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Abstract The Perron method for solving the Dirichlet problem for p-harmonic functions is
extended to unbounded open sets in the setting of a complete metric space with a doubling
measure supporting a p-Poincaré inequality, 1 < p < ∞. The upper and lower (p-harmonic)
Perron solutions are studied for open sets, which are assumed to be p-parabolic if unbounded.
It is shown that continuous functions and quasicontinuous Dirichlet functions are resolutive
(i.e., that their upper and lower Perron solutions coincide), that the Perron solution agrees
with the p-harmonic extension, and that Perron solutions are invariant under perturbation of
the function on a set of capacity zero.

Keywords Dirichlet problem · Obstacle problem · p-Harmonic function · p-Parabolic set ·
Perron method · Quasicontinuity
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1 Introduction

The Dirichlet (boundary value) problem for p-harmonic functions, 1 < p < ∞, which is a
nonlinear generalization of the classical Dirichlet problem, considers the p-Laplace equation,

�pu := div(|∇u|p−2∇u) = 0, (1.1)

with prescribed boundary values u = f on the boundary ∂�. A continuous weak solution of
(1.1) is said to be p-harmonic.

The nonlinear potential theory of p-harmonic functions has been developed since the
1960s; not only in Rn , but also in weighted Rn , Riemannian manifolds, and other settings.
The booksMalý–Ziemer [28] andHeinonen–Kilpeläinen–Martio [18] are two thorough treat-
ments in Rn and weighted Rn , respectively.
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56 D. Hansevi

More recently, p-harmonic functions have been studied in complete metric spaces
equipped with a doubling measure supporting a p-Poincaré inequality. It is not clear how
to employ partial differential equations in such a general setting as a metric measure space.
However, the equivalent variational problem of locally minimizing the p-energy integral,∫

|∇u|p dx, (1.2)

among all admissible functions, becomes available when considering the notion of minimal
p-weak upper gradient as a substitute for the modulus of the usual gradient. A continuous
minimizer of (1.2) is p-harmonic. The reader might want to consult Björn–Björn [3] for the
theory of p-harmonic functions and first-order analysis on metric spaces.

If the boundary value function f is not continuous, then it is not feasible to require that the
solution u attains the boundary values as limits, i.e., to require that u(y) → f (x) as y → x
(y ∈ �) for all x ∈ ∂�. This is actually often not possible even if f is continuous (see,
e.g., Examples 13.3 and 13.4 in Björn–Björn [3]). It is therefore more reasonable to con-
sider boundary data in a weaker (Sobolev) sense. Shanmugalingam [33] solved the Dirichlet
problem for p-harmonic functions in bounded domains with Newtonian boundary data taken
in Sobolev sense. This result was generalized by Hansevi [16] to unbounded domains with
Dirichlet boundary data. For continuous boundary values, the problemwas solved in bounded
domains using uniform approximation by Björn–Björn–Shanmugalingam [6].

The Perron method for solving the Dirichlet problem for harmonic functions (on R2) was
introduced in 1923 by Perron [29] (and independently by Remak [30]). The advantage of the
method is that one can construct reasonable solutions for arbitrary boundary data. It provides
an upper and a lower solution, and the major question is to determine when these solutions
coincide, i.e., to determine when the boundary data is resolutive. The Perron method in
connectionwith the usual Laplace operator has been studied extensively inEuclidean domains
(see, e.g., Brelot [11] for the complete characterization of the resolutive functions) and has
been extended to degenerate elliptic operators (see, e.g., Granlund–Lindqvist–Martio [14],
Kilpeläinen [23], and Heinonen–Kilpeläinen–Martio [18]).

Björn–Björn–Shanmugalingam [7] extended the Perron method for p-harmonic func-
tions to the setting of a complete metric space equipped with a doubling measure supporting
a p-Poincaré inequality, and proved that Perron solutions are p-harmonic and agree with
the previously obtained solutions for Newtonian boundary data in Shanmugalingam [33].
More recently, Björn–Björn–Shanmugalingam [9] have developed the Perron method
for p-harmonic functions with respect to the Mazurkiewicz boundary. See also Estep–
Shanmugalingam [12], A. Björn [2], and Björn–Björn–Sjödin [10].

The purpose of this paper is to extend the Perron method for solving the Dirichlet problem
for p-harmonic functions to unbounded open sets in the setting of a complete metric space
equipped with a doubling measure supporting a p-Poincaré inequality. In particular, we show
that quasicontinuous functions with finite Dirichlet energy, as well as continuous functions,
are resolutive with respect to open sets, which are assumed to be p-parabolic if unbounded,
and that thePerron solution is the unique p-harmonic solution that takes the required boundary
data outside sets of capacity zero. We also show that Perron solutions are invariant under
perturbations on sets of capacity zero.

The paper is organized as follows: In the next section, we establish notation, review
some basic definitions relating to Sobolev-type spaces on metric spaces, and obtain a new
convergence lemma. In Sect. 3, we review the obstacle problem associated with p-harmonic
functions in unbounded sets and obtain a convergence theorem that will be important in the
proof of Theorem 7.5 (the main result of this paper). Section 4 is devoted to p-parabolic
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The Perron method for p-harmonic functions in unbounded sets… 57

sets. The necessary background on p-harmonic and superharmonic functions is given in
Sect. 5, making it possible to define Perron solutions in Sect. 6, where we also extend the
comparison principle for superharmonic functions to unbounded sets. In Sect. 7, we introduce
a smaller capacity (and its related quasicontinuity property) before we obtain our main result
(Theorem 7.5) on resolutivity (of quasicontinuous functions) along with some consequences.

2 Notation and preliminaries

We assume throughout the paper that (X,M , μ, d) is a metric measure space (which we
refer to as X ) equipped with a metric d and a positive complete Borel measure μ such that
0 < μ(B) < ∞ for all balls B ⊂ X . We use the following notation for balls,

B(x0, r) := {x ∈ X : d(x, x0) < r},
and for B = B(x0, r) and λ > 0, we let λB = B(x0, λr). The σ -algebra M (on which
μ is defined) is the completion of the Borel σ -algebra. Later we will impose additional
requirements on the space and on the measure. We assume further that 1 < p < ∞ and that
� is a nonempty (possibly unbounded) open subset of X .

The measure μ is said to be doubling if there exists a constant C ≥ 1 such that

0 < μ(2B) ≤ Cμ(B) < ∞
for all balls B ⊂ X . Recall that a metric space is said to be proper if all bounded closed
subsets are compact. In particular, this is true if the metric space is complete and the measure
is doubling.

The characteristic function of a set E is denoted by χE , and we let sup∅ = −∞ and
inf ∅ = ∞. We say that the set E is compactly contained in A if E (the closure of E) is a
compact subset of A and denote this by E � A. The extended real number system is denoted
byR := [−∞,∞]. We use the notation f+ = max{ f, 0} and f− = max{− f, 0}. Continuous
functionswill be assumed to be real-valued.By a curve in X wemean a rectifiable nonconstant
continuous mapping from a compact interval into X . A curve can thus be parametrized by
its arc length ds.

