the extended solution Eq. (2.20), so does Aμ for all
μ ∈ C including μ = 0. Then the deformation is implemented by μ → Aμ with μ

going from 1 to 0.
(iii) As in Remark 2.3(iv), the Grassmannian model W = �H+ is given by (2.15) where

αi = span{c j : ξ j < i}. In the above deformation, these αi tend to the unitons (2.14)
of the S1-invariant limit.

Equation (2.20) for U(n) are easy to solve, see [7, Sect. 4] and [23, Ch. 22]. However,
finding all solutions in O(n) is not so easy: we turn to that problem now.

3 Harmonic maps of finite uniton number into O(n)

3.1 Generalities on harmonic maps into O(n) and its symmetric spaces

Let z = x+ iy → z = x− iy denote standard complex conjugation onC. To adapt the theory
of the last section to O(n), we include R

n in C
n so that Rn = {(z1, . . . , zn) ∈ C

n : zi =
zi (i = 1, 2, . . . , n)}, and then O(n) is the subgroup of U(n) given by O(n) = {A ∈ U(n) :
A = A} = {A ∈ U(n) : ATA = I }where, for A = (ai j ), we have A = (ai j ) and AT = (a ji ).
Similarly �O(n) = �SO(n) = {� ∈ �U(n) : � = �} = {� ∈ �U(n) : �T � = I }
where, for � = ∑

λi�i , we set � = ∑

λ−i�i and �T = ∑

λi�T
i .

Now, given � ∈ �U(n), set W = �H+ as in (2.4). Then [29, Sect. 8.5], � ∈ �O(n) if

and only if W
⊥ = λW . However, to deal with polynomial extended solutions, as in [34] we

define for each r ∈ N the following subset of �rU(n) (cf. 2.3):

�rU(n)R = {� ∈ �rU(n) : � = λ−r�} = {� ∈ �rU(n) : �T � = λr I }. (3.1)

Then (cf. [34, Sect. 6]), � ∈ �rU(n)Rif and only if W
⊥ = λ1−rW , in which case we say

that � and W are real of degree r .
Let � : M → �rU(n)R be an extended solution, and set W = �H+ . If r is even, then

�−1 = �−1 so that ϕ = ±�−1 are harmonic maps into O(n). By [34, Lemma 6.4], all
harmonic maps M → O(n) of finite uniton number have an extended solution � : M →

123



Harmonic maps into the orthogonal group and null curves 193

�rU(n)R with r even, and ϕ = ±�−1—note that the (minimal) uniton number of ϕ may be
less than r and may be even or odd. If r is odd, then, following [34, Sect. 6.3], n must be
even, say n = 2m, and �−1 = −�−1 so that ϕ = ±i�−1 are maps into O(2m). In all cases,
the alternating factorization [34, Sect. 6.1] of �, which can be calculated from W by (2.10),
(2.11) and (2.8), gives an explicit factorization into unitons.

The symmetric spaces of O(n) and SO(n) are the real Grassmannians Gk(R
n) =

O(n)/O(k) ×O(n − k) = SO(n)/S(O(k) ×O(n − k)) with double cover the Grassmannian
of oriented subspaces, SO(n)/SO(k)×SO(n− k) (k = 0, 1, . . . , n), and, when n = 2m, the
space O(2m)/U(m) of orthogonal complex structures J on R

2m and its identity component
SO(2m)/U(m). Note thatmapping each J to its i-eigenspace identifiesO(2m)/U(m)with the
space of all maximally isotropic subspaces of C2m . Let � : M → �rU(n)R be an extended
solution which satisfies the symmetry condition (2.12). If r is even, ϕ = ±�−1 are harmonic
maps of finite uniton number into a real Grassmannian G∗(Rn), all such harmonic maps can
be obtained this way [34, Lemma 6.6]; note that −ϕ = ϕ⊥. If r is odd, then n is even, and
±�−1 define harmonic maps of finite uniton number into O(2m)/U(m) for m = n/2; all
such harmonic maps are obtained this way [34, Lemma 6.9].

Lastly, let � : M → �rU(n)R be an extended solution which is S1-invariant, i.e., satisfies
(2.13). Then � is given by (2.8) for some superhorizontal sequence (2.14) of holomorphic
subbundles of Cn which is real in the sense that the polar α◦

i := αi
⊥ of αi is αr+1−i for

all i , equivalently, with ψi defined by (2.16), ψi = ψr−i for all i , see, for example [34, Sect.
6.4]. The corresponding harmonic map ϕ := �−1 is given by (2.16); it defines a map into a
real Grassmannian (resp. O(2m)/U(m) with n = 2m) according as r is even (resp. odd).

3.2 Analysis of harmonic maps into O(n)

To analyse further harmonic maps into O(n), we equip Cn with its standard symmetric inner
product (x, y) = ∑n

i=1 xi yi for x = (x1, . . . , xn), y = (y1, . . . , yn). Then the complexi-
fication O(n,C) of O(n) is given by {A ∈ GL(n,C) : ATA = I } where AT is the linear
map characterized by (Ax, y) = (x, ATy) (x, y ∈ C

n). With respect to the standard basis
{e1 = (1, 0, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1)}, the matrix for AT

is the usual transpose (a ji ) obtained from the matrix A = (ai j ) by reflection in the principal
diagonal i = j . However, calculations are aided by taking a null basis {̃ei } for Cn , i.e.,
one with (̃ei , ẽ j ) = δi j̄ where, for any j ∈ {1, . . . , n} we write j̄ = n + 1 − j . Such a

basis is given by ẽ j = (1/
√
2)(e j + ie j̄ ), ẽ j̄ = (1/

√
2)(e j − ie j̄ ) for j ≤ n/2, together

with ẽ(n+1)/2 = e(n+1)/2 if n is odd. From now on, we shall write all vectors and matrices
with respect to this null basis; then the standard symmetric bilinear inner product on C

n of
v = ∑

j v j ẽ j and w = ∑

j w j ẽ j is given by (v,w) = ∑n
j=1 v jw j̄ . In this null basis the

transpose AT is represented by the matrix AT with entries (AT)i j = a j̄ ī ; we shall call this
the second transpose of A. This definition makes sense for any (rectangular) matrix; for a
square matrix A, AT is obtained from A by reflection in the second diagonal i = j .

As before, denote the i th column of A by ci . Then A ∈ O(n,C) if and only if

(ci , c j ) = δi j̄ (i, j = 1, . . . , n). (3.2)

Now, according to [5], the canonical elements of o(n) are of the form ξ = i diag(ξ1, . . . , ξn)
where ξi are integers or half-integerswith ξi −ξi+1 = 0 or 1, ξ1 = r/2 for some r = r(ξ) ∈ N

and ξī = −ξi ∀i , which satisfy the rider (R): if r is odd, #{i : ξi = 1/2} ≥ 2. This corrects
[6, Proposition A.2] which omits the rider and gives a condition (C2) which is incorrect in the
o(n) case. The corresponding eigenspaces of ad ξ , which we shall denote by gR

k = gR

k (ξ), are
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the intersections with o(n,C) = o(n)⊗C of the eigenspaces gC

k = gC

k (ξ) for u(n) described
in Sect. 2.6, thus gR

k is the kth block superdiagonal ξi − ξ j = k of o(n,C).
When the ξi are half-integers, the canonical elements above do not exponentiate to

geodesics in O(n). However, we can work in �rU(n)R by adding the constant matrix (r/2)I
on to each canonical element (cf. Sect. 2.6) to give the following definition.

Definition 3.1 By a canonical element of �rU(n)R we mean a diagonal matrix ξ =
i diag(ξ1, . . . , ξn) where the ξi are integers with ξi − ξi+1 = 0 or 1, ξ1 = r , ξn = 0,
ξī = r − ξi and, if r is odd, we have that (R): ξn/2−1 = ξn/2.

Recall that, if r is odd, n is even. In this case, the rider (R) says ξn/2−1 = ξn/2 = (r +1)/2
and ξn/2+1 = ξn/2+2 = (r − 1)/2. Noting that the canonical elements of �rU(n)R form a
subset of those in �rU(n), we may define ‘type’ as in Sect. 2.6. Then the possible types of
canonical elements for�rU(n)R are (t0, t1, . . . , tr )where the ti are positive integers such that
ti = tr−i for all i , and (by the rider (R)) if r is odd, the two middle entries t(r−1)/2 = t(r+1)/2
are at least 2.

Remark 3.2 (i) When the type is (1, t1, . . . , tr−1, 1), gR
r is zero. Indeed, it consists ofmatrices

with only possible non-zero entry in the top-right position, but this is zero by the skew-
symmetry (BT = −B) of matrices B in o(n,C).

(ii) If n is odd, the maximal uniton number is n − 1 attained by type (1, 1, . . . , 1). If n is
even, the rider (R) shows that this type is not possible, and the maximal uniton number
is n − 2 attained by type (1, . . . , 1, 2, 1, . . . , 1). This confirms the bounds on the uniton
number in [34, Proposition 6.17]; we shall see how to construct extended solutions of all
types in Theorem 3.8.

Let ξ be a canonical element of �rU(n)R. Recall the space AC
ξ from Definition 2.1, and

set AR
ξ = AC

ξ ∩ �O(n,C). Let A ∈ AR
ξ . By definition of AC

ξ , each entry ai j of A above
the block diagonal, i.e., with ξi − ξ j ≥ 1 , is polynomial of degree at most ξi − ξ j − 1. We
now show that when A ∈ AR

ξ , the degrees of the entries aiī on the second diagonal which lie
above the block superdiagonal, i.e. with ξi − ξī ≥ 2, are at most one less than this.

Lemma 3.3 Let A ∈ AR
ξ . The degree of an element ai ī of A with ξi − ξī ≥ 2 is at most

ξi − ξī − 2 = r − 2ξī − 2.

Proof Complex-orthogonality (3.2) gives (cī , cī ) = 0. When ξi − ξī ≥ 2, expanding this

gives 2aiī = −∑ī−1
�=i+1 a�ī a�̄ī which equals −∑

�:ξī<ξ�<ξi
a�ī a�̄ī , since a�ī = δ�ī when

ξ� = ξī . The degree of each product in this sum is at most (ξ� − ξī − 1) + (ξ�̄ − ξī − 1),
which gives the stated bound. ��

We now give a version of Proposition 2.2 for O(n). Let SolRξ (resp. (SolRξ )0 ) denote the

space of meromorphic maps A from M to AR
ξ (resp. (AR

ξ )0 ) which satisfy the extended
solution Eq. (2.20) away from the poles of A.

Proposition 3.4 Let ˜� : M → �r̃U(n)R be a polynomial extended solution for some r̃ ∈ N.
Then there is an equivalent extended solution � : M → �rU(n)R with 0 ≤ r ≤ r̃ , a
canonical element ξ = i diag(ξ1, . . . , ξn) of �rU(n)R and meromorphic map A : M → AR

ξ

such that � = [Aγξ ].
Further, A and ξ are uniquely determined by �, in fact, the assignment A → � = [Aγξ ]

defines a one-to-one correspondence between SolRξ and the space of extended solutions
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� : M → �rU(n)R of type ξ . It restricts to a one-to-one correspondence between (SolRξ )0

and the space of S1-invariant extended solutions � : M → �rU(n)R of type ξ .
All harmonic maps of finite uniton number ϕ : M → O(n) have an associated extended

solution � ∈ SolRξ for some canonical element ξ .

