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Abstract Weobtain estimates for the nonlinear variational capacity of annuli inweightedRn

and in metric spaces. We introduce four different (pointwise) exponent sets, show that they
all play fundamental roles for capacity estimates, and also demonstrate that whether an end
point of an exponent set is attained or not is important. As a consequence of our estimates we
obtain, for instance, criteria for points to have zero (resp. positive) capacity. Our discussion
holds in rather general metric spaces, including Carnot groups and many manifolds, but it is
just as relevant on weighted Rn . Indeed, to illustrate the sharpness of our estimates, we give
several examples of radially weighted Rn , which are based on quasiconformality of radial
stretchings in Rn .
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1 Introduction

Our aim in this paper is to give sharp estimates for the variational p-capacity of annuli in
metric spaces. Such estimates play an important role for instance in the study of singular
solutions and Green functions for (quasi)linear equations in (weighted) Euclidean spaces
and in more general settings, such as subelliptic equations associated with vector fields and
on Heisenberg groups, see e.g. Serrin [37], Capogna et al. [15], and Danielli et al. [16] for
discussion and applications. Recall that analysis and nonlinear potential theory (including
capacities) have during the last two decades been developed on very general metric spaces,
including compact Riemannian manifolds and their Gromov–Hausdorff limits, and Carnot–
Carathéodory spaces.

Sharp capacity estimates depend in a crucial way on good bounds for the (relative)
measures of balls. For instance, recall that for 0 < 2r ≤ R, the variational p-capacity
capp(B(x, r), B(x, R)) of the annulus B(x, R)\B(x, r) in (unweighted) Rn is comparable
to rn−p if p < n and to Rn−p if p > n, see e.g. Example 2.12 in Heinonen et al. [24]. In both
cases, rn and Rn are comparable to the Lebesgue measure of one of the balls defining the
annulus. For p = n, the p-capacity contains a logarithmic term of the ratio R/r . Thus, the
dimension n (or rather the way in which the Lebesgue measure scales on balls with different
radii) determines (together with p) the form of the estimates for the p-capacity of annuli.

If X = (X, d, μ) is a metric space equipped with a doubling measure μ (i.e. μ(2B) ≤
Cμ(B) for all balls B ⊂ X ), then an iteration of the doubling condition shows that there
exist q > 0 and C > 0 such that

μ(B(x, r))

μ(B(x, R))
≥ C

( r

R

)q

for all x ∈ X and 0 < r < R. In addition, a converse estimate, with some exponent
0 < q ′ ≤ q , holds under the assumption that X is connected (see Sect. 2 for details).
Motivated by these observations, we introduce the following exponent sets for x ∈ X :

Q
0
(x) :=

{
q > 0: there is Cq so that

μ(B(x, r))

μ(B(x, R))
≤ Cq

( r

R

)q
for 0 < r < R ≤ 1

}
,

S0(x) := {q > 0: there is Cq so that μ(B(x, r)) ≤ Cqrq for 0 < r ≤ 1},
S0(x) := {q > 0: there is Cq > 0 so that μ(B(x, r)) ≥ Cqrq for 0 < r ≤ 1},
Q0(x) :=

{
q > 0: there is Cq > 0 so that

μ(B(x, r))

μ(B(x, R))
≥ Cq

( r

R

)q
for 0 < r < R ≤ 1

}
.

Here the subscript 0 refers to the fact that only small radii are considered; we shall later define
similar exponent sets with large radii as well. In general, all of these sets can be different, as
shown in Examples 3.2 and 3.4.

The above exponent sets turn out to be of fundamental importance for distinguishing
between the cases in which the sharp estimates for capacities are different, in a similar way
as the dimension in Rn does. Let us mention here that Garofalo and Marola [19] defined a
pointwise dimension q(x) (called Q(x) therein) and established certain capacity estimates
for the cases p < q(x), p = q(x) and p > q(x). In our terminology their q(x) = sup Q(x),
where Q(x) is a global version of Q

0
(x), see Sect. 2. However, it turns out that the situation

is in fact even more subtle than indicated in [19], since actually all of the above exponent sets
are needed to obtain a complete picture of capacity estimates. Our purpose is to provide a
unified approachwhich not only covers (and inmany cases improves) all the previous capacity
estimates in the literature, but also takes into account the cases that have been overlooked
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Sharp capacity estimates for annuli 1175

in the past. We also indicate via Propositions 9.1 and 9.2 and numerous examples that our
estimates are both natural and, in most cases, optimal. In addition, we hope that our work
offers clarity and transparency also to the proofs of the previously known results.

The following are some of our main results. Here and later we often drop x from the
notation of the exponent sets when the point is fixed, and moreover write e.g. Br = B(x, r).
For simplicity, we state the results here under the standard assumptions of doubling and a
Poincaré inequality, but in fact less is needed, as explained below. Throughout the paper, we
write a � b if there is an implicit constant C > 0 such that a ≤ Cb, where C is independent
of the essential parameters involved. We also write a � b if b � a, and a � b if a � b � a.
In particular, in Theorems 1.1 and 1.2 below the implicit constants are independent of r and
R, but depend on R0.

Theorem 1.1 Let 0 < R0 < 1
4 diam X, 1 ≤ p < ∞, and assume that the measure μ is

doubling and supports a p-Poincaré inequality.

(a) If p ∈ int Q
0
, then

capp(Br , BR) � μ(Br )

r p
whenever 0 < 2r ≤ R ≤ R0. (1.1)

(b) If p ∈ int Q0, then

capp(Br , BR) � μ(BR)

R p
whenever 0 < 2r ≤ R ≤ R0. (1.2)

Moreover, if (1.1) holds, then p ∈ Q
0
, while if (1.2) holds, then p ∈ Q0.

Here and elsewhere int Q denotes the interior of a set Q. Already unweighted Rn shows
that r needs to be bounded away from R in order to have the upper bounds in (1.1) and (1.2)
(hence 2r ≤ R above), and that the lower estimate in (1.1) [resp. (1.2)] does not hold in
general when p ≥ sup Q

0
(resp. p ≤ inf Q0), even if the borderline exponent is in the

respective set. In these borderline cases p = max Q
0
and p = min Q0 we instead obtain the

following estimates involving logarithmic factors.

Theorem 1.2 Let 0 < R0 < 1
4 diam X, and assume that the measure μ is doubling and

supports a p0-Poincaré inequality for some 1 ≤ p0 < p.

(a) If p = max Q
0

and 0 < 2r ≤ R ≤ R0, then

μ(Br )

r p

(
log

R

r

)1−p

� capp(Br , BR) �
μ(BR)

R p

(
log

R

r

)1−p

. (1.3)

(b) If p = min Q0 and 0 < 2r ≤ R ≤ R0, then

μ(BR)

R p

(
log

R

r

)1−p

� capp(Br , BR) �
μ(Br )

r p

(
log

R

r

)1−p

. (1.4)

Moreover, if the lower bound in (1.3) holds, then p ≤ sup Q
0
, and if the lower bound in (1.4)

holds, then p ≥ inf Q0.

See also (7.1) and (7.2) for improvements of the upper estimates of Theorem 1.2. Actually,
Theorem 1.2 (a) holds for all p ∈ Q

0
[resp. (b) for all p ∈ Q0], but for p in the interior of

the respective exponent sets Theorem 1.1 gives better estimates. Let us also mention that for
p in between the Q-sets we obtain yet other estimates depending on how close p is to the
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1176 A. Björn et al.

corresponding Q-set, see Propositions 5.1 and 6.2. Also these estimates are sharp, as shown
by Proposition 9.1.

We give related capacity estimates in terms of the S-sets as well. In particular, we obtain
the following almost characterization of when points have zero capacity. Here C p(E) is the
Sobolev capacity of E ⊂ X .

Proposition 1.3 Assume that X is complete and that μ is doubling and supports a p-Poincaré
inequality. Let B 	 x be a ball with C p(X\B) > 0.

If 1 ≤ p /∈ S0 or 1 < p ∈ S0, then C p({x}) = capp({x}, B) = 0.

Conversely, if p ∈ int S0, then C p({x}) > 0 and capp({x}, B) > 0.

In the remaining borderline case, when p = min S0 /∈ S0, we show that the capacity
can be either zero or nonzero, depending on the situation, and thus the S-sets are not refined
enough to give a complete characterization.

We also obtain similar results in terms of the S∞-sets, which can be used to determine if
the space X is p-parabolic or p-hyperbolic; see Sect. 8 for details.

For most of our estimates it is actually enough to require that μ is both doubling and
reverse-doubling at the point x , and that a Poincaré inequality holds for all balls centred at
x . Moreover, Poincaré inequalities and reverse-doubling are only needed when proving the
lower bounds for capacities. It is however worth pointing out that the examples showing the
sharpness of our estimates are based on p-admissible weights on Rn , and so, even though our
results hold in very general metric spaces, it is essential to distinguish the cases and define
the exponent sets, as we do, already in weighted Rn . We construct our examples with the
help of a general machinery concerning radial weights, explained in Sect. 10.

Let us now give a brief account on some of the earlier results in the literature. On
unweighted Rn , where Q

0
= S0 = (0, n] and Q0 = S0 = [n,∞), similar estimates (and

precise calculations) arewell known, see e.g. Example 2.11 inHeinonen et al. [24], which also
contains an extensive treatise of potential theory onweightedRn , including integral estimates
for Ap-weighted capacities with p > 1 (Theorems 2.18 and 2.19 therein). Theorem 3.5.6 in
Turesson [41] provides essentially our estimates for p = 1 and A1-weighted capacities in
Rn . Estimates for general weighted Riesz capacities in Rn (including those equivalent to our
capacities) were in somewhat different terms given in Adams [3, Theorem 6.1].

If the radii of the balls Br and BR are comparable, say R = 2r , then it is well known
that the estimate capp(Br , B2r ) � μ(Br )r−p holds (with implicit constants independent
of x) in metric spaces satisfying the doubling condition and a p-Poincaré inequality, see
e.g. [24, Lemma 2.14] for weighted Rn and Björn [12, Lemma 3.3] or Björn and Björn [5,
Proposition 6.16].

Garofalo and Marola [19, Theorems 3.2 and 3.3] obtained essentially part (a) of our
Theorem 1.1 using an approach different from ours. For the case p = q(x) := sup Q(x) they
also gave estimates which are similar to part (a) of Theorem 1.2. However, they implicitly
require that q(x) ∈ Q(x) [i.e. q(x) = max Q(x)] in their proofs, and their estimates may
actually fail if q(x) /∈ Q(x), as shown by Example 9.4 (c) below; the same comment applies
to their estimates in the case p > q(x) as well. There also seems to be a slight problem
in the proof of their lower bounds, since the second displayed line at the beginning of the
proof of Theorem 3.2 in [19] does not in general follow from the first line, as can be seen by
considering e.g. u(x) = max{0,min{1, 1 + j (r − |x |)}} in Rn and letting j → ∞. Instead,
this estimate can be derived directly from a 1-Poincaré inequality (see Mäkäläinen [35]),
which is a stronger assumption than the p-Poincaré inequality assumed in [19] (and in the
present work).
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Sharp capacity estimates for annuli 1177

Also Adamowicz and Shanmugalingam [2] have given related estimates in metric spaces.
They state their results in terms of the p-modulus of curve families, but it is known that
the p-modulus coincides with the variational p-capacity, provided that X is complete and
μ is doubling and supports a p-Poincaré inequality, see e.g. Heinonen and Koskela [26],
Kallunki and Shanmugalingam [31] and Adamowicz et al. [1]. In the setting considered
in [2] this equivalence is not known in general. While it is always true that the p-modulus
is majorized by the variational p-capacity, the converse is only known under the assumption
of a p-Poincaré inequality, which is not required for the upper bounds in [2] nor here. At the
same time, the test functions in [2] are admissible also for capp , showing that their estimates
apply also to the variational p-capacity. For p ∈ int Q

0
, Theorem 3.1 in [2] provides an upper

bound that can be seen to be weaker than (1.1). In the borderline case p = max Q
0
(when

it is attained), the upper estimate (3.6) in [2] coincides with our (5.1). Under the assumption
that the space X is Ahlfors Q-regular and supports a p-Poincaré inequality, they also prove
lower bounds for capacities. For p > Q, the lower bound in [2, Theorem 4.3] coincides with
the one in Theorem 1.1 (b), but for p ≤ Q the lower bound in [2, Theorem 4.9] is weaker
than our estimates (1.1) and (1.3).

Neither [2] nor [19] contain any results similar to ours for p ∈ Q0, or in terms of q ∈ Q0
for p /∈ Q0, or involving the S-sets.

As mentioned above, p-capacity and p-modulus estimates are closely related, and our
estimates trivially give estimates for the p-modulus in all cases when they coincide, e.g. when
X is complete and μ is doubling and supports a p-Poincaré inequality, see above. Moreover,
our upper estimates are trivially upper bounds of the p-modulus in all cases. We do not know
if our lower estimates of the capacity are also lower bounds for the p-modulus, but neither
do we know of any example when the p-modulus is strictly smaller than the p-capacity.

Let us also mention that earlier capacity estimates in Carnot groups and Carnot–
Carathéodory spaces can be found in Heinonen and Holopainen [23] and in Capogna et
al. [15], respectively. In [15], the estimates are then applied to yield information on the
behaviour of singular solutions of certain quasilinear equations near the singularity; see also
Danielli et al. [16] for related results in more general settings. In addition, Holopainen and
Koskela [29] provided a lower bound for the variational capacity in terms of the volume
growth in Riemannian manifolds, as well as some related estimates in general metric spaces,
which in turn are related to the parabolicity and hyperbolicity of the space. Capacities defined
by nonlinear potentials on homogeneous groups were considered by Vodop′yanov [43] and
some estimates in terms of Ap-weights were given in Proposition 2 therein.

The outline of the paper is as follows: In Sect. 2 we introduce some basic terminology and
discuss the exponent sets under consideration in this paper, while in Sect. 3 we give some
key examples demonstrating various possibilities for the exponent sets. These examples will
later, in Sect. 9, be used to show sharpness of our estimates.

In Sect. 4 we introduce the necessary background for metric space analysis, such as
capacities and Newtonian (Sobolev) spaces based on upper gradients. Towards the end of the
section we obtain a few new results and also the basic estimate used to obtain all our lower
capacity bounds (Lemma 4.9).

Sections 5, 6, 7 and 8 are all devoted to the various capacity estimates. In Sect. 5 we
obtain upper bounds, which are easier to obtain than lower bounds and in particular require
less assumptions on the space. Lower bounds related to the Q-sets are established in Sects. 6
and 7, the latter containing some more involved borderline cases, while in Sect. 8 we study
(upper and lower) estimates in terms of the S-sets and in particular prove Proposition 1.3 and
the parabolicity/hyperbolicity results mentioned above.
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1178 A. Björn et al.

The sharpness of most of our estimates (but for some borderline cases) is demonstrated
in Sect. 9. Here we extend our discussion of the examples introduced in Sect. 3 by using the
capacity formula for radial weights on Rn given in Proposition 10.8. This formula enables
us to compute explicitly the capacities in the examples, and thus we can make comparisons
with the bounds given by the more general estimates from Sects. 5, 6, 7 and 8. We also obtain
stronger and more theoretical sharpness results in Propositions 9.1 and 9.2.

The final Sect. 10 is devoted to proving the capacity formula mentioned above, and along
the way we obtain some new results on quasiconformality of radial stretchings and on p-
admissibility of radial weights.

2 Exponent sets

We assume throughout the paper that 1 ≤ p < ∞ and that X = (X, d, μ) is a metric space
equipped with a metric d and a positive complete Borel measureμ such that 0 < μ(B) < ∞
for all balls B ⊂ X .We adopt the convention that balls are nonempty and open. The σ -algebra
on which μ is defined is obtained by the completion of the Borel σ -algebra. It follows that
X is separable.

Definition 2.1 We say that the measure μ is doubling at x , if there is a constant C > 0 such
that whenever r > 0, we have

μ(B(x, 2r)) ≤ Cμ(B(x, r)). (2.1)

Here B(x, r) = {y ∈ X : d(x, y) < r}. If (2.1) holds with the same constant C > 0 for all
x ∈ X , we say that μ is (globally) doubling.