Definition 2.1 ABorel function g : X → [0,∞] is said to be an upper gradient of a function
f : X → R whenever

| f (x) − f (y)| ≤
∫

γ

g ds (2.1)

holds for each pair of points x, y ∈ X and every curve γ in X joining x and y. We make the
convention that the left-hand side is infinite when at least one of the terms in the left-hand
side is infinite.

A drawback of the upper gradients, introduced in Heinonen–Koskela [19,20] is that they
are not preserved by L p-convergence. It is, however, possible to overcome this problem by
relaxing the condition a bit (Koskela–MacManus [27]).

Definition 2.2 Ameasurable function g : X → [0,∞] is said to be a p-weak upper gradient
of a function f : X → R whenever (2.1) holds for each pair of points x, y ∈ X and p-almost
every curve (see below) γ in X joining x and y.

Note that a p-weak upper gradient is not required to be a Borel function (see the discussion
in the notes to Chapter 1 in Björn–Björn [3]).
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58 D. Hansevi

We say that a property holds for p-almost every curve if it fails only for a curve family 	

with zero p-modulus, i.e., if there exists a nonnegative ρ ∈ L p(X) such that
∫
γ

ρ ds = ∞
for every curve γ ∈ 	.

A countable union of curve families, each with zero p-modulus, also has zero p-modulus.
For proofs of this and other results in this section, we refer to Björn–Björn [3] or Heinonen–
Koskela–Shanmugalingam–Tyson [21].

Shanmugalingam [32] used upper gradients to define so-called Newtonian spaces.

Definition 2.3 The Newtonian space on X , denoted by N 1,p(X), is the space of all every-
where defined, extended real-valued functions u ∈ L p(X) such that

‖u‖N1,p(X) :=
(∫

X
|u|p dμ + inf

g

∫
X
gp dμ

)1/p

< ∞,

where the infimum is taken over all upper gradients g of u.

Definition 2.4 An everywhere defined, measurable, extended real-valued function on X
belongs to the Dirichlet space Dp(X) if it has an upper gradient in L p(X).

It follows from Lemma 2.4 in Koskela–MacManus [27] that a measurable function belongs
to Dp(X) whenever it (merely) has a p-weak upper gradient in L p(X).

We emphasize that Newtonian and Dirichlet functions are defined everywhere (not just up
to an equivalence class in the corresponding function space), which is essential for the notion
of upper gradient to make sense. Shanmugalingam [32] proved that the associated normed
(quotient) space defined by N 1,p(X)/ ∼, where u ∼ v if and only if ‖u − v‖N1,p(X) = 0, is
a Banach space.

A measurable set A ⊂ X can be considered to be a metric space in its own right (with
the restriction of d and μ to A). Thus the Newtonian space N 1,p(A) and the Dirichlet
space Dp(A) are also given by Definitions 2.3 and 2.4, respectively. If X is proper, then
f ∈ L p

loc(�), f ∈ N 1,p
loc (�), and f ∈ Dp

loc(�) if and only if f ∈ L p(�′), f ∈ N 1,p(�′),
and f ∈ Dp(�′), respectively, for all open �′ � �.

If u ∈ Dp(X), then u has a minimal p-weak upper gradient, denoted by gu , which is
minimal in the sense that gu ≤ g a.e. for all p-weak upper gradients g of u; see Shanmu-
galingam [33]. Minimal p-weak upper gradients gu are true substitutes for |∇u| in metric
spaces. One of the important properties of minimal p-weak upper gradients is that they are
local in the sense that if two functions u, v ∈ Dp(X) coincide on a set E , then gu = gv a.e. on
E . Furthermore, if U = {x ∈ X : u(x) > v(x)}, then guχU + gvχX\U and gvχU + guχX\U
areminimal p-weak upper gradients ofmax{u, v} andmin{u, v}, respectively. The restriction
of a minimal p-weak upper gradient to an open subset remains minimal with respect to that
subset, and hence the results above about minimal p-weak upper gradients of functions in
Dp(X) extend to functions in Dp

loc(X) having minimal p-weak upper gradients in L p
loc(X).

The notion of capacity of a set is important in potential theory, and various types and
definitions can be found in the literature (see, e.g., Kinnunen–Martio [24] and Shanmu-
galingam [32]).

Definition 2.5 Let A ⊂ X be measurable. The (Sobolev) capacity (with respect to A) of
E ⊂ A is the number

Cp(E; A) := inf
u

‖u‖p
N1,p(A)

,

where the infimum is taken over all u ∈ N 1,p(A) such that u ≥ 1 on E . When the capacity
is taken with respect to X , we simplify the notation and write Cp(E).
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The Perron method for p-harmonic functions in unbounded sets… 59

Whenever a property holds for all points except for those in a set of capacity zero, it is
said to hold quasieverywhere (q.e.).

The capacity is countably subadditive, i.e., Cp(
⋃∞

j=1 E j ) ≤ ∑∞
j=1 Cp(E j ).

In order to be able to compare boundary values of Dirichlet and Newtonian functions, we
introduce the following spaces.

Definition 2.6 For subsets E and A of X , where A is measurable, the Dirichlet space with
zero boundary values in A\E , is

Dp
0 (E; A) := {u|E∩A : u ∈ Dp(A) and u = 0 in A\E}.

The Newtonian space with zero boundary values, N 1,p
0 (E; A), is defined analogously. We

let Dp
0 (E) and N 1,p

0 (E) denote Dp
0 (E; X) and N 1,p

0 (E; X), respectively.

The condition “u = 0 in A\E” can actually be replaced by “u = 0 q.e. in A\E” without
changing the obtained spaces.

If E ⊂ X is measurable, f ∈ Dp(E), f1, f2 ∈ Dp
0 (E), and f1 ≤ f ≤ f2 q.e. in E , then

f ∈ Dp
0 (E) (this is Lemma 2.8 in Hansevi [16]).

The following convergence lemma will be used to prove Theorem 3.2, which in turn will
be important when we prove Theorem 7.5.

Lemma 2.7 Let G1,G2, . . . be open sets such that G1 ⊂ G2 ⊂ · · · ⊂ X = ⋃∞
k=1 Gk and

let {u j }∞j=1 be a sequence of functions defined on X. Assume that {u j }∞j=1 is bounded in
L p(Gk) for all k = 1, 2, . . . . Assume further that {g j }∞j=1 is bounded in L p(X), and that g j

is a p-weak upper gradient of u j with respect to G j for each j = 1, 2, . . . . Then a function
u belongs to Dp(X) if u j → u q.e. on X as j → ∞.

