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Abstract We prove a ‘minimal’ type automorphy lifting theorem for 2-adic Galois repre-
sentations of unitary type, over imaginary CM fields. We use this to improve an automorphy
lifting theorem of Kisin for GL2.
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2 J. A. Thorne

1 Introduction

In this paper, we study the deformation theory of 2-adic Galois representations of unitary
type, over CM number fields. More precisely, let F be an imaginary CM number field with
maximal totally real subfield F+, and let c ∈ Gal(F/F+) denote the non-trivial element. In
this introduction, we say that a continuous representation

ρ: Gal(F/F) → GLn(Qp)

is of unitary type if there is an isomorphism ρc ∼= ρ∨ ⊗ ε1−n , where ε denotes the p-adic
cyclotomic character. The deformation theory of such representations in the case that p is odd
has been studied in a series of papers beginning with [8], and culminating in the paper [5],
where the authors prove very general automorphy and potential automorphy theorems for
such Galois representations.

In contrast, there has been no study to date of the deformation theory of representations
with 2-adic coefficients, except when n = 2 (in which case, it is essentially equivalent to
consider representations ρ:GF+ → GL2(Qp) with no additional self-duality condition). In
this connection, we mention the papers of Dickinson [10] (who proves a modularity lifting
theorem for 2-adic representations under a supplementary local hypothesis at infinity) and
Khare and Wintenberger [21] and Kisin [18] (who prove modularity lifting theorems for
2-adic representations without such a hypothesis). The additional difficulties that arise in
the 2-adic case are of two main types: first, to get a good handle on the local lifting rings,
especially at places dividing 2, and second, to get a good control of the relevant Galois
cohomology groups.

In this paper, we prove an automorphy lifting theorem for 2-adic Galois representations
of unitary type in arbitrary dimension:

Theorem 1.1 (Theorem 5.1) Let n ≥ 2. Let F be an imaginary CM number field with totally
real subfield F+. Fix a prime p and an isomorphism ι: Qp

∼= C, and consider a continuous
representation

ρ:GF → GLn(Qp).

Suppose that ρ satisfies the following conditions:

(i) There is an isomorphism ρc ∼= ρ∨ε1−n.
(ii) The group ρ(GF(ζp)) ⊂ GLn(Fp) is adequate, in the sense of Definition 2.20.
(iii) The representation ρ is almost everywhere unramified.
(iv) There exists a RACSDC automorphic representation π of GLn(AF ) such that:

(a) There is an isomorphism rι(π) ∼= ρ.
(b) For each finite place v of F, we have rι(π)|GFv

∼ ρ|GFv
(this condition is automatic

if πv and ρ|GFv
are both unramified). In particular, if v|p, then ρ|GFv

and rι(π)|GFv

are potentially crystalline.

(v) If p = 2 and n is even, then there exists a place v|∞ of F+ at which the pair (ρ, ε1−n)

is strongly residually odd, in the sense of Definition 3.3.

Then ρ is automorphic: there exists a RACSDC automorphic representation � of GLn(AF )

such that ρ ∼= rι(�).

This is a theorem of ‘minimal type’. We can phrase its conclusion more colloquially
as follows: given two n-dimensional Galois representations ρ1, ρ2 of unitary type, which
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A 2-adic automorphy lifting theorem for unitary groups over CM… 3

have ‘the same’ local behaviour at each place v of F and the same residual representation,
the automorphy of one implies the automorphy of the other. We state the theorem with
no restriction on p since even in the case where p is odd, we are able to make a slight
improvement on existing results (cf. [32, Theorem 7.1]).

The main ingredients in the proof of Theorem 1.1 which are new to this paper are the
definition of a representable deformation functor in the case p = 2, and the observation that
one can carry out the procedure of killing the dual Selmer group, even in the case where the
base field F contains pth roots of unity (see Proposition 2.21). It is here that we require the
local hypothesis (v) at infinity. In the case n = 2, this condition is more-or-less equivalent
to asking that for a given residual representation ρ:GF+ → GL2(Fp), there exist a place
v|∞ such that the image ρ(cv) of complex conjugation at v is non-trivial. This is exactly the
condition imposed by Dickinson [10].

The definition of ‘adequate subgroup’ that we use was first written down in the case p = 2
by Guralnick et al. [13]; it is pleasant to see that this turns out to be the right definition to
prove automorphy lifting theorems in this case.

Having proved Theorem 1.1, we apply it to improve the aforementionedmodularity lifting
theorem of Kisin for GL2. We are able to prove the following result.

Theorem 1.2 (Theorem 6.1) Let F be a totally real number field, and let ρ:GF → GL2(Q2)

be a continuous representation satisfying the following conditions:

(i) ρ is almost everywhere unramified.
(ii) For each place v|2 of F, ρ|GFv

is potentially crystalline. For each embedding τ : Fv ↪→
Q2, HTτ (ρ) = {0, 1}.

(iii) ρ is absolutely irreducible, and has non-soluble image. There exists a place v|∞ of F
such that ρ(cv) is non-trivial.

(iv) There exists a RAESDC automorphic representation (π, χ) ofGL2(AF ) and an isomor-
phism ι: Q2

∼= C such that rι(π) ∼= ρ.

Then ρ is automorphic: there exists a RAESDC automorphic representation (σ, ψ) of
GL2(AF ) such that ρ ∼= rι(σ ).

An analogous improvement in the case p > 2 has been made by Barnet-Lamb et al. [3].
As in that work, the main problem is to construct ordinary automorphic lifts of a given (auto-
morphic) residual representation, and we accomplish this by using Theorem 1.1 in the case of
n = 4, by tensoring together various 2-dimensional representations with given local proper-
ties. Our techniques are broadly similar to those of [3], the main wrinkle being that induction
from index 2 subgroups does not preserve adequacy. Where the authors of [3] use automor-
phic induction from quadratic extensions, we must therefore use tensor product functoriality
for GL2 ×GL2, and tensor together residual representations which have insoluble image.