The global doubling condition is often assumed in the metric space literature, but for our
estimates it will be enough to assume that μ is doubling at x . Indeed, this will be a standing
assumption for us from Sect. 5 onward.

Definition 2.2 We say that the measure μ is reverse-doubling at x , if there are constants
γ, τ > 1 such that

μ(B(x, τr)) ≥ γμ(B(x, r)) (2.2)

holds for all 0 < r ≤ diam X/2τ .

If X is connected (or uniformly perfect) andμ is globally doubling, thenμ is also reverse-
doubling at every point, with uniform constants; see e.g. Corollary 3.8 in [5]. If μ is merely
doubling at x , then the reverse-doubling at x does not follow automatically and has to be
imposed separately whenever needed.

If both (2.1) and (2.2) hold, then an iteration of these conditions shows that there exist
q, q ′ > 0 and C, C ′ > 0 such that

C ′( r

R

)q ′
≤ μ(B(x, r))

μ(B(x, R))
≤ C

( r

R

)q
(2.3)

whenever 0 < r ≤ R < 2 diam X . More precisely, the doubling inequality (2.1) leads to
the first inequality, while the reverse-doubling (2.2) yields the second inequality of (2.3).
Recall also that the measure μ (and also the space X ) is said to be Ahlfors Q-regular if
μ(B(x, r)) � r Q for every x ∈ X and all 0 < r < 2 diam X . This in particular implies
that (2.3) holds with q = q ′ = Q.
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Sharp capacity estimates for annuli 1179

The inequalities in (2.3) will be of fundamental importance to us. Note that in (2.3) one
necessarily has q ′ ≥ q and that there can be a gap between the exponents, as demonstrated
by Example 3.2 below. Garofalo and Marola [19] introduced the pointwise dimension q(x)

(called Q(x) therein) as the supremum of all q > 0 such that the second inequality in (2.3)
holds for some Cq > 0 and all 0 < r ≤ R < diam X . Furthermore, Adamowicz et al. [1]
defined the pointwise dimension set Q(x) consisting of all q > 0 forwhich there are constants
Cq > 0 and Rq > 0 such that the second inequality in (2.3) holds for all 0 < r ≤ R ≤ Rq .
It was shown in [1, Example 2.3] that it is possible to have Q(x) = (0, q) for some q , that
is, the end point q need not be contained in the interval Q(x). Alternatively see Example 3.1
below.

For us it will be important to make even further distinctions. We consider the exponent
sets Q

0
, S0, S0 and Q0 from the introduction. The pointwise dimension of Garofalo and

Marola [19] is then q(x) = sup Q(x), where Q(x) is a global version of Q
0
(x) (see below

for the precise definition), and the pointwise dimension set of [1] is Q(x) = Q
0
(x) (to see

this, one should also appeal to Lemma 2.5). Recall that we often drop x from the notation,
and write Br = B(x, r).

If μ is doubling at x (resp. reverse-doubling at x), then Q0 �= ∅ (resp. Q
0

�= ∅), by (2.3).

The sets Q
0
and S0 are then intervals of the form (0, q) or (0, q], whereas Q0 and S0 are

intervals of the form (q,∞) or [q,∞). Whether the end point is or is not included in the
respective intervals will be important in many situations.

We start our discussion of the exponent sets by three lemmas concerning their elementary
properties. Note that Lemmas 2.3–2.5 and 2.8 hold for arbitrary measures, without assuming
any type of doubling.

Lemma 2.3 It is true that

Q
0

⊂ S0 and Q0 ⊂ S0.

Moreover, S0 ∩ S0 contains at most one point, and when it is nonempty, Q
0

= S0 and

Q0 = S0.

Proof If q ∈ Q
0
, then μ(Br ) ≤ Cqμ(B1)rq , and thus q ∈ S0. Similarly Q0 ⊂ S0.

For the second part, let q ∈ S0 ∩ S0. Then μ(Br ) � rq and it follows that q ∈ Q
0
and

q ∈ Q0. That Q
0

= S0 and Q0 = S0 thus follows from the first part. �
The following two lemmas show that the bound 1 on the radii in the definitions of the

exponent sets can equivalently be replaced by any other fixed bound R0. They also provide
formulas for the borderline exponents in the S-sets and estimates for the borderline exponents
in the Q-sets. Examples 2.6 and 2.7 show that finding the exact end points of the Q-sets may
be rather subtle.

Lemma 2.4 Let q, R0 > 0. Then q ∈ S0 if and only if there is a constant C > 0 such that

μ(Br ) ≤ Crq for 0 < r ≤ R0. (2.4)

Similarly, q ∈ S0 if and only if there is a constant C > 0 such that

μ(Br ) ≥ Crq for 0 < r ≤ R0.

Furthermore, let

q0 = lim inf
r→0

logμ(Br )

log r
and q1 = lim sup

r→0

logμ(Br )

log r
.
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1180 A. Björn et al.

Then S0 = (0, q0) or S0 = (0, q0], and S0 = (q1,∞) or S0 = [q1,∞).

Proof For the first part, assume that q ∈ S0. We may assume that R0 > 1. If 1 ≤ r < R0,
then

μ(Br ) ≤ μ(BR0) ≤ μ(BR0)r
q ,

i.e. (2.4) holds with C := max{Cq , μ(BR0)}. The converse implication is proved similarly.
For the last part, after taking logarithms we see that q ∈ S0 if and only if there is Cq such

that

q ≤ logμ(Br )

log r
− logCq

log r
for 0 < r < 1,

which is easily seen to be possible if q < q0, and impossible if q > q0. The proofs for S0

are similar. �
Lemma 2.5 Let q, R0 > 0. Then q ∈ Q

0
if and only if there is a constant C > 0 such that

μ(Br )

μ(BR)
≤ C

( r

R

)q
for 0 < r < R ≤ R0. (2.5)

The corresponding statement for Q0 is also true.
Assume furthermore that f (r) := μ(Br ) is locally absolutely continuous on (0,∞) and

let

q = ess lim inf
r→0

r f ′(r)

f (r)
and q = ess lim sup

r→0

r f ′(r)

f (r)
.

Then

(0, q) ⊂ Q
0

⊂ (0, q ] and (q,∞) ⊂ Q0 ⊂ [q,∞).

The following example shows that the assumption that f is locally absolutely continuous
in Lemma 2.5 is not redundant.

Example 2.6 Let X be the usual Cantor ternary set, defined as a subset of [0, 1] and equipped
with the normalized d-dimensional Hausdorff measure μ with d = log 2/log 3. Let x = 0.
Then f (r) = μ(Br )will be the Cantor staircase function which is not absolutely continuous.
(See Dovgoshey et al. [18] for the history of the Cantor staircase function.) At the same
time, μ is Ahlfors d-regular and hence S0 = Q

0
= (0, d] and S0 = Q0 = [d,∞), while

q = q = 0.
On the other hand if X = Rn is equipped with a weight w and dμ = w dx , then f

automatically is locally absolutely continuous. In particular, this is true ifw is a p-admissible
weight. We do not know if f is always locally absolutely continuous whenever μ is both
globally doubling and supports a global Poincaré inequality.

Proof of Lemma 2.5 We prove that q ∈ Q
0
implies (2.5). The proofs of the converse impli-

cation and for Q0 are similar. We may assume that R0 > 1. If 1 ≤ r < R ≤ R0, then

μ(Br )

μ(BR)
≤ 1 = Rq

0

(
1

R0

)q

≤ Rq
0

( r

R

)q
.

For r ≤ 1 ≤ R ≤ R0 we instead have

μ(Br )

μ(BR)
≤ μ(Br )

μ(B1)
≤ Cqrq ≤ Cq Rq

0

( r

R

)q
.
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Sharp capacity estimates for annuli 1181

Thus, (2.5) holds whenever R ≥ 1. For R ≤ 1 the claim follows directly from the assumption
q ∈ Q

0
.

Next assume that f is locally absolutely continuous and let q ∈ (0, q). Then h(r) =
log f (r) is also locally absolutely continuous and h′(r) = f ′(r)/ f (r). By assumption there

is R̃ such that ρh′(ρ) > q for a.e. 0 < ρ ≤ R̃. Since h is locally absolutely continuous, we
have for 0 < r < R ≤ R̃ that

log
f (R)

f (r)
= h(R) − h(r) =

∫ R

r
h′(ρ) dρ ≥

∫ R

r

q

ρ
dρ = log

(
R

r

)q

,

and thus

μ(Br )

μ(BR)
≤

( r

R

)q
.

By the first part, with R0 = R̃, we get that q ∈ Q
0
. Hence (0, q) ⊂ Q

0
. The proof that

(q,∞) ⊂ Q0 is analogous. The remaining inclusions follow from these inclusions together
with the fact that Q

0
∩ Q0 contains at most one point (by Lemma 2.3). �

The following example shows that q and q (from Lemma 2.5) need not be the end points

of Q
0
and Q0.

Example 2.7 Let f be given for r ∈ (0,∞) by

f (r) =
⎧⎨
⎩

akrn−1, if 4−k ≤ r ≤ 2 · 4−k, k ∈ Z,

rn+1

ak
, if 2 · 4−k ≤ r ≤ 4 · 4−k, k ∈ Z,

where ak = 2 · 4−k and n ≥ 1. Note that f is increasing and locally Lipschitz. For a.e.
x ∈ Rn set

w(x) = f ′(|x |)
ωn−1|x |n−1 ,

where ωn−1 is the surface area of the (n − 1)-dimensional sphere in Rn . With this choice of
w we have

f (r) = ωn−1

∫ r

0
w(ρ)ρn−1 dρ = μ(Br ),

where dμ = w dx . Since

f ′(r) =
⎧
⎨
⎩

(n − 1)akrn−2, if 4−k < r < 2 · 4−k, k ∈ Z,
n + 1

ak
rn, if 2 · 4−k < r < 4 · 4−k, k ∈ Z,

and r � ak on (4−k, 4 · 4−k), we see that w � 1 on Rn , i.e. μ is comparable to the Lebesgue
measure. In particular, μ is Ahlfors n-regular and supports a global 1-Poincaré inequality,
Q

0
= (0, n] and Q0 = [n,∞).

At the same time, considering r ∈ (4−k, 2 · 4−k) and r ∈ (2 · 4−k, 4 · 4−k), respectively,
gives

ess lim inf
r→0

r f ′(r)

f (r)
= n − 1 and ess lim sup

r→0

r f ′(r)

f (r)
= n + 1.

It is easy to construct a similar example with a continuous weight w.
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If X is unbounded, we will consider the following exponent sets at ∞ for results in large
balls and with respect to the whole space:

Q∞(x) :=
{

q > 0: there is Cq so that
μ(B(x, r))

μ(B(x, R))
≤ Cq

( r

R

)q
for 1 ≤ r < R

}
,

S∞(x) := {q > 0: there is Cq > 0 so that μ(B(x, r)) ≥ Cqrq for r ≥ 1},
S∞(x) := {q > 0: there is Cq so that μ(B(x, r)) ≤ Cqrq for r ≥ 1},
Q∞(x) :=

{
q > 0: there is Cq > 0 so that

μ(B(x, r))

μ(B(x, R))
≥ Cq

( r

R

)q
for 1 ≤ r < R

}
.

Note that the inequality in S∞(x) is reversed from the one in S0(x), and similarly for S∞(x).
This guarantees that S∞ = (0, q) or S∞ = (0, q], and S∞ = (q,∞) or S∞ = [q,∞),
rather than the other way round, and also that Q∞ ⊂ S∞ and Q∞ ⊂ S∞.

Lemmas 2.3, 2.4 and 2.5 above have direct counterparts for these exponent sets at ∞.
In addition, Lemma 2.8 below shows that these sets are actually independent of the point
x ∈ X , and thus the sets Q∞, S∞, S∞ and Q∞ are well defined objects for the whole space
X , not merely a short-hand notation (with a fixed base point x ∈ X ) as in the case of Q

0
, S0,

S0 and Q0. Note, however, that in general for instance the set S∞ is different from the set

{q > 0 : there is Cq so that μ(B(x, r)) ≤ Cqrq for every x ∈ X and all r ≥ 1},
since the constant Cq in the definition of S∞ is allowed to depend on the point x . This
can be seen e.g. by letting w(x) = log(2 + |x |), which is a 1-admissible weight on Rn by
Proposition 10.5 below. Recall that a weight w in Rn is p-admissible, p ≥ 1, if the measure
dμ = w dx is globally doubling and supports a global p-Poincaré inequality.

Lemma 2.8 Let X be unbounded and fix x ∈ X. Then, for every y ∈ X, we have Q∞(x) =
Q∞(y), S∞(x) = S∞(y), S∞(x) = S∞(y) and Q∞(x) = Q∞(y).

Proof Let y ∈ X . By (the ∞-versions of) Lemmas 2.4 and 2.5 it is enough to verify the
definitions of the exponent sets for R > r ≥ 2d(x, y). In this case we have B(x, r/2) ⊂
B(y, r) ⊂ B(x, 2r) and similarly for B(y, R). Hence

μ(B(x, r/2))

μ(B(x, 2R))
≤ μ(B(y, r))

μ(B(y, R))
≤ μ(B(x, 2r))

μ(B(x, R/2))
,

which shows that the inequalities in the definitions of the exponent sets at ∞ hold for y if
and only if they hold for x . �

Finally, when we want to be able to treat both large and small balls uniformly we need to
use the sets

Q(x) := Q
0
(x) ∩ Q∞ and Q(x) := Q0(x) ∩ Q∞.

If X is bounded, we simply set Q := Q
0
and Q := Q0.

Remark 2.9 Let k(t) = logμ(Bet ). Then it is easy to show that q ∈ Q
0
and q ′ ∈ Q0 if and

only if there is a constant C such that

q(T − t) − C ≤ k(T ) − k(t) ≤ q ′(T − t) + C, if t < T < 0,

or in other terms

q|T − t | − C ≤ |k(T ) − k(t)| ≤ q ′|T − t | + C, if t, T < 0,
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i.e. k is a (q, q ′, C)-rough quasiisometry on (−∞, 0) for some C . Similarly, if X is
unbounded, then k is a (q, q ′, C)-rough quasiisometry on (0,∞) (resp. on R) for some
C if and only if q ∈ Q∞ and q ′ ∈ Q∞ (resp. q ∈ Q and q ′ ∈ Q). Much of the current
literature on rough quasiisometries call such maps quasiisometries, but we have chosen to
follow the terminology of Bonk et al. [14] to avoid confusion with biLipschitz maps.

3 Examples of exponent sets

In this section we give various examples of the exponent sets. In particular, we shall see
that the end points of the four exponent sets can all be different (Examples 3.2, 3.4) and
that the borderline exponents may or may not belong to the sets (Examples 3.1, 3.3). See
Svensson [40] for further examples with different types of exponent sets.

Our examples are based on radial weights in Rn , and all the weights we consider are in
fact 1-admissible, i.e. they are globally doubling and support a global 1-Poincaré inequality
on Rn . Later in Sect. 9 these weights will be used to demonstrate the sharpness of several of
our capacity estimates. In Sect. 10 we give a general sufficient condition for 1-admissibility
of radial weights.

For simplicity, we write e.g. logβ r := (log r)β .

Example 3.1 Consider Rn , n ≥ 2, equipped with the measure dμ = w(|y|) dy, where

w(ρ) =
{

ρ p−n logβ(1/ρ), if 0 < ρ ≤ 1/e,
ρ p−n, otherwise.

Here p ≥ 1 and β ∈ R is arbitrary. Fix x = 0 and write Br = B(0, r). Then it is easily
verified that for r ≤ 1/e we have μ(Br ) � r p logβ(1/r). Letting r → 0 in the definition of
the exponent sets shows that

S0 = Q
0

= Q =
{

(0, p], if β ≤ 0,

(0, p), if β > 0,
and S0 = Q0 = Q =

{
(p,∞), if β < 0,

[p,∞), if β ≥ 0.

In both cases sup Q = inf Q = p, but only one of these is attained (when β �= 0). Letting
instead

w(ρ) =
{

ρ p−n logβ ρ for ρ ≥ e,
ρ p−n, otherwise,

gives again sup Q = inf Q = p, but if β > 0 it is now sup Q that is attained, while for β < 0

only inf Q is attained.