Proof Let k be a positive integer. Clearly, g j is a p-weak upper gradient of u j with respect to
Gk for every integer j ≥ k. According to Lemma 3.2 in Björn–Björn–Parviainen [5], there
are a p-weak upper gradient g̃k ∈ L p(Gk) of u with respect to Gk and a subsequence of
{g j }∞j=1, denoted by {gk, j }∞j=1, such that gk, j → g̃k weakly in L p(Gk) as j → ∞. Extend
g̃k to X by letting g̃k = 0 on X\Gk . Since {g j }∞j=1 is bounded in L p(X), there is an integer
M such that ‖g j‖L p(X) ≤ M for all j = 1, 2, . . . . The weak convergence implies that

‖g̃k‖L p(X) = ‖g̃k‖L p(Gk ) ≤ lim inf
j→∞ ‖gk, j‖L p(Gk ) ≤ lim inf

j→∞ ‖gk, j‖L p(X) ≤ M,

and hence the sequence {g̃k}∞k=1 is bounded in L p(X).
Since L p(X) is reflexive, it follows from Banach–Alaoglu’s theorem that there is a sub-

sequence, also denoted by {g̃k}∞k=1, that converges weakly in L p(X) to a function g. By
applying Mazur’s lemma (see, e.g., Theorem 3.12 in Rudin [31]) repeatedly to the sequences
{g̃k}∞k= j , j = 1, 2, . . . , we can find convex combinations

g′
j =

N j∑
k= j

a j,k g̃k

such that ‖g′
j − g‖L p(X) < 1/j , and hence we obtain a sequence {g′

j }∞j=1 that converges to
g in L p(X). Note that g ∈ L p(X), and that for every n = 1, 2, . . . , the sequence {g′

j }∞j=n
consists of p-weak upper gradients of u with respect to Gn . It suffices to show that g is a
p-weak upper gradient of u to complete the proof.
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60 D. Hansevi

By Fuglede’s lemma (Lemma 3.4 in Shanmugalingam [32]), we can find a subsequence,
also denoted by {g′

j }∞j=1, and a collection of curves 	 in X with zero p-modulus, such that
for every curve γ /∈ 	, it follows that

∫
γ

g′
j ds →

∫
γ

g ds as j → ∞. (2.2)

For every n = 1, 2, . . . , let 	n, j , j = n, n + 1, . . . , be the collection of curves in Gn

along which g′
j is not an upper gradient of u, and let

	′ = 	 ∪
∞⋃
n=1

∞⋃
j=n

	n, j .

Then 	′ has zero p-modulus.
Let γ /∈ 	′ be an arbitrary curve in X with endpoints x and y. Since γ is compact and

G1,G2, . . . are open sets that exhaust X , we can find an integer N such that γ ⊂ GN and

|u(x) − u(y)| ≤
∫

γ

g′
j ds, j = N , N + 1, . . . .

It follows that g is a p-weak upper gradient of u, and thus u ∈ Dp(X), since

|u(x) − u(y)| ≤ lim
j→∞

∫
γ

g′
j ds =

∫
γ

g ds.

��
Definition 2.8 Let q ≥ 1. We say that X supports a (q, p)-Poincaré inequality if there exist
constants, C > 0 and λ ≥ 1 (the dilation constant), such that

(∫
B

|u − uB |q dμ

)1/q

≤ C diam(B)

(∫
λB

gp dμ

)1/p

(2.3)

for all balls B ⊂ X , all integrable functions u on X , and all upper gradients g of u.

In (2.3), we have used the convenient notation uB := ∫
B u dμ := 1

μ(B)

∫
B u dμ. We usually

write p-Poincaré inequality instead of (1, p)-Poincaré inequality.
Requiring a Poincaré inequality to hold is one way of making it possible to control func-

tions by their upper gradients.

3 The obstacle problem

In this section, we also assume that X is proper and supports a (p, p)-Poincaré inequality,
and that Cp(X\�) > 0.

Inspired by Kinnunen–Martio [25], the following obstacle problem, which is a general-
ization that allows for unbounded sets, was defined in Hansevi [16].

Definition 3.1 Let V ⊂ X be a nonempty open subset such that Cp(X\V ) > 0. For ψ :
V → R and f ∈ Dp(V ), define

Kψ, f (V ) = {v ∈ Dp(V ) : v − f ∈ Dp
0 (V ) and v ≥ ψ q.e. in V }.

123



The Perron method for p-harmonic functions in unbounded sets… 61

A function u is said to be a solution of theKψ, f (V )-obstacle problem (with obstacle ψ and
boundary values f ) whenever u ∈ Kψ, f (V ) and

∫
V
gp
u dμ ≤

∫
V
gp
v dμ for all v ∈ Kψ, f (V ).

When V = �, we usually denote Kψ, f (�) by Kψ, f for short.

It was proved in Hansevi [16] that the Kψ, f -obstacle problem has a unique (up to sets of
capacity zero) solution under the natural condition ofKψ, f being nonempty. If the measure
μ is doubling, then there is a unique lsc-regularized solution of the Kψ, f -obstacle problem
whenever Kψ, f is nonempty (Theorem 4.1 in Hansevi [16]). The lsc-regularization of u is
the (lower semicontinuous) function u∗ defined by

u∗(x) = ess lim inf
y→x

u(y) := lim
r→0

ess inf
B(x,r)

u.

We conclude this section with a proof of a new convergence theorem that will be used
in the proof of Theorem 7.5. It is a generalization of Proposition 10.18 in Björn–Björn [3]
to unbounded sets and Dirichlet functions. The special case when ψ j = f j ∈ N 1,p(�)

had previously been proved in Kinnunen–Shanmugalingam [26], and a similar result for the
double obstacle problem was obtained in Farnana [13].

Theorem 3.2 Let {ψ j }∞j=1 and { f j }∞j=1 be sequences of functions in D
p(�) that are decreas-

ing q.e. to functions ψ and f in Dp(�), respectively, and are such that ‖gψ j−ψ‖L p(�) → 0
and ‖g f j− f ‖L p(�) → 0 as j → ∞. If u j is a solution of the Kψ j , f j -obstacle problem for
each j = 1, 2, . . . , then the sequence {u j }∞j=1 is decreasing q.e. in � to a function which is
a solution of the Kψ, f -obstacle problem.

Proof The comparison principle (Lemma 3.6 in Hansevi [16]) asserts that u j+1 ≤ u j q.e.
in � for each j = 1, 2, . . . , and hence by the subadditivity of the capacity there exists a
function u such that {u j }∞j=1 is decreasing to u q.e. in �. We will show that u is a solution
of the Kψ, f -obstacle problem.

Let w j = u j − f j and w = u − f , all functions extended by zero outside �. Let B ⊂ X
be a ball such that B ∩ � is nonempty and Cp(B ′\�) > 0 where B ′ := 1

2 B.
We claim that the sequences {gw j }∞j=1 and {w j }∞j=1 are bounded in L p(X) and L p(kB),

respectively, for every k = 1, 2, . . . . To show this, let k be a positive integer. Let S =⋂∞
j=1 S j , where S j := {x ∈ X : w j (x) = 0}. Proposition 4.14 in Björn–Björn [3] asserts

that w j ∈ N 1,p
loc (X), and since

Cp(kB
′ ∩ S j ) ≥ Cp(kB

′ ∩ S) ≥ Cp(kB
′\�) ≥ Cp(B

′\�) > 0,

Maz′ya’s inequality (Theorem 5.53 in Björn–Björn [3]) implies the existence of constants
CkB,� > 0 and λ ≥ 1 such that

∫
kB

|w j |p dμ ≤ CkB,�

∫
λkB

g p
w j

dμ.