We observe that Theorem 1.2 is not strictly stronger than the theorems of [18]; rather, we
have exchanged a condition at p for an apparently milder condition at infinity. This condition
at infinity could be removed if the analogous hypothesis (v) of Theorem1.1 could be removed.
It is possible that this could be done using the techniques of [18,21], although we have not
tried to do this here. Given the important role played by 2-adic automorphy lifting theorems
in the proof of Serre’s conjecture [20,21], this seems like an interesting problem.

We now describe the organization of this paper. In Sect. 2, we define our deformation
problem for Galois representations of unitary type, and study it using Galois cohomology.
Where possible, we have given arguments that are independent of the residual characteristic
p, although at some points it is impossible to avoid splitting up into cases (according as
to whether p is even or odd). In Sect. 4, we define spaces of algebraic modular forms on
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4 J. A. Thorne

definite unitary groups, and prove an automorphy lifting result under some additional local
hypotheses. Given the foundations built up in Sect. 2, this section contains little that is new
compared to [32, § 6], and we only sketch parts of the argument that remain unchanged. In
Sect. 5, we prove Theorem 1.1, by reduction to the main result of Sect. 2. In Sect. 6, we apply
this result to the proof of Theorem 1.2.

1.1 Notation

If E/F is a quadratic field extension, then we write δE/F : Gal(E/F) → {±1} for the unique
non-trivial character. A base number field F having been fixed, we will also choose algebraic
closures F of F and Fv of Fv for every finite place v of F . If p is a prime, then we will
write Qp for a fixed choice of algebraic closure of Qp , and valp for the p-adic valuation
on Qp normalized so that valp(p) = 1. These choices define the absolute Galois groups
GF = Gal(F/F) and GFv = Gal(Fv/Fv). We write IFv ⊂ GFv for the inertia subgroup.
We also fix embeddings F ↪→ Fv , extending the canonical embeddings F ↪→ Fv . This
determines for each place v of F an embedding GFv → GF . We write AF for the adele ring
of F , and A∞

F =∏′
v�∞ Fv for its finite part. If v is a finite place of F , then we write k(v) for

the residue field at v and qv = #k(v).
We write Frobv ∈ GFv /IFv for the geometric Frobenius element. We write ε:GF → Z×

p
for the p-adic cyclotomic character; if v is a finite place of F , not dividing p, then ε(Frobv) =
q−1
v . If ρ:GF → GLn(Qp) is a continuous representation, we say that ρ is de Rham if for

each place v|p of F, ρ|GFv
is de Rham. In this case, we can associate to each embedding

τ : F ↪→ Qp a multiset HTτ (ρ) of Hodge–Tate weights, which depends only on ρ|GFv
, where

v is the place of F induced by τ . This multiset has n elements, counted with multiplicity.
There are two natural normalizations for HTτ (ρ) which differ by a sign, and we choose the
one with HTτ (ε) = {−1} for every choice of τ .

We use geometric conventions for the Galois representations associated to automorphic
forms. First, we use the normalizations of the local and global Artin maps ArtFv : F×

v → W ab
Fv

and ArtF : A
×
F → Gab

F which send uniformizers to geometric Frobenius elements. If n ≥ 1
and v is a place of F , then we write recFv for the local Langlands correspondence for
GLn(Fv), normalized as in [9, § 2.1]. If v is a finite place of F , then we define recTFv

(π) =
recFv (π ⊗ | · |(1−n)/2). Then recTFv

commutes with automorphisms of C, and so makes sense

over any field � which is abstractly isomorphic to C (e.g. Qp). We write ‖ · ‖: A
×
F → R>0

for the standard norm character, which corresponds under global class field theory to the
cyclotomic character ε.

If (r, N ) is any Weil–Deligne representation, we write (r, N )F-ss for its Frobenius–
semi-simplification. If v is a finite place of F and ρ:GFv → GLn(Qp) is a continuous
representation, which is de Rham if v|p, then we write WD(ρ) for the associated Weil–
Deligne representation, which is uniquely determined by ρ, up to isomorphism.

We will call a finite extension E/Qp inside Qp a coefficient field. A coefficient field E
having been fixed, we will writeO orOE for its ring of integers, k or kE for its residue field,
and λ or λE for its maximal ideal. If A is a complete Noetherian localO-algebra with residue
field k, then we writemA ⊂ A for its maximal ideal, and CNLA for the category of complete
Noetherian local A-algebras with residue field k. We endow each object R ∈ CNLA with its
profinite (mR-adic) topology.

If � is a profinite group and ρ: � → GLn(Qp) is a continuous representation, then we can
assume (after a change of basis) that ρ takes values in GLn(O), for some choice of coefficient
field E . The semi-simplification of the composite representation � → GLn(O) → GLn(k)
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A 2-adic automorphy lifting theorem for unitary groups over CM… 5

is independent of choices, up to isomorphism, and we will write ρ:� → GLn(Fp) for this
semi-simplification.

If E is a coefficient field and ρ: � → GLn(k) is a continuous representation, then we
write ad ρ for Endk(ρ), endowed with its structure of k[�]-module. We write ad0 ρ ⊂ ad ρ

for the submodule of trace 0 endomorphisms, and (if � = GF for a number field F) ad0 ρ(1)
for its twist by the cyclotomic character. We write ad0 ρ for the quotient of ad ρ by the �-
invariant subspace of scalar endomorphisms. If M is a discrete Z[GF ]-module, then we write
H1(F, M) for the continuous Galois cohomology group with coefficients in M . Similarly,
if M is a discrete Z[GFv ]-module, then we write H1(Fv, M) for the continuous Galois
cohomology group with coefficients in M . If M is a discrete k[GF ]-module (resp. k[GFv ]-
module), then H1(F, M) (resp. H1(Fv, M)) is a k-vector space, and we write h1(F, M)

(resp. h1(Fv, M)) for the dimension of this k-vector space, provided that it is finite.