Example 3.2 We are now going to create an example of a 1-admissible weight in R2 with

Q = Q
0

= (0, 2], S0 = (0, 3], S0 = [ 10
3 ,∞)

and Q = Q0 = [4,∞), (3.1)

showing that the four end points can all be different.
Let αk = 2−2k

and βk = α
3/2
k = 2−3·2k−1

, k = 0, 1, 2, . . . . Note that αk+1 = α2
k . In R2

we fix x = 0 and consider the measure dμ = w(|y|) dy, where

w(ρ) =
⎧⎨
⎩

αk+1, if αk+1 ≤ ρ ≤ βk, k = 0, 1, 2, . . . ,
ρ2/αk, if βk ≤ ρ ≤ αk, k = 0, 1, 2, . . . ,
ρ, if ρ ≥ 1

2 .
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Then

ρw′(ρ)

w(ρ)
=

⎧⎨
⎩
0, if αk+1 < ρ < βk, k = 0, 1, 2, . . . ,
2, if βk < ρ < αk, k = 0, 1, 2, . . . ,
1, if ρ > 1

2 ,

and thus w is 1-admissible by Proposition 10.5. We next have that

μ(Br\Bαk+1) �
∫ r

αk+1

w(ρ)ρ dρ = αk+1

2
(r2 − α2

k+1), if αk+1 ≤ r ≤ βk . (3.2)

In particular,

μ(Bβk \Bαk+1) � αk+1

2
(β2

k − α2
k+1) = α5

k (1 − αk)

2
� α5

k .

For βk ≤ r ≤ αk we instead have

μ(Br\Bβk ) �
∫ r

βk

w(ρ)ρ dρ = r4 − β4
k

4αk
, (3.3)

and thus

μ(Bαk \Bβk ) � α4
k − β4

k

4αk
� α3

k .

It follows that
μ(Bβk ) � α5

k + α6
k + α10

k + α12
k + · · · � α5

k = β
10/3
k (3.4)

and
μ(Bαk ) � α3

k + α5
k � α3

k . (3.5)

Sincew(ρ) ≤ ρ for all ρ, we have thatμ(Br ) � r3 for all r , which together with (3.5) shows
that S0 = (0, 3].

From the estimates (3.5) and (3.2) we obtain

μ(Br ) � αk+1r2, if αk+1 ≤ r ≤ βk . (3.6)

Indeed, when αk+1 ≤ r ≤ 2αk+1 this follows directly from (3.5), and for 2αk+1 ≤ r ≤ βk

we use (3.2) to get a lower bound, while the upper bound follows from (3.2) together with
(3.5). In particular, we get that

μ(Br ) � αk+1r2 = β
4/3
k r2 ≥ r10/3, if αk+1 ≤ r ≤ βk . (3.7)

Estimating similarly, using instead (3.3) and (3.4), shows that

μ(Br ) � r4

αk
= r4

β
2/3
k

≥ r10/3, if βk ≤ r ≤ αk . (3.8)

We conclude from the last two estimates and from (3.4) that S0 = [ 10
3 ,∞)

.
Next, we see from (3.6) and (3.8) that

μ(Br )

μ(BR)
�

⎧
⎪⎨
⎪⎩

( r

R

)2
, if αk+1 ≤ r ≤ R ≤ βk,

( r

R

)4
, if βk ≤ r ≤ R ≤ αk .

(3.9)
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Hence, if αk+1 ≤ r ≤ βk ≤ R ≤ αk , then

μ(Br )

μ(BR)
= μ(Br )

μ(Bβk )

μ(Bβk )

μ(BR)
�

(
r

βk

)2(
βk

R

)4

= r2β2
k

R4

and thus
( r

R

)4
�

μ(Br )

μ(BR)
�

( r

R

)2
.

It follows from (3.9) that this estimate holds also in the remaining cases when αk+1 ≤ r ≤
R ≤ αk . Finally, if α j+1 ≤ r ≤ α j ≤ αk+1 ≤ R ≤ αk , then

μ(Br )

μ(BR)
= μ(Br )

μ(Bα j )

μ(Bα j )

μ(Bαk+1)

μ(Bαk+1)

μ(BR)
�

(
r

α j

)2( α j

αk+1

)2(
αk+1

R

)2

=
( r

R

)2

and

μ(Br )

μ(BR)
= μ(Br )

μ(Bα j )

μ(Bα j )

μ(Bαk+1)

μ(Bαk+1)

μ(BR)
�

(
r

α j

)4( α j

αk+1

)4(
αk+1

R

)4

=
( r

R

)4
,

which together with (3.9) show that

Q = Q
0

= (0, 2] and Q = Q0 = [4,∞).

(The estimates for balls with radii larger than α0 = 1
2 are easier.)

The following example is a modification of Example 3.2. It shows that we can have
sup S0 = inf S0 while S0 �= Q

0
and S0 �= Q0. In this case the common borderline exponent

of the S-sets belongs to S0 but not to S0, thus demonstrating the sharpness of Lemma 2.3.

Example 3.3 Consider R2 and x = 0. Let αk and w be as in Example 3.2. Also let γk =
αk+1 log k and δk = αk+1 log2 k, k = 3, 4, . . ., so that αk+1 < γk < δk < αk , and let

w2(ρ) =
⎧
⎨
⎩

αk+1, if αk+1 ≤ ρ ≤ γk, k = 3, 4, . . . ,
ρ2/δk, if γk ≤ ρ ≤ δk, k = 3, 4, . . . ,
ρ, otherwise,

and dμ(y) = w2(|y|) dy. It follows from Proposition 10.5 that w2 is 1-admissible, as

0 ≤ ρw′
2(ρ)

w2(ρ)
≤ 2 a.e.

Since w(ρ) ≤ w2(ρ) ≤ ρ for ρ ≤ α2 we see that μ(Bαk ) � α3
k and S0 = (0, 3]. Moreover,

μ(Bγk \Bαk+1) �
∫ γk

αk+1

w(ρ)ρ dρ = αk+1

2
(γ 2

k − α2
k+1) � α2

k γ 2
k = α6

k log
2 k

and

μ(Bδk \Bγk ) �
∫ δk

γk

ρ2

δk
ρ dρ = δ4k − γ 4

k

4δk
� δ3k .

It follows that

μ(Bγk ) � α6
k log

2 k = γ 3
k

log k
and μ(Bδk ) � δ3k .
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As in Example 3.2 one can show that these are the extreme cases, and thus letting k → ∞
shows that S0 = (3,∞). Moreover,

μ(Bαk+1)

μ(Bγk )
� 1

log2 k
=

(
αk+1

γk

)2

.

Since αk+1/γk = 1/log k → 0, as k → ∞, this shows that p /∈ Q
0
if p > 2. As this is the

extreme case, we see that Q = Q
0

= (0, 2]. Finally,
μ(Bγk )

μ(Bδk )
�

(
γk

δk

)3 1

log k
=

(
γk

δk

)4

,

which shows that Q = Q0 = [4,∞).

There is nothing special about the endpoints 2, 3, 103 and 4 (or the planeR2) inExample 3.2.
Indeed, in the following example we indicate how one can construct a 1-admissible weight
w in Rn , n ≥ 2, such that

Q
0

= (0, a], S0 = (0, b], S0 = [c,∞) and Q0 = [d,∞), (3.10)

where 1 < a < b < c < d . The reason for the condition a > 1 is that we want to obtain the
1-admissibility of w using Proposition 10.5, see Remark 10.6.

Example 3.4 For 1 < a < b < c < d let

λ = (c − a)(d − b)

(b − a)(d − c)

and

αk = 2−λk
and βk = α

(d−b)/(d−c)
k = α

(b−a)/(c−a)
k+1 , k = 0, 1, 2, . . . .

Note that λ > 1 and thus αk → 0 as k → ∞. Also, αk+1 � βk � αk . Then the weight

w(ρ) =

⎧
⎪⎨
⎪⎩

βc−a
k ρa−n = αb−a

k+1ρa−n, if αk+1 ≤ ρ ≤ βk, k = 0, 1, 2, . . . ,

βc−d
k ρd−n = αb−d

k ρd−n, if βk ≤ ρ ≤ αk, k = 0, 1, 2, . . . ,
α0, if ρ ≥ α0,

is continuous and 1-admissible on Rn . Without going into details, one then argues similarly
to Example 3.2 to show that (3.10) holds.

4 Background results on metric spaces

In this section we are going to introduce the necessary background on Sobolev spaces and
capacities in metric spaces. Proofs of most of the results mentioned in the first half of this
section can be found in themonographsBjörn andBjörn [5] andHeinonen et al. [27]. Towards
the end of this section we obtain some new results.

We begin with the notion of upper gradients as defined by Heinonen and Koskela [26]
(who called them very weak gradients).

Definition 4.1 A Borel function g ≥ 0 on X is an upper gradient of f : X → [−∞,∞] if
for all (nonconstant, compact and rectifiable) curves γ : [0, lγ ] → X ,

| f (γ (0)) − f (γ (lγ ))| ≤
∫

γ

g ds, (4.1)
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where we follow the convention that the left-hand side is∞whenever at least one of the terms
therein is infinite. If g ≥ 0 is a measurable function on X and if (4.1) holds for p-almost
every curve (see below), then g is a p-weak upper gradient of f .

A curve is a continuous mapping from an interval, and a rectifiable curve is a curve with
finite length. We will only consider curves which are nonconstant, compact and rectifiable,
and thus each curve can be parameterized by its arc length ds. A property is said to hold
for p-almost every curve if it fails only for a curve family � with zero p-modulus, i.e. there
exists 0 ≤ ρ ∈ L p(X) such that

∫
γ

ρ ds = ∞ for every curve γ ∈ �. Note that a p-weak
upper gradient need not be a Borel function, it is only required to be measurable. On the
other hand, every measurable function g can be modified on a set of measure zero to obtain
a Borel function, from which it follows that

∫
γ

g ds is defined (with a value in [0,∞]) for
p-almost every curve γ .

The p-weak upper gradients were introduced by Koskela andMacManus [34]. It was also
shown there that if g ∈ L p(X) is a p-weak upper gradient of f , then one can find a sequence
{g j }∞j=1 of upper gradients of f such that g j → g in L p(X). If f has an upper gradient in
L p(X), then it has a minimal p-weak upper gradient g f ∈ L p(X) in the sense that for every
p-weak upper gradient g ∈ L p(X) of f we have g f ≤ g a.e., see Shanmugalingam [39] and
Hajłasz [21]. The minimal p-weak upper gradient is well defined up to a set of measure zero
in the cone of nonnegative functions in L p(X). Following Shanmugalingam [38], we define
a version of Sobolev spaces on the metric measure space X .

Definition 4.2 For a measurable function f : X → [−∞,∞], let

‖ f ‖N1,p(X) =
(∫

X
| f |p dμ + inf

g

∫

X
g p dμ

)1/p

,

where the infimum is taken over all upper gradients of f . The Newtonian space on X is

N 1,p(X) = { f : ‖ f ‖N1,p(X) < ∞}.
The space N 1,p(X)/∼, where f ∼ h if and only if ‖ f −h‖N1,p(X) = 0, is a Banach space

and a lattice, see Shanmugalingam [38]. In this paper we assume that functions in N 1,p(X)

are defined everywhere, not just up to an equivalence class in the corresponding function
space. This is needed for the definition of upper gradients to make sense. For a measurable
set E ⊂ X , the Newtonian space N 1,p(E) is defined by considering (E, d|E , μ|E ) as ametric
space in its own right. If f, h ∈ N 1,p

loc (X), then g f = gh a.e. in {x ∈ X : f (x) = h(x)}, in
particular gmin{ f,c} = g f χ f <c for c ∈ R.

Definition 4.3 The Sobolev p-capacity of an arbitrary set E ⊂ X is

C p(E) = inf
u

‖u‖p
N1,p(X)

,

where the infimum is taken over all u ∈ N 1,p(X) such that u ≥ 1 on E .

The Sobolev capacity is countably subadditive. We say that a property holds quasi-
everywhere (q.e.) if the set of points for which it fails has Sobolev capacity zero. The
Sobolev capacity is the correct gauge for distinguishing between two Newtonian functions.
If u ∈ N 1,p(X), then u ∼ v if and only if u = v q.e. Moreover, Corollary 3.3 in Shanmuga-
lingam [38] shows that if u, v ∈ N 1,p(X) and u = v a.e., then u = v q.e. This is the main
reason why, unlike in the classical Euclidean setting, we do not need to require the func-
tions admissible in the definition of capacity to be 1 in a neighbourhood of E . Theorem 4.5
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in [38] shows that for open  ⊂ Rn , the quotient space N 1,p()/∼ coincides with the usual
Sobolev space W 1,p(). For weighted Rn , the corresponding results can be found in Björn
and Björn [5, Appendix A.2]. It can also be shown that in this case C p is the usual Sobolev
capacity in (weighted or unweighted) Rn .

Definition 4.4 We say that X supports a p-Poincaré inequality at x if there exist constants
C > 0 and λ ≥ 1 such that for all balls B = B(x, r), all integrable functions f on X , and
all upper gradients g of f ,

∫

B
| f − fB | dμ ≤ Cr

(∫

λB
g p dμ

)1/p

,

where fB := ∫
B f dμ := ∫

B f dμ/μ(B). If C and λ are independent of x , we say that X
supports a (global) p-Poincaré inequality.

In the definition of Poincaré inequality we can equivalently assume that g is a p-weak
upper gradient—see the comments above. It was shown by Keith and Zhong [32] that if X is
complete andμ is globally doubling and supports a global p-Poincaré inequality with p > 1,
thenμ actually supports a global p0-Poincaré inequality for some p0 < p. The completeness
of X is needed for Keith–Zhong’s result, as shown by Koskela [33]. In some of our estimates
we will need such a better p0-Poincaré inequality at x , which (by Koskela’s example) does
not follow from the p-Poincaré inequality at x .

If X is complete and μ is globally doubling and supports a global p-Poincaré inequality,
then the functions in N 1,p(X) and those in N 1,p(), for open  ⊂ X , are quasicontinuous,
see Björn et al. [10]. This means that in the Euclidean setting N 1,p(Rn) and N 1,p() are
the refined Sobolev spaces as defined in Heinonen et al. [24, p. 96], see Björn and Björn [5,
Appendix A.2] for a proof of this fact valid in weighted Rn .

To be able to define the variational capacity we first need a Newtonian space with zero
boundary values. We let, for an open set  ⊂ X ,

N 1,p
0 () = { f | : f ∈ N 1,p(X) and f = 0 on X\}.

Definition 4.5 Let  ⊂ X be open. The variational p-capacity of E ⊂  with respect to
 is

capp(E,) = inf
u

∫



g p
u dμ,

where the infimum is taken over all u ∈ N 1,p
0 () such that u ≥ 1 on E .

Also the variational capacity is countably subadditive and coincides with the usual varia-
tional capacity in the case when  ⊂ Rn is open (see Björn and Björn [7, Theorem 5.1] for
a proof valid in weighted Rn). We are next going to establish three new results concerning
the variational capacity. Propositions 4.6 and 4.7 will only be used in Proposition 8.2 (and
Example 9.4) to prove a condition for a point to have positive capacity, while Proposition 4.8
will only be used for proving Propositions 8.6 and 10.8 (and in Example 9.4), which deal
with the variational capacity taken with respect to the whole space. These results may also
be of independent interest.

It is well known that if X supports a global (p, p)-Poincaré inequality (i.e. a Poincaré
inequality with an L p norm instead of an L1 norm in the left-hand side), then the variational
and Sobolev capacities have the same zero sets (if is bounded and C p(X\) > 0). We will
need the following generalization of this fact. Since we do not have the same tools available,
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our proof is different and more direct than those in the literature. Note also that we only
require a p-Poincaré inequality (at x), not a (p, p)-Poincaré inequality.

Proposition 4.6 Assume that X supports a p-Poincaré inequality at some x ∈ X, that  is
a bounded open set, and that E ⊂ . Then capp(E,) = 0 if and only if C p(E) = 0 or
C p(X\) = 0.