Proof Let C be the centre of SO(n), this is trivial if n is odd and {±I } if n is even; let
π : SO(n) → SO(n)/C be the natural projection. Recall that, if r̃ is odd, then n is even [34,
Sect. 6.3]. Then, in all cases, λ−r̃/2 π ◦ ˜� : M → �(SO(n)/C) is an extended solution. We
apply [7, Theorem 4.5] to the centreless group SO(n)/C which has Lie algebra o(n). We set
aR
ξ equal to the intersection of the set aC

ξ defined by (2.18) with 	o(n,C), then aR
ξ is the u0ξ

of [7, Proposition 2.7] for g = o(n), and the exponential map sends aR
ξ to AR

ξ .

By [7, p. 560] there is an associated extended solution �̌ : M → �(SO(n)/C), canonical
element ξ̌ ∈ o(n) and meromorphic map B : M → aR

ξ such that, setting A = exp B,

�̌ = Aγ
ξ̌

: M → 	alg(O(n,C)/C) is a meromorphic complex extended solution with

[�̌] = �̌; explicitly, there is a loop η ∈ �O(n)/C such that λ−r̃/2π ◦ �̌ = η[ Ǎγ
ξ̌
].

Set r = 2ξ̌n , then γξ = λr/2γ
ξ̌
is a canonical element in �rU(n)R and Aγξ : M →

	algO(n,C) is a complex extended solution. Set � = [Aγξ ] : M → �rU(n)R. Then
˜��−1 : M → �algU(n) satisfies π ◦ (˜��−1) = ηλ(̃r−r)/2, which is independent of z ∈ M .
Hence ˜��−1 is also independent of z, i.e., is a loop in U(n), so that � is equivalent to ˜�

and we are done. ��

Remark 3.5 (i) Let f be a holomorphic map M → O(2m)/U(m) (m > 1) so that f is a
maximally isotropic holomorphic subbundle of C2m , then f has polynomial associated
extended solution ˜� = π f + λπ⊥

f : M → �1U(2m)R. The above proof constructs

the extended solution �̌ = λ−1/2
˜� = (1/λ1/2)π f + λ1/2 π⊥

f : M → �(SO(2m)/C)

which can be written in the form [Aγ
ξ̌
]with ξ̌ = i diag(1/2, . . . , 1/2,−1/2, . . . ,−1/2),

a canonical element of o(2m), and A as in (4.6). Then � = λ1/2�̌ = ˜� is of the
form [Aγξ ] with ξ = i diag(1, . . . , 1, 0, . . . , 0), a canonical element of �1U(2m)R, and
A : M → AR

ξ .

(ii) Given ξ and A ∈ SolRξ , we can find the extended solution � = [Aγξ ] and the resulting
harmonic map �−1 explicitly from W = AγξH+ as a product of unitons, by using
the alternating factorization [34, Sect. 6.1] given by (2.10), (2.11) and (2.8). In the S1-
invariant case, we have the simpler procedure: set αi = the span of the columns c j of
A with ξ j < i ; then the corresponding factors παi + λπ⊥

αi
are unitons which commute

and give the Segal, Uhlenbeck and alternating factorizations depending on the order in
which they are written.

3.3 Adding a border to increase dimension

We will give a method of finding parametrizations of complex extended solutions of finite
uniton number from a Riemann surface M to O(n) by induction on the dimension n. Our
starting point is Proposition 3.4 which reduces the problem to finding, for each canonical
element ξ , all meromorphic maps A : M → AR

ξ satisfying the extended solution Eq. (2.20).
We shall give an algorithm for parametrizing such A.

So let ξ = i diag(ξ1, ξ2, . . . , ξn−1, ξn) be a canonical element of�rU(n)R for some r ∈ N,
n ≥ 3; denote its type by (t0, t1, . . . , tr−1, tr ). Set˜ξ = i diag(ξ2, . . . , ξn−1). Then, unless it
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has type (1, 1),˜ξ is a canonical element of �r̃U(n − 2)R whose type (˜t0, . . . ,˜t̃r ) is equal to
(t0−1, t1, . . . , tr−1, tr −1) with r̃ = r if t0 (= tr ) ≥ 2, and (t1, . . . , tr−1) with r̃ = r − 2
otherwise. If˜ξ has type (1, 1) and so is not canonical, then n = 4 and ξ is of type (2, 2); we
will treat that case separately.

Given A : M → �O(n,C) with values in AR
ξ , the matrix ˜A obtained by removing the

border, i.e., ˜A = (ai j )i, j=2,...,n−1 defines a map from M to AR
˜ξ
. Conversely, given ˜A =

(ai j )i, j=2,...,n−1 : M → AR
˜ξ
we define a map A : M → AR

ξ by a process of adding a border.

This consists of adding a new top row (a12, . . . , a1,n−1), new last column (a2n, . . . , an−1,n)
T

and new top-right element a1n , and then completing the border by setting ai1 = δi1 and
anj = δnj for i, j = 1, . . . , n. Note that our definitions of ‘new top row’ and ‘new last column’
exclude the new top-right element a1n . Note also that, given ˜A and either the new top row or
the new last column,we can find the rest of thematrix by imposing the complex-orthogonality
(3.2) of the columns ci of A; in fact, using (ci , cn) = 0 for i = 2, . . . , n − 1 in turn gives
the new top row from the new last column or vice-versa, and then using (cn, cn) = 0 gives
the new top-right element. We refer to this as completing the matrix by algebra. Note that,
although removing the border preserves symmetry and S1-invariance (by Remark 2.3(v)),
adding a border may destroy these, depending on the data chosen.

The following lemma underpins the induction step. For a canonical element ξ of type
(t0, . . . , tr ), define integers 0 = Tr+1 < Tr < · · · < T0 = n by Tk = ∑r

j=k t j . Note that
ξi = k precisely when Tk+1 < i ≤ Tk .

Lemma 3.6 Let ξ be a canonical element of �rU(n)R (Definition 3.1) not of type (2, 2),
and let A = (ai j )i, j=1,...,n : M → AR

ξ ⊂ �O(n,C) be holomorphic. Define ˜A : M →
�O(n− 2,C) by ˜A = (ai j )i, j=2,...,n−1. Then ˜A is holomorphic and has values in AR

˜ξ
for the

canonical element˜ξ obtained from ξ as above.

(i) Suppose that A : M → AR
ξ satisfies the extended solution Eq. (2.20). Then so does

˜A : M → AR
˜ξ
.

(ii) Conversely, suppose that ˜A : M → AR
˜ξ
satisfies (2.20). Then the followingare equivalent:

(a) A : M → AR
ξ satisfies (2.20);

(b) the entries in the new top row satisfy (2.21), i.e.,

a′
1 j =

∑

i : ξi>ξ j

λξi−ξ j−1ρ′
i j a1i mod λr−ξ j−1 ( j = Tr , . . . , n − 1); (3.3)

(c) the entries of the new last column satisfy (2.21), i.e.,

a′
in =

∑

j : ξi≥ξ j>0

λξ j−1ρ′
jnai j mod λξi−1 (i = 2, . . . , T1). (3.4)

Proof First, suppose that (c) holds. As usual, let c1, . . . , cn denote the columns of A;
let c̃1, . . . , c̃n denote the same columns omitting top and bottom entries, i.e., c̃ j =
(a2 j , . . . , an−1, j )

T (note that c̃1 has all entries zero). As in Proposition 2.4, hypothesis (c) is
equivalent to

c̃′
n =

∑

j : ξ j>0

λξ j−1ρ′
jn c̃ j . (3.5)
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By complex-orthogonality (3.2), (c j , cn) = 0 ( j = 2, . . . , n). Expanding this gives a1 j +
(̃c j , c̃n) = 0, then differentiating the last equation gives

a′
1 j = −(̃c′

j , c̃n) − (̃c j , c̃
′
n) . (3.6)

By (3.5), the second termon the right-hand side of (3.6) is (̃c j , c̃′
n) = ∑

i : ξi>0 λξi−1ρ′
in (̃c j , c̃i )

= λ
ξ j̄−1

ρ ′̄
jn

= 0 mod λr−ξ j−1 using complex-orthogonality for ˜A and ξ j̄ = r − ξ j .

As for the first term on the right-hand side of (3.6), by the extended solution Eq. (2.20) for
˜A, we have c̃′

j = ∑

i≥2:ξi>ξ j
λξi−ξ j−1ρ′

i j c̃i so that (̃c
′
j , c̃n) = ∑

i≥2:ξi>ξ j
λξi−ξ j−1ρ′

i j (̃ci , c̃n).

Now (̃ci , c̃n) + a1i = (ci , cn) which is zero for i ≥ 2 by (3.2). Hence, (̃c′
j , c̃n) =

−∑

i≥2:ξi>ξ j
λξi−ξ j−1ρ′

i j a1i , and then, adding in the second term calculated above, (3.6)

gives a′
1 j = ∑

i≥2:ξi>ξ j
λξi−ξ j−1ρ′

i j a1i mod λr−ξ j−1, which is equivalent to (b) by
Remark 2.6(i).

We also see that (2.20) holds for the top-right entry, indeed, expanding (cn, cn) = 0
gives a1n = − 1

2 (̃cn, c̃n). Differentiating this and using (3.5) gives a′
1n = −∑

i :ξi>0

λξi−1ρ′
in (̃ci , c̃n) = ∑

i :ξi>0 λξi−1ρ′
ina1i . So (c) implies that (2.20) holds for all columns

of A including the last, i.e., (a) holds.

Next, assume that (b) holds. We prove that (c) holds by downward induction on i ∈ [2, T1].
For T2 < i ≤ T1 so that ξi = 1, (3.4) is trivially true as it says a′

in = ρ′
in . We may thus use

I = T2 + 1 as the starting point of our induction.
We now use the notations ĉik = (a1k, . . . , ai−1,k)

T for the part of ck ‘above’ aik and

čīk = (aī+1,k, . . . , ank)
T for the part of ck ‘below’ aīk ; note these are both columns of length

i − 1. Suppose (3.4) holds for i > I for some I ∈ {2, . . . , T2}. We show that it holds for
i = I , i.e., that

a′
I n =

∑

j : ξI≥ξ j>0

λξ j−1ρ′
jnaI j mod λξI−1. (3.7)

Clearly, aIn + (ĉ Ī
Ī
, č In) = (cĪ , cn) which is zero since Ī > 1. Differentiating this gives

(aIn)
′ = −(

(ĉ Ī
Ī
)′, č In

) − (

ĉ Ī
Ī
, (č In)

′). (3.8)

By (2.20), the first term on the right-hand side of (3.8) is
(

(ĉ Ī
Ī
)′, č In

) = ∑

j : ξ j>ξ Ī
λξ j−ξ Ī−1ρ′

j Ī

(ĉ Īj , č
I
n). But (ĉ

Ī
j , č

I
n) = (c j , cn) = δ j̄ n by (3.2), so that

(

(ĉ Ī
Ī
)′, č In

) = λξI−1ρ′
1 Ī
.