2 Deformation theory

Let n ≥ 1 be an integer, and define Gn = (GLn ×GL1) � {1, j}, an algebraic group over Z.
The semi-direct product is defined by the relation

j (g, μ) = (μt g−1, μ)j.

We let gn = Lie Gn . There is a character ν:Gn → Gm given by the formula (g, μ) �→
μ, j �→ −1. Let � be a group, and let � be an index 2 subgroup. The reason for introducing
the group Gn is the following lemma ([8, Lemma 2.1.1]):

Lemma 2.1 Suppose that R is a ring, and let c0 ∈ � − �. Then the following two sets are
in natural bijection:

(i) The set of homomorphisms r :� → Gn(R) such that r−1(G0
n (R)) = �.

(ii) The set of triples (ρ, μ, 〈·, ·〉), where ρ: � → GLn(R) and μ: � → R× are homomor-
phisms and 〈·, ·〉 is a perfect R-linear pairing on Rn such that for all x, y ∈ Rn, δ ∈ �,
we have

〈x, ρ(c20)y〉 = −μ(c0)〈y, x〉 and
〈
ρ(δ)x, ρ(δc0)y

〉 = μ(δ)〈x, y〉.
Under this correspondence we have μ(γ ) = (ν ◦ r)(γ ) for all γ ∈ �, and 〈x, y〉 = t x A−1y,
where r(c0) = (A,−μ(c0))j . If � and R are topological groups and � ⊂ � is a closed sub-
group, then continuous homomorphisms r correspond to pairs of continuous homomorphisms
(ρ, μ).

The group G0
n (R) = GLn(R)×GL1(R) acts by conjugation on the set of homomorphisms

r : � → Gn(R) such that r−1(G0
n (R)) = �. We observe that, in general, the GL1(R) factor

does not act trivially; rather, under the dictionary of Lemma 2.1, it acts by rescaling the
perfect pairing 〈·, ·〉.

If r :� → Gn(R) is a homomorphism such that � = r−1(G0
n(R)), then we will write

r |�:� → GLn(R) for the representation that arises by restricting r to � and then projecting
to the GLn factor of G0

n = GLn ×GL1. Thus it makes sense to speak, for example, of the
characteristic polynomial of an element r |�(δ), δ ∈ �. We write gnr for the R[�]-module,
free as R-module, induced by the adjoint representation of Gn .

Lemma 2.2 Let k be a field, let ρ:� → GLn(k) be an absolutely irreducible homomor-
phism, and let μ: � → k× be a character such that ρc0 ∼= ρ∨ ⊗ μ. Then there exists a
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6 J. A. Thorne

homomorphism r : � → Gn(k) such that r |� = ρ, ν ◦ r |� = μ, and r(c0) ∈ Gn(k) − G0
n (k).

This extension is unique up to G0
n (k)-conjugacy.

Proof By hypothesis, there exists a perfect pairing 〈·, ·〉: kn × kn → k such that for
all δ ∈ �, x, y ∈ kn, 〈ρ(δ)x, ρ(δc0)y〉 = μ(δ)〈x, y〉. This pairing is unique up to
k×-multiple (because ρ is absolutely irreducible). Define a new pairing by the formula
〈x, y〉′ = 〈x, ρ(c20)y〉. Then a calculation shows 〈ρ(δ)x, ρ(δc0)y〉′ = μ(δc0)〈x, y〉′ =
μ(δ)〈x, y〉′, hence 〈x, y〉′ = α〈x, y〉 for some α ∈ k×.

Define another new pairing by 〈x, y〉′′ = 〈y, ρ(c20)x〉′. Then another calculation shows
that

〈x, y〉′′ = μ(c0)
2〈x, y〉 = α2〈x, y〉,

hence α = ±μ(c0). After possibly replacing μ by its multiple by the non-trivial character of
�/�, we see that the triple (ρ, μ, 〈·, ·〉) is of the type appearing in the statement of Lemma
2.1, and the existence of r follows from this.

If r ′ is another such extension, then it corresponds under the dictionary of Lemma 2.1 to
a triple (ρ, μ, λ〈·, ·〉) for some λ ∈ k×. We thus have r ′ = (1, λ)r(1, λ)−1, showing that r
and r ′ are indeed G0

n (k)-conjugate. ��
The following lemma is [8, Lemma 2.1.5].

Lemma 2.3 Suppose that � is a profinite group and r : � → GLn(Qp) is a continuous
representation with � = r−1(G0

n (Qp)). Then there exists a finite extension E/Qp inside Qp

and another continuous representation r ′:� → Gn(OE ) which is G0
n (Qp)-conjugate to r .

Lemma 2.4 Suppose that R ⊃ S are complete Noetherian local rings with common residue
field k and mR ∩ S = mS. Suppose that � is a profinite group and r : � → Gn(R) is
a continuous representation with � = r−1(G0

n (R)). Suppose finally that r |� mod mR is
absolutely irreducible and that tr r |�(�) ⊂ S and ν ◦ r is valued in S× ⊂ R×. Then there
exists a continuous representation r ′:� → Gn(S) and g ∈ ker(Gn(R) → Gn(k)) such that
r ′ = grg−1.