The Poincaré assumption cannot be completely omitted, as is easily seen by considering
a nonconnected example, or a bounded “bow-tie” as in Example 5.5 in Björn and Björn [6].
However, we actually do not need the full p-Poincaré inequality at x , since it is enough
to have a p-Poincaré inequality for some large enough ball B (i.e. such that  ⊂ B and
C p(B\) > 0). This somewhat resembles the situation concerning Friedrichs’ inequality

(also called Poincaré inequality for N 1,p
0 ) and its role in the uniqueness of minimizers, see

the discussion in Section 5 in [6]. For an easy example of a space which supports a Poincaré
inequality for large balls but not for small balls, see Example 5.9 in [6].

Proof If C p(E) = 0, then u := χE ∈ N 1,p
0 (), while if C p(X\) = 0, then u := χ ∈

N 1,p
0 (). In both cases this yields that capp(E,) ≤ ∫


g p

u dμ = 0.
Conversely, assume that capp(E,) = 0 and that C p(X\) > 0. We need to show that

C p(E) = 0. Choose a ball B centred at x and containing  such that C p(B\) > 0. By
Lemma 2.24 in Björn and Björn [5], also C B

p (B\) > 0, where C B
p is the Sobolev capacity

with respect to the ambient space B. Let 0 ≤ u ≤ 1 be admissible for capp(E,). Then

μ
({

y ∈ B : u(y) ≤ 1
2

}) ≥ 1
2μ(B) or μ

({
y ∈ B : u(y) ≥ 1

2

}) ≥ 1
2μ(B).

In the former case we let v = (2u − 1)+ := max{2u − 1, 0}, while in the latter we let
v = (1−2u)+. In both cases gv ≤ 2gu andμ(A) ≥ 1

2μ(B), where A = {y ∈ B : v(y) = 0}.
Since vB = |v − vB | in A, we have by the p-Poincaré inequality for B that

vB =
∫

A
|v − vB | dμ ≤ 2

∫

B
|v − vB | dμ �

(∫

B
g p
v dμ

)1/p

.

Hence, as 0 ≤ v ≤ 1 and gv ≤ 2gu , we have

C B
p ({y ∈ B : v(y) = 1}) ≤

∫

B
(v p + g p

v ) dμ ≤
∫

B
v dμ +

∫

B
g p
v dμ

= μ(B)vB +
∫

B
g p
v dμ �

(∫

B
g p

u dμ

)1/p

+
∫

B
g p

u dμ,

where the implicit constant in � depends on B but is independent of u. Taking infimum over
all admissible u shows that, depending on the choices of v, we have at least one ofC B

p (E) = 0

and C B
p (B\) = 0, the latter being impossible by the choice of B. Thus C B

p (E) = 0 and
Lemma 2.24 in [5] completes the proof. �

If X is complete and μ is globally doubling and supports a global p-Poincaré inequality,
then it is known that the variational capacity is an outer capacity, i.e. if E is a compact subset
of  then

capp(E,) = inf
G open

E⊂G⊂

capp(G,),

see Björn et al. [10, p. 1199] and Theorem 6.19 in Björn and Björn [5].Wewill need a version
of this result for sets of zero capacity under our more general assumptions. For the Sobolev
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capacity such a result was obtained in [10], Proposition 1.4 (which can also be found as
Proposition 5.27 in [5]), under the assumption that X is proper. (Recall that a metric space
X is proper if all closed bounded subsets are compact. If μ is globally doubling, then X
is proper if and only if X is complete.) A modification of that proof yields the following
generalization, which only requires local compactness near E and at the same time also
gives the conclusion for the variational capacity. This generalization was partly inspired
by the discussion of the corresponding result in Heinonen et al. [27]. In combination with
Proposition 4.6, Proposition 4.7 gives the outer capacity property for sets of zero variational
capacity under very mild assumptions.

Proposition 4.7 Let  be an open set, and let E ⊂  with C p(E) = 0. Assume that there is
a locally compact open set G ⊃ E. Then, for every ε > 0, there is an open set U ⊃ E with

capp(U,) < ε and C p(U ) < ε.

We outline the main ideas of the proof, see the above references for more details.

Sketch of proof First assume that G is compact, and choose a bounded open set V ⊃ E
such that V ⊂ G ∩  and

∫
V (ρ + 1)p dμ < ε, where ρ is a lower semicontinuous upper

gradient of χE ∈ N 1,p(X), which exists by the Vitali–Carathéodory property as C p(E) = 0.
The function u(x) := min{1, infγ

∫
γ
(ρ + 1) ds}, with the infimum taken over all curves

connecting x to X\V (including constant curves), has (ρ + 1)χV as an upper gradient, and
u = 1 in E . Lemma 3.3 in [10] shows that u is lower semicontinuous in G and hence
everywhere, since u = 0 in X\V by construction. This also shows that u ∈ N 1,p

0 (). Using
u as a test function for the level set U := {x : u(x) > 1

2 } shows that capp(U,) � ε and
C p(U ) � ε, and proves the claim in this case.

If G is merely locally compact, we use separability to find a suitable countable cover of
E , and then conclude the result using the countable subadditivity of the capacities. �

A direct consequence of Proposition 4.7 is that the assumption that X is proper can be
replaced by the assumption that  is locally compact in Theorem 5.29 and Propositions 5.28
and 5.33 in Björn and Björn [5], see also Björn et al. [10] and Heinonen et al. [27].

We will also need the following result.

Lemma 4.8 Let E ⊂ X be bounded and let x ∈ X. Then

capp(E, X) = lim
r→∞ capp(E, B(x, r)).

Proof That capp(E, X) ≤ limr→∞ capp(E, B(x, r)) is trivial. To prove the converse, we
may assume that capp(E, X) < ∞. Let ε > 0 and let u be admissible for capp(E, X) and
such that

∫
X g p

u dμ < capp(E, X)+ε. Then un := uηn → u in N 1,p(X), as n → ∞, where
ηn(y) = (1 − dist(y, B(x, n)))+. Hence,

lim
n→∞ capp(E, B(x, 2n)) ≤ lim

n→∞

∫

X
g p

un dμ ≤ capp(E, X) + ε.

Letting ε → 0 concludes the proof. �
Our lower bound estimates for the capacities are all based on the following telescop-

ing argument, which is well-known under the assumptions that μ is globally doubling and
supports a global p-Poincaré inequality. However, it is enough to require the p-Poincaré
inequality, as well as the doubling and reverse-doubling conditions, at x only. We therefore
recall the short proof.
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Lemma 4.9 Assume that μ is doubling and reverse-doubling at x and supports a p-Poincaré
inequality at x. Let 0 < r < R ≤ diam X/2τ , where τ > 1 is the constant from the reverse-
doubling condition (2.2). Write rk = 2kr and Bk = B(x, rk) for k ∈ Z, and let k0 be such
that rk0 ≤ R < rk0+1. Then for any u ∈ N 1,p

0 (BR) we have

|u Br | �
k0+1∑
k=1

rk

(∫

λBk
g p

u dμ

)1/p

, (4.2)

where λ is the dilation constant in the p-Poincaré inequality at x.

Proof For u ∈ N 1,p
0 (BR) we have u A = 0, where A = Bτ R\BR . Let B∗ = Bτ R ∪ B2R .

Then

|u Br | ≤ |u Br − u Bk0+1 | + |u Bk0+1 − u A|

≤
k0+1∑
k=1

|u Bk − u Bk−1 | + |u Bk0+1 − u B∗ | + |u A − u B∗ |.

Since μ is doubling and reverse-doubling at x , it is easy to verify that

μ(A) � μ(Bτ R) � μ(B∗) � μ(Bk0+1).

Thedoubling condition and p-Poincaré inequality at x , togetherwith the fact that Bk0+1 ⊂ B∗
and A ⊂ B∗, then show that

|u Br | �
k0+1∑
k=1

∫

Bk
|u − u Bk | dμ +

∫

B∗
|u − u B∗ | dμ

�
k0+1∑
k=1

rk

(∫

λBk
g p

u dμ

)1/p

+ R

(∫

λB∗
g p

u dμ

)1/p

.

The claim follows, since the last integral is comparable to
∫
λBk0+1 g p

u dμ. �
Remark 4.10 In the forthcoming sections we give several different capacity estimates involv-
ing the exponent sets Q and Q. In these results (and in Lemma 4.9 above), the implicit
constants in �, � and � will always be independent of r and R, but they may depend on x ,
X , μ, p and (the auxiliary exponent) q . The dependence on x , X and μ will only be through
the constants in the doubling, reverse-doubling and Poincaré assumptions, as well as through
the constants Cq in the definitions of the Q-sets. In particular, if these conditions hold in all
of X with uniform constants, then we obtain capacity estimates which are independent of x
as well.

There are also corresponding estimates involving Q
0
, Q∞, Q0 and Q∞, which are just

easy reformulations with appropriate restrictions on the radii, viz. R ≤ R0 for the Q
0
- and

Q0-sets, and r ≥ R0 for the Q∞- and Q∞-sets, where 0 < R0 < ∞ is fixed, cf. Theorems 1.1
and 1.2. In these restricted estimates, as well as in the estimates in Sect. 8 involving the S-sets,
the implicit constants in �, � and � will in addition depend on R0. Observe also that, by
e.g. Lemmas 2.4 and 2.5, the exponent sets are independent of R0, but the constants Cq do
depend on the range of radii.

For these restricted estimates one can also weaken the assumptions a little: The dou-
bling and reverse-doubling conditions and the Poincaré inequality are only needed for balls
with radii in the considered range, i.e. for r ≤ max{2, τ }R0 or for r ≥ R0. Arguing as in
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Lemma 2.5, it is easily seen that in the case of the doubling condition (but not for reverse-
doubling and the Poincaré inequality) this is equivalent to assuming doubling for all r ≤ 1 or
r ≥ 1, respectively. For the reverse-doubling and the Poincaré inequality, the range of radii
for which they hold is however essential, as can be seen by e.g. letting X be the union of two
disjoint closed balls in Rn .

The factor 2 in the above bound max{2, τ }R0 is only dictated by the dyadic balls in the
proof of Lemma 4.9 and can equivalently be replaced by any σ > 1, upon correspondingly
changing the choice of balls therein. Again, this will be reflected in the implicit constants.

5 Upper bounds for capacity

From now on we make the general assumption that μ is doubling at x . Recall also that
1 ≤ p < ∞.

The following simple upper bound for capacity is valid for any 1 ≤ p < ∞. Note that we
do not need any Poincaré inequality (nor reverse-doubling) to obtain any of our upper bound
estimates.

Proposition 5.1 Let 0 < 2r ≤ R. Then

capp(Br , BR) � min

{
μ(Br )

r p
,
μ(BR)

R p

}
.

For p ∈ Q (resp. p ∈ Q), the first (resp. second) term in the minimum gives the sharper
estimate, but for p in between the Q-sets the minimum can vary depending on the radii, as
can be seen in Example 9.3. See Sect. 6 for corresponding lower estimates.

It is essential to bound r away from R in Proposition 5.1 since typically capp(Br , BR) →
∞ as r → R. This is apparent and well-known in unweighted Rn (cf. Example 2.12 in
Heinonen et al. [24]), but similar behaviour is present in more general metric spaces as well.
(This restriction should thus be taken into account in the upper bounds in [15] and [19] as
well.) Capacity of thin annuli (with R/2 < r < R) in the metric setting is studied in [9].

Proof Take

ur (y) =
(
1 − dist(y, Br )

r

)

+
and u R(y) =

(
1 − dist(y, BR/2)

R/2

)

+
.

Both of these are admissible for capp(Br , BR), and clearly (by doubling),

∫

BR

g p
ur dμ ≤ μ(B2r )

r p
�

μ(Br )

r p
and

∫

BR

g p
u R dμ ≤ μ(BR)

(R/2)p
�

μ(BR)

R p
.

�

The following logarithmic upper bounds are particularly useful in the borderline cases
p = max Q and p = min Q. These estimates are valid also for p = 1, as well as for

p ∈ int Q and p ∈ int Q, but in these cases Proposition 5.1 actually gives better upper bounds

for capp(Br , BR). Note also that even for the borderline cases p = max Q and p = min Q,
the estimates in Proposition 5.1 can be sharp, and better than those in Proposition 5.2 below,
as shown at the end of Example 9.3.
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Proposition 5.2 Let 0 < 2r ≤ R.

(a) If p ∈ Q, then

capp(Br , BR) �
μ(BR)

R p

(
log

R

r

)1−p

. (5.1)

(b) If p ∈ Q, then

capp(Br , BR) �
μ(Br )

r p

(
log

R

r

)1−p

. (5.2)

Examples 9.4 (b) and 9.5 (b) show that these estimates are sharp.

Proof Choose

u(y) = min

{
1,

log(R/d(y, x))

log(R/r)

}

+
and g(y) = χBR\Br

log(R/r)d(y, x)
.

Then u is admissible for capp(Br , BR), and g is a p-weak upper gradient of u, by Theo-
rem 2.16 in Björn and Björn [5]. Write rk = 2kr and Bk = B(x, rk), and let k0 ∈ Z be such
that rk0 ≤ R < rk0+1. Then

capp(Br , BR) ≤
∫

BR

g p dμ ≤
k0+1∑
k=1

∫

Bk\Bk−1
g p dμ �

1

logp(R/r)

k0+1∑
k=1

μ(Bk)

r p
k

. (5.3)

For p ∈ Q we have that r−p
k μ(Bk) � R−pμ(BR) when 1 ≤ k ≤ k0 + 1, and for p ∈ Q that

r−p
k μ(Bk) � r−pμ(Br ) for all k ≥ 1. Since 0 < r ≤ R/2, we have k0 + 1 � log(R/r), and
so both claims follow from (5.3). �

6 Lower bounds for capacity

The results in this section complement the upper bounds in Sect. 5, and for p in the interior
of (one of) the Q-sets these together yield the sharp estimates announced in Theorem 1.1.
For p in between the Q-sets, the lower and upper bounds do not meet, but we shall see
in Proposition 6.2 that the lower bounds indicate the distance from p to the corresponding
Q-set. Example 9.3 shows that in this case both the upper bounds in Proposition 5.1 and the
lower bounds (6.6) and (6.7) in Proposition 6.2 are optimal. See also Proposition 9.1, which
further demonstrates the sharpness of these estimates.

Also note that for the lower boundswithout logarithmic termswedonot need the restriction
2r ≤ R, since the capacity of thin annuli is minorized by the capacity of thick annuli. In the
borderline cases, where log(R/r) plays a role, the restriction 2r ≤ R is still needed. As in
Lemma 4.9, we however require that R ≤ diam X/2τ , where τ > 1 is the constant from the
reverse-doubling condition (2.2). See Remark 4.10 for comments on how the choice of the
involved parameters influences the implicit constants in �, � and �.

Proposition 6.1 Assume that μ is reverse-doubling at x and supports a p-Poincaré inequal-
ity at x. Let 0 < r < R ≤ diam X/2τ .

(a) If p ∈ int Q, then

capp(Br , BR) �
μ(Br )

r p
. (6.1)
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(b) If p ∈ int Q, then

capp(Br , BR) �
μ(BR)

R p
. (6.2)

With this we can now prove Theorem 1.1, which also shows that the estimates in Propo-
sition 6.1 are sharp.

Proof of Theorem 1.1 Combining Propositions 5.1 and 6.1 and appealing to Remark 4.10
yield (a) and (b). The last part follows from Proposition 9.1 below. �

The comparison constants in (6.1) and (6.2) depend on p. In particular, the constants in our
proof tend to zero as p ↗ sup Q in (a) and as p ↘ inf Q in (b). This is quite natural, since
already unweighted Rn shows that these estimates do not always hold when p = max Q and

p = min Q, respectively. In fact, if X is Ahlfors p-regular, and thus Q = S0 = S∞ = (0, p]
and Q = S0 = S∞ = [p,∞), Proposition 8.1 (c) shows that (6.1) and (6.2) fail. Moreover,
Proposition 9.1 shows that the estimates in Proposition 6.1 can never hold for all r and R
when p is outside of the Q-sets.