By the induction hypothesis, the second term on the right-hand side of (3.8) is
(

ĉ II , (č
I
n)

′) =
∑

j : ξ j>0

λξ j−1ρ′
jn

(

ĉ Ī
Ī
, č Ij

)

. (3.9)

We show the general term in the sum on the right-hand side of (3.9) is given by

λξ j−1ρ′
jn

(

ĉ Ī
Ī
, č Ij

) = −λξ j−1ρ′
jnaI j mod λξI−1. (3.10)

First, (ĉ Ī
Ī
, č Ij ) + aI j = (cĪ , c j ), which is zero for j �= I by (3.2), so (3.10) holds for this

case. On the other hand, if j = I , then the left-hand side of (3.10) is zero since č II is a zero
column and the right-hand side is a multiple of λξI−1, so the two sides are equal mod λξI−1

as required.
Substituting (3.10) into (3.9) and then into (3.8) we obtain (3.4) for i = I completing the

induction step, and so (c) holds. This completes the proof of the lemma. ��
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3.4 Parametrization of extended solutions for O(n)

Byageneralized derivativeof ameromorphic function ν onM wemean aquotient ν′/e,where
′ denotes derivative with respect to some local complex coordinate z on M and e = ∑

β ′
j b j

is a finite sum which is not identically zero. Here β j and b j are meromorphic functions on
M ; note that the quotient ν′/e is independent of the choice of complex coordinate z on M . In
particular, we shall call a generalized derivative of the form ν′/β ′ with β meromorphic and
non-constant the generalized derivative of ν with respect to β; all generalized derivatives are
locally of this form. Away from points where β has a pole or β ′ is zero, β gives an alternative
complex coordinate to z and ν′/β ′ is the derivative of ν with respect to that complex coordi-
nate. When the denominator is unimportant, we shall often denote a generalized derivative
by ν(1) and higher generalized derivatives by ν(2), ν(3), . . ., and we set ν(0) = ν; thus for any
d ≥ 1, ν(d) is the generalized derivative of ν(d−1) given by

ν(d) = (ν(d−1))′/ed−1 (3.11)

where ed−1 = ∑

j β
′
d−1, j bd−1, j is a finite sum with βd−1, j and bd−1, j meromorphic on M .

For example, if ν(1) = ν′/e0 then ν(2) = (ν(1))′/e1 = (ν′/e0)′/e1.
LetM(M) denote the space ofmeromorphic functions on the surface. Let ξ be a canonical

element of �rU(n)R for some r , set p = p(ξ) = ∑r
k=1 dim gR

k (ξ) and p1 = p1(ξ) =
dim gR

1 (ξ). Recall the spaces SolRξ and (SolRξ )0 from Corollary 2.5.

Proposition 3.7 The algorithm below defines a mapping h = hξ : M(M)p → SolRξ . It

restricts to an algorithm which defines a mapping h0 = (h0)ξ : M(M)p1 → (SolRξ )0.

Proof We first give the algorithm which defines h0 : M(M)p1 → (SolRξ )0 for any ξ . This is

trivial when n = 1, 2, as O(n,C) = {I } so ξ = iI and SolRξ = (SolRξ )0 = {I }. We use these
as a base for an induction on the dimension n: in the induction step n is increased by 2.

Let n ≥ 3. Given a canonical element ξ = i diag(ξ1, . . . , ξn) of �rU(n)R define a
canonical element˜ξ = i diag(˜ξ1, . . . ,˜ξn−2) of �r̃U(n − 2)R as in Sect. 3.3. As induction
hypothesis, suppose that we have determined ˜h0 : M(M) p̃1 → (SolR

˜ξ
)0. We show how to

find h0 : M(M)p1 → (SolRξ )0 explicitly from˜h0. Recall that all A : M → (AR
ξ )0 in (SolRξ )0

are obtained from some ˜A : M → (AR
˜ξ

)0 in (SolR
˜ξ

)0 by adding a border as in Sect. 3.3. We

shall find a parametrization of the new first row (a12, . . . , a1,n−1) by solving the equation
(3.3) which now reads

a′
1k =

∑

j : ξ j=ξk+1

ρ′
jka1 j (k = tr + 1, . . . , n − 1). (3.12)

Now a1k = δ1k when ξk = r , i.e., for 1 ≤ k ≤ tr (= t0). The next tr−1 (= t1) entries
{a1k : tr + 1 ≤ k ≤ Tr−1} (where Tr−1 = tr−1 + tr ) give the entries of gR

1 (ξ) which are not
in gR

1 (˜ξ), thus tr−1 = t1 = dim gR

1 (ξ) − dim gR

1 (˜ξ). These entries a1k have no equation to
satisfy: (3.12) holds identically for them.

To find our parametrization, we initially parametrize the above entries by meromorphic
functions ν = (ν0,1, . . . , ν0,tr−1), setting a1,tr+i = ν0,i (i = 1, . . . , tr−1). These are
essentially the parameters used in [7], however, they will not usually be our final choice
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of parameters. For the next entry, (3.12) reads

a′
1k =

Tr−1
∑

j=tr+1

ρ′
jka1 j =

tr−1
∑

i=1

ρ′
i+tr ,kν0,i (k = Tr−1 + 1) . (3.13)

By the inductive hypothesis, the ρ jk are known functions of the parameters μ for ˜A. We now
replace our initial choice of parameters ν0,i by a new choice ν1,i of parameters where the ‘old’
parameters ν0,i are given in terms of the new ones by ν0,i = ν1,i if ρ′

i+tr ,k
is identically zero,

and ν0,i = the generalized derivative ν
(1)
1,i := (ν1,i )

′/ρ′
i+tr ,k

, otherwise. Then integrating
(3.13) gives

a1k =
tr−1
∑

i=1

bik(μ)ν1,i (k = Tr−1 + 1)

where bik(μ) = 0 when ρ′
i+tr ,k

is identically zero, and bik(μ) = 1 otherwise; thus the value
of bik(μ) depends on μ. Note that the previous entries a1k can now be written in terms of the
new parameters, in fact,

a1k = ν0,1 =
tr−1
∑

i=1

{

bik0(μ)ν1,i + bik1(μ)ν
(1)
1,i

}

(k = tr + 1, . . . , Tr−1) (3.14)

for some functions bikp(μ) (which are here just 0 or 1).;
We prove by induction that, for each K = 1, . . . , n − 1 − Tr−1, there are parameters

ν = (νK ,1, . . . , νK ,tr−1) with each νK−1,i equal either to νK ,i , or to a generalized derivative

ν
(p)
K ,i of νK ,i with respect to a function of μ, such that

a1k =
tr−1
∑

i=1

K−1
∑

p=0

bikp(μ)ν
(p)
K ,i =

tr−1
∑

i=1

bik0(μ)νK ,i

+
tr−1
∑

i=1

K−1
∑

p=1

bikp(μ)ν
(p)
K ,i (Tr−1 + 1 ≤ k ≤ Tr−1 + K ). (3.15)

Here each bikp is now a rational function of the parameters μ for ˜A and the derivatives of
those parameters, and { }(p) denotes a pth generalized derivative as explained above. This
is established for K = 1 by (3.14).

Suppose we know that, for some K with 2 ≤ K ≤ n − 1 − Tr−1, (3.15) holds with K
replaced by K− 1, i.e.,

a1k =
tr−1
∑

i=1

K−2
∑

p=0

˜bikp(μ)ν
(p)
K−1,i (Tr−1 + 1 ≤ k ≤ Tr−1 + K − 1); (3.16)

then we shall deduce that (3.15) holds. From (3.12) we have a′
1K = ∑K−1

j=1 ρ′
j K a1 j . Using

the induction hypothesis (3.16) for each a1 j gives us

a′
1K =

tr−1
∑

i=1

{
K−1
∑

j=1

ρ′
j K

˜bi j0νK−1,i +
K−2
∑

p=1

cipν
(p)
K−1,i

}

where cip =
K−1
∑

j=1

ρ′
j K

˜bi jp .
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We integrate by parts each term in the last sum, first interpreting ν
(p)
K−1,i using (3.11), as

follows:
∫

cipν
(p)
K−1,i =

∫

c̃i p(ν
(p−1)
K−1,i )′ = c̃i pν

(p−1)
K−1,i −

∫

c̃′
i pν

(p−1)
K−1,i

for some functions c̃i p(μ). Repeating the procedure p times gives

a1K =
tr−1
∑

i=1

⎧

⎨

⎩

K−2
∑

p=0

dipν
(p)
K−1,i +

∫

eiνK−1,i

⎫

⎬

⎭

+ cK (3.17)

for some functions dip(μ), fi (μ) and constant of integration cK . Here, for each i =
1, . . . , tr−1, ei = ∑K−1

j=1 ρ′
j K

˜bi j0 + f ′
i .

We now replace the parameters νK−1,i by ‘new’ parameters νK ,i where the ‘old’ parameters
νK−1,i are given in terms of the new ones as follows. If ei is identically zero, νK−1,i = νK ,i ;
we call this a degenerate step and say that the algorithm is degenerate if this ever occurs.
Otherwise, νK−1,i is equal to the generalized derivative (νK ,i )

′/ei , so that the integral in
(3.17) evaluates to νK ,i . If not all ei are identically zero, we may absorb the constant cK of
integration into one of the new parameters νK ,i ; however, if all ei are identically zero, then
we cannot. In this case, we remove cK by premultiplying A by a matrix E = (ei j ) ∈ O(n,C)

which is the identity matrix except that e1K = −c, en+1−K ,n = c and, if n is odd and
K = (n + 1)/2, e1n = − 1

2c
2. This does not alter ˜A or any previous entries a1k (k < K ) of

the new first row. This establishes (3.15) for k = K .
Finally, for k < K we replace the νK−1,i in (3.16) by the expressions in terms of νK ,i

just given, and the induction step is complete. This gives the new first row (a12, . . . , a1,n−1);
we complete the matrix finding the new last column (a2n, . . . , an−1,n)

T and new top-right
element a1n by algebra, i.e., imposing that A has values in O(n,C) by using (3.2), see
Sect. 3.3. We have now given an algorithm for finding h0 : M(M)p1 → (SolRξ )0 from ˜h0
which completes the induction on dimension.

Note that the subset of datawhere the algorithm is degenerate at some stage in the induction
forms an algebraic subvariety of M(M)p1 ; define M(M)

p1
˜ND

to be its complement.

We now extend the algorithm to define a map h : M(M)p → SolRξ . We follow the same
method of adding a border, then the equations to satisfy for the first row are again (3.3) but
now each element is a polynomial in λ; we write aqi j for the coefficient of λq in ai j . When
i = 1, for each j , a1 j is a polynomial of degree at most ξi − ξ j − 1 = r − ξ j − 1. We now
equate coefficients of λq in Eq. (3.12). For the highest possible degree on the left-hand side,
q = r − ξk − 1, there is no equation to satisfy since we are working mod λr−ξk−1. Thus our
initial choice of data for the first row will be {ar−ξk−1

1k : tr + 1 ≤ k ≤ n − 1}; note that this
does not include a1n , which is determined by algebra, see Sect. 3.3. We set ar−ξk−1

1k = ν0k−tr
(k = tr + 1, . . . , n − 1) giving our initial choice of parameters ν0 = (ν01 , . . . , ν

0
n−1−tr

).
For q < r − ξk − 1, by equating coefficients of λq we obtain the equations:

(aq1k)
′ =

∑

j : 0≤ξ j−ξk−1≤q

ρ′
jka

q−(ξ j−ξk−1)
1 j (Tr−1 + 1 ≤ k ≤ n − 1, 0 ≤ q < r − ξk − 1).