Proof By the analogous result for GLn (i.e. [8, Lemma 2.1.10]) and our assumption that ν ◦r
is valued in S×, we can assume that r(�) ⊂ G0

n (S) = GLn(S)×GL1(S). Choose c0 ∈ �−�,
and write r(c0) = (A,−μ)j . Let ρ = r |�. Then we have ρc0 = Aρ∨A−1 ⊗ (ν ◦ r)|�, and
hence (by [8, Lemma 2.1.9]) we can find B ∈ GLn(S) such that ρc0 = Bρ∨B−1 ⊗ (ν ◦ r)|�.

By Schur’s lemma ([8, Lemma 2.1.8]), we have A = αB for some α ∈ R×. Since R and
S have the same residue field, we can assume (after multiplying B by an element of S×) that
α ∈ 1 + mR . We then have

(1, α)r(c0)(1, α)−1 = (1, α)(A,−μ)j (1, α)−1 = (α−1A,−μ)j ∈ Gn(S).

It follows that r ′ = (1, α)r(1, α−1) is valued in Gn(S), as desired. ��
A similar argument proves:

Lemma 2.5 Suppose that R is a complete Noetherian local ring, that � is a profinite group
and that r1, r2:� → Gn(R) are continuous representations with � = r−1

1 (G0
n (R)) =

r−1
2 (G0

n (R)), r1 mod mR = r2 mod mR, and ν ◦ r1 = ν ◦ r2. Suppose moreover that
r1|� mod mR is absolutely irreducible, and that for all δ ∈ �, tr r1|�(δ) = tr r2|�(δ).
Then there exists g ∈ ker(Gn(R) → Gn(k)) such that gr1g−1 = r2.
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A 2-adic automorphy lifting theorem for unitary groups over CM… 7

2.1 Galois deformation theory

Let p be a prime, and let E/Qp be a coefficient field with ring of integers O, maximal ideal
λ, and residue field k = O/λ. If A is a group functor on the category ofO-algebras, then we
define for R ∈ CNLO Â(R) = ker(A(R) → A(k)). Fix an imaginary CM number field F
with maximal totally real subfield F+. We assume that the following conditions are in effect:

• The extension F/F+ is everywhere unramified.
• Each place of F+ dividing p is split in F .

Let c ∈ GF+ be a fixed choice of complex conjugation. Let Sp denote the set of places of F+
dividing p, S∞ the set of places dividing ∞, and let S be a finite set of places of F+ which
contains Sp∪S∞.Wewrite F(S) for themaximalGalois extension of F unramified outside S;
then F(S)/F+ is Galois. We defineGF+,S = Gal(F(S)/F+), GF,S = Gal(F(S)/F). Then
GF,S ⊂ GF+,S is an index 2 normal subgroup, and the quotient GF+,S/GF,S is generated
by the image of c.

We fix a continuous representation r :GF+,S → Gn(k) such that r−1(G0
n (k)) = GF,S and

r |GF,S is absolutely irreducible. We also fix a continuous character χ :GF+,S → O× such
that χ = ν ◦ r .

We can now give the definitions relating to the local and global deformation theory of the
representation r .

Definition 2.6 Let v ∈ S. We define the functor Lift�v :CNLO → Sets of unrestricted

liftings of r |G
F+
v

as follows: if R ∈ CNLO , then Lift�v (R) is the set of homomorphisms

rv :GF+
v

→ Gn(R) such that ν ◦ rv = χ |G
F+
v
and rv mod mR = r |G

F+
v
.

By definition, a local deformation problem is a representable subfunctorDv ⊂ Lift�v such
that for all R ∈ CNLO , the subset Dv(R) ⊂ Lift�v is invariant under the conjugation action
of the group Ĝn(R).

We remark that the above definition depends on the choice of character χ , although we
do not include this in the notation. It is easy to see that for v ∈ S, the functor Lift�v is a local
deformation problem (i.e. that Lift�v is represented by an object R�

v ∈ CNLO).

Definition 2.7 A global deformation problem is a tuple

S = (F, r ,O, χ, S, {Dv}v∈S) ,

where F, r , O, χ and S are as above and for each v ∈ S, Dv is a local deformation problem.
Let R ∈ CNLO . A lifting of r to R of type S is, by definition, a homomorphism

r :GF+,S → Gn(R) satisfying the following conditions:

(i) We have r mod mR = r and ν ◦ r = χ .
(ii) For each v ∈ S, we have r |G

F+
v

∈ Dv(R).

Two liftings r1, r2 of type S are said to be strictly equivalent if there exists g ∈ Ĝn(R) such
that gr1g−1 = r2. A strict equivalence class of liftings of type S is called a deformation.

Lemma 2.8 Let S be a global deformation problem, and let DefS :CNLO → Sets be the
functor which assigns to each R ∈ CNLO the set of deformations of r to R of type S. Then
DefS is representable.

Proof Let Def�S :CNLO → Sets be the functor of liftings of r of type S. It is easy to see that
Def�S is representable. Let i : ĜL1 → Ĝn = ĜLn × ĜL1 be the map λ �→ (λ · 1n, λ2), and let
Ĥn be the functor in groups on CNLO given by the formula Ĥn(R) = Ĝn(R)/ i(ĜL1(R)).
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8 J. A. Thorne

It follows from [21, Proposition 2.5] that the functor Ĥn is representable by an object
of CNLO , formally smooth over O. Moreover, Ĥn acts freely on Def�S . Indeed, let R ∈
CNLO, r ∈ Def�S (R), and suppose that g ∈ StabĜn(R)(r). It follows from [8, Lemma 2.1.8]
and our assumption that r |GF,S is absolutely irreducible that we can write g = (λ · 1n, μ),
with λ,μ ∈ R×. It follows from the equality gr(c)g−1 = r(c) that in fact μ = λ2, hence
g ∈ i(ĜL1(R)), hence the image of g in Ĥn(R) is trivial. The lemma now follows from
another application of [21, Proposition 2.5]. ��

We write RS for the representing object of DefS .