Proof of Proposition 6.1 Let u be admissible for capp(Br , BR), and let Bk be a chain of
balls, with radii rk , as in Lemma 4.9. From Lemma 4.9 we obtain, for any 0 < q < ∞, that

1 �
k0+1∑
k=1

rk

(∫

λBk
g p

u dμ

)1/p

≤
k0+1∑
k=1

rk

μ(Bk)1/p

(∫

λBk
g p

u dμ

)1/p

≤
(∫

BR

g p
u dμ

)1/p k0+1∑
k=1

(
rq

k

μ(Bk)

)1/p

r1−q/p
k . (6.3)

In (a) we choose q > p such that q ∈ Q, and so we have for all 1 ≤ k ≤ k0 + 1 that

rq
k

μ(Bk)
�

rq

μ(Br )
. (6.4)

Since 1 − q/p < 0, the sum in the last line of (6.3) can thus be estimated as

k0+1∑
k=1

(
rq

k

μ(Bk)

)1/p

r1−q/p
k �

(
rq

μ(Br )

)1/p k0+1∑
k=1

r1−q/p
k

�
(

rq

μ(Br )

)1/p

r1−q/p =
(

r p

μ(Br )

)1/p

,

giving
∫

BR

g p
u dμ �

μ(Br )

r p
.

Taking infimum over all admissible u finishes the proof of part (a).
In (b) we instead choose q ∈ Q such that q < p, and so we have for all 1 ≤ k ≤ k0 + 1

that
rq

k

μ(Bk)
�

Rq

μ(BR)
. (6.5)

Now 1 − q/p > 0, and thus the sum in the last line of (6.3) can be estimated as

k0+1∑
k=1

(
rq

k

μ(Bk)

)1/p

r1−q/p
k �

(
Rq

μ(BR)

)1/p k0+1∑
k=1

r1−q/p
k
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�
(

Rq

μ(BR)

)1/p

R1−q/p =
(

R p

μ(BR)

)1/p

,

giving
∫

BR

g p
u dμ �

μ(BR)

R p
,

and the claim follows by taking infimum over all admissible u. �
A modification of the above proof gives the following result, which is interesting mainly

in the case when p is in between the Q-sets, i.e. p /∈ Q ∪ Q.

Proposition 6.2 Assume that μ is reverse-doubling at x and supports a p-Poincaré inequal-
ity at x. Let 0 < r < R ≤ diam X/2τ .

(a) If 0 < q < p and q ∈ Q, then

capp(Br , BR) �
μ(Br )

rq
Rq−p = μ(Br )

r p

( r

R

)p−q
. (6.6)

(b) If q > p and q ∈ Q, then

capp(Br , BR) �
μ(BR)

Rq
rq−p = μ(BR)

R p

( r

R

)q−p
. (6.7)

Proposition 9.1 and Example 9.3 show that this result is sharp, while unweighted Rn ,
with p = n, shows that we cannot allow for q = p in general. Also note that if q ∈ int Q

(resp. q ∈ int Q) and 2r ≤ R, then (6.6) [resp. (6.7)] can be written as capp(Br , BR) �
capq(Br , BR)Rq−p (resp. capp(Br , BR) � capq(Br , BR)rq−p).

Proof Let u be admissible for capp(Br , BR), and let Bk be the corresponding balls, with
radii rk , from Lemma 4.9. In (a) we proceed as in (6.3) and use (6.4) to obtain

1 �
(

rq

μ(Br )

∫

BR

g p
u dμ

)1/p k0+1∑
k=1

r1−q/p
k � R1−q/p

(
rq

μ(Br )

∫

BR

g p
u dμ

)1/p

,

since the exponent in the geometric series is 1−q/p > 0. Taking infimumover all admissible
u yields (6.6).

In (b) we instead use (6.3) and (6.5) and that the geometric series is � r1−q/p in this
case. �

For the borderline cases p = max Q or p = min Q, (6.6) or (6.7) can be used with q arbi-
trarily close to p, but the following proposition gives better estimates involving logarithmic
terms. If X supports a p0-Poincaré inequality at x for some 1 ≤ p0 < p, then even better
estimates in the borderline cases are obtained in Proposition 7.1. Nevertheless, the estimates
in Proposition 6.3 are of particular interest when p = 1, since the 1-Poincaré inequality is
the best possible.

Proposition 6.3 Assume that μ is reverse-doubling at x and supports a p-Poincaré inequal-
ity at x. Let 0 < 2r ≤ R ≤ diam X/2τ .

(a) If p ∈ Q, then

capp(Br , BR) �
μ(Br )

r p

(
log

R

r

)−p

. (6.8)
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(b) If p ∈ Q, then

capp(Br , BR) �
μ(BR)

R p

(
log

R

r

)−p

. (6.9)

In unweighted R it is well known that cap1(Br , BR) = 2 for all 0 < r < R. In this
case the right-hand sides in (6.8) and (6.9) both reduce to 2(log(R/r))−1, showing that these
estimates are not optimal in this particular case.

Proof Let u be admissible for capp(Br , BR), and let Bk be the corresponding balls, with
radii rk , from Lemma 4.9. Then (6.3) with q = p and (6.4) yield

1 � (k0 + 1)

(∫

BR

g p
u dμ

)1/p r

μ(Br )1/p
.

Since 0 < 2r ≤ R, we have k0+1 � k0 � log(R/r), and taking infimum over all admissible
u yields (6.8).

In (b) we instead use (6.3) and (6.5). �

7 Capacity estimates for borderline exponents

When the borderline exponents are attained, Propositions 5.1 and 5.2 yield for p = max Q,

capp(Br , BR) ≤ min

{
μ(Br )

r p
,
μ(BR)

R p

(
log

R

r

)1−p}
, (7.1)

while for p = min Q,

capp(Br , BR) ≤ min

{
μ(BR)

R p
,
μ(Br )

r p

(
log

R

r

)1−p}
. (7.2)

In this section we provide corresponding lower bounds, even though the estimates do not
exactly meet, as seen in Theorem 1.2. Nevertheless, Proposition 9.1 and Examples 9.3, 9.4
and 9.5 below show that all these estimates [including both possibilities for the upper bounds
in (7.1) and in (7.2)] are in some sense optimal; see also Remark 9.6.

The following result holds for all p ∈ Q (resp. p ∈ Q), but because of Proposition 6.1

it is most useful in the limiting case p = max Q (resp. p = min Q). It improves upon
Proposition 6.3 at the cost of requiring a better Poincaré inequality; see the discussion on
different Poincaré inequalities after Definition 4.4.

Proposition 7.1 Assume that μ is reverse-doubling at x and supports a p0-Poincaré inequal-
ity at x for some 1 ≤ p0 < p. Let 0 < 2r ≤ R ≤ diam X/2τ .

(a) If p ∈ Q, then

capp(Br , BR) �
μ(Br )

r p

(
log

R

r

)1−p

. (7.3)

(b) If p ∈ Q, then

capp(Br , BR) �
μ(BR)

R p

(
log

R

r

)1−p

. (7.4)
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Examples 9.4 and 9.5 show that these estimates are sharp, while Proposition 9.1 and
Examples 9.3, 9.4 and 9.5 show that they do not hold for p outside of the Q-sets. In particular,
these lower bounds do not in general hold for p = sup Q /∈ Q and p = inf Q /∈ Q,
respectively.

Proof Let u be admissible for capp(Br , BR), and let Bk be the corresponding balls, with
radii rk , from Lemma 4.9. Also let Ak = λBk\λBk−1.

Without loss of generality we may assume that p0 > 1. Lemma 4.9 (with exponent p0)
and Hölder’s inequality for sums (with p0 and p0/(p0 − 1)) yield

1 �
k0+1∑
k=1

rk

(∫

λBk
g p0

u dμ

)1/p0
≤

k0+1∑
k=1

(
r p0

k

μ(Bk)

∫

λBk
g p0

u dμ

)1/p0

≤ (
k0 + 1

)1−1/p0
(k0+1∑

k=1

r p0
k

μ(Bk)

k∑
j=1

∫

A j

g p0
u dμ

)1/p0
. (7.5)

Interchanging the order of summation, the double sum in (7.5) can be estimated by Hölder’s
inequality for integrals [with exponents p/p0 and p/(p − p0)] as

k0+1∑
k=1

r p0
k

μ(Bk)

k∑
j=1

∫

A j

g p0
u dμ =

k0+1∑
j=1

∫

A j

g p0
u dμ

k0+1∑
k= j

r p0
k

μ(Bk)

�
k0+1∑
j=1

(∫

A j

g p
u dμ

)p0/p

μ(A j )
1−p0/p

k0+1∑
k= j

r p0
k

μ(Bk)
. (7.6)

Let us now take q ∈ Q. [In (a) we can use q = p, but recall that also in (b) we have Q �= ∅

by the reverse-doubling.] Then

μ(A j ) � μ(B j ) � μ(Bk)

(
r j

rk

)q

(7.7)

for 1 ≤ j ≤ k ≤ k0 + 1. Moreover, let ρ = r if p ∈ Q [case (a)] and ρ = R if p ∈ Q
[case (b)]. Then we have for all 1 ≤ k ≤ k0 + 1 that

r p
k

μ(Bk)
�

ρ p

μ(Bρ)
. (7.8)

From (7.7) and (7.8) we obtain

μ(A j )
1−p0/p

k0+1∑
k= j

r p0
k

μ(Bk)
�

k0+1∑
k= j

(
r p

k

μ(Bk)

)p0/p(r j

rk

)q(1−p0/p)

�
(

ρ p

μ(Bρ)

)p0/p

, (7.9)

since 1 − p0/p > 0, and thus
∑k0+1

k= j (r j/rk)
q(1−p0/p) � 1.

Insertion of (7.9) into (7.6) and a use of Hölder’s inequality for sums [with exponents
p/p0 and p/(p − p0)] yield

k0+1∑
k=1

r p0
k

μ(Bk)

k∑
j=1

∫

A j

g p0
u dμ �

k0+1∑
j=1

(∫

A j

g p
u dμ

)p0/p(
ρ p

μ(Bρ)

)p0/p

(7.10)

≤
(

ρ p

μ(Bρ)

)p0/p(k0+1∑
j=1

∫

A j

g p
u dμ

)p0/p(
k0 + 1

)1−p0/p
.
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Since 0 < 2r ≤ R, we have k0 + 1 � k0 � log(R/r), and so we conclude from (7.5)
and (7.10) that

1 � k1−1/p0
0

((
ρ p

μ(Bρ)

∫

BR

g p
u dμ

)p0/p

k1−p0/p
0

)1/p0

�
(
log

R

r

)1−1/p(
ρ p

μ(Bρ)

∫

BR

g p
u dμ

)1/p

. (7.11)

The desired capacity estimates (7.3) and (7.4) now follow from (7.11) by taking infimum
over all u admissible for capp(Br , BR) and recalling that ρ = r in the case (a) and ρ = R in
the case (b). �
Proof of Theorem 1.2 Combining Propositions 7.1 and 5.2, and appealing to Remark 4.10
yield (a) and (b). The last part follows from Proposition 9.1 below. �

8 Capacity estimates involving S-sets

Let us first record the following upper bounds related to the S-sets. As before, these upper
estimates do not require any Poincaré inequalities. Recall from Sect. 2 that the inequalities
defining the S∞-sets are reversed from the ones in the S0-sets, so that Q∞ ⊂ S∞ and

Q∞ ⊂ S∞.

Proposition 8.1 Fix 0 < R0 < ∞.

(a) If 0 < q ∈ S0, then for 0 < 2r ≤ R ≤ R0,

capp(Br , BR) �
{

Rq−p, if q < p,

rq−p, if q > p.
(8.1)

(b) If 0 < q ∈ S∞, then (8.1) holds for R0 ≤ r ≤ R/2 < ∞.
(c) If p ∈ S0, then for 0 < 2r ≤ R ≤ R0,

capp(Br , BR) �
(
log

R

r

)1−p

. (8.2)

(d) If p ∈ S∞, then (8.2) holds for R0 ≤ r ≤ R/2 < ∞.

In unweighted Rn , the capacity capp(Br , BR) is comparable to the right-hand sides in the
respective cases (with q = n), which shows that these estimates are sharp. See also the end
of Example 9.3, where the sharpness of part (a) is shown in a case where q ∈ S0\Q

0
.

Proof The proofs of (a) and (b) follow immediately form Proposition 5.1 and the definitions
of the S-sets. To see that (c) and (d) hold, one can proceed as in the proof of Proposition 5.2
up to deducing (5.3). Then one uses the estimates μ(Bk) � r p

k and k0 + 1 � log(R/r) to
obtain (8.2). �

The estimate (c) was already given byHeinonen [22], Lemma 7.18. (The statement therein
is slightly different, but the proof applies verbatim to yield our estimate.) It follows immedi-
ately from (c) that for 1 < p ∈ S0 the point x has zero capacity, but in fact the same is true
even in the (possibly) larger set [1,∞)\S0, as the following proposition shows. Similarly,
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Sharp capacity estimates for annuli 1199

it follows from (d) that if p ∈ S∞, then for a fixed r > 0 we have capp(Br , BR) → 0 as
R → ∞, but again we obtain a better result in Proposition 8.6. Recall that

sup S0 = lim inf
r→0

logμ(Br )

log r
, inf S0 = lim sup

r→0

logμ(Br )

log r
,

sup S∞ = lim inf
r→∞

logμ(Br )

log r
, inf S∞ = lim sup

r→∞
logμ(Br )

log r
,

by Lemma 2.4 (and its ∞-version).

Proposition 8.2 If 1 ≤ p /∈ S0 or 1 < p ∈ S0, then C p({x}) = 0 = capp({x}, B) for any
ball B 	 x.

Conversely, assume that μ is reverse-doubling at x and supports a p-Poincaré inequality
at x, and that there is a locally compact neigbourhood G 	 x. If p ∈ int S0, then C p({x}) > 0
and capp({x}, B) > 0 for any ball B 	 x with C p(X\B) > 0.

The first part of Proposition 8.2 improves and clarifies the result of Corollary 3.4 in Garo-
falo and Marola [19]. Note that this part is valid without requiring any Poincaré inequality.
Unweighted R shows that the inequality in 1 < p ∈ S0 is necessary. The second part, on
the other hand, is a consequence of Proposition 4.6 and the lower bound in Proposition 8.3
below.

In the remaining casewhen p = min S0 and p /∈ S0, the S-sets are not enough to determine
if the capacities of {x} are zero or not, as we demonstrate at the end of Example 9.4.

Proposition 8.3 Assume that μ is reverse-doubling at x and supports a p-Poincaré inequal-
ity at x, and fix 0 < R0 < ∞. Furthermore, assume that 0 < q ∈ S0 and 0 < r < R ≤ R0,
or that q ∈ S∞ and R0 ≤ r < R < ∞. Then

capp(Br , BR) �

⎧⎪⎪⎨
⎪⎪⎩

Rq−p, if q < p,

rq−p, if q > p,(
log

R

r

)−p

, if q = p.

Also here unweighted Rn shows that the first two estimates are sharp, and at the end of
Example 9.3 their sharpness is shown in a case where q ∈ S0\Q0. Proposition 9.2 provides
a converse of Proposition 8.3.

Proof Let u be admissible for capp(Br , BR), and let Bk be the corresponding balls, with radii
rk , from Lemma 4.9. Since μ(λBk) ≥ μ(Bk) � rq

k for all k ∈ N, we have by Lemma 4.9
that

1 �
k0+1∑
k=1

rk

(∫

λBk
g p

u dμ

)1/p

�
k0+1∑
k=1

r1−q/p
k

(∫

BR

g p
u dμ

)1/p

� A

(∫

BR

g p
u dμ

)1/p

, (8.3)

where

A =
⎧⎨
⎩

R1−q/p, if q < p,

r1−q/p, if q > p,

k0 + 1, if q = p.

The claim then follows by taking infimum over all admissible u. �
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1200 A. Björn et al.