Let h j = max{ f j , ψ j }. Then 0 ≤ h j − f j = (ψ j − f j )+ ≤ (u j − f j )+ q.e. in �, and hence
Lemma 2.8 in Hansevi [16] asserts that h j − f j ∈ Dp

0 (�). Clearly, h j ∈ Kψ j , f j , and as u j

is a solution of the Kψ j , f j -obstacle problem, it follows that ‖gu j ‖L p(�) ≤ ‖gh j ‖L p(�). We
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62 D. Hansevi

also know that gh j ≤ gψ j + g f j a.e. in �, and therefore the claim follows because

C −1/p
kB,� ‖w j‖L p(kB) ≤ ‖gw j ‖L p(X)

≤ ‖gu j ‖L p(�) + ‖g f j ‖L p(�)

≤ ‖gh j ‖L p(�) + ‖g f j ‖L p(�)

≤ ‖gψ j ‖L p(�) + 2‖g f j ‖L p(�)

≤ ‖gψ j−ψ‖L p(�) + ‖gψ‖L p(�) + 2‖g f j− f ‖L p(�) + 2‖g f ‖L p(�).

(3.1)

Lemma 2.7 applies here and asserts that w ∈ Dp(X), and hence u − f ∈ Dp
0 (�). As

f ∈ Dp(�), this also shows that u ∈ Dp(�). Since Cp is countably subadditive, u ≥ ψ q.e.
in �, and hence u ∈ Kψ, f .

Let v be an arbitrary function that belongs to Kψ, f . We complete the proof by showing
that ∫

�

gp
u dμ ≤

∫
�

gp
v dμ. (3.2)

Let ϕ j = max{v + f j − f, ψ j }. Clearly, ϕ j ≥ ψ j and ϕ j ∈ Dp(�). Furthermore,

v − f ≤ max{v − f, ψ j − f j } = ϕ j − f j ≤ max{v − f, (u j − f j )+} q.e. in �,

and hence ϕ j − f j ∈ Dp
0 (�) by Lemma 2.8 in Hansevi [16]. We conclude that ϕ j belongs

to Kψ j , f j , and therefore
∫

�

gp
u j dμ ≤

∫
�

gp
ϕ j

dμ.

Let E be the setwhere { f j }∞j=1 decreases to f , {ψ j }∞j=1 decreases toψ , and simultaneously
v ≥ ψ . Then Cp(�\E) = 0.

Let Uj = {x ∈ E : ( f j − f )(x) < (ψ j − v)(x)}. Clearly, ϕ j − v = ψ j − v in Uj and
ϕ j − v = f j − f in E\Uj , and hence it follows that∫

�

gp
ϕ j−v dμ ≤

∫
Uj

(gψ j−ψ + gψ−v)
p dμ +

∫
E\Uj

g p
f j− f dμ

≤ 2p
∫
Uj

g p
ψ−v dμ + 2p

∫
�

gp
ψ j−ψ dμ +

∫
�

gp
f j− f dμ, (3.3)

where the last two integrals tend to zero as j → ∞.
Let Vj = {x ∈ E : ψ(x) < v(x) < ψ j (x)}. Since f j − f ≥ 0 in E , we know that v < ψ j

in Uj , and because gψ−v = 0 a.e. in

{x ∈ E : v(x) ≤ ψ(x)} = {x ∈ E : v(x) = ψ(x)},
it follows that ∫

Uj

g p
ψ−v dμ ≤

∫
Vj

g p
ψ−v dμ. (3.4)

The fact that {ψ j }∞j=1 is decreasing to ψ in E implies that gψ−vχVj → 0 everywhere in
E as j → ∞, and since |gψ−vχVj | ≤ gψ−v ≤ gψ + gv a.e. in E and gψ + gv ∈ L p(E),
dominated convergence asserts that∫

Vj

g p
ψ−v dμ =

∫
E
gp
ψ−vχVj dμ → 0 as j → ∞. (3.5)
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It follows from (3.3), (3.4), and (3.5) that gϕ j → gv in L p(�) as j → ∞.
Let

�k = {x ∈ kB ∩ � : dist(x, ∂�) > δ/k}, k = 1, 2, . . . ,

where δ > 0 is sufficiently small so that �1 is nonempty. It is clear that

�1 � �2 � · · · � � =
∞⋃
k=1

�k .

Fix a positive integer k. Then gu and gu j are minimal p-weak upper gradients of u and u j ,
respectively, with respect to�k . By Proposition 4.14 in Björn–Björn [3], the functions f and
f j belong to L

p
loc(�), and hence f and f j are in L p(�k). Furthermore, { f j }∞j=1 is decreasing

to f q.e. in�, and therefore | f j − f | ≤ | f1 − f | q.e. in�. By (3.1), we can see that {w j }∞j=1
is bounded in L p(kB), and also that {gu j }∞j=1 is bounded in L p(�). Since

‖u j‖L p(�k ) ≤ ‖w j‖L p(kB) + ‖ f1 − f ‖L p(�k ) + ‖ f ‖L p(�k ),

it follows that {u j }∞j=1 is bounded in N 1,p(�k), and because u j → u q.e. in � as j → ∞,
Corollary 3.3 in Björn–Björn–Parviainen [5] asserts that∫

�k

g p
u dμ ≤ lim inf

j→∞

∫
�k

g p
u j dμ ≤ lim inf

j→∞

∫
�

gp
u j dμ ≤ lim inf

j→∞

∫
�

gp
ϕ j

dμ =
∫

�

gp
v dμ.

Letting k → ∞ yields (3.2) and the proof is complete. ��
If μ is doubling, then X is proper if and only if X is complete (see, e.g., Proposition 3.1

in Björn–Björn [3]). Hölder’s inequality implies that X supports a p-Poincaré inequality
if X supports a (p, p)-Poincaré inequality. The converse is true when μ is doubling; see
Theorem 5.1 in Hajłasz–Koskela [15]. Thus adding the assumption that μ is doubling leads
to the rather standard assumptions stated below.

We assume from now on that 1 < p < ∞, that X is a complete metric measure space
supporting a p-Poincaré inequality, that μ is doubling, and that � ⊂ X is a nonempty
(possibly unbounded) open subset with Cp(X\�) > 0.

4 p-Parabolicity

Note the standing assumptions described at the end of the previous section.
In the proof of Theorem 7.5, we need � to be p-parabolic if it is unbounded.

Definition 4.1 If � is unbounded, then we say that � is p-parabolic if for every compact
K ⊂ �, there exist functions u j ∈ N 1,p(�) such that u j ≥ 1 on K for all j = 1, 2, . . . , and

∫
�

gp
u j dμ → 0 as j → ∞. (4.1)

Otherwise, � is said to be p-hyperbolic.

In Definition 4.1, we may as well use u j ∈ Dp(�) with bounded support such that χK ≤
u j ≤ 1, j = 1, 2, . . . (see, e.g., the proof of Lemma 5.43 in Björn–Björn [3]).