Definition 2.9 Let S be a global deformation problem, and let T ⊂ S. We define a T -framed
lifting of r of type S to be a tuple (r, {αv}v∈T ), where r is a lifting of type S and for each
v ∈ T, αv ∈ Ĝn(R). Two T -framed liftings (r1, {αv}v∈T ) and (r2, {βv}v∈T ) are said to be
strictly equivalent if there exists g ∈ Ĝn(R) such that gr1g−1 = r2 and gαv = βv for each
v ∈ T . A strict equivalence class of T -framed liftings is called a T -framed deformation.

Lemma 2.10 Let S be a global deformation problem, and let DefTS :CNLO → Sets be the
functor which associates to each R ∈ CNLO the set of T -framed deformations of r to R of
type S. Then DefTS is representable.

Proof If T = ∅, then this is just Lemma 2.8. The general case follows easily from [21,
Proposition 2.5]. ��

We write RT
S for the representing object of DefTS .

Lemma 2.11 Let S be a global deformation problem and let T ⊂ S be non-empty. Then RT
S

is a formally smooth RS -algebra of relative dimension (n2 + 1)#T − 1.

Proof The map RS → RT
S arises from universality (forget the framing). The rest of the

lemma is easy. ��
Let S be a global deformation problem, and let T ⊂ S. Then there is a natural transfor-

mation

DefTS →
∏

v∈T
Dv,

given by the formula

(r1, {αv}v∈T ) �→
(
αvr1|G

F+
v

α−1
v

)

v∈T .

(it is easy to check that this is independent of the chosen representatives). If we write Rv ∈
CNLO for the representing object of Dv (v ∈ T ), then there is a corresponding morphism in
CNLO:

Rloc
S,T = ⊗̂v∈T Rv → RT

S .

2.2 Galois cohomology calculations

We continue with the notation of the previous section, and fix furthermore a choice of global
deformation problem

S = (F, r ,O, χ, S, {Dv}v∈S) .
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A 2-adic automorphy lifting theorem for unitary groups over CM… 9

If v ∈ S, then the set Lift�v (k[ε]) of liftings of r |G
F+
v
to k[ε] can be identified with the group

of cocycles Z1(F+
v , ad r), via the formula

r(σ ) = (1 + εφ(σ )) r(σ )
(
φ ∈ Z1 (F+

v , ad r
)
, σ ∈ GF+

v

)
.

Here we identify ad r = Endk(r) = ĜLn(k[ε]). Two such liftings r1, r2 are conjugate under
the action of Ĝn(k[ε]) if and only if the associated cocycles φ1, φ2 have the same image in
the group H1(F+

v , gnr). If v is split in F , then the exact sequence of k[GF+,S]-modules

0 → ad r → gnr → k → 0

splits over k[GF+
v

], and this is equivalent to asking that φ1, φ2 have the same image in

H1(F+
v , ad r).WewriteL1

v ⊂ Z1(F+
v , ad r) for the k-vector space of cocycles corresponding

to liftings inDv(k[ε]) ⊂ Lift�v (k[ε]). We write Lv for the image of L1
v in H1(F+

v , ad r), and
�1v = dimk L1

v, �v = dimk Lv .
Let T ⊂ S. We now want to define some global cohomology groups Hi

S,T which can be
used to analyze the relative tangent space of the morphism

Rloc
S,T = ⊗̂v∈T Rv → RT

S .

To this end, we define a chain complex Ci
S,T by the following formulae:

Ci
S,T =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0 i < 0;
C0(F(S)/F+, gnr) i = 0;
C1(F(S)/F+, ad r) ⊕v∈T C0(F+

v , gnr) i = 1;
C2(F(S)/F+, ad r) ⊕v∈T C1(F+

v , ad r) ⊕v∈S−T C1(F+
v , ad r)/L1

v i = 2;
Ci (F(S)/F+, ad r) ⊕v∈S Ci−1(F(S)/F+, ad r) i ≥ 3.

The differentials are given by the formula

∂(φ, (ψv)v∈S) = (∂φ, (φ|v − ∂ψv)v∈S).

It is easy to check that this is indeed a complex, and that the cohomology groups Hi
S,T of

this complex fit into a long exact sequence

0 H0
S,T H0(F(S)/F+, gnr)

⊕v∈T H0(F+
v , gnr) H1

S,T H1(F(S)/F+, ad r)η

⊕v∈T H1(F+
v ,ad r)η

⊕v∈S−T H1(F+
v ,ad r)/Lv

H2
S,T H2(F(S)/F+, ad r)

⊕v∈SH2(F+
v , ad r) H3

S,T H3(F(S)/F+, ad r)

. . .

(1)
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10 J. A. Thorne

(the superscript η indicates that we take the image of cohomology with coefficients in ad r in
cohomology with coefficients in gnr . A similar notation is used in [21, § 4.1.4]). We define
hiS,T = dimk Hi

S,T .

Lemma 2.12 Let notation be as above. We have dimk mRT
S
/(mRloc

S,T
,m2

RT
S
) = h1S,T . Conse-

quently, there is a surjection Rloc
S,T �X1, . . . , Xg� → RT

S of Rloc
S,T -algebras with g = h1S,T .