Proof of Proposition 8.2 We may assume that B = BR . If p /∈ S0, then there exist rn → 0
such that μ(B(x, rn)) < r p

n /n. For rn ≤ R, let un(y) = (1−d(x, y)/rn)+. Then un(x) = 1,
un = 0 outside B(x, rn), and gun ≤ 1/rn . Thus

capp({x}, B) ≤ ‖gun ‖p
L p(X) ≤ ‖un‖p

N1,p(X)

and

C p({x}) ≤ ‖un‖p
N1,p(X)

≤ (1 + r−p
n )μ(B(x, rn)) �

1

n
→ 0, as n → ∞.

In the case 1 < p ∈ S0 the claim capp({x}, B) = 0 follows easily fromProposition 8.1 (c).
To show that also C p({x}) = 0, we let ε > 0. Since p ∈ S0 we can find r > 0 such that
μ(B(x, r)) < ε. As capp({x}, B(x, r)) = 0 [by Proposition 8.1 (c) again], we can also find

u ∈ N 1,p
0 (B(x, r)) such that u(x) = 1, 0 ≤ u ≤ 1 and

∫
X g p

u dμ < ε. It follows that

C p({x}) ≤ ‖u‖p
N1,p(X)

≤ μ(B(x, r)) +
∫

X
g p

u dμ < 2ε → 0, as ε → 0.

Conversely, assume that p > q ∈ S0(x). By Proposition 8.3 we have for all 0 < r <

R=:R0 that
capp(Br , BR) � Rq−p, (8.4)

with comparison constant independent of r . If capp({x}, B) were 0, then we would have
C p({x}) = 0, by Proposition 4.6, which in turn, by Proposition 4.7, would contradict (8.4).
Hence capp({x}, B) > 0 and C p({x}) > 0. �
Remark 8.4 It follows directly from Proposition 8.3 that if we a priori know that the capacity
is outer or that the capacity of singletons can be tested by only continuous functions, then
actually capp({x}, BR) � Rq−p whenever p > q ∈ S0. Both of the above assumptions hold
e.g. if X is complete,μ is doubling and supporting a p-Poincaré inequality, by Theorem 6.19
in [5] or Kallunki and Shanmugalingam [31], see also Theorem 4.1 in Björn and Björn [7].

Let us also record the following logarithmic lower bound, which improves the third lower
bound in Proposition 8.3 and is interesting in the borderline cases p = min S0 and p =
max S∞.

Proposition 8.5 Let 1 < p < ∞ and assume that μ is reverse-doubling at x and supports
a p0-Poincaré inequality at x for some 1 ≤ p0 < p. Fix 0 < R0 < ∞.

(a) If p ∈ S0 and 0 < 2r ≤ R ≤ R0, then

capp(Br , BR) �
(
log

R

r

)1−p

. (8.5)

(b) If p ∈ S∞ and R0 ≤ r ≤ R/2 < ∞, then (8.5) holds.

Proof We proceed as in the proof of Proposition 7.1, but instead of (7.8) we now have the
simple estimate r p

k /μ(Bk) � 1 for all 1 ≤ k ≤ k0+1 [both in (a) and (b)]. Thus the left-hand
side of (7.9) is bounded by a constant. Inserting this into (7.6) and then (7.5), together with
a use of Hölder’s inequality for sums as in (7.10), yields

1 �
(
log

R

r

)1−1/p(∫

BR

g p
u dμ

)1/p

,

since k0 + 1 � log(R/r). Taking infimum over all admissible u yields (a) and (b). �
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In unbounded spaces we have the following counterpart to Proposition 8.2. Recall that the
sets S∞ and S∞ are independent of the reference point x ∈ X , by Lemma 2.8.

Proposition 8.6 Assume that X is unbounded. If 1 ≤ p /∈ S∞ or 1 < p ∈ S∞, then
capp(Br , X) = 0 for all r > 0, and thus capp(E, X) = 0 for all bounded sets E.

Conversely, assume that μ is reverse-doubling at x and supports a p-Poincaré inequality
at x. If p ∈ int S∞, then

capp(Br , BR) ≥ capp(Br , X) ≥ c(r) > 0 for all 0 < r < R.

Unweighted R again shows that the inequality in 1 < p ∈ S∞ is necessary. In the
remaining case when p = max S∞ and p /∈ S∞, the S-sets are not enough to determine if
the capacities are zero or not, see the end of Example 9.5.

Proof If p /∈ S∞, then there exist Rn → ∞ such that μ(BRn ) < R p
n /n. By Proposition 5.1

we have

capp(Br , X) ≤ capp(Br , BRn ) �
μ(BRn )

R p
n

<
1

n
→ 0, as n → ∞.

If 1 < p ∈ S∞ we instead use Proposition 8.1 (d) to conclude that capp(Br , X) = 0.
Conversely, if p < q ∈ S∞, then let R0 := r < R. From Proposition 8.3 we obtain that

capp(Br , BR) � rq−p,

and the claim follows from Lemma 4.8. �
Remark 8.7 Recall that an unbounded proper space X is said to be p-parabolic, if
capp(K , X) = 0 for all compact sets K ⊂ X , and otherwise X is p-hyperbolic. From Propo-

sition 8.6 it thus follows that the space X is p-parabolic if 1 ≤ p /∈ S∞ (or 1 < p ∈ S∞),
and X is p-hyperbolic if p ∈ int S∞. See e.g. Holopainen [28], Holopainen and Koskela [29]
andHolopainen and Shanmugalingam [30] for more information on parabolic and hyperbolic
Riemannian manifolds and metric spaces.

9 Sharpness of the estimates

The following result shows that the lower bounds in Sects. 6 and 7 are not only sharp, but
also essentially equivalent to p (or q) belonging to the corresponding Q-sets.

Proposition 9.1 If (6.1), (6.2), (6.8), (6.9), (7.3) or (7.4) holds for all 0 < 2r ≤ R, then
p ∈ Q, p ∈ Q, p ≤ sup Q, p ≥ inf Q, p ≤ sup Q or p ≥ inf Q, respectively.

Similarly, if (6.6) or (6.7) holds for all 0 < 2r ≤ R, then q ∈ Q or q ∈ Q, respectively.

Proof We need to estimate μ(Br )/μ(BR) in terms of r/R for all 0 < r < R. It is enough to
do this for 0 < 2r ≤ R, since R/2 < r < R can be treated by the doubling property of μ at
x . If (6.1) or (6.2) holds, then Proposition 5.1 yields

μ(Br )

r p
� capp(Br , BR) �

μ(BR)

R p
or

μ(BR)

R p
� capp(Br , BR) �

μ(Br )

r p
,

which is equivalent to p ∈ Q or p ∈ Q, respectively.
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1202 A. Björn et al.

Next, if (6.6) holds for some q > 0, then using Proposition 5.1 we see that

μ(Br )

rq
Rq−p � capp(Br , BR) �

μ(BR)

R p
,

which after division by Rq−p shows that q ∈ Q. Similarly, if (6.7) holds for some q > 0,

then q ∈ Q.
Finally, if (6.8) holds, and in particular if (7.3) holds, then Proposition 5.1 yields for all

ε > 0 that

μ(Br )

μ(BR)
�

r p capp(Br , BR)

μ(BR)
logp R

r
�

( r

R

)p
logp R

r
�

( r

R

)p−ε

,

where the last implicit constant depends on ε. Thus p − ε ∈ Q for every ε > 0, showing that

p ≤ sup Q. The implications (7.4) ⇒ (6.9) ⇒ p ≥ inf Q are proved similarly. �
We have a corresponding result for the S-sets as well.

Proposition 9.2 If for some q > 0 and all 0 < 2r ≤ R ≤ R0,

capp(Br , BR) � rq−p or capp(Br , BR) � Rq−p, (9.1)

then q ∈ S0. Similarly, if

capp(Br , BR) �
(
log

R

r

)−p

(9.2)

for all 0 < 2r ≤ R ≤ R0, then p ≥ inf S0.
If instead (9.1) or (9.2) holds for all R0 ≤ r ≤ R/2 < ∞, then q ∈ S∞ or p ≤ sup S∞,

respectively.

Proof We prove only the case 0 < 2r ≤ R ≤ R0, the other case being similar.
If (9.1) holds and q ≤ p, then Proposition 5.1 implies that Rq−p � capp(Br , BR) �

R−pμ(BR) for all R ≤ R0, showing that q ∈ S0. If instead q ≥ p and (9.1) holds, then we
get rq−p � capp(Br , BR) � r−pμ(Br ) for all r ≤ R0/2, and the same conclusion follows.

If (9.2) holds, then Proposition 5.1 and taking R = R0 show that log−p(R0/r) �
capp(Br , BR) � r−pμ(Br ). Since log(R0/r) � r−ε for every ε > 0, this yields

μ(Br ) � r p(1+ε), and hence p(1 + ε) ∈ S0. Letting ε → 0, gives p ≥ inf S0. �
In the rest of this section we continue our study of the examples from Sect. 3, using

a general formula for the capacity on weighted Rn with radial weights. The proof of this
formula is postponed until Sect. 10, see Proposition 10.8.

Example 9.3 We continue with Example 3.2. First, for p > 2 and 2αk+1 ≤ 2r ≤ R ≤ βk ,
we estimate using Proposition 10.8 with f ′(ρ) � w(ρ)ρ and (3.6) that

capp(Br , BR) �
(∫ R

r
(αk+1ρ)1/(1−p) dρ

)1−p

(9.3)

� αk+1(R(p−2)/(p−1) − r (p−2)/(p−1))1−p � αk+1R2−p � μ(BR)

R p
,

showing that the second upper bound in Proposition 5.1 cannot be improved. With r = αk+1

and R = βk it also follows that

capp(Bαk+1 , Bβk )

α
−p
k+1μ(Bαk+1)

�
(

αk+1

βk

)p−2

= α
p/2−1
k → 0, as k → ∞, (9.4)
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since p > 2. This illustrates the fact (known from Proposition 9.1) that the lower estimates
(6.1), (6.8) and (7.3) do not hold for p > 2, i.e. for p /∈ Q. In addition, the equivalence
in (9.4) shows that the lower bound in (6.6) is sharp (with q = 2 ∈ Q). Since

(
log

βk

αk+1

)1−p

= (logα
−1/2
k )1−p → 0, as k → ∞,

we also conclude from (9.3) (with r = αk+1 and R = βk) that the estimate (5.1) does not
hold for p > 2, i.e. for p /∈ Q.

If 1 < p < 4 and 2βk ≤ 2r ≤ R ≤ αk , then by Proposition 10.8 with f ′(ρ) � w(ρ)ρ

and (3.8),

capp(Br , BR) �
(∫ R

r

(
ρ2

αk
ρ

)1/(1−p)

dρ

)1−p

(9.5)

� 1

αk
(R(p−4)/(p−1) − r (p−4)/(p−1))1−p � r4−p

αk
� μ(Br )

r p
,

showing that the first upper bound in Proposition 5.1 cannot be improved. In particular, (9.3)
and (9.5) show that each of the upper bounds in Proposition 5.1 can give a sharp estimate for
certain radii even when p /∈ Q ∪ Q.

With r = βk and R = αk it follows from (9.5) that

capp(Bβk , Bαk )

α
−p
k μ(Bαk )

�
(

βk

αk

)4−p

= α
2−p/2
k → 0, as k → ∞,

since p < 4. Thus we here have a concrete case where the lower estimates (6.2), (6.9) and
(7.4) do not hold for p < 4, i.e. for p /∈ Q, and we also see that (6.7) is sharp as well (with
q = 4 ∈ Q). Moreover, as

(
log

αk

βk

)1−p

= (logα
−1/2
k )1−p → 0, as k → ∞,

we conclude from (9.5) (with r = βk and R = αk) that the estimate (5.2) does not hold for
1 < p < 4, i.e. for p /∈ Q.

From (9.5) and (9.3) with p = 2 and p = 4, respectively, we see that

cap2(Bβk , Bαk ) � μ(Bβk )

β2
k

and cap4(Bαk+1 , Bβk ) � μ(Bβk )

β4
k

,

which shows that the lower bounds in (7.3) and (7.4) are not always comparable to
capp(Br , BR) when p = max Q or p = min Q, and that the estimates provided by Proposi-
tion 5.1 are in this case optimal (and better than those in Proposition 5.2).

Finally, choosing R = βk and p > q = 10
3 = min S0 in (9.3) [or r = βk and 1 < p <

q = 10
3 = min S0 in (9.5)] shows, together with (3.4), that the first two lower bounds in

Proposition 8.3 are sharp. Similarly for p < q = 3 = max S0, we see from (3.5) and (9.5)
with r = 1

2αk and R = αk that the upper bounds in Proposition 8.1 (a) are sharp.

Example 9.4 This is a continuation of Example 3.1 in Rn , n ≥ 2, with the weight

w(ρ) =
{

ρ p−n logβ(1/ρ), if 0 < ρ ≤ 1/e,
ρ p−n, otherwise,
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1204 A. Björn et al.

where β ∈ R is arbitrary and we this time require p > 1. Recall that for 0 < r < 1/e and
x = 0 we have μ(Br ) � r p logβ(1/r). Proposition 10.8 with f ′(ρ) � w(ρ)ρn−1 gives, for
0 < r < R < 1/e, that

capp(Br , BR)1/(1−p) �
∫ R

r
logβ/(1−p)(1/ρ)

dρ

ρ
=

∫ log(1/r)

log(1/R)

tβ/(1−p) dt

= 1

σ

(
logσ 1

r
− logσ 1

R

)
(9.6)

if σ = 1 + β/(1 − p) �= 0, and

capp(Br , BR)1/(1−p) � log log
1

r
− log log

1

R

if β = p − 1.
The estimate (9.6) can be further simplified. For that we recall the simple Lemma 3.1 from

Björn et al. [8] which says that for all σ > 0 and all t ∈ [0, 1],
min{1, σ }t ≤ 1 − (1 − t)σ ≤ max{1, σ }t.

Thus, if σ > 0 in (9.6), we have

1

σ

(
logσ 1

r
− logσ 1

R

)
�

(
logσ 1

r

)(
1 −

(
log(1/R)

log(1/r)

)σ )
(9.7)

�
(
logσ 1

r

)(
1 − log(1/R)

log(1/r)

)
=

(
log

1

r

)σ−1

log
R

r
.

Since σ − 1 = β/(1 − p), this together with (9.6) gives

capp(Br , BR) �
(
logβ 1

r

)(
log

R

r

)1−p

�μ(Br )

r p

(
log

R

r

)1−p

. (9.8)

On the other hand, if σ < 0 in (9.6) then replacing σ by θ = −σ > 0 in (9.7) yields

1

σ

(
logσ 1

r
− logσ 1

R

)
�

(
logσ 1

r

)(
logσ 1

R

)(
logθ 1

r
− logθ 1

R

)

�
(
logσ 1

r

)(
logσ 1

R

)(
log

1

r

)θ−1

log
R

r
= logσ (1/R)

log(1/r)
log

R

r
.

Since σ(1 − p) = β(1 − (p − 1)/β), we obtain from (9.6) that

capp(Br , BR) �
(
logσ (1/R)

log(1/r)

)1−p(
log

R

r

)1−p

=
(
logβ 1

R

)1−(p−1)/β(
logβ 1

r

)(p−1)/β(
log

R

r

)1−p

�
(

μ(BR)

R p

)1−(p−1)/β(
μ(Br )

r p

)(p−1)/β(
log

R

r

)1−p

. (9.9)

We now distinguish three cases.
(a) If β < 0, then p = max Q and σ > 0. Thus (9.8) yields

capp(Br , BR) � μ(Br )

r p

(
log

R

r

)1−p

.
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This shows that the lower estimate in Proposition 7.1 (a) is sharp and that (7.4) fails in this
case, despite the fact that p = inf Q.

(b) If 0 < β < p − 1, then p = min Q and σ > 0. From (9.8) we conclude that

capp(Br , BR) � μ(Br )

r p

(
log

R

r

)1−p

,

this time showing that the upper estimate in Proposition 5.2 (b) is sharp.
(c) If β > p − 1, then p = min Q and σ < 0. From (9.9) we see that

capp(Br , BR) �
(

μ(BR)

R p

)1−(p−1)/β(
μ(Br )

r p

)(p−1)/β(
log

R

r

)1−p

. (9.10)

Note that both exponents 1−(p−1)/β and (p−1)/β are positive and their sum is 1. Letting
β → ∞ and β → p − 1, respectively, shows that in general for p = min Q the estimate

μ(BR)

R p

(
log

R

r

)1−p

� capp(Br , BR) �
μ(Br )

r p

(
log

R

r

)1−p

,

is the best we can hope for, since the definitions of Q and Q cannot capture the size of β in
μ(Bρ) � ρ p logβ(1/ρ), only its sign. Thus also the lower estimate in Proposition 7.1 (b) is
optimal.