Remark 4.2 If �1 ⊂ �2, then �1 is p-parabolic whenever �2 is p-parabolic.
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64 D. Hansevi

Holopainen–Shanmugalingam [22] proposed a definition of p-harmonic Green functions
(i.e., fundamental solutions of the p-Laplace operator) on metric spaces. The functions they
defined did, however, not share all characteristics with Green functions, and therefore they
gave them another name; they called them p-singular functions. Theorem 3.14 in [22] asserts
that if X is locally linearly locally connected (see Sect. 2 in [22] for the definition), then the
space X is p-hyperbolic if and only if for every y ∈ X there exists a p-singular function with
singularity at y.

Example 4.3 The space Rn , n ≥ 1, is p-parabolic if and only if p ≥ n. (It follows that all
open subsets of Rn are p-parabolic for all p ≥ n; see Remark 4.2.)

To see this, assume that p ≥ n and let K ⊂ Rn be compact. Choose R sufficiently large
so that K ⊂ B := B(0, R). Let

u j (x) = min

{
1,

(
1 − log |x/R|

j

)
+

}
, j = 1, 2, . . . . (4.2)

Then {u j }∞j=1 is a sequence of admissible functions for (4.1), and

gu j = ( j |x |)−1χBj \B , j = 1, 2, . . . ,

where Bj := B(0, Re j ). It follows that

∫
Rn

g p
u j dx = Cn

∫ Re j

R

rn−1

( jr)p
dr = Cn

⎧⎨
⎩
Rn−p(1 − e− j (p−n))

(p − n) j p
if p > n,

j1−p if p = n,

and hence
∫
Rn g

p
u j dx → 0 as j → ∞.

The necessity follows from Theorem 3.14 in Holopainen–Shanmugalingam [22], because
if we assume that p < n and let y ∈ Rn , then

f (x) = |x − y|
p−n
p−1 , x ∈ Rn,

is a Green function with singularity at y that is p-harmonic in Rn\{y}.

A set can be p-parabolic if it does not “grow too much” towards infinity, even though the
surrounding space is not p-parabolic.

Example 4.4 Let n ≥ 2 and assume that 1 < p < n. Let

� f = {x = (x ′, x̃) ∈ R × Rn−1 : 0 < x ′ < f (|x̃ |)},
where

f (r) ≤
{
C if r < 1,

Crq if r ≥ 1,

and q ≤ p − n + 1 (note that q < 1 since p < n).
Let K ⊂ � f be compact. Choose R sufficiently large so that K ⊂ B := B(0, R). It can

be chosen large enough so that |x̃ | ≥ R/2 ≥ 1 for all (x ′, x̃) ∈ � f \B. This is possible since
q < 1 and f (r) < Crq . Define the sequence of admissible functions {u j }∞j=1 as in (4.2).
Then
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∫
� f

g p
u j dx =

∫
Rn−1

∫ f (|x̃ |)

0

χBj \B
( j |x |)p dx ′ dx̃

≤ Cn−1

j p

∫ Re j

R/2

f (r)

r p
rn−2 dr = C ′

n−1

j p

∫ Re j

R/2
rq−p+n−2 dr =: I j .

Since

∫ Re j

R/2
rq−p+n−2 dr =

⎧⎨
⎩
j + log 2 if q = p − n + 1,
(e j (q−p+n−1) − 2−(q−p+n−1))Rq−p+n−1

q − p + n − 1
if q < p − n + 1,

it follows that
∫
� f

g p
u j dx ≤ I j → 0 as j → ∞. Thus � f is p-parabolic (while Rn is not

p-parabolic since p < n in this case).

5 p-Harmonic and superharmonic functions

The standing assumptions are described at the end of Sect. 3.
There are many equivalent definitions of (super)minimizers (or, more accurately, p-

(super)minimizers) in the literature (see, e.g., Proposition 3.2 in A. Björn [1]).

Definition 5.1 We say that a function u ∈ N 1,p
loc (�) is a superminimizer in � if

∫
ϕ �=0

gp
u dμ ≤

∫
ϕ �=0

gp
u+ϕ dμ (5.1)

holds for all nonnegative ϕ ∈ N 1,p
0 (�), and a minimizer in � if (5.1) holds for all ϕ ∈

N 1,p
0 (�). Moreover, a function is p-harmonic if it is a continuous minimizer.

According to Proposition 3.2 in A. Björn [1], it is in fact only necessary to test (5.1) with (all
nonnegative and all, respectively) ϕ ∈ Lipc(�).

Proposition 3.9 in Hansevi [16] asserts that a function u is a superminimizer in � if u is
a solution of the Kψ, f -obstacle problem.

The following definition makes sense due to Theorem 4.4 in Hansevi [16]. Because
Proposition 2.7 in Björn–Björn [4] asserts that Dp

0 (�) = N 1,p
0 (�) if � is bounded, it is a

generalization of Definition 8.31 in Björn–Björn [3] to Dirichlet functions and to unbounded
sets.

Definition 5.2 Let V ⊂ X be a nonempty open subset withCp(X\V ) > 0. The p-harmonic
extension HV f of f ∈ Dp(V ) to V is the continuous solution of the K−∞, f (V )-obstacle
problem. When V = � we usually write H f instead of H� f .

If f is defined outside V , then we sometimes consider HV f to be equal to f in some set
outside V where f is defined.

A Lipschitz function f on ∂V can be extended to a Lipschitz function f̄ on V (see, e.g.,
Theorem 6.2 in Heinonen [17]), and f̄ ∈ N 1,p(V ) if V is bounded. The comparison principle
(Lemma 4.7 in Hansevi [16]) implies that HV f̄ does not depend on the particular choice of
extension f̄ . We can therefore define the p-harmonic extension for Lipschitz functions on
the boundary by HV f := HV f̄ if V is bounded.
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Proposition 5.3 If { f j }∞j=1 is a sequence of functions in Dp(�) that is decreasing q.e. in
� to f ∈ Dp(�) and ‖g f j− f ‖L p(�) → 0 as j → ∞, then H f j decreases to H f locally
uniformly in �.

Proof By the comparison principle (Lemma 4.7 in Hansevi [16]), it follows that H f j ≥
H f j+1 ≥ H f in � for all j = 1, 2, . . . . Since H f j and H f are the continuous solutions of
the K f j ,H f - and K f,H f -obstacle problems, respectively, it follows from Theorem 3.2 that
H f j decreases to H f q.e. in � as j → ∞.

Because H f is continuous, and therefore locally bounded, Proposition 5.1 in Shanmu-
galingam [34] implies that H f j → H f locally uniformly in � as j → ∞. ��

In order to define Perron solutions, we need superharmonic functions. We follow
Kinnunen–Martio [25], however, we use a slightly different, nevertheless equivalent, def-
inition (see, e.g., Proposition 9.26 in Björn–Björn [3]).

Definition 5.4 We say that a function u : � → (−∞,∞] is superharmonic in � if

(a) u is lower semicontinuous;
(b) u is not identically ∞ in any component of �;
(c) for every nonempty open set V ′ � � and all v ∈ Lip(∂V ′), we have HV ′v ≤ u in V ′

whenever v ≤ u on ∂V ′.