(3.18)
Note that the sum is over the q+1 blocks preceding that containing a1k : since q+ξk +1 < r ,
this never includes the entries {a1 j : ξ j = r} in the left-most block. Note also that, for each
j the sum concerns the coefficient of λq−(ξ j−ξk−1) of a1 j ; since q < r − ξk − 1, this is
at most r − ξ j − 1, the maximum possible power for a1 j . Finally note that the condition
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ξk ≤ r − q − 1 is saying that a1k is in the block where ξk = r − q − 1 or in a block to the
right of that. For clarity, we write out the first three equations of (3.18):

(a01k)
′ =

∑

j : ξ j−ξk−1=0

ρ′
jka

0
1 j (k ≤ n − 1, ξk ≤ r − 1),

(a11k)
′ =

∑

j : ξ j−ξk−1=0

ρ′
jka

1
1 j +

∑

j : ξ j−ξk−1=1

ρ′
jka

0
1 j (k ≤ n − 1, ξk ≤ r − 2),

(a21k)
′ =

∑

j : ξ j−ξk−1=0

ρ′
jka

2
1 j +

∑

j : ξ j−ξk−1=1

ρ′
jka

1
1 j

+
∑

j : ξ j−ξk−1=2

ρ′
jka

0
1 j (k ≤ n − 1, ξk ≤ r − 3).

We solve (3.18) for each k by induction on q with initial data ν0 as above; we omit the
details.

Putting the initial data for each new first row together shows that our initial data for

finding A ∈ SolRξ is {aξi−ξ j−1
i j : ξi > ξ j , j < ī }, i.e., the λq -coefficient of each entry

of A on the part of the (q + 1)st block superdiagonal of A above the second diagonal, for
q = 0, 1, 2, . . . , r − 1. Note that this initial data is related to that in [7] by the exponential
map; it is, however, our final data which forms μ ∈ M(M)p .

Again, the subset of (final) data where the algorithm is degenerate at some stage
in the induction forms an algebraic subvariety of M(M)p; define M(M)

p
˜ND

to be its
complement. ��

We now see how the above algorithm gives parametrizations of extended solutions of
canonical type: recall that by Proposition 3.4, any extended solution is equivalent to one of
canonical type.

Theorem 3.8 Let M be a Riemann surface. Let ξ = i diag(ξ1, . . . , ξn) be a canonical element
of �rU(n)R for some r ∈ N; set p = p(ξ) = ∑r

k=1 dim gR

k (ξ) and p1 = p1(ξ) =
dim gR

1 (ξ). Let h = hξ : M(M)p → SolRξ and h0 = (h0)ξ : M(M)p1 → (SolRξ )0 be the
mappings of Proposition 3.7.

(i) The maps h and h0 are locally surjective up to replacing A by E A for some constant
matrix E ∈ O(n,C).

(ii) The map h restricts to a locally surjective mapping h : M(M)
p
˜ND

→ (SolRξ )
˜ND, μ →

A(μ) to an open dense subset of SolRξ ; this map is algebraic in the sense that each
entry of A(μ) is polynomial in λ with coefficients rational functions of the μi and their
derivatives of order less than or equal to n − 3.
The extended solution � = [Aγξ ] : M → �rU(n)R corresponding to a choice of
μ ∈ M(M)p is given explicitly by (2.10), (2.11) and (2.8); each entry of � is polynomial
in λ with coefficients rational functions of the μi , their derivatives of order less than or
equal to n − 3 and the complex conjugates of these.

(iii) The map h0 restricts to a locally surjective mapping h0 : M(M)
p1
˜ND

→ (SolRξ )
˜ND
0 to

an open dense subset of (SolRξ )0; this map is algebraic in the sense that each entry of
A(μ) is a rational function of the μi and their derivatives of order less than or equal to
n − 3.
In this case, the extended solution � = [Aγξ ] : M → �rU(n)R corresponding to a
choice of μ ∈ M(M)p1 is S1-invariant and is given explicitly by (2.8) where αi is the
span of columns c j of A with ξ j < i .

123



202 M. J. Ferreira et al.

Note that, since the value of h(μ) at a point of M only depends on the germ of μ at that
point, h restricts to a map on M(U )p for any open subset U of M . To say that h is locally
surjective means that, given an extended solution � : M → �rU(n)R of type ξ , there is a
discrete set D of points such that, for any point p of M\D, there is an open neighbourhood
U of p, such that �|U = h(μ) for some μ ∈ M(U )p defined on U . Similarly for h0.

Proof (i) Given a solution, we can read off the values of the initial parameters which give

it from its entries, viz. {aξi−ξ j−1
i j : ξi > ξ j , j < ī }. The values of our final parameters

μi can then be found from those initial parameters by a finite number of integrations,
and premultiplication by constant matrices in O(n,C) in the degenerate case. As we can
only integrate on a simply-connected open set and must avoid the discrete set of simple
poles for every integration, this shows local surjectivity.

(ii) Let (SolRξ )
˜ND be the subset of solutions in SolRξ given locally by the algorithm with no

degenerate steps. The rest is clear; similarly for (iii). ��
Since, by Proposition (3.4), every harmonic map has an associated extended solution � in
SolRξ , and the formulae for� given by (2.11), (2.10) and (2.8) introduce complex conjugates,
we deduce

Corollary 3.9 All harmonic maps of finite uniton number from a surface to O(n) are given
locally as rational functions of a finite number of meromorphic functionsμi and their deriva-
tives of order less than or equal to n − 3, together with the complex conjugates of those.

��
Remark 3.10 (i) The algorithm in the proof finds the entries of A in terms of generalized

derivatives of the μi . However, these may be written in terms of ordinary derivatives
with respect to a local coordinate (and vice versa).

(ii) Although, in order to prove local surjectivitywe have had to use integration, the formulae
we obtain for A = h(μ) are algebraic involving no integration, are globally defined
on M(M)p and are independent of local coordinates. Further, there is a stratification
of M(M)p with top stratum M(M)

p

Ñ D
, with other strata determined by the list of

degenerate steps in the algorithm, with different algebraic formulae on each stratum,
see the examples in the next section.

(iii) We could equally well give an algorithm with induction step which finds the new last
column, and then complete the matrix by finding the new first row and top-right ele-
ment by algebra. That such a process would be equivalent to our method follows from
Lemma 3.6.

(iv) Our algorithm does not modify the parametrization of ˜A. In the special case n = 6 we
get nicer parametrizations if we do that, see Sect. 4.8(c) and (e).

4 Classifications

We use our algorithm to find all extended solutions � : M → �rU(n)R of canonical type,
and so all harmonic maps ϕ : M → O(n) of finite uniton number, in two cases: (i) S1-
invariant solutions of type (1, 1, . . . , 1); (ii) n ≤ 6. We shall interpret some of the resulting
harmonic maps using terminology to be found in older papers, e.g. [2]. In Sect. 4.2, we
will discuss how our constructions relate to totally isotropic holomorphic maps. Recall from
Remark 3.2(ii) and [34, Sect. 6.3] that (i) if n is odd, then the uniton number r of ϕ is even
and r ≤ n − 1; (ii) if n is even, then r ≤ n − 2.
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4.1 S1-invariant solutions of type (1, 1, . . . , 1)

Let ξ0 denote the canonical element of type (1, 1, . . . , 1), i.e., ξ0 = i diag(n − 1, n −
2, . . . , 1, 0); by Remark 3.2(ii), n is odd. In this case, the algorithm of the last section
becomes very simple and we can give a clearer statement. When n = 1, the only solution is
A = I . Otherwise, the extended solution Eq. (2.21) reads

a′
ik = ρ′

k−1,k ai,k−1 where ρk−1,k = ak−1,k (i = 1, . . . , n, k = i + 1, . . . , n − 1).

(4.1)

Note that the ρk−1,k = ak−1,k are the entries of A ‘in the g1-position’, i.e., on the super-
diagonal; we shall say that A and the corresponding extended solution � = [Aγξ0 ] are
non-degenerate if the superdiagonal elements ak−1,k of A are non-constant, equivalently
their derivatives are not identically zero. The weaker condition of non-degeneracy of ˜A is
also important; the development below shows that it is equivalent to our algorithm being
non-degenerate. In either case, we get the following more precise version of Theorem 3.8.

Theorem 4.1 Let M be a Riemann surface, n = 2m + 1 (m ≥ 0). Given an m-tuple
of meromorphic functions (μ1, . . . , μm) on M, calculate generalized derivatives μ

( j)
i and

functions ρ1, . . . , ρ2m inductively for i = 1, 2, . . . ,m as follows:
μ

( j)
i = (μ

( j−1)
i )′/ρ′

m+i− j ( j = 0, 1, . . . 2i−2); ρm−i+1 = μ
(2i−2)
i , ρm+i = −μ

(2i−2)
i .

(4.2)
Let M(M)mND be the space of m-tuples of meromorphic functions (μ1, . . . , μm) satisfying
the non-degeneracy condition:

μ
(2i−2)
i is non-constant for all i = 1, . . . ,m. (4.3)

Then there is a bijective map h0 = h0(ξ0) : M(M)mND → (SolRξ0)
ND
0 to the space of non-

degenerate S1-invariant extended solutions� : M → �n−1U(n)R of type (1, 1, . . . , 1) given
by � = [Aγξ0 ] for A : M → (AR

ξ0
)0 where A = A(μ) = (ai j ) is the unique unitriangular

matrix with

ai j = μ
(2m+1−i− j)
m+1−i for i < j and i + j ≤ 2m + 1. (4.4)

The inverse is given by μi = am−i+1,m+i (i = 1, . . . ,m).
Slightly more generally, these formulae define a one-to-one correspondence between the

subset M(M)m
Ñ D

= {μ ∈ M(M)m : (4.3) holds for i = 1, . . . ,m − 1} and the set {A ∈
(SolRξ0)0 : ˜A is non-degenerate}.

The extended solution � = [Aγξ0 ] is given explicitly by (2.8) where αi is the span of the
last i columns; the corresponding harmonic map ϕ = �−1 is given by (2.16).

Proof This is trivially true for m = 0, i.e. n = 1, where A is the 1 × 1 identity matrix, and
there are no parameters.

Assume that it is true for m replaced by m − 1 for some m > 0, thus all solutions
˜A = (ai j )i, j=2,...,n−1 : M → AR

˜ξ0
to the extended solution Eq. (4.1) are parametrized by

an (m − 1)-tuple (μ1, . . . , μm−1) in the fashion described by the theorem. Following our
algorithm, we add a border to give a square matrix A of size n. As usual, it suffices to find
the new first row (a11, . . . , a1,n−1) by solving (4.1) for i = 1. Of course, a11 = 1, and the
next entry a12 satisfies no equation so we initially parametrize it by ν0 = a12. If n = 3, there
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are no equations to satisfy and we complete the matrix by algebra, i.e. by using (3.2), see
Example 4.2 below.

Otherwise, the first equation to satisfy in (4.1) is a′
13 = ρ′

23a12 = ρ′
23ν0. To integrate

this, we replace ν0 by a new parameter ν1 = a13 and set ν0 = (ν1)
(1) := (ν1)

′/ρ′
23.