In addition, if R is fixed and r < R, then by (9.9),

capp(Br , BR) �
(
log

1

r

)p−1(
log

R

r

)1−p

.

When r � R, this is substantially smaller (since β > p − 1) than the lower bound

μ(Br )

r p

(
log

R

r

)1−p

�
(
log

1

r

)β(
log

R

r

)1−p

claimed in [19, Theorem 3.2] for the case p = q(x) = sup Q. Thus the latter estimate cannot

be valid if p = sup Q = min Q /∈ Q. Similarly, for p̃ > p = sup Q = min Q /∈ Q we have
by Proposition 5.1 that

cap p̃(Br , BR) �
μ(BR)

R p̃
�

(
log

1

R

)β

R p− p̃.

For β > 0 and r � R, this is again substantially smaller than

μ(Br )

r p
R p− p̃ �

(
log

1

r

)β

R p− p̃,

showing that the lower bound claimed in [19, Theorem 3.2] for the case p̃ > q(x) cannot
be valid in general. Nevertheless, let us point out that if q(x) = max Q, then the estimates
given in [19, Theorem 3.2] for the cases p̃ = q(x) and p̃ > q(x) are (essentially) the same
as our Propositions 7.1 (a) and 6.2 (a), respectively.

We now turn to the S-sets. If β > 0, then S0 = Q = (0, p) and S0 = Q = [p,∞). Thus,
Proposition 8.2 is of no use, and indeed we can show that both C p({0}) = 0 and C p({0}) > 0
are possible in this case:

If σ < 0, i.e. if β > p − 1, then limr→0 capp(Br , BR) > 0, by (9.6). In the same way as
at the end of the proof of Proposition 8.2 it follows that C p({0}) > 0 and capp({0}, B) > 0
for every ball B 	 0.
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1206 A. Björn et al.

If instead σ > 0, i.e. if 0 < β < p − 1, then limr→0 capp(Br , BR) = 0, by (9.6),
from which it directly follows that capp({0}, B) = 0 for every ball B 	 0. Using that
C p({0}) ≤ capp({0}, B) + μ(B) shows that also C p({0}) = 0.

Example 9.5 Let

w(ρ) =
{

ρ p−n logβ ρ for ρ ≥ e,
ρ p−n, otherwise,

in Rn , n ≥ 2, where p > 1 and β ∈ R is arbitrary, as in the second part of Example 3.1. This
example is similar to the previous example, but the roles of r and R are in a sense reversed
and thus we obtain different estimates.

As in Example 9.4, we have sup Q = inf Q = p, but if β > 0 it is now sup Q that is

attained, while for β < 0 we have that inf Q is attained. Since

f ′(ρ) � w(ρ)ρn−1 = ρ p−1 logβ ρ for ρ > e,

we have by Proposition 10.8 for e < r < R the estimate

capp(Br , BR)1/(1−p) �
∫ R

r
logβ/(1−p) (ρ)

dρ

ρ

=
∫ log R

log r
tβ/(1−p) dt = logσ R − logσ r

σ
(9.11)

if σ = 1 + β/(1 − p) �= 0.
The simplification of (9.11) can be carried out analogously to the previous example, and

we obtain for σ > 0 that

capp(Br , BR) � (
logσ R − logσ r

)1−p

� (log R)β
(
log

R

r

)1−p

� μ(BR)

R p

(
log

R

r

)1−p

. (9.12)

This yields the following conclusions in the cases corresponding to (a) and (b) of Example 9.4:
(a) If β < 0, then p = min Q and σ > 0. Thus (9.12) shows the sharpness of the lower

estimate in Proposition 7.1 (b). It also shows that (7.3) fails in this case, despite the fact that
p = sup Q.

(b) If 0 < β < p − 1, then p = max Q and σ > 0, and from (9.12) we can conclude that
also the upper estimate in Proposition 5.2 (a) is sharp.

We also mention that the case σ < 0 can be studied just as in Example 9.4 (c), this time
showing the sharpness of the lower bound in Proposition 7.1 (a), although this was already
known from the case (a) of Example 9.4; see however Remark 9.6 below.

Finally, ifβ > 0, then S∞ = Q = (0, p] and S∞ = Q = (p,∞), and thusProposition 8.6
is of no use. Considering the two cases σ > 0 and σ < 0 shows that indeed both possibilities
capp(Br , X) = 0 and capp(Br , X) > 0 can happen in this case, cf. the end of Example 9.4.

Remark 9.6 In Example 9.4 we have Q = Q
0
and Q = Q0, and thus the conclusions of

this example also show the sharpness of the respective restricted capacity estimates, that is,
the analogues of Proposition 5.2 (b) and Proposition 7.1 (a) and (b) for Q

0
and Q0 and for

radii 0 < 2r ≤ R ≤ R0. In particular, Theorem 1.2, with the exception of the upper bound
in (1.3), is shown to be sharp.
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Similarly, in Example 9.5we have Q = Q∞ and Q = Q∞, and sowe obtain the sharpness

of the analogues of Proposition 5.2 (a) and Proposition 7.1 (a) and (b) for Q∞ and Q∞ and
for radii R0 ≤ r ≤ R/2.

Nevertheless, these examples still leave open the sharpness of one of the upper bounds in
each of the restricted versions of Proposition 5.2:We do not know if the upper estimate (5.1) is
sharp for p ∈ Q

0
and 0 < 2r ≤ R ≤ R0, or if (5.2) is sharp for p ∈ Q∞ and R0 ≤ r ≤ R/2.

10 Radial weights and stretchings in Rn

In this section we consider radial weights in Rn , n ≥ 2, and give a sufficient condition for
when they are admissible, and in particular satisfy the global doubling condition and a global
Poincaré inequality, thus providing a basis for our examples in Sect. 9. This will be achieved
by comparing such weights with suitable powers of Jacobians of quasiconformal mappings
onRn . In particular, in Theorem 10.2 we characterize those radial stretchings inRn which are
quasiconformal. The same conditionwas considered inR2 byAstala et al. [4, Section 2.6] and
for continuously differentiable mappings in Rn by Manojlović [36, Example 2.9], while for
power-like radial stretchings the corresponding result is well known, see e.g. Example 16.2
in Väisälä [42]. Both in [4] and [36], the result is obtained by differentiation and uses the
analytic definition of quasiconformal mappings, based on the Jacobian determinant. Our
assumptions are weaker and the method is different and based on more direct estimates of
the linear dilation, rather than on the differentiable structure of Rn . We use the following
metric definition of quasiconformal mappings, provided by e.g. Theorem 34.1 in [42], and
applicable also in metric spaces.

Definition 10.1 A homeomorphism F : Rn → Rn , n ≥ 2, is a quasiconformal mapping if
its linear dilation

HF (x) := lim sup
r→0

L(x, r)

l(x, r)

is bounded. Here

L(x, r) := max|x−y|=r
|F(x) − F(y)| and l(x, r) := min|x−y|=r

|F(x) − F(y)|.

We shall consider radial stretchings F : Rn → Rn given by

F(x) = h(|x |)x = k(|x |) x

|x | if x �= 0, and F(0) = 0, (10.1)

where h(ρ) = k(ρ)/ρ, and k is a locally absolutely continuous homeomorphism of [0,∞)

satisfying k(0) = 0 and

m ≤ ρk′(ρ)

k(ρ)
≤ M (10.2)

for a.e. ρ ∈ [0,∞) and some 0 < m ≤ M < ∞. It is easily verified that the inverse mapping
of F is given by

F−1(z) = k−1(|z|) z

|z| ,
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1208 A. Björn et al.

where the inverse k−1 is (under our assumptions) also locally absolutely continuous, and
by (10.2) we have for a.e. ρ ∈ [0,∞) that

(k−1(ρ))′ = 1

k′(k−1(ρ))
� k−1(ρ)

k(k−1(ρ))
= k−1(ρ)

ρ
, (10.3)

where the implicit constants in � are 1/M and 1/m.
We are going to obtain the following characterization.

Theorem 10.2 Assume that the mapping F : Rn → Rn, n ≥ 2, is defined as in (10.1). Then F
is quasiconformal if and only if (10.2) holds for a.e. ρ ∈ [0,∞) and some 0 < m ≤ M < ∞.

The following lemma gives a basis for the sufficiency part of the theorem.

Lemma 10.3 If F : Rn → Rn is as in (10.1) and satisfies (10.2), then for all x, y ∈ Rn,
with |x | ≤ |y| and x �= y, we have

m

1 + 2m
inf|x |≤ξ≤|y| h(ξ) ≤ |F(x) − F(y)|

|x − y| ≤ (M + 2) sup
|x |≤ξ≤|y|

h(ξ). (10.4)

Proof For x = 0 this is easily checked using the definition of F , so assume for the rest of
the proof that x �= 0. The triangle inequality yields

|F(x) − F(y)| = ∣∣h(|x |)x − h(|y|)x + h(|y|)x − h(|y|)y
∣∣

≤ h(|y|)|x − y| + |x | ∣∣h(|y|) − h(|x |)∣∣. (10.5)

Note that h is also locally absolutely continuous and the assumption (10.2) gives for a.e.
|x | ≤ ξ ≤ |y| that

|h′(ξ)| =
∣∣∣∣
k′(ξ)

ξ
− k(ξ)

ξ2

∣∣∣∣ ≤ (M + 1)k(ξ)

ξ2
≤ (M + 1)

h(ξ)

|x | .

Hence
∣∣h(|y|) − h(|x |)∣∣ ≤ (|y| − |x |) ess sup

|x |≤ξ≤|y|
|h′(ξ)| ≤ (M + 1)|x − y| sup

|x |≤ξ≤|y|
h(ξ)

|x | .

Inserting this into (10.5) proves the second inequality in (10.4).
To prove the first inequality we use the inverse mapping F−1(z) = k−1(|z|)z/|z|.

By (10.3), it satisfies (10.2) with m and M replaced by 1/M and 1/m. The first part of
the proof applied to F−1 with z = F(x) and w = F(y) then yields

|x − y|
|F(x) − F(y)| = |F−1(z) − F−1(w)|

|z − w| ≤
(
1

m
+ 2

)
sup

|z|≤ζ≤|w|
k−1(ζ )

ζ
.

Since k−1(ζ )/ζ = ξ/k(ξ) = 1/h(ξ) with ξ = k−1(ζ ), the first inequality in (10.4) follows.
�

Proof of Theorem 10.2 First assume that (10.2) holds. If x = 0, then L(x, r) = l(x, r) by
the definition of F , and so HF (0) = 1. If on the other hand x �= 0, then by Lemma 10.3 and
the definition of F we have, for 0 < r < |x |,

L(x, r) � r sup
|x |−r≤ξ≤|x |+r

h(ξ) and l(x, r) � r inf|x |−r≤ξ≤|x |+r
h(ξ). (10.6)

Inserting this into the definition of HF (x) and letting r → 0 shows that F is quasiconformal.
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Conversely, assume that F is quasiconformal. Since the linear dilation HF (x) is bounded,
Theorem 32.1 in Väisälä [42] shows that F is differentiable a.e. It follows that k′ exists a.e.
in (0,∞). To prove (10.2), choose K > 0 such that HF < K in Rn . Fix x ∈ Rn with |x | = 1
and let ρ > 0 be arbitrary but such that k′(ρ) exists. Then there exists 0 < r0 < ρ such that
L(ρx, r) ≤ Kl(ρx, r) whenever 0 < r ≤ r0. For each such r find y ∈ Rn such that |y| = 1
and |x − y| = r/ρ. Then |ρx − ρy| = r and

l(ρx, r) ≤ |F(ρx) − F(ρy)| = k(ρ)|x − y| = k(ρ)r

ρ
.

On the other hand,

k(ρ + r) − k(ρ)

r
= |F((ρ + r)x) − F(ρx)|

r
≤ L(ρx, r)

r
≤ K

l(ρx, r)

r
≤ K

k(ρ)

ρ
,

and the quotient (k(ρ) − k(ρ − r))/r can be treated similarly. Letting r → 0 shows that
k′(ρ) ≤ K k(ρ)/ρ. Applying the same argument to the quasiconformal mapping F−1 yields,
with ζ = k(ρ),

1

k′(ρ)
= (k−1(ζ ))′ ≤ K

k−1(ζ )

ζ
= Kρ

k(ρ)
,

i.e. k′(ρ) ≥ k(ρ)/Kρ. �
Now assume that F is as in Lemma 10.3. The Jacobian JF of F is the infinitesimal

area distortion under F , and thus (10.6) implies that JF (x) � h(|x |)n for a.e. x ∈ Rn .
Since Jacobians of quasiconformal mappings are strong A∞ weights (by a result due to
Gehring [20], cf. pp. 101–102 in David and Semmes [17] and Theorem 1.5 in Heinonen and
Koskela [25]), Theorem 1 in Björn [11] shows that the weight

JF (x)1−p/n � h(|x |)n−p =
(

k(|x |)
|x |

)n−p

is p-admissible when 1 ≤ p ≤ n. (For 1 < p ≤ n, one can instead use Theorem 15.33
in Heinonen et al. [24] or Corollary 1.10 in Heinonen and Koskela [25].) We thus have the
following result.

Theorem 10.4 Let k : [0,∞) → [0,∞) be a locally absolutely continuous homeomorphism
of [0,∞) satisfying (10.2) for a.e. ρ ∈ [0,∞). Then the weight w(x) = (k(|x |)/|x |)n−p

with 1 ≤ p ≤ n is p-admissible in Rn, n ≥ 2.

Now letw be a radialweight onRn , n ≥ 2, i.e.w(x) = w(|x |)where 0 ≤ w ∈ L1
loc(0,∞).

Here we abuse the notation and use w both for the weight itself and for its one-dimensional
representation on (0,∞). With the help of Theorem 10.4 we obtain the following sufficient
condition for admissibility of radial weights.

Proposition 10.5 Assume that w : (0,∞) → (0,∞) is locally absolutely continuous and
that for some γ1 < n − 1, γ2 < ∞ and a.e. ρ > 0 we have,

− γ1 ≤ ρw′(ρ)

w(ρ)
≤ γ2. (10.7)

Then the radial weight w(x) = w(|x |) is 1-admissible in Rn, n ≥ 2.
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1210 A. Björn et al.

Remark 10.6 In particular, Proposition 10.5 shows that all the weights

w(x) =
{ |x |α logβ(1/|x |), if 0 < |x | ≤ 1/e,

|x |α, otherwise,

with α > 1 − n and β ∈ R, are 1-admissible in Rn , n ≥ 2. We expect these weights to be
1-admissible (and even A1) for −n < α ≤ 1 − n as well, but the A1 condition needs to be
checked in this case. This is well known for β = 0, see Heinonen et al. [24, p. 10], thus
showing that the above condition for admissibility is not sharp. Note also that for n = 1 a
weight is p-admissible if and only if it is an Ap weight, by Theorem 2 in Björn et al. [13],
and that the above “Jacobian” technique does not apply in this case.