A function u : � → [−∞,∞) is subharmonic in � if the function −u is superharmonic.

6 Perron solutions

The standing assumptions are described at the end of Sect. 3. We make the convention from
now on that the point at infinity,∞, belongs to the boundary ∂� if � is unbounded. Topolog-
ical notions should therefore be understood with respect to the one-point compactification
X∗ := X ∪ {∞}.
Definition 6.1 Given a function f : ∂� → R, we letU f (�) be the set of all superharmonic
functions u in � that are bounded below and such that

lim inf
��y→x

u(y) ≥ f (x) for all x ∈ ∂�.

Then the upper Perron solution of f is defined by

P� f (x) = inf
u∈U f (�)

u(x), x ∈ �.

Similarly, we let L f (�) be the set of all subharmonic functions v in � that are bounded
above and such that

lim sup
��y→x

v(y) ≤ f (x) for all x ∈ ∂�,

and define the lower Perron solution of f by

P� f (x) = sup
v∈L f (�)

v(x), x ∈ �.

If P� f = P� f , then we let P� f := P� f . Moreover, if P� f is real-valued, then f is said
to be resolutive (with respect to �). We often write P f instead of P� f .
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Immediate consequences of the above definition are that P f = −P(− f ) and that P f ≤ Ph
if f ≤ h. It also follows that P f = limk→∞ P max{ f,−k}.

In each component of �, P f is either p-harmonic or identically ±∞, see, e.g., Björn–
Björn [3] (their proof applies also to unbounded �). Thus Perron solutions are reasonable
candidates for solutions of the Dirichlet problem.

The following theorem extends the comparison principle, which is fundamental for the
nonlinear potential theory of superharmonic functions, and also plays an important role for
the Perron method.

Theorem 6.2 If u is superharmonic and v is subharmonic in �, then v ≤ u in � whenever

∞ �= lim sup
��y→x

v(y) ≤ lim inf
��y→x

u(y) �= −∞ (6.1)

for all x ∈ ∂� (i.e., also for x = ∞ if � is unbounded).

Corollary 6.3 If f : ∂� → R, then P f ≤ P f .

Proof of Theorem 6.2 Fix ε > 0. For each x ∈ ∂�, it follows from (6.1) that

lim inf
��y→x

(u(y) − v(y)) ≥ lim inf
��y→x

u(y) − lim sup
��y→x

v(y) ≥ 0,

and hence there is an open set Ux ⊂ X∗ such that x ∈ Ux and

u − v ≥ −ε in Ux ∩ �.

Let �1,�2, . . . be open sets such that �1 � �2 � · · · � � = ⋃∞
k=1 �k . Then

� ⊂
∞⋃
k=1

�k ∪
⋃
x∈∂�

Ux .

Since � is compact (with respect to the topology of X∗), there exist integers k > 1/ε and N
such that

� ⊂ �k ∪Ux1 ∪ · · · ∪UxN .

It follows that v ≤ u + ε on ∂�k . Since v is upper semicontinuous (and does not take the
value∞), it follows that there is a decreasing sequence {ϕ j }∞j=1 ⊂ Lip(�k) such that ϕ j → v

on �k as j → ∞ (see, e.g., Proposition 1.12 in Björn–Björn [3]).
Since u + ε is lower semicontinuous, the compactness of ∂�k shows that there exists an

integerM such thatϕM ≤ u+ε on ∂�k , and, by (c) inDefinition 5.4, also that H�kϕM ≤ u+ε

in �k . Similarly, v ≤ H�kϕM , and thus v ≤ u + ε in �k . Letting ε → 0 (and hence letting
k → ∞) implies that v ≤ u in �. ��

7 Resolutivity of functions on ∂�

In addition to the standing assumptions described at the end of Sect. 3, we assume that �

is p-parabolic if � is unbounded (see Definition 4.1). For the convention about the point at
infinity, see the beginning of Sect. 6.

WhenBjörn–Björn–Shanmugalingam[9] extended thePerronmethod to theMazurkiewicz
boundary of bounded domains that are finitely connected at the boundary, they introduced a
newcapacity,C p( · ;�), adapted to the topology that connects the domain to itsMazurkiewicz
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boundary. They also used the new capacity to define C p( · ;�)-quasicontinuous functions.
By using C p( · ;�), which is smaller than the usual Sobolev capacity (see the appendix of
[9]), we allow for perturbations on larger sets and we obtain resolutivity for more functions.

Definition 7.1 The C p( · ;�)-capacity of a set E ⊂ � is the number

C p(E;�) := inf
u∈V E

‖u‖p
N1,p(�)

where VE is the family of all functions u ∈ N 1,p(�) that satisfy both u(x) ≥ 1 for all
x ∈ E ∩ � and

lim inf
��y→x

u(y) ≥ 1 for all x ∈ E ∩ ∂�. (7.1)

When a property holds for all points except for points in a set of C p( · ;�)-capacity zero,
it is said to hold C p( · ;�)-quasieverywhere (or C p( · ;�)-q.e. for short).

If E ⊂ �, then condition (7.1) becomes empty and C p(E;�) = Cp(E;�).
The capacity C p( · ;�) shares several properties with the Sobolev capacity, e.g., mono-

tonicity and countable subadditivity. Moreover,C p( · ;�) is an outer capacity, i.e., if E ⊂ �,
then

C p(E;�) = inf
G⊃E

G relatively open in �

C p(G;�).

These results are proved in Björn–Björn–Shanmugalingam [9] (a slightly modified version
of their proof that C p( · ;�) is outer is valid in our setting as well).

To prove Theorem 7.5, we need the following version of Lemma 5.3 in Björn–Björn–
Shanmugalingam [7].

Lemma 7.2 Assume that {Uk}∞k=1 is a decreasing sequence of relatively open subsets of �

with C p(Uk;�) < 2−kp. Then there exists a sequence of nonnegative functions {ψ j }∞j=1 that

decreases to zero q.e. in �, such that ‖ψ j‖N1,p(�) < 2− j and ψ j ≥ k − j in Uk ∩ �.

Proof For each k = 1, 2, . . . , there exists a nonnegative function uk such that uk = 1 in
Uk ∩ � and ‖uk‖N1,p(�) < 2−k because C p(Uk;�) < 2−kp . Letting

ψ j =
∞∑

k= j+1

uk, j = 1, 2, . . . ,

yields a decreasing sequence of nonnegative functions such that ‖ψ j‖N1,p(�) < 2− j and
ψ j ≥ k − j in Uk ∩ �. Corollary 3.9 in Shanmugalingam [32] implies the existence of a
subsequence of {ψ j }∞j=1 that converges to zero q.e. in �, and since {ψ j }∞j=1 is nonnegative
and decreasing, this shows that {ψ j }∞j=1 decreases to zero q.e. in �. ��

Definition 7.3 Let f be an extended real-valued function defined on �\{∞}. We say that f
is C p( · ;�)-quasicontinuous on �\{∞} if for every ε > 0 there is a relatively open subset
U of �\{∞} with C p(U ;�) < ε such that the restriction of f to (�\{∞})\U is continuous
and real-valued.