Substituting for ν0 in the expression a12 = ν0 gives a12 = (ν1)
(1). Inductively, to

solve the K th equation a′
1,K+2 = ρ′

K+1,K+2a1,K+1, replace νK−1 by a new parameter

νK = a1,K+2 and set νK−1 = (νK )(1) := (νK )′/ρ′
K+1,K+2, giving (a12, a13, . . . , a1,K+2) =

(

(νK )(K ), (νK )(K−1), . . . , νK
)

.
We end up with a final parameter ν = νn−3 such that the new first row is

(a12, a13, . . . , a1,n−2, a1,n−1) = (ν(n−3), ν(n−4), . . . , ν(1), ν)

where the generalized derivatives are given inductively by ν( j) = (ν( j−1))′/ρ′
n−2− j,n−1− j

( j = 1, 2, . . . , n − 3). This agrees with (4.2) as ρi = ai,i+1 = ρi,i+1 by (4.4) for i ≤ m
(and for i > m by algebra). The new last column and top-right entry a1n can now be found
by algebra, i.e., by using (ci , cn) = 0 for i = 2, . . . , n. Appending μm = ν to the existing
parameters μ1, . . . , μm−1 gives the desired parametrization h0. ��
Example 4.2 For n = 7, the theorem gives the following parametrization by triples
(μ1, μ2, μ3) of meromorphic functions in M(M)3

Ñ D
= {(μ1, μ2, μ3) ∈ M(M)3 :

μ
(2i−2)
i non-constant for i = 1, 2} of all A : M → AR

ξ0
satisfying the extended solu-

tion equation with ˜A non-degenerate. This restricts to a parametrization by M(M)3ND =
{(μ1, μ2, μ3) ∈ M(M)3 : μ

(2i−2)
i non-constant for i = 1, 2, 3} of all non-degenerate S1-

invariant extended solutions of themaximumpossible uniton number 6. The remaining entries
ai j can be calculated by algebra, as below.

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 μ
(4)
3 μ

(3)
3 μ

(2)
3 μ

(1)
3 μ3 a17

0 1 μ
(2)
2 μ

(1)
2 μ2 a26 a27

0 0 1 μ1 a35 a36 a37

0 0 0 1 −μ1 a46 a47

0 0 0 0 1 −μ
(2)
2 a57

0 0 0 0 0 1 −μ
(4)
3

0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

To see this, we follow the induction starting with the middle 1 × 1 matrix which must be
the identitymatrix. Themiddle 3×3matrix is parametrized byμ1(= a34), and its last column
and top-right entry a45, a35 can be calculated from (c5, ci ) = 0 for i = 4, 5, thus a45 = −μ1

and a35 = − 1
2μ

2
1 , cf. Sect. 4.5. Then the middle 5 × 5 matrix, is parametrized by (μ1, μ2)

and its last column and top-right entry a56, . . . , a26 can be calculated from (c6, ci ) = 0 for
i = 3, 4, 5, 6, in particular a56 = −μ

(2)
2 , for the rest, see Sect. 4.7(c). Finally, the 7×7matrix

A is parametrized by (μ1, μ2, μ3) and its last column and top-right entry a67, . . . , a17 can
be calculated from (c7, ci ) = 0 for i = 2 . . . , 7; in particular a67 = −μ

(4)
3 ; the other entries

ai7 are polynomial in the μi and their derivatives: we leave the reader to work these out.
In degenerate cases, different formulae are obtained. For example, if μ1 is constant, then

by premultiplying by a suitable matrix E as in the algorithm, we can make it 0 and we obtain
the middle 5× 5 matrix in the right-hand matrix below. Then, if μ2 is constant, again we can
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make it zero and we obtain the left-hand 7 × 7 matrix; if μ2 is not constant, we obtain the
right-hand matrix.

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 μ3 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 0 0

0 0 0 0 0 1 −μ3

0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

, A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 μ
(1)
3 μ3 0 0 0 0

0 1 μ2 0 0 0 0

0 0 1 0 0 0 0

0 0 0 1 0 0 0

0 0 0 0 1 −μ2 μ2μ
(1)
3 − μ3

0 0 0 0 0 1 −μ
(1)
3

0 0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here μ2 and μ3 are arbitrary meromorphic functions and, in the right-hand matrix, μ(1)
3 :=

μ′
3/μ

′
2.

4.2 Totally isotropic maps and extended solutions

We now see how the extended solutions constructed in the last section relate to other interest-
ing maps. Recall ([39], see also [34, Example 4.7]) that a harmonic map f : M → G∗(Cn)

generates a harmonic sequence G(i)( f ) (i ∈ Z) of Gauss bundles or transforms, all har-
monic maps. By the (complex) isotropy order of a harmonic map f : M → CPn−1, we
mean the maximum r such that f is perpendicular to G(i)( f ) for i = 1, . . . , r , equivalently
[9, Lemma 3.1], themaximum r such thatG(i)( f ) is perpendicular toG( j)( f ) for all i, j ∈ Z

with 0 < |i − j | ≤ r .
On the other hand, by the real isotropy order of a full holomorphic map f = [F] : M →

CPn−1 we mean the maximum integer t ≥ −1 such that

(F (i), F ( j)) = 0 for all i, j ≥ 0 with i + j ≤ t . (4.5)

Here F : U → C
n denotes a local holomorphic representative of f and F (i) denotes the i th

derivative with respect to a local complex coordinate: the definition is independent of choice
of F and of local coordinate. Differentiation shows that, if (F (s), F (s)) = 0 for some s, then
also (F (s+1), F (s)) = 0. It follows that t is odd, i.e. t = 2s + 1 for some s ≥ −1; note that
(F, F) = 0 ⇐⇒ s ≥ 0. The largest possible value of s is [(n − 3)/2]: in that case fullness
implies that n is odd and t = n − 2, and we say that f is totally isotropic [18]. Note that
the real isotropy order t is not the same as the complex isotropy order: indeed, the latter is
infinite for a holomorphic map. However, if f is a holomorphic map of real isotropy order
t ≥ 0, the map f ⊕ f : M → G2(R

n) is a harmonic map called a real mixed pair; by [2,
Lemma 2.14] this has complex isotropy order t .

In [10,11], Calabi showed how that all harmonic maps into RP2m or S2m can be obtained
from totally isotropic holomorphic maps, giving the bijections between (ii), (iii) and (iv)
below; in particular, the bijection from (ii) to (iii) is given by f → G(m)( f ). We now explain
how these relate to polynomial extended solutions of harmonic maps into O(2m + 1) of
type (1, 1, . . . , 1), and so of the maximum possible uniton number 2m. The corresponding
canonical element is ξ0 = i diag(2m, 2m − 1, . . . , 1, 0).

Theorem 4.3 Let M be a Riemann surface and n = 2m+1 ≥ 3 an odd integer. The following
sets are in one-to-one correspondence:
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(i) non-degenerate S1-invariant extended solutions � : M → �n−1U(n)R of type
(1, 1, . . . , 1);

(i)’ non-degenerate solutions A : M → (AR
ξ0

)0 to the extended solution Eq. (2.20);

(ii) full totally isotropic holomorphic maps f : M → CPn−1;
(iii) full harmonic maps ϕ : M → RPn−1;
(iv) antipodal pairs ±ϕ̃ : M → Sn−1 of full harmonic maps.

In particular, we obtain an explicit algebraic parametrization of sets (i)–(iv) by m-tuples
(μ1, . . . , μm) of meromorphic functions satisfying the non-degeneracy condition (4.3).

Proof By Proposition 3.4, the map � = [Aγξ0 ] defines a bijection between (i) and (i)′.
Given A in (i)′, its last column gives a full totally isotropic holomorphic map f ; indeed, each
associated curve f(i) is the span of the last i + 1 columns of A, so that f is full and (4.5)
holds for t = n − 2; thus f is in set (ii).

Conversely, given f in (ii), we can write f = [F] where F = (F0, F1, . . . , Fn−1) is
meromorphic with F0 = 1; define the last column of A by cn = FT, i.e., ain = Fn−i

(i = 1, . . . , n). Then, for j = n − 1, n − 2, . . . , 1, define the j th column of A by c j =
c′
j+1/a

′
j, j+1; by fullness, no denominator is identically zero; this gives A in (i)′.

The last statement follows by parametrizing set (i) as in Theorem 4.1. ��

4.3 Uniton number at most 2

In this case, we find all harmonic maps completely explicitly, as follows. In the sequel, all
uniton factorizations will be the alternating factorization, see Sect. 2.4.

Proposition 4.4 (i) A harmonic map ϕ : M → O(n) has uniton number 0 if and only if it is
constant; in particular, any harmonic map with n ≤ 2 is of this type. It has an associated
extended solution � = [Aγξ ] = I of type (n) given by ξ = 0 and A = γξ = I . We shall
refer to this as the trivial solution.

(ii) A harmonic map ϕ : M → O(n) has uniton number 1 if and only if n = 2m for some
m, and up to left-multiplication by a constant matrix in O(2m), it is a holomorphic
map into O(2m)/U(m). More precisely, ϕ = i(πV − π⊥

V ) = i(πV − πV ) where V is a
maximally isotropic holomorphic subbundle of Cn; ϕ has associated extended solution
� = πV + λπ⊥

V with ϕ = i�−1.

Proof (i) Evident, since it has a polynomial associated extended solution of degree 0, which
must equal the identity matrix. When n ≤ 2 this is the only element of O(n,C).

(ii) By Proposition 3.4, ϕ has an associated extended solution � = [Aγξ ] of
canonical type with r = 1. The type must thus be (m,m) for some m, so n =
2m and ξ = i diag(1, . . . , 1, 0, . . . , 0), which gives the canonical geodesic γξ =
diag(λ, . . . , λ, 1, . . . , 1). Now, any solution A : M → O(2m,C) to (2.20) with r = 1
is of the form

A =
(

I B
0 I

)

(4.6)

where B : M → gl(m,C) is meromorphic and has BT = −B. The resulting Grassmannian
model is W = V + λH+ where V is the span of the last m columns of A, a maximally
isotropic subbundle of Cn , equivalently a holomorphic map from M to O(2m)/U(m) (see
Sect. 3.1); this W corresponds to the stated extended solution. ��
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See Sects. 4.6(a) and 4.8(b) for examples of this type. We next discuss extended solutions
of harmonic maps of uniton number 2. Such a harmonic map has an associated polynomial
extended solution of canonical type and of degree 2, so it suffices to discuss those.

Proposition 4.5 (i) Any extended solution � : M → �2U(n)R of canonical type has a
uniton factorization of the form

� = (πX + λπ⊥
X )(πV + λπ⊥

V ) (4.7)

where X and V are holomorphic subbundles of Cn with X⊥ and V isotropic and πV X =
V .
This is S1-invariant if and only if X is the polar V ◦ = V

⊥
of V , in which case X, V

and V all commute and (4.7) reads

� = λ(πV + λ−1π⊥
V

)(πV + λπ⊥
V ) = λ(πV + λπ⊥

V )(πV + λ−1π⊥
V

). (4.8)

The corresponding harmonic map is then ϕ = �−1 = V ⊕ V : M → G2s(C
n) (where

s = rank V ), which is a (higher dimensional) real mixed pair [2], and has (minimal)
uniton number 2 unless V is constant.

(ii) All extended solutions � : M → �2U(n)R of type (1, t1, 1) are S1-invariant, and so are
of the form (4.8) with rank V = 1; the corresponding harmonic maps ϕ = V ⊕ V are
real mixed pairs.

Proof (i) Write � = [Aγξ ]; note that the type must be (t0, t1, t0) for some t0, t1 with
2t0 + t1 = n. For each j , write the j th column of A as c j = c0j + λc1j , note c

1
j = 0 for

all j ≤ t0 + t1. Set X = span{c0j : t0 < j ≤ n} and ˜V = span{c j = c0j + λc1j : t0 + t1 <

j ≤ n}. Then the Grassmannian model W = AγξH+ is W = ˜V + λX + λ2H+ so,
from (2.10), (2.11) and (2.8), the alternating uniton factorization is given by (4.7) where
V = span{c0j + π⊥

X c
1
j : t0 + t1 < j ≤ n}.