Proof We observe that there is an isomorphism

Homk

(
mRT

S
/(mRloc

S,T
,m2

RT
S
), k
) ∼= Hom

(
RT
S/mRloc

S,T
, k[ε]

)
,

and the latter space corresponds to equivalence classes of tuples (r, (αv)v∈T ), where r is a
lifting of r to k[ε] of type S, αv ∈ Ĝn(k[ε]), and for each v ∈ T, α−1

v r |G
F+
v

αv is the trivial

lifting. We can write r = (1+εφ)r and αv = 1+εvav with φ ∈ Z1(F+
v , ad r) and av ∈ gnr ,

and ∂(φ, (av)v∈T ) = 0. The pairs (φ, (av)v∈T ) and (φ′, (a′
v)v∈T ) define equivalent T -framed

deformations if and only if there exists b ∈ gnr such that φ − φ′ = ∂b and av − a′
v = b for

each v ∈ T . It is now easy to check that the space of such equivalence classes of cocycles is
canonically identified with H1

S,T . ��
If M is any k[GF+,S]-module, then we define the Euler characteristics

χ(F+
v , M) =

2∑

i=0

(−1)i hi (F+
v , M),

χ(F(S)/F+, M) =
2∑

i=0

(−1)i hi (F(S)/F+, M)

and

χS,T =
3∑

i=0

(−1)i hiS,T .

Lemma 2.13 With assumptions as above, we have an equality

χS,T = 1 − #T + χ(F(S)/F+, ad r) −
∑

v∈S
χ(F+

v , ad r) −
∑

v∈S−T

(
�1v − n2

)

Proof Use the above long exact sequence and the exact sequences (v ∈ S):

0→H0(F+
v , ad r)→H0(F+

v , gn)→H0(F+
v , k)→H1(F+

v , ad r)→ H1(F+
v , ad r)η → 0.

We also note that for i ≥ 3, the map

Hi (F(S)/F+, ad r) →
∏

v∈S∞
Hi (F+

v , ad r)

is bijective (and so Hi
S,T = 0 if i ≥ 4). ��

Corollary 2.14 Suppose that S = T � Q � S∞ (a disjoint union) and that Sp ⊂ T . Then
we have

χS,T = 1 − #T −
∑

v∈Q�S∞
(�1v − n2).
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A 2-adic automorphy lifting theorem for unitary groups over CM… 11

Proof We evaluate each term of the formula of Lemma 2.13 in turn. We have

χ(F(S)/F+, ad r) =
∑

v∈S∞

(
h0(F+

v , ad r) − n2
)

(by [23, Theorem 5.1]), and
∑

v∈S∞
χ(F+

v , ad r) =
∑

v∈S∞
h0(F+

v , ad r)

(as h1(F+
v , ad r) = h2(F+

v , ad r)), and
∑

v∈T�Q
χ(F+

v , ad r) = −n2[F+: Q]

(by [23, Theorem 2.8]). Summing these up now gives

χS,T = 1 − #T − n2[F+: Q] +
∑

v∈S∞
h0(F+

v , ad r) + n2[F+: Q] −
∑

v∈S∞
h0(F+

v , ad r)

−
∑

v∈Q�S∞
(�1v − n2)

= 1 − #T −
∑

v∈Q�S∞
(�1v − n2),

as desired. ��

If v ∈ S, then we define

μv = ker
(
H1(F+

v , ad r) → H1(F+
v , gnr)

)
.

If v is split in F , then μv = 0, but in general it can be non-trivial. We always have μv ⊂ Lv .
If T ⊂ S, then we define a ‘dual Selmer group’

H1
S⊥,T = {x ∈ H1(F(S)/F+, ad r(1)) | ∀v ∈ T, 〈x, μv〉 = 0; ∀v ∈ S − T, 〈x,Lv〉 = 0

}
.

We define h1S⊥,T
= dimk H1

S⊥,T
.

Lemma 2.15 Let S = (F, r ,O, χ, S, {Dv}v∈S) be a global deformation problem, and let
T ⊂ S. Then h2S,T = h1S⊥,T

and h3S,T = h0(F(S)/F+, ad r(1)).

Proof We use the Poitou–Tate exact sequence. More precisely, we have two exact sequences
of k-vector spaces:

H1(F(S)/F+, ad r)η
⊕v∈T H1(F+

v ,ad r)η

⊕v∈S−T H1(F+
v ,ad r)/Lv

⊕v∈SH2(F+
v , ad r) H2(F(S)/F+, ad r) H2

S,T

H3
S,T 0,

(2)
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12 J. A. Thorne

and

H1(F(S)/F+, ad r)η
⊕v∈T H1(F+

v ,ad r)η

⊕v∈S−T H1(F+
v ,ad r)/Lv

⊕v∈SH2(F+
v , ad r) H2(F(S)/F+, ad r) (H1

S⊥,T
)∨

H0(F(S)/F+, ad r(1))∨ 0.

(3)

The first of these is part of the long exact sequence (1), while the second arises from the
Poitou–Tate exact sequence (see [23, Theorem 4.10]). The lemma now follows immediately
on comparing (2) and (3). ��
2.3 Local deformation problems

We continue with the notation of Sect. 2.1, and define some local deformation problems.

2.3.1 Deformations at infinity

Suppose that v ∈ S∞ and χ(cv) = −1 (we will always assume this in applications below).
In this section, we study the unrestricted deformation functor Lift�v and its tangent space
�1v = Lift�v (k[ε]).
Lemma 2.16 Suppose that p = 2.

(i) Suppose that n is odd. Then r(cv) is GLn(k)-conjugate to (1n, 1)j .
(ii) Suppose that n is even. Then r(cv) is GLn(k)-conjugate either to (1n, 1)j or (�n, 1)j ,

where �n ∈ GLn(k) is the matrix with 1’s on the antidiagonal and 0’s everywhere else.

Proof Let r(cv) = (A, 1)j . We calculate

r(cv)
2 = (At A

−1
, 1) = 1,

hence A = t A. Conjugation by g ∈ GLn(k) replaces A by gAt g, so the problem comes
down to the classification of GLn(k)-conjugacy classes of symmetric matrices.