Since theC p( · ;�)-capacity is smaller than theSobolev capacity (which is used to define qua-
sicontinuity), it follows that quasicontinuous functions are also C p( · ;�)-quasicontinuous.
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Proposition 7.4 If f : �\{∞} → R is a function such that f = 0 q.e. on ∂�\{∞} and
f |� ∈ Dp

0 (�), then f is C p( · ;�)-quasicontinuous on �\{∞}.
Proof Extend f to X by letting f be equal to zero outside � so that f ∈ Dp(X). Then
f ∈ N 1,p

loc (X) by Proposition 4.14 in Björn–Björn [3], and hence Theorem 1.1 in Björn–
Björn–Shanmugalingam [8] asserts that f is quasicontinuous on X , and thereforeC p( · ;�)-
quasicontinuous on �\{∞}. ��

The following is the main result of this paper.

Theorem 7.5 Assume that f : � → R is C p( · ;�)-quasicontinuous on �\{∞} and such
that f |� ∈ Dp(�), which in particular hold if f ∈ Dp(X). Then f is resolutive with respect
to � and P f = H f .

To see that p-parabolicity is needed in Theorem 7.5 if � is unbounded, let n > p and let
� = Rn\B, where B is the open unit ball centered at the origin. Then � is p-hyperbolic.
Furthermore, let

f (x) = |x |
p−n
p−1 , x ∈ �.

Then f satisfies the hypothesis of Theorem 7.5. Because f ≡ 1 on ∂B and the p-harmonic
extension does not consider the point at infinity, it is clear that H f ≡ 1. However, P f ≡ f ,
since f is in fact p-harmonic (it is easy to verify that f is a solution of the p-Laplace
Eq. (1.1)) and continuous on �, and hence f ∈ U f (�) and f ∈ L f (�), which implies that
f ≤ P f ≤ P f ≤ f .

Proof of Theorem 7.5 Suppose that � is unbounded and p-parabolic. Let {K j }∞j=1 be an
increasing sequence of compact sets such that

K1 � K2 � · · · � � =
∞⋃
j=1

K j

and let x0 ∈ X . For each j = 1, 2, . . . , we can find a function u j ∈ Dp(�) such that
χK j ≤ u j ≤ 1, u j = 0 in �\Bj for some ball Bj ⊃ K j centered at x0, and

‖gu j ‖L p(�) < 2− j . (7.2)

Let

ξ j =
∞∑
k= j

(1 − uk), j = 1, 2, . . . . (7.3)

Then ξ j ≥ 0 and

‖gξ j ‖L p(�) ≤
∞∑
k= j

‖guk‖L p(�) <

∞∑
k= j

2−k = 21− j . (7.4)

Let � j = ⋃ j
n=1 Bn ∩ �, j = 1, 2, . . . . Then �1 ⊂ �2 ⊂ · · · ⊂ � = ⋃∞

j=1 � j . Since
u j = 0 in �\� j , it is easy to see that

lim
��y→∞ ξ j (y) = ∞ for all j = 1, 2, . . . . (7.5)

Furthermore, since {ξ j }∞j=1 is decreasing and ξ j = 0 on K j for each j = 1, 2, . . . , it follows
that {ξ j }∞j=1 decreases to zero in �.
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On the other hand, if � is bounded, then we let ξ j ≡ 0 in �, j = 1, 2, . . . .
The p-harmonic extension H f is C p( · ;�)-quasicontinuous on �\{∞} (when we

consider H f to be equal to f on ∂�), since Proposition 7.4 asserts that H f − f isC p( · ;�)-
quasicontinuous on �\{∞} as (H f − f )|� ∈ Dp

0 (�). We can therefore find a decreasing
sequence {Uk}∞k=1 of relatively open subsets of �\{∞} with C p(Uk;�) < 2−kp and such
that the restriction of H f to (�\{∞})\Uk is continuous.

Now we derive that P f ≤ H f q.e. in � if f is bounded from below. Without loss of
generality, we may as well assume that f ≥ 0. Then the comparison principle (Lemma 4.7
in Hansevi [16]) implies that H f ≥ 0 in �.

Consider the sequence of nonnegative functions {ψ j }∞j=1 given by Lemma 7.2, and define
h j : � → [0,∞] by letting

h j = H f + ξ j + ψ j , j = 1, 2, . . . .

Then h j ∈ Dp(�) and {h j }∞j=1 decreases to H f q.e. in �.
Let ϕ j be the lsc-regularized solution of the Kh j ,h j -obstacle problem, j = 1, 2, . . . . By

(7.4) and Lemma 7.2,

‖gh j−H f ‖L p(�) ≤ ‖gξ j ‖L p(�) + ‖gψ j ‖L p(�) < 21− j + 2− j → 0 as j → ∞,

and as H f is a solution of the KH f,H f -obstacle problem, it follows from Theorem 3.2 that
{ϕ j }∞j=1 decreases to H f q.e. in �. This will be used later in the proof.

Next we show that
lim inf
��y→x

ϕ j (y) ≥ f (x) for all x ∈ ∂�. (7.6)

Fix a positive integer m and let ε = 1/m. By Lemma 7.2,

h j (y) ≥ ψ j (y) ≥ m for all y ∈ Um+ j ∩ �. (7.7)

Let x ∈ ∂�\{∞}. If x /∈ Um+ j , then as the restriction of H f to (�\{∞})\Um+ j is continu-
ous, there is a relative neighborhood Vx ⊂ �\{∞} of x such that

h j (y) ≥ H f (y) ≥ H f (x) − ε = f (x) − ε for all y ∈ (Vx ∩ �)\Um+ j . (7.8)

By combining (7.7) and (7.8), we see that for x ∈ (∂�\{∞})\Um+ j ,

h j (y) ≥ min{ f (x) − ε,m} for all y ∈ Vx ∩ �. (7.9)

On the other hand, if x ∈ Um+ j , then we let Vx = Um+ j , and see that (7.9) holds also in this
case due to (7.7). Because ϕ j ≥ h j q.e. in � and ϕ j is lsc-regularized, it follows that

ϕ j (y) ≥ min{ f (x) − ε,m} for all y ∈ Vx ∩ �,

and hence

lim inf
��y→x

ϕ j (y) ≥ min{ f (x) − ε,m}.

Letting m → ∞ (and thus letting ε → 0) establishes that

lim inf
��y→x

ϕ j (y) ≥ f (x) for all x ∈ ∂�\{∞}.

Finally, if � is unbounded, then ϕ j ≥ h j q.e. in � and h j ≥ ξ j everywhere in �. From the
lsc-regularity of ϕ j and (7.5), it follows that

lim inf
��y→∞ ϕ j (y) ≥ lim

��y→∞ ξ j (y) = ∞,
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and hence we have shown that (7.6) holds.
Since ϕ j is an lsc-regularized superminimizer, Proposition 7.4 in Kinnunen–Martio [25]

asserts that ϕ j is superharmonic. As ϕ j is bounded from below and (7.6) holds, it follows that
ϕ j ∈ U f (�), and hence we know that P f ≤ ϕ j , j = 1, 2, . . . . Because h j ∈ Dp(�) and
{h j }∞j=1 decreases to H f q.e. in �, ‖gh j−H f ‖L p(�) → 0 as j → ∞, and H f is a solution
of theKH f,H f -obstacle problem, it follows from Theorem 3.2 that {ϕ j }∞j=1 decreases to H f

q.e. in �. We therefore conclude that P f ≤ H f q.e. in � (provided that f is bounded from
below).