This is S1-invariant if and only if c1j = 0 for all t0+t1 < j ≤ n, equivalently X is the polar
of V . Then (V , X) = (V , V ◦) is a ∂ ′-pair in the sense of [20]. Thus the Grassmannian
model W = AγξH+ is W = V + λV ◦ + λ2H+, giving extended solution (4.8).

(ii) By Lemma 3.3, the maximum degree of any term of A is 0, giving an S1-invariant
extended solution. ��

4.4 All extended solutions for n at most 6

We will now find all extended solutions of canonical type for n ≤ 6. To do this we find all
solutions A : M → AR

ξ to (2.20) by our algorithm; we can then compute the corresponding

extended solutions� = [Aγξ ] using the formulae in Sect. 2.4, or Sect. 2.5 in the S1-invariant
case. Bymodifying our algorithm, and so the mappings h and h0 in some cases, we obtain the
following improvement of Theorem 3.8 where ‘locally surjective’ is replaced by ‘surjective’,
or even, ‘bijective’.

Theorem 4.6 Let M be a Riemann surface and let n ≤ 6. Let ξ = i diag(ξ1, . . . , ξn) be a
canonical element of �rU(n)R for some r ∈ N; set p = p(ξ) = ∑r

k=1 dim gR

k (ξ) and
p1 = p1(ξ) = dim gR

1 (ξ). There are maps h = hξ : M(M)p → SolRξ and h0 = (h0)ξ :
M(M)p1 → (SolRξ )0 such that

(i) h and h0 are surjective up to replacing A by E A for some constant matrix E ∈ O(n,C);
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(ii) h restricts to a bijective map h : M(M)
p
˜ND

→ (SolRξ )
˜ND, μ → A(μ) to an open dense

subset of SolRξ ; this map is algebraic in the sense that each entry of A(μ) is polynomial
in λ with coefficients rational functions of the μi and their derivatives of order less than
or equal to n − 3.

We shall show this for each dimension in turn, concentrating on non-degenerate cases;
the reader can easily calculate degenerate cases as in Example 4.2. Dimensions n = 1 and 2
are trivial, see Proposition 4.4, so we start with n = 3.

4.5 Dimension n = 3

All solutions are obtained from the unique n = 1 case ˜A = (1) by adding a border. This
gives one non-trivial type, (1, 1, 1), i.e., ξ = i diag(2, 1, 0) giving the closed geodesic γξ =
diag(λ2, λ, 1). Any solution A : M → O(3,C) to (2.20) is obtained from the identity matrix
in O(1,C) by choosing an arbitrary meromorphic function a12 = −g, say; in fact, this is the
lowest-dimensional case of Theorem 4.1 as in Example 4.2 (with μ1 = −g). Filling in the
last column by algebra, i.e., using (ci , c3) = 0 for i = 2, 3 (see Sect. 3.3) gives a complex
extended solution � = Aγξ where

A =
⎛

⎜

⎝

1 −g − 1
2 g

2

0 1 g

0 0 1

⎞

⎟

⎠
. (4.9)

Let � = [Aγξ ] and ϕ = �−1 be the corresponding extended solution and harmonic
map. As in Proposition 4.5(ii), ϕ : M → G2(R

3) is the real mixed pair given by
ϕ = V⊕V .More explicitly, let Qn−2 denote the complex quadric {[z0, . . . , zn−1] ∈ CPn−1 :
∑n−1

i=0 zi zn−i−1 = 0}; then, with ι denoting the Cartan embedding, ϕ is the composition:

M
g
C ∪ ∞ ≡

CP1 ≡
Q1

≡
S2

2:1
G2(R

3)
ι

O(3)

z g = g(z) [1, g] h = [1, g,− 1
2 g

2] (h ⊕ h)⊥ h ⊕ h πh⊕h − π⊥
h⊕h

Here and in the rest of the paper, ≡ denotes a standard identification. The real line (h ⊕ h)⊥
is given a canonical orientation so that it gives a point of S2; the composition C ∪ ∞ →
CP1 → Q1 → S2 of the maps above is stereographic projection.

Note that, if g is constant, then ϕ is constant and has (minimal) uniton number 0, otherwise
it has uniton number 2.

4.6 Dimension n = 4

There are two non-trivial types, as follows.
(a) Type (2,2). Here r = 1 and ξ = i diag(1, 1, 0, 0), and, as in Proposition 4.4(ii),

A =

⎛

⎜

⎜

⎜

⎝

1 0 −g 0

0 1 0 g

0 0 1 0
0 0 0 1

⎞

⎟

⎟

⎟

⎠

.
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for some arbitrary meromorphic function g on M . Then W = V ⊕ λH+, where V is the
maximally isotropic subbundle of C4 spanned by the last two columns c3 and c4 of A and
the extended solution � = [Aγξ ] is � = πV +λπ⊥

V . The corresponding harmonic map �−1
is the holomorphic map V : M → O(4)/U(2). More explicitly, it is the composition:

M
g

C ∪ ∞ ≡
CP1 ≡

SO(4)/U(2)
inclusion

O(4)/U(2)
ι

O(4)
z g = g(z) [1, g] V = span (c3, c4) V i(πV − πV )

(b) Type (1,2,1). Here r = 2, the maximum possible for n = 4, and ξ = i diag(2, 1, 1, 0).
We obtain the solution by adding a border to the unique solution ˜A = I of type (2). Then
we have two new entries a12, a13 in the g1-position (i.e., on the block superdiagonal), we set
a12 = −g1, a13 = −g2 where g1, g2 are arbitrary meromorphic functions. Filling in the last
column by algebra (see Sect. 3.3) gives

A =

⎛

⎜

⎜

⎜

⎜

⎝

1 −g1 −g2 −g1g2

0 1 0 g2

0 0 1 g1

0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎠

.

Let h denote the span of the last column c4, thus h = [1, g1, g2,−g1g2]T where T

denotes the second transpose as in Sect. 3.2; by (3.2) the polar h◦ = h
⊥
of h is the span of

the last three columns. The above A gives W = h ⊕ λh◦ ⊕ λ2H+, and as in Proposition 4.5,
the corresponding extended solution is

� = (πh + λπ⊥
h )(πh◦ + λπ⊥

h◦) = λ(πh + λπ⊥
h )(πh + λ−1π⊥

h
).

This is an extended solution of the real mixed pair h ⊕ h : M → G2(R
4) (or its orthogonal

complement). More explicitly, it is the composition:

M
(g1,g2)

C ∪ ∞ × C ∪ ∞ ≡
CP1 × CP1 ≡

Q2
2:1

G2(R
4)

ι
O(4)

z (g1, g2) = (g1(z), g2(z)) ([1, g1], [1, g2] h h ⊕ h πh⊕h − π⊥
h⊕h

Up to now, there have been no equations to satisfy and no terms in λ; this shows the
following, which is a consequence of [34, Proposition 6.20].

Proposition 4.7 When n ≤ 4,

(i) every extended solution of canonical type M → �O(n) is S1-invariant;
(ii) in particular, every extended solution of canonical type M → �O(n) satisfies the sym-

metry condition (2.12), and so the corresponding harmonic map ϕ = �−1 maps into a
real Grassmannian or into O(2m)/U(m) with n = 2m.

That neither statement is true for n = 5 is shown by the examples in Sect. 4.7(a) and (c)
below.

Note that the proposition together with the last statement of Proposition 3.4 shows that
every harmonic map of finite uniton number from a surface to O(n) with n ≤ 4 has an
associated extended solution which is S1-invariant.

4.7 Dimension n = 5

All solutions are obtained from one of the two n = 3 cases of Sect. 4.5, i.e., type (3) or type
(1,1,1), by adding a border. This gives three non-trivial types, as follows.
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(a) Type (2,1,2). Here r = 2 and ξ = i diag(2, 2, 1, 0, 0). We apply the algorithm in
the proof of Theorem 3.8 to obtain this case from the (1, 1, 1) case (4.9); we shall give the
details in the non-degenerate case, i.e., when g is non-constant. We have one new entry a13
in the g1-position; we initially set this equal to an arbitrary meromorphic function ν1. Write
a14 = a014 + λa114. Then a114 is arbitrary, say σ , and a014 satisfies (a014)

′ = −g′a13 mod λ.
According to the algorithm, to integrate this, we replace our initial choice ν1 of parameter
by a new parameter ν = a014 so that ν1 = ν(1), where generalized derivatives ν(d) are taken
with respect to g. As no further integrations are necessary, ν is our final parameter. Then,
filling in the last column by algebra, i.e., using (ci , c5) = 0 for i = 3, 4, 5 (see Sect. 3.3),
we obtain

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 −ν(1) ν + λσ − 1
2 (ν

(1))2

0 1 g − 1
2 g

2 −ν + gν(1) − λσ

0 0 1 −g ν(1)

0 0 0 1 0
0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By Remark 2.3(v), this gives an S1-invariant extended solution � = [Aγξ ] if and only
if σ ≡ 0, i.e., σ is identically zero; in which case it has corresponding harmonic map
ϕ = α1 ⊕ α1 where α1 is the span of the last two columns. Define h : M → CP4 as the
span of c5 + ν(2)c4. When ν(3) �≡ 0, the last two columns c4, c5 are spanned by h and its
derivative, thus ϕ = h(1) ⊕ h(1) : M → G4(R

5). Its orthogonal complement is the harmonic
map ϕ⊥ : M → RP4 given by the middle vertex of the following harmonic sequence—by
being careful with orientations ϕ⊥ actually defines a map into S4.

h → G(1)(h) → ϕ⊥ → G(1)(h) → h.

If σ is not identically zero, then the harmonic map �−1 does not lie in a Grassmannian.

Remark 4.8 This example is equivalent to that of [34, Example 6.21]. The reality conditions
(i)–(iii) of that example, whichwere hard to solve using themethods of [34], are automatically
satisfied by our method.

(b) Type (1,3,1), so r = 2. This is obtained from n = 3, type (3), i.e., the identity matrix,
by adding a border giving

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 ν1 ν2 ν3 −ν1ν3 − 1
2ν

2
2

0 1 0 0 −ν3

0 0 1 0 −ν2

0 0 0 1 −ν1

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

The resulting extended solution and harmonic map are described by Proposition 4.5(ii).
(c) Type (1,1,1,1,1). Here r = 4 and ξ = i diag(4, 3, 2, 1, 0). As in the (2, 1, 2) case

above, we apply the algorithm in the proof of Theorem 3.8 to obtain this case from the
(1, 1, 1) case (4.9). As in Theorem 4.1, this shows that any S1-invariant extended solution
with middle 3 × 3 matrix ˜A non-degenerate, i.e., g non-constant, has a complex extended
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solution � = Aγξ where

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −ν
(2)
1 ν

(1)
1 ν1 ν1ν

(2)
1 − 1

2

(

ν
(1)
1

)2

0 1 −g − 1
2 g

2 −ν1 + gν(1)
1 − 1

2 g
2ν

(2)
1

0 0 1 g −ν
(1)
1 + gν(2)

1

0 0 0 1 ν
(2)
1

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

(4.10)

for arbitrarymeromorphic functions g and ν1 with g non-constant, and generalized derivatives
are taken with respect to g. When ˜A is degenerate, i.e. g is constant, we obtain a simpler
formula, see Example 4.2.