Rephrasing the problem slightly, we must show that for any m ≥ 1, any k-vector space
V of dimension m with non-degenerate symmetric bilinear pairing is isomorphic to one of
Am or Bm , where Am = km with the pairing of Gram matrix 1n , and Bm = km with the
pairing of Gram matrix �m . This follows by induction, together with the easily checked
observations Am ∼= Am

1 , Bm ∼= Bm/2
2 or B(m−1)/2

2 ⊕ A1 (according to whether m is even or
odd, respectively) and B2 ⊕ A1 ∼= A3. ��
Lemma 2.17 (i) We have �1v = n(n + 1)/2.
(ii) Suppose that p �= 2 or that p = 2 and r(cv) is GLn(k)-conjugate to (1n, 1)j . Then

dimk μv = 1 and the natural map H1(F+
v , k) → H1(F+

v , ad r) is injective.
(iii) Suppose that p = 2, n is even, and r(cv) is GLn(k)-conjugate to (�n, 1)j . Then

dimk μv = 0 and the natural map H1(F+
v , k) → H1(F+

v , ad r) is 0.
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Proof Let r ∈ Lift�v (k[ε]). Then we can write r(cv) = ((1 + εX)A, 1)j , and X ∈ ad r is
arbitrary, subject to the condition

r(cv)
2 = (

(1 + εX)A, 1
)
j
(
(1 + εX)A, 1

)
j

= (
(1 + εX)A, 1

) (t A
−1

(1 − εt X), 1
)

= (1 + ε(X − t X), 1) = 1.

In other words, X must be symmetric. This proves the first part of the lemma. The second
part is clear if p �= 2. If p = 2, we have

μv = ker(H1(F+
v , ad r) → H1 (F+

v , gnr)
) = im

(
H0(F+

v , k) → H1(F+
v , ad r)

)
,

where the boundary map is the one attached to the short exact sequence

0 ad r gnr k 0.

A calculation with cocycles reveals that we can identify μv with the image of the map
H1(F+

v , k) → H1(F+
v , ad r) which is attached to the short exact sequence

0 k ad r ad0 r 0.

Let us assume that r(cv) is equal either to (1n, 1)j or (�n, 1)j . Let t ⊂ ad r denote the
diagonal Cartan subalgebra, and consider the exact sequence of k[GF+

v
]-modules

0 k t t/k 0.

Then t ⊂ ad r admits a GF+
v
-stable complement (consisting of matrices with 0’s on the

diagonal), so we can finish the proof of the lemma by analysing what happens inside t.
If r(cv) = (1n, 1)j (so we are in the second case of the lemma), then GF+

v
acts trivially

on each term in this sequence, which is therefore a split exact sequence of k[GF+
v

]-modules.
The desired assertions follow immediately from this. If r(cv) = (�n, 1)j (so we are in the
third case of the lemma), then cv acts on t ∼= k2n by reversing the order of coordinates. The
usual calculation of cohomology of cyclic groups shows that H1(F+

v , t) = 0, which implies
the desired statement in this case also. ��

2.3.2 Taylor–Wiles deformations

Let v be a finite place of F+ which splits in F(ζp) and at which r is unramified, and suppose
that r(Frobv) is semi-simple. Let αv ∈ k be an eigenvalue of r(Frobv) of multiplicity n1,
say. We can decompose

ρ|G
F+
v

= Av ⊕ Bv, (4)

where Av(Frobv) = αv ·1n1 . We define a subfunctorDTW
v ⊂ Lift�v as follows: if R ∈ CNLO

and r ∈ Lift�v (R), then we say that r ∈ DTW
v (R) if there is a decomposition

ρ = Av ⊕ Bv (5)

lifting the decomposition (4), and such that Bv is unramified and Av|IF+
v

= ψv · 1n1 for

some character ψv : IF+
v

→ R×. The deformation problem DTW
v depends on the choice of

αv , although we do not include it in the notation. It is known (see [32, Lemma 4.2]) thatDTW
v

is a local deformation problem.
Let �v = k(v)×(p) denote the p-part of the finite abelian group k(v)×. We observe that

if ρ ∈ DTW
v (R), then there is a canonical homomorphism �v → R×, given by ψv ◦ ArtF+

v
.
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14 J. A. Thorne

2.3.3 Potentially crystalline deformations

Now suppose that v ∈ Sp; then v splits in F , by assumption. We now recall, following
[5, § 1.4], some local deformation problems whose existence and basic properties have
been established by Kisin [17]. Let Zn+ ⊂ Zn denote the set of tuples (λ1, . . . , λn) with

λ1 ≥ · · · ≥ λn , and let λv ∈ (Z+
n )

HomQp (F+
v ,Qp). Let K be a finite extension of F+

v inside

F
+
v .
According to [5, § 1.4], there is a reduced, p-torsion free quotient Rλv,K−cr

v of R�
v with

the following properties:

• The quotient R�
v → Rλv,K−cr

v defines a local deformation problem. We write Dλv,K−cr
v

for the corresponding set-valued functor in CNLO . In the case K = F+
v , we omit the

superscript from the notation and simply write Dλv
v .

• Let ρ�:GF+
v

→ GLn(R�
v ) denote the universal lifting, and fix a homomorphism

f : R�
v → Qp . Then f factors through the quotient R�

v → Rλv,K−cr
v if and only if

f ◦ ρ�|GK is crystalline, of Hodge–Tate type λv .
• The ring Rλv,K−cr

v [1/p] is formally smooth over E , of dimension 1+n2+[F+
v : Qp]n(n−

1)/2.

The ring Rλv,K−cr
v = Rλv,K−cr

v ⊗O Qp is independent of the choice of coefficient field E
(see [5, Lemma 1.2.1]). This fact will be used in Sect. 3.2.