Proof of Proposition 10.5 Let k(ρ) = ρw(ρ)1/(n−1). Then k is locally absolutely continuous
and (10.7) implies that

k′(ρ) = w(ρ)1/(n−1) + 1

n − 1
ρw(ρ)1/(n−1)−1w′(ρ) (10.8)

= w(ρ)1/(n−1)
(
1 + ρw′(ρ)

(n − 1)w(ρ)

)
≥

(
1 − γ1

n − 1

)
w(ρ)1/(n−1),

which is positive for a.e. ρ. Thus k is strictly increasing. Note also that integrating the
inequality w′(ρ)/w(ρ) ≥ −γ1/ρ implies that

w(ρ2)

w(ρ1)
≥

(
ρ2

ρ1

)−γ1

for 0 < ρ1 ≤ ρ2 < ∞, and hence

k(ρ2) = ρ2w(ρ2)
1/(n−1) � ρ

1−γ1/(n−1)
2 → ∞, as ρ2 → ∞,

and

k(ρ1) = ρ1w(ρ1)
1/(n−1) � ρ

1−γ1/(n−1)
1 → 0, as ρ1 → 0,

showing that k is onto. From (10.7) and (10.8) we also conclude that

0 < 1 − γ1

n − 1
≤ ρk′(ρ)

k(ρ)
≤ 1 + γ2

n − 1
,

i.e. that (10.2) holds. Theorem 10.4 now finishes the proof. �
Remark 10.7 The condition (10.7) can also be expressed in terms of f (ρ) := μ(B(0, ρ)),
where dμ = w dx , as follows. Since w(ρ) = Cρ1−n f ′(ρ), an equivalent condition to (10.7)
is

0 < n − 1 − γ1 ≤ ρ f ′′(ρ)

f ′(ρ)
≤ n − 1 + γ2.

Note that this requires f ′′ > 0 (since f is increasing), i.e. f must be convex, which excludes
small powers f (r) = rα , 0 < α < 1. On the other hand, these correspond to A1 weights,
and are thus 1-admissible; see Heinonen et al. [24, p. 10] and Theorem 4 in Björn [11], and
cf. also Remark 10.6.

We end this section by calculating the variational capacity of annuli with respect to radial
weights in Rn .
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Proposition 10.8 Let w(x) = w(|x |) be a radial weight on Rn, n ≥ 2, such that w > 0
a.e. and w ∈ L1

loc(R
n). Assume that the corresponding measure dμ = w dx supports a

p-Poincaré inequality at 0, where p > 1. Let f (r) = μ(Br ), where Br = B(0, r) ⊂ Rn.
Then

capp(Br , BR) =
(∫ R

r
( f ′)1/(1−p) dρ

)1−p

whenever 0 < r < R ≤ ∞.

In Sect. 9 we applied this formula to various weights including weights of logarithmic
type. In Theorems 2.18 and 2.19 in Heinonen et al. [24], an integral estimate was obtained
for nonradial weights satisfying the Ap condition. See also Theorem 3.1 in Holopainen and
Koskela [29], where capacity of annuli in Riemannian manifolds is estimated in a similar
way.

Remark 10.9 For Proposition 10.8, we actually do not need the full p-Poincaré inequality at
0; it is enough to have it for some ball B ⊃ BR with μ(B\BR) > 0. The Poincaré inequality
is only used when proving Lemma 10.10, which in turn is used to show that the minimizer
u for capp(Br , BR) is absolutely continuous on rays and that gu = |u′|.

These consequences are not always true if the Poincaré assumption is omitted. Indeed, if
e.g.

w(ρ) = ρ1−n
( ∞∑

j=1

2− j
(
1 + 1

|ρ − q j |
))−p

≤ ρ1−n,

where {q j }∞j=1 is an enumeration of the positive rational numbers, then

g(x) =
∞∑
j=1

2− j (1 + ∣∣|x | − q j
∣∣−1) ∈ L p(BR, w dx)

is for every r̃ ∈ (r, R) an upper gradient of u := χBr̃ , since
∫
γ

g ds = ∞ for every curve

γ crossing over ∂ Br̃ . Thus u ∈ N 1,p
0 (BR, w dx) and Corollary 2.21 in Björn and Björn [5]

implies that gu = 0 a.e. in BR . It follows that the minimizer is not unique (and may also be
nonradial) and capp(Br , BR) = 0 in this case. Moreover, g ∈ N 1,p(BR, w dx) (with itself as
an upper gradient), but g /∈ L1

loc(R
n, dx), so g′ need not be defined (e.g. in the distributional

sense). Cf. also the discussion after Proposition 4.6 and the discussion about gradients on p.
13 in Heinonen et al. [24].

On the other hand, if w is p-admissible, then Theorem 8.6 in [24] directly shows that
capp(Br , BR) = ∫

BR\Br
|∇u|p w dx , where u is the solution of

div(w(x)|∇u(x)|p−2∇u(x)) = 0 in BR\Br

with the boundary data 1 on ∂ Br and 0 on ∂ BR , and only the second half of the proof below
is needed in this case, cf. Example 2.22 in [24]. More general weights require more care and
are treated using the metric space theory.

Proof of Proposition 10.8 By Lemma 4.8 we may assume that R < ∞. First we have

f (r) =
∫

Br

w dx = ωn−1

∫ r

0
w(ρ)ρn−1 dρ,
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where ωn−1 is the surface area of the (n − 1)-dimensional unit sphere in Rn . To calculate
capp(Br , BR) we need to minimize

∫
BR\Br

g p
u w dx among functions u with u = 1 on Br

and u = 0 on ∂ BR . We shall also see below that under our assumptions, gu = |u′| a.e.
Since the data are bounded, no Poincaré inequality nor doubling property is needed for the

existence of a minimizer (i.e. a competing function having p-energy equal to capp(Br , BR)),
by e.g. Theorem 5.13 in Björn and Björn [6]. Without such assumptions the minimizer need
not be unique and there may exist a nonradial minimizer, but there always exists at least one
radial minimizer. Indeed, if v is a minimizer, then

capp(Br , BR) =
∫

BR\Br

g p
v w dx =

∫

Sn−1

∫ R

r
g p
v (ρθ)w(ρ)ρn−1 dρ dθ,

and we can find θ0 ∈ Sn−1 so that

∫ R

r
g p
v (ρθ0)w(ρ)ρn−1 dρ ≤ capp(Br , BR)

ωn−1
. (10.9)

Letting u(x) = v(|x |θ0) and g(x) = gv(|x |θ0) it is easily verified that g is a p-weak upper
gradient of u and that, by (10.9),

∫

BR\Br

g p
u w dx ≤

∫

BR\Br

g pw dx ≤ capp(Br , BR).

Thus u is a radial minimizer.
As usual, we write u(x) = u(|x |), where u : [0,∞) → R. We may clearly assume that

u is decreasing, and so u′(ρ) exists for a.e. ρ. By Proposition 3.1 in Shanmugalingam [38]
(or Theorem 1.56 in [5]), u is absolutely continuous on all curves, except for a curve family
with zero p-modulus (with respect to the measure μ). Lemma 10.10 below shows that the
family of all radial rays connecting Br to Rn\BR has positive p-modulus. By symmetry, it
then follows that u is absolutely continuous on the interval [r, R] and hence, by Lemma 2.14
in [5], gu = |u′| a.e.

Thus,
∫

BR\Br

g p
u w dx = ωn−1

∫ R

r
|u′(ρ)|pw(ρ)ρn−1 dρ =

∫ R

r
|u′(ρ)|p f ′(ρ) dρ.

Since u is a minimizer of this integral, it solves the corresponding Euler–Lagrange equation

(|u′|p−2u′ f ′)′ = 0

(which is derived in a standard way) and hence |u′|p−2u′ f ′ = A a.e. It is clear that u′ ≤ 0,
and so we get u′ = −(A/ f ′)1/(p−1) a.e. To determine the constant A, notice that

1 = u(r) − u(R) = −
∫ R

r
u′(ρ) dρ =

∫ R

r

(
A

f ′

)1/(p−1)

dρ,

and thus

A =
(∫ R

r
( f ′)1/(1−p) dρ

)1−p

.

Inserting this into the above expressions for u′ and
∫

BR\Br
g p

u w dx gives
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capp(Br , BR) =
∫ R

r
|u′|p f ′ dρ =

(∫ R

r
( f ′)1/(1−p) dρ

)−p ∫ R

r
( f ′)p/(1−p) f ′ dρ

=
(∫ R

r
( f ′)1/(1−p) dρ

)1−p

.

�
Lemma 10.10 Under the assumptions of Proposition 10.8, the family �r,R of all radial rays
connecting Br to Rn\BR has positive p-modulus with respect to the measure dμ = w dx.

Proof Assume on the contrary that the p-modulus of �r,R is zero. Then there exists g ∈
L p(BR\Br , μ) such that for every radial ray γ connecting rθ to Rθ , where θ ∈ Sn−1, we
have

∫

γ

g ds =
∫ R

r
g(ρθ) dρ = ∞.

Since g ∈ L p(BR\Br , μ), Fubini’s theorem implies that for a.e. θ ∈ Sn−1,
∫ R

r
g(ρθ)pw(ρθ)ρn−1 dρ < ∞.

Choose one such θ ∈ Sn−1 and set g̃(|x |) = g̃(x) = g(|x |θ), x ∈ BR\Br . Then g̃ is radially
symmetric, g̃ ∈ L p(BR\Br , μ), and

∫
γ

g̃ ds = ∞ for every γ ∈ �r,R .

Since
∫ R

r g̃ dt = ∞, we can by successively halving intervals find a decreasing sequence

of intervals [a j , b j ] such that
∫ b j

a j
g̃ dt = ∞ and b j − a j → 0, as j → ∞. Letting r̃ =

lim j→∞ a j we see that either
∫ r̃

r̃−ε
g̃ dt = ∞ for all ε > 0, or

∫ r̃+ε

r̃ g̃ dt = ∞ for all ε > 0

(or both). Let in the former case E = Br̃ and in the latter case E = Br̃ .
If γ : [0, lγ ] → Rn is any (possibly nonradial) curve connecting E to Rn\E , then using

the symmetry of g̃ it is easily verified that
∫

γ

g̃ ds ≥
∫ |γ (lγ )|

|γ (0)|
g̃ dt = ∞.

Thus g̃ is an upper gradient of un = nχE for every n = 1, 2, . . . . Since un ∈ N 1,p(B2R, μ),
applying the p-Poincaré inequality at 0 to un gives

0 < n
∫

B2R

|u1 − u1,B2R | dμ =
∫

B2R

|un − un,B2R | dμ ≤ C R

(∫

B2R

g̃ p dμ

)1/p

< ∞.

Letting n → ∞ leads to a contradiction, showing that �r,R has positive p-modulus. �
Acknowledgements A.B. and J.B. were supported by the Swedish Research Council. J.L. was supported by
the Academy of Finland (Grant No. 252108) and the Väisälä Foundation of the Finnish Academy of Science
and Letters. Part of this research was done during several visits of J.L. to Linköping University in 2012–2013,
and while A.B. and J.B. visited Institut Mittag-Leffler in 2013. We wish to thank these institutions for their
kind hospitality.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Interna-
tional License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

123

http://creativecommons.org/licenses/by/4.0/


1214 A. Björn et al.

References

1. Adamowicz, T., Björn, A., Björn, J., Shanmugalingam, N.: Prime ends for domains in metric spaces. Adv.
Math. 238, 459–505 (2013)

2. Adamowicz, T., Shanmugalingam, N.: Non-conformal Loewner type estimates for modulus of curve
families. Ann. Acad. Sci. Fenn. Math. 35, 609–626 (2010)

3. Adams, D.R.: Weighted nonlinear potential theory. Trans. Am. Math. Soc. 297, 73–94 (1986)
4. Astala, K., Iwaniec, T., Martin, G.: Elliptic Partial Differential Equations and Quasiconformal Mappings

in the Plane. Princeton Mathematical Series, vol. 48. Princeton University Press, Princeton (2009)
5. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces. EMS Tracts in Mathematics, vol. 17.

European Mathematics Society, Zürich (2011)
6. Björn, A., Björn, J.: The variational capacity with respect to nonopen sets in metric spaces. Potential

Anal. 40, 57–80 (2014)
7. Björn, A., Björn, J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine

topology. Rev. Mat. Iberoam. 31, 161–214 (2015)
8. Björn, A., Björn, J., Gill, J., Shanmugalingam, N.: Geometric analysis on Cantor sets and trees. J. Reine

Angew. Math. doi:10.1515/crelle-2014-0099 (to appear)
9. Björn, A., Björn, J., Lehrbäck, J.: The annular decay property and capacity estimates for thin annuli.

Collect. Math. doi:10.1007/s13348-016-0178-y (to appear)
10. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton–Sobolev functions and density of

Lipschitz functions on metric spaces. Houston J. Math. 34, 1197–1211 (2008)
11. Björn, J.: Poincaré inequalities for powers and products of admissible weights. Ann. Acad. Sci. Fenn.

Math. 26, 175–188 (2001)
12. Björn, J.: Boundary continuity for quasiminimizers on metric spaces. Ill. J. Math. 46, 383–403 (2002)
13. Björn, J., Buckley, S.M., Keith, S.: Admissible measures in one dimension. Proc. Am. Math. Soc. 134,

703–705 (2006)
14. Bonk, M., Heinonen, J., Koskela, P.: Uniformizing Gromov hyperbolic spaces. Astérisque 270, i–viii,

1–99 (2001)
15. Capogna, L., Danielli, D., Garofalo, N.: Capacitary estimates and the local behavior of solutions of

nonlinear subelliptic equations. Am. J. Math. 118, 1153–1196 (1996)
16. Danielli, D., Garofalo, N., Marola, N.: Local behavior of p-harmonic Green functions in metric spaces.

Potential Anal. 32, 343–362 (2010)
17. David, G., Semmes, S.: Strong A∞ weights, Sobolev inequalities and quasiconformal mappings. In:

Sadosky, S. (ed.) Analysis and Partial Differential Equations, Lecture Notes in Pure and Applied Mathe-
matics, vol. 122, pp. 101–111. Dekker, New York (1990)

18. Dovgoshey, O., Martio, O., Ryazanov, V., Vuorinen, M.: The Cantor function. Expos. Math. 24, 1–37
(2006)

19. Garofalo, N., Marola, N.: Sharp capacitary estimates for rings in metric spaces. Houston J. Math. 36,
681–695 (2010)

20. Gehring, F.W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math.
130, 265–277 (1973)

21. Hajłasz, P.: Sobolev spaces on metric-measure spaces. In: Auscher, P., Coulhon, T., Grigor’yan, A. (eds.)
Heat Kernels and Analysis on Manifolds, Graphs and Metric Spaces (Paris, 2002). Contemporary Math-
ematics, vol. 338, pp. 173–218. American Mathematics Society, Providence (2003)

22. Heinonen, J.: Lectures on Analysis on Metric Spaces. Springer, New York (2001)
23. Heinonen, J., Holopainen, I.: Quasiregular maps on Carnot groups. J. Geom. Anal. 7, 109–148 (1997)
24. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations,

2nd edn. Dover, Mineola (2006)
25. Heinonen, J., Koskela, P.: Weighted Sobolev and Poincaré inequalities and quasiregular mappings of

polynomial type. Math. Scand. 77, 251–271 (1995)
26. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math.

181, 1–61 (1998)
27. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.T.: Sobolev Spaces on Metric Measure Spaces.

New Mathematical Monographs, vol. 27. Cambridge University Press, Cambridge (2015)
28. Holopainen, I.: Nonlinear Potential Theory and Quasiregular Mappings on Riemannian Manifolds.

Annales Academiae Scientiarum Fennicae Series A I Mathematica Dissertationes, vol. 74 (1990)
29. Holopainen, I., Koskela, P.: Volume growth and parabolicity. Proc. Am. Math. Soc. 129, 3425–3435

(2001)
30. Holopainen, I., Shamugalingam, N.: Singular functions on metric measure spaces. Collect. Math. 53,

313–332 (2002)

123

http://dx.doi.org/10.1515/crelle-2014-0099
http://dx.doi.org/10.1007/s13348-016-0178-y


Sharp capacity estimates for annuli 1215

31. Kallunki [Rogovin], S., Shanmugalingam, N.: Modulus and continuous capacity. Ann. Acad. Sci. Fenn.
Math. 26, 455–464 (2001)

32. Keith, S., Zhong, X.: The Poincaré inequality is an open ended condition. Ann. Math. 167, 575–599
(2008)

33. Koskela, P.: Removable sets for Sobolev spaces. Ark. Mat. 37, 291–304 (1999)
34. Koskela, P., MacManus, P.: Quasiconformal mappings and Sobolev spaces. Stud. Math. 131, 1–17 (1998)
35. Mäkäläinen, T.: Adams inequality on metric measure spaces. Rev. Mat. Iberoam. 25, 533–558 (2009)
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