Note that A itself is non-degenerate if and only if both g and ν
(2)
1 are non-constant;

equivalently, the last column spans a full holomorphic map h : M → CPn . Then ϕ = �−1

is the harmonic map ϕ = h ⊕G(2)(h) ⊕G(4)(h); as in Theorem 4.3, h totally isotropic, i.e.,
G(4)(h) = h, so that ϕ is a harmonic map into the real Grassmannian G3(R

5). Also, G(2)(h)

defines a harmonic map into RP4 and into its double cover S4. Finally note that the middle
three components of h give a ‘null curve’ in C3, see Sect. 5.1.

We now look for the general solution A = A0 +λA1 +λ2A2 with A0 non-degenerate. Of
course, A0 is given by (4.10), but there are now two more initial parameters ν12 and ν13 with
a113 = ν12 and a214 = ν13 . As in the proof of Theorem 3.8, we have to satisfy the equation

(a114)
′ = ρ′

34a
1
13 + ρ′

24a
0
12 = g′ν12 .

Following our algorithm, we replace ν12 by ν22 = a114 where (ν22 )
(1) := (ν22 )

′/g′ = ν12 so that
a113 = (ν22 )

(1). Writing ν2 = ν22 and ν3 = ν13 for our final choice of parameters, this gives

λA1 + λ2A2 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

0 0 λν
(1)
2 λν2 + λ2ν3 λζ1 + λ2ζ2

0 0 0 0 −λ(ν2 − gν(1)
2 ) − λ2ν3

0 0 0 0 −λν
(1)
2

0 0 0 0 0

0 0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

where ζ1 and ζ2 are determined by algebra. To see what harmonic map this gives, writing Hi

for the last column of Ai (i = 0, 1, 2) and h = span H0, we have

W = span(H0 + λH1 + λ2H2) ⊕ λ{span(H0 + λH1)}(1) + λ2h(2) ⊕ λ3h(3) + λ4H+ .

By Remark 2.3(v), this satisfies the symmetry condition (2.12) (and so gives a harmonic map
into a Grassmannian) if and only if the parameter ν2 ≡ 0, equivalently H1 ≡ 0. It gives an
S1-invariant solution if and only if ν2 ≡ ν3 ≡ 0, equivalently H1 ≡ H2 ≡ 0. In all cases,
we can find the alternating factorization (2.8) of � into unitons by using (2.10) and (2.11).
We work this out for the Grassmannian case ν2 ≡ 0: for simplicity we write H = H0 and
K = H2; then the extended solution is

� = (πα1 + λπ⊥
α1

)(πα2 + λπ⊥
α2

)(πα3 + λπ⊥
α3

)(πα4 + λπ⊥
α4

)

where α1 = h(2), α2 = h(1), α3 = β ⊕G(2)(h)⊕G(3)(h)with β = span{H +πh(2)K , H ′ +
πh(2)K

′}, and α4 = span{H + πh(2)K }. Note that α2 (resp. α4) is isotropic and is the polar
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of α1 (resp. α3). Thus � is the product of two ‘real’ quadratic factors:

� = (πα2 + λπ⊥
α2⊕α2

+ λ2πα2)(πα4 + λπ⊥
α4⊕α4

+ λ2πα4). (4.11)

This gives the harmonic map ϕ = �−1 as a product of two maps into O(5):

ϕ = (πα2⊕α2 − π⊥
α2⊕α2

)(πα4⊕α4 − π⊥
α4⊕α4

), (4.12)

which is the map M → G3(R
5) given by ϕ = α4 ⊕ G(2)(h) ⊕ α4.

When H1 ≡ 0 but H2 �≡ 0, (4.12) gives an example of a harmonic map into G2(R
5) with

non-S1-invariant extended solution. When H1 �≡ 0, (4.11) does not satisfy the symmetry
condition (2.12). Thus, in this example, the corresponding harmonic map �−1 does not, in
general, have values in a Grassmannian. By Proposition 4.7, this cannot happen in dimension
n ≤ 4.

4.8 Dimension n = 6

All solutions are obtained from one of the three n = 4 cases in Sect. 4.6 by adding a border.
This gives five non-trivial types, as follows.

(a) Type (1,4,1), so r = 2. This is similar to n = 5, type (1, 3, 1) above.
(b) Type (3,3). This has r = 1 and is obtained from type (2, 2) by adding a border; there are

two newparameters ν1, ν2 in the g1-position, call these−h and−k giving the S1-invariant
solution depending on three arbitrary meromorphic functions:

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 0 −h −k 0

0 1 0 −g 0 k

0 0 1 0 g h

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

By Proposition 4.4(ii), the corresponding harmonic map is the holomorphic map
V : M → SO(6)/U(3) given by the maximally isotropic subspace V spanned by
the last three columns of A. Now the holomorphic map C

3 → SO(6)/U(3) given by
(g, h, k) → V extends to a holomorphic diffeomorphism fromCP3 to SO(6)/U(3) given
by [�, g, h, k] → the span of the four vectors (0, 0, �, 0,−g,−h), (0, �, 0, g, 0,−k),
(�, 0, 0, h, k, 0), (g,−h, k, 0, 0, 0); whether d is zero or non-zero, these vectors are lin-
early dependent and span amaximally isotropic subspace of dimension 3, cf. [3, Example
2.4] or [4, Sect. 3.1], thus V defines a holomorphic map into CP3.

(c) Type (2,2,2). This has r = 2 and is obtained from type (1,2,1) in Sect. 4.6 above by
adding a border. The entries in the first row in the g1-position are a13 and a14, giving
two new parameters, and the λ-term of a15 gives a further parameter. Carrying out our
algorithm in the case that g1 and g2 are non-constant gives
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A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 (ν1)
(1) (ν2)

(1) ν1 + ν2 + λν3 a16

0 1 −g1 −g2 −g1g2 a15

0 0 1 0 g2 a14

0 0 0 1 g1 a13

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here (ν1)
(1) = ν′

1/g
′
2 and (ν2)

(1) = ν′
2/g

′
1, and our final new parameters are ν1, ν2 and

ν3, together with the existing parameters g1, g2. The remaining entries ain are given by
algebra, i.e., using (ci , c6) = 0 for i = 3, 4, 5, 6. This illustrates that our algorithm does not
always give an injective map, indeed we may replace ν1 and ν2 by ν1 + c and ν2 − c for any
constant c. Also, although it is surjective locally as ν1 and ν2 can be found by integration
from a13 and a14, it is not globally surjective. For example, if M = S2, g1 = g2 = z and
a13 = −a14 = 1/z, then ν1 = −ν2 = ∫

(1/z)dz = log z which is not globally defined,
though a15 = 0 is.

However, we can modify our algorithm for this case as follows. Replace the final new
parameters ν1 and ν2 by ν̃1, ν̃2 with a13 = ν̃1 and a15 = ν̃2 + λν3, then we obtain

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 0 ν̃1 (̃ν′
2 − g′

2ν̃1)/g
′
1 ν̃2 + λν3 a16

0 1 −g1 −g2 −g1g2 a15

0 0 1 0 g2 a14

0 0 0 1 g1 a13

0 0 0 0 1 0

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

(which holds even if g2 is constant) where the remaining entries ai j are calculated by algebra,
as usual. The resulting harmonic maps are described by Proposition 4.5(i).

(d)Type (1,2,2,1). This has r = 3 and is obtained from type (2, 2) by adding a border; it has
two new initial parameters ν11 , ν

1
2 in the g1, i.e., block superdiagonal positions a12, a13, and

two further parameters ν3, ν4 on the second block superdiagonal. Carrying out our algorithm
in the non-degenerate case when g is non-constant replaces ν11 , ν

1
2 by ν1, ν2 giving

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 (ν1)
(1) (ν2)

(1) ν1 + λν3 −ν2 + λν4 ζ0 + λζ1

0 1 0 g 0 −gν(1)
2 + ν2 − λν4

0 0 1 0 −g gν(1)
1 − ν1 − λν3

0 0 0 1 0 −ν
(1)
2

0 0 0 0 1 −ν
(1)
1

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

.

Here our final parameters g, ν1, ν2, ν3, ν4 are arbitrary meromorphic functions, and all
generalized derivatives are taken with respect to g. The top-right entry ζ0+λζ1 is determined
by algebra from (c6, c6) = 0, in fact, ζ0 = ν

(1)
1 ν2−ν

(1)
2 ν1 and ζ1 = −ν

(1)
1 ν4−ν

(1)
2 ν3.We now

calculate the corresponding extended solution. Write the j th column of A as c j = c0j + λc1j ,
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so c1j = 0 ( j = 1, 2, 3); then, as in Sect. 3.1,

W = span c6 ⊕ λ span{c6, c5, c4} ⊕ λ2 span{c6, c5, c4, c3, c2} + λ3H+ .

This is the extended solution of a map into a Grassmannian if and only if ν3 ≡ ν4 ≡ 0; in
that case we have an S1-invariant extended solution:

W = δ1 ⊕ λδ2 ⊕ λ2δ3 + λ3H+

where 0 = δ0 ⊂ δ1 ⊂ δ2 ⊂ δ3 ⊂ δ4 = C
6 are the subbundles given by δ1 = span{c06},

δ2 = span{c06, c05, c04} and δ3 = span{c06, c05, c04, c03, c02}. Note that δ3 is the polar of δ1 and δ2
is self-polar, i.e., maximally isotropic. As in Sect. 3.1, the corresponding harmonic map ϕ0

is ψ0 ⊕ ψ2 where ψi = δ⊥
i ∩ δi+1, or its orthogonal complement ψ1 ⊕ ψ3. Since these are

conjugates of each other, ϕ0 is a harmonic map into O(6)/U(3).
In the general case with ν3 or ν4 not necessarily zero, we calculate the alternating

factorization (2.8) into unitons from (2.10) and (2.11) to be � = (πα1 + λπα⊥
1
)(πα2 +

λπα⊥
2
)(πα3 + λπα⊥

3
) where α1 = δ2, α2 = span{c06 + π⊥

δ2
c16, c

0
5 + π⊥

δ2
c15, c

0
4 + π⊥

δ2
c14} ⊕ ψ2

and α3 = span{c06 + π⊥
δ2
c16}. Note that α1 is maximally isotropic, and α3 is isotropic

and is the polar of α2 (in the S1-invariant case, α2 = δ3 and α3 = δ1). The corre-
sponding harmonic map ϕ = i�−1 is given by the product of the two maps into O(6):
ϕ = i(πδ2 − π⊥

δ2
) · (πα3+α3 − π⊥

α3+α3
). This example is related to [34, Example 6.22] (that

example has a λ2-term which can be removed by a suitable transformation of the data); it
provides extended solutions of harmonic maps into O(6) which do not lie in a Grassmannian
but have S1-invariant limits into O(6)/U(3).

(e) Type (1,1,2,1,1) This has r = 4 and, like type (2,2,2) above, is obtained from n = 4,
type (1, 2, 1) by adding a border. However, due to the special nature of SO(4) as being
double-covered by the product of SU(2) with itself, there is an easier way which involves
first finding the new last column of A then filling in the top-right element and new first row
by algebra (see Sect. 3.3); for the S1-invariant case this is as follows, with all generalized
derivatives with respect to g1:

Write the last column as [1, χ1, χ2, χ3, χ4, ζ ]T. From the extended solution equation
(2.20) we have the following, assuming that g1 is non-constant.

(i) First, χ ′
2 = g1χ ′

1. Integrating by parts gives

χ2 = g1χ1 −
∫

g′
1χ1 .

Replace χ1 by a new parameter h1 and set χ1 = h(1)
1 := h′

1/g
′
1. Then χ2 = g1h

(1)
1 − h1.