Now we remove the extra assumption of f being bounded from below, and let fk =
max{ f,−k}, k = 1, 2, . . . . Then { fk}∞k=1 is decreasing to f . Proposition 4.14 in Björn–
Björn [3] implies that f ∈ L p

loc(�). Hence μ({x ∈ � : | f (x)| = ∞}) = 0, and therefore
χ{x∈� : f (x)<−k} → 0 a.e. in � as k → ∞. Since

g fk− f = gmax{0,− f −k} = g f χ{x∈� : f (x)<−k} a.e. in �,

implies that g fk− f → 0 a.e. in � as k → ∞, and because g f ∈ L p(�) and

g fk− f ≤ g fk + g f ≤ 2g f a.e. in �,

it follows by dominated convergence that g fk− f → 0 in L p(�) as k → ∞. Thus Proposi-
tion 5.3 asserts that

H fk → H f in � as k → ∞.

Since fk is bounded from below, it follows that

P f = lim
k→∞ P fk ≤ lim

k→∞ H fk = H f q.e. in �.

As both P f and H f are continuous, we conclude that P f ≤ H f everywhere in �. By
Corollary 6.3, it follows that

P f ≤ H f = −H(− f ) ≤ −P(− f ) = P f ≤ P f in �,

which implies that f is resolutive and that P f = H f . ��
Perron solutions are invariant under perturbation of the function on a set of capacity zero.

Theorem 7.6 Assume that f : � → R is C p( · ;�)-quasicontinuous on �\{∞} and such
that f |� ∈ Dp(�), which in particular hold if f ∈ Dp(X). Assume also that h : ∂� → R is
zero C p( · ;�)-q.e. on ∂�\{∞}. Then f + h is resolutive with respect to � and P( f + h) =
P f .

Proof Extend h by zero in � and let E = {x ∈ � : h(x) �= 0}. Since C p( · ;�) is an outer
capacity, it follows that given ε > 0, we can find a relatively open subset U of �\{∞} with
C p(U ;�) < ε and such that E ⊂ U , and hence h is C p( · ;�)-quasicontinuous on �\{∞}.
The subadditivity of the C p( · ;�)-capacity implies that this is true also for f + h.

Since f + h = f in � and f |� ∈ Dp(�), we know that H( f + h) = H f . We complete
the proof by applying Theorem 7.5 to both f and f +h, which shows that f +h is resolutive
and that

P( f + h) = H( f + h) = H f = P f.

��
The following uniqueness result is a direct consequence of Theorem 7.6.
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Corollary 7.7 Assume that u is bounded and p-harmonic in�. Assume also that f : � → R
is C p( · ;�)-quasicontinuous on �\{∞} and such that f |� ∈ Dp(�). Then u = P f in �

whenever there exists a set E ⊂ ∂� with C p(E\{∞};�) = 0 such that

lim
��y→x

u(y) = f (x) for all x ∈ ∂�\E .

Proof Since C p(E\{∞};�) = 0, Theorem 7.6 applies to f and h := ∞χE (and clearly
also to f and −h), and because u ∈ U f −h(�) and u ∈ L f +h(�) (since u is bounded), it
follows that

u ≤ P( f + h) = P( f + h) = P f = P( f − h) = P( f − h) ≤ u in �.

��
The obtained resolutivity results can now be extended to continuous functions. Björn–

Björn–Shanmugalingam [7],[9] proved the following result for bounded domains.

Theorem 7.8 If f ∈ C(∂�) and h : ∂� → R is zero C p( · ;�)-q.e. on ∂�\{∞}, then f
and f + h are resolutive with respect to � and P( f + h) = P f .

Proof We start by choosing a point x0 ∈ ∂�. If � is unbounded, then we let x0 = ∞. Let
α = f (x0) ∈ R and let j be a positive integer. Since f ∈ C(∂�), there exists a compact set
K j ⊂ X such that | f (x) − α| < 1/3 j for all x ∈ ∂�\K j . Let

K ′
j = {x ∈ X : dist(x, K j ) ≤ 1}.

We can find functions ϕ j ∈ Lipc(X) such that |ϕ j − f | ≤ 1/3 j on ∂� ∩ K ′
j . Let f j =

(ϕ j − α)η j + α, where

η j (x) :=

⎧⎪⎨
⎪⎩
1, x ∈ K j ,

1 − dist(x, K j ), x ∈ K ′
j\K j ,

0, x ∈ X\K ′
j .

Since f j is Lipschitz on X and f j = α outside K ′
j , it follows that f j ∈ Dp(X).

Let x ∈ ∂�. Then | f j (x) − f (x)| ≤ 1/3 j whenever x /∈ K ′
j\K j . Otherwise it follows

that

| f j (x) − f (x)| = |(ϕ j (x) − α)η j (x) + α − f (x)| ≤ |ϕ j (x) − α)| + |α − f (x)|
≤ |ϕ j (x) − f (x)| + 2| f (x) − α| <

1

j
,

and thus we know that f −1/j ≤ f j ≤ f +1/j on ∂�. It follows directly fromDefinition 6.1
that P f − 1/j ≤ P f j ≤ P f + 1/j , and we also get corresponding inequalities for P f j ,
P( f j + h), and P( f j + h).

Theorem 7.6 asserts that f j and f j +h are resolutive and that P( f j +h) = P f j . It follows
that

P f − 1

j
≤ P f j = P f j ≤ P f + 1

j
. (7.10)

Applying Corollary 6.3 to (7.10) yields 0 ≤ P f − P f ≤ 2/j . Letting j → ∞ shows that
f is resolutive. Similarly, we can see that also f + h is resolutive.
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Finally, we have

P( f + h) − P f = P( f + h) − P f ≤ P( f j + h) + 1

j
−

(
P f j − 1

j

)
= 2

j
. (7.11)

Interchanging P( f + h) and P f with P( f + h) and P f , respectively, in (7.11) yields
P( f + h) − P f ≥ −2/j , and hence |P( f + h) − P f | < 2/j . Letting j → ∞ shows that
P( f + h) = P f . ��

We conclude this paper with the following uniqueness result, corresponding to Corol-
lary 7.7, that follows directly from Theorem 7.8. The proof is identical to the proof of
Corollary 7.7, except for applying Theorem 7.8 (instead of Theorem 7.6).

Corollary 7.9 Assume that u is bounded and p-harmonic in �. If f ∈ C(∂�) and there is
a set E ⊂ ∂� with C p(E\{∞};�) = 0 such that

lim
��y→x

u(y) = f (x) for all x ∈ ∂�\E,

then u = P f in �.
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