(ii) Next, χ ′
3 = g2χ ′

1 so that χ ′
4 = −g1g2χ ′

1 = −g1χ ′
3. From this equation we have, in a

similar way to (i),

χ4 = −g1χ3 +
∫

g′
1χ3 .

Replace χ3 by a new parameter h2 and set χ3 = h(1)
2 := h′

2/g
′
1. Then χ4 = −g1h

(1)
2 +h2.
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The remaining entries a1 j are found by algebra, i.e., using (c j , cn) = 0 for j = 2, . . . , n.
Thus we obtain, with generalized derivatives taken with respect to g1,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −h(1)
1 h1 g2h

(1)
1 − h(1)

2 g2h1 − h2 h1h
(1)
2 − h2h

(1)
1

0 1 −g1 −g2 −g1g2 h2 − g1h
(1)
2

0 0 1 0 g2 h(1)
2

0 0 0 1 g1 −h1 + g1h
(1)
1

0 0 0 0 1 h(1)
1

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (4.13)

Here g1, h1, h2 are arbitrary meromorphic functions. If h(1)
1 is non-constant, then g2 =

h(2)
2 /h(2)

1 . Note how this departs from our usual algorithm by replacing a parameter in
the middle 4× 4 matrix ˜A, in this case g2 by h2. Note that the parameters g1, h1, h2 can
be read off from the matrix A as entries, or combinations of entries. Note also that the
middle four entries of the last column give the standard formula for null curves in C

4,
see Sect. 5.2.

Proposition 4.9 For m ≤ 3, any harmonic map of finite uniton number M → O(2m)/U(m)

has an S1-invariant associated extended solution.

Proof As in Sect. 3.1, ϕ has a symmetric extended solution � = [Aγξ ] with r odd. By
Remark 3.5, if � is not S1-invariant then A must contain a term in λ2. By Lemma 3.3 this
means that, either r = 3 with t1 > 1, or r ≥ 5. Given that

∑r
i=1 ti = 2m, neither of these is

possible with m ≤ 3. ��
That this result is sharp is shown by the following example which is a particular case of

[34, Example 6.26]. In that paper, reality conditions had to be solved: this was only done
for m ≥ 5; by using our approach, the reality conditions in that example are automatic and
give us an example for m = 4. Explicitly, take ξ of type (2, 2, 2, 2). By our method we may
construct a solution A : M → AR

3 in the form A = A0 + λ2A2 where the penultimate entry
of the top row of A2 is a freely chosen parameter ν. Completing the matrix A by algebra and
setting � = [Aγξ ] gives an extended solution which is S1-invariant if and only if ν ≡ 0.

5 Null curves, extended solutions and theWeierstrass representation

By a (generalized) minimal surface in R
n we mean a non-constant weakly conformal map

from a Riemann surface M to Rn whose image is minimal away from branch points, equiv-
alently, a weakly conformal harmonic map. Such a map is, on a simply connected domain,
the real part of a null holomorphic curve by which is meant (somewhat confusingly) a holo-
morphic map χ : M → C

n with (χ ′, χ ′) = 0 and χ ′ not identically zero. We extend this
definition to null meromorphic curve: note that for such a curve, [χ ′] : M → Qn−2 is a well-
defined holomorphic map to the complex quadric and gives the Gauss map of the minimal
surface. The usual Weierstrass representation parametrizes all such χ ′ so that χ is given by
an integral with real part the minimal surface. In contrast, in the Weierstrass representation
in free form, the null curve itself is parametrized and no integral is necessary. We see how
this is related to our work.
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5.1 Null curves inC3 and extended solutions

Let M be a Riemann surface. In Theorem 4.3, we related Calabi’s construction of harmonic
maps into spheres with polynomial extended solutions of harmonic maps into O(n) (n odd)
of type (1, 1, . . . , 1). In the case n = 5 we can add one further bijection: that with null
meromorphic curves, showing how the Weierstrass representation in free form appears natu-
rally from polynomial extended solutions for harmonic maps into O(5) of type (1, 1, 1, 1, 1)
and so of the maximum possible uniton number 4; the corresponding canonical element is
ξ0 = i diag(4, 3, 2, 1, 0). In part (iii), the generalized derivative ν(2) is taken with respect to
g.

Theorem 5.1 The following sets are in one-to-one correspondence:
(i) null meromorphic curves χ : M → C

3 with [χ ′] : M → Q1 non-constant;
(ii) non-degenerate S1-invariant extended solutions � : M → �4U(5)R of type

(1, 1, 1, 1, 1);
(ii)’ non-degenerate solutions A : M → (AR

ξ0
)0 to the extended solution Eq. (2.20);

(iii) pairs of meromorphic functions (g, ν) on M with g and ν(2) non-constant;
(iv) full totally isotropic holomorphic maps f : M → CP4;
(v) full harmonic maps ϕ : M → RP4;
(vi) antipodal pairs ±ϕ̃ : M → S4 of full harmonic maps.

The bijection from (ii)′ to (ii) is given by � = [Aγξ0 ] as in Proposition 3.4.
The bijection from (ii)′ to (i) is given by χ = (a45, a35, a25). That from (ii)′ to (iii) is given

by

g = a34 and ν = a14, (5.1)

and that from (ii)′ to (iv) is given by taking the last column: f = [c5] as in Theorem 4.3.

Proof Given χ = (χ1, χ2, χ3) as in (i), note first that χ ′
1 is not identically zero; otherwise

since χ is a null curve, χ ′
1χ

′
3 = − 1

2χ
′
2 so that χ ′

2 ≡ 0 which implies that [χ ′] is constant.
There is a unique solution A : M → O(5,C) of type (1, 1, 1, 1, 1) to the extended solution
equation (4.1) with the middle of the last column given by (a45, a35, a25) = (χ1, χ2, χ3),
namely,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 −χ1 gχ1 − χ2
1
2 g

2χ1 − gχ2 − χ3 −χ1χ3 − 1
2χ

2
2

0 1 −g − 1
2 g

2 χ3

0 0 1 g χ2

0 0 0 1 χ1

0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

where g = χ ′
2/χ

′
1.

(5.2)

Indeed, all but the first row of A is found by differentiating four times the middle of the
last column; the remaining entries a1 j are filled in by algebra, i.e., using (c j , c5) = 0
for j = 2, 3, 4, 5. Thus χ → A gives a bijection from set (i) to set (ii)′ with inverse
χ = (a45, a35, a25).

Given A as in (ii)′, define (g, ν) by (5.1). From the extended solution Eq. (4.1), with
generalized derivatives with respect to g, a13 = ν(1) and a12 = −ν(2); then A is given by
(4.10). By non-degeneracy of A, g and ν(2) are non-constant. The assignment A → (g, ν)

gives a bijection between sets (ii)′ and (iii) with inverse given by (4.10). ��
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Composing the above bijections we deduce the Weierstrass representation in free form of
null meromorphic curves:

Corollary 5.2 There is a bijection between the following sets:

(i) the set of pairs of meromorphic functions (g, ν) on M with g and ν(2) non-constant,
(ii) the set of null meromorphic curves χ : M → C

3 with [χ ′] : M → Q1 non-constant,

given by

χ = (ν(2), −ν(1) + gν(2), −ν + gν(1) − 1
2 g

2ν(2)). (5.3)

Recall that minimal surfaces in R
3 appear as the real part of such curves χ . The repre-

sentation (5.3) seems to have been first given by Weierstrass [38]; explanations are given
by Hitchin [24] and Small [32]. The new feature in our work is the correspondence with
extended solutions for harmonic maps, specifically, the free Weierstrass data (g, ν) of χ is
given simply by the two entries (5.1) of the matrix A associated to χ by (5.2), and this matrix
defines an extended solution � = [Aγξ0 ] for a harmonic map M → O(5).

5.2 Null curves inC4 and extended solutions

Theorem 5.1 has an analogue in C
4 as follows. For a null curve χ = (χ1, χ2, χ3, χ4) :

M → C
4, by definition, χ ′ is not identically zero, so by permuting coordinates if necessary,

we can assume that χ1 is non-constant. Then we can set g1 = χ ′
2/χ

′
1 and g2 = χ ′

3/χ
′
1 so

that [χ ′] = [1, g1, g2,−g1g2] and [χ ′] is non-constant if and only if at least one of the
Gauss maps g1 or g2 is non-constant; again, after permuting coordinates, if necessary, we
can assume that g1 is non-constant. By A non-degenerate we shall now mean that ai,i+1

is non-constant for i �= 3. The extended solutions in (ii) below are polynomial extended
solutions for harmonic maps into O(6), and, as in the C

3 case, are of type (1, 1, 2, 1, 1),
and so of the maximum possible uniton number, 4; the corresponding canonical element is
ξ = i diag(4, 3, 2, 2, 1, 0).

Theorem 5.3 The following sets are in one-to-one correspondence:

(i) null meromorphic curves χ : M → C
4 with χ1 and g1 := χ ′

2/χ
′
1 non-constant;

(ii) non-degenerate S1-invariant extended solutions � : M → �4U(6)R of type
(1, 1, 2, 1, 1);

(ii)’ non-degenerate solutions A : M → (AR
ξ )0 to the extended solution Eq. (2.20);

(iii) triples of meromorphic functions (g1, h1, h2) on M with g1 and h(1)
1 := h′

1/g
′
1 non-

constant.

The bijection from (ii)′ to (ii) is given by � = [Aγξ ] as in Proposition 3.4.
The bijection from (ii)′ to (i) is given by χ = (a56, a46, a36, a26).
The bijection from (ii)′ to (iii) is given by

g1 = a45, h1 = a13, h2 = a13a35 − a15. (5.4)
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Proof Given χ in set (i) there is a unique A in set (ii)′ which satisfies χ = (a56, a46, a36, a26),
namely,

A =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1 a12 a13 a14 a15 a16

0 1 −g1 −g2 −g1g2 χ4

0 0 1 0 g2 χ3

0 0 0 1 g1 χ2

0 0 0 0 1 χ1

0 0 0 0 0 1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (5.5)

Here g1 = χ ′
2/χ

′
1 and g2 = χ ′

3/χ
′
1; the remaining entries a1 j can be found by algebra, i.e.,

using (c j , c6) = 0 for j = 2, 3, 4, 5, 6. Thus χ → A gives a bijection from set (i) to set (ii)′
with inverse χ = (a56, a46, a36, a26).

Given (g1, h1, h2) in set (iii), set A equal to (4.13) where g2 = h(2)
2 /h(2)

1 . It is easily
checked that this is the inverse of the map (5.4). ��
Corollary 5.4 There is a bijection between the following sets:
(i) the set of triples of meromorphic functions (g1, h1, h2) on M with g1 and h(1)

1 non-
constant,

(ii) the set of null meromorphic curves χ : M → C
4 with χ1 and g1 := χ ′

2/χ
′
1 non-constant,

given by

χ = (h(1)
1 , −h1 + g1h

(1)
1 , h(1)

2 , h2 − g1h
(1)
2 ). (5.6)

Again minimal surfaces inR4 appear as the real part of such χ . This seems to have been first
given by de Montcheuil [26], see also Eisenhart [19]; explanations are given by Small [33]
and Shaw [31]. As before, the free Weierstrass data (g1, h1, h2) of χ are given very simply
by (5.4) from the entries of the matrix A associated to χ by (5.5), and this matrix defines an
extended solution � = [Aγξ ] for a harmonic map M → O(6).
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License (http://creativecommons.org/licenses/by/4.0/),which permits unrestricted use, distribution, and repro-
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