2.3.4 A useful local deformation problem

Now suppose that v ∈ S − (Sp ∪ S∞) splits in F . We write Rfl
v for the maximal reduced,

p-torsion free quotient of R�
v [1/p], and Dfl

v for the corresponding set-valued functor on
CNLO . It is easy to see that Dfl

v is a local deformation problem.
The ring Rfl

v has the following useful property (see [5, Lemma 1.3.2]). Let ρ�:GF+
v

→
GLn(R�

v ) be the universal lifting, and let f : R�
v → Qp be a homomorphism (that therefore

factors through the quotient Rfl
v ). Then there is an irreducible admissible representation π of

GLn(F+
v ) over Qp such that recT

F+
v

(π) ∼= ( f ◦ ρ�)F-ss. Suppose that π is generic. Then the

ring Rfl
v [1/p] is formally smooth over E at the closed point corresponding to f .

The ring Rfl
v = Rfl

v ⊗O Qp is independent of the choice of coefficient field E (see [5,
Lemma 1.2.1]). This fact will be used in Sect. 3.2.

2.4 Taylor–Wiles systems

Consider a global deformation problem

S = (F, r ,O, χ, S, {Dv}v∈S) .

Let T = S − S∞, and ρ = r |GF,S .

Definition 2.18 Let N ≥ 1 be an integer. A Taylor–Wiles datum of level N is a pair
(Q, (αv)v∈Q) satisfying the following conditions:

(i) Q is a finite set of finite places of F+.
(ii) For each v ∈ Q, v /∈ S and v splits in F(ζpN ).
(iii) For each v ∈ Q, ρ(Frobv) is semi-simple and αv ∈ k is one of its eigenvalues.
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If (Q, (αv)v∈Q) is aTaylor–Wiles datum, thenwedefine the augmentedglobal deformation
problem

SQ = (F, r ,O, χ, S ∪ Q, {Dv}v∈S ∪ {DTW
v }v∈Q

)
,

where for each v ∈ Q the local deformation problem DTW
v is defined with respect to the

eigenvalue αv ∈ k, as in Sect. 2.3.2. Let �Q = ∏
v∈Q k(v)×(p). Then there is a canonical

homomorphism O[�Q] → RSQ , and a canonical identification RSQ ⊗O[�Q ] O = RS .

Lemma 2.19 Let (Q, (αv)v∈Q) be a Taylor–Wiles datum. Then there is an exact sequence

0 H1
S⊥
Q ,T H1

S⊥,T ⊕v∈Q k,

the last arrow being given by [ψ] �→ (tr eFrobv,αvψ(Frobv))v∈Q. (Here we write eFrobv,αv ∈
ad r = Mn(k) for the unique idempotent in k[ρ(Frobv)] with image equal to the αv-
eigenspace of ρ(Frobv)).

Proof If v ∈ Q, let Lv ⊂ H1(F+
v , ad r) be the subspace corresponding to DTW

v (k[ε]),
and let Lur

v be the subspace corresponding to the functor of unramified deformations. Then
Lur

v ⊂ Lv . By definition, we have

H1
S⊥,T = ker

[
H1(F(S ∪ Q)/F+, ad r(1)) →

∏

v∈T
H1(F+

v , ad r(1))/μ⊥
v ×

∏

v∈S−T

H1(F+
v , ad r(1))/L⊥

v

×
∏

v∈Q
H1(F+

v , ad r(1))/(Lur
v )⊥

]
,

and

H1
S⊥
Q ,T

= ker H1
S⊥,T →

∏

v∈Q
(Lur

v )⊥/L⊥
v .

To show the lemma, it is therefore enough to show that for eachv ∈ Q, there is an isomorphism
(Lur

v )⊥/L⊥
v

∼= k, given at the level of cocycles by the formula [ψ] �→ tr eFrobv,αvψ(Frobv).
Writing r |G

F+
v

= Av ⊕ Bv as in the definition of DTW
v , we calculate ad r ∼= End(Av) ⊕

Hom(Av, Bv) ⊕ Hom(Bv, Av) ⊕ End(Bv), hence

H1(F+
v , ad r) ∼= H1(F+

v , ad Av) ⊕ H1(F+
v , ad Bv)

(as the other two summands have trivial cohomology). The representation Av is assumed
to be scalar, so ad Av is a trivial Galois module, and we have a canonical isomorphism
H1(F+

v , ad Av) ∼= H1(F+
v , k) ⊗k ad Av . The group H1(F+

v , k) is a 2-dimensional k-vector
space, endowed with a perfect duality; the subspace of unramified classes is 1-dimensional,
and equal to its own orthogonal complement. Writing Z ⊂ ad Av for the subspace of scalar
endomorphisms, we can therefore identify

L⊥
v = {

(x, y) ∈ Lur
v ⊂ H1(F+

v , ad Av) ⊕ H1(F+
v , ad Bv)

∼= H1(F+
v , ad r) | 〈x, H1(F+

v , Z)〉 = 0
}

= H1
ur(F

+
v , k) ⊗k ad

0 Av ⊕ H1
ur(F

+
v , Bv).

This expression is equivalent to the desired result. ��
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The following definition of adequate subgroups is taken from [13].

Definition 2.20 Let K be a field. We say that a subgroup H ⊂ GLn(K ) is adequate if it
satisfies the following conditions:

(i) We have H1(H, K ) = 0 and H1(H, ad0) = 0.
(ii) For each simple K [H ]-submodule W ⊂ ad, there exists a semi-simple element σ ∈ H

with an eigenvalue α ∈ K such that tr eσ,αW �= 0.

The second condition implies that Mn(K ) is spanned as a K -vector space by the semi-
simple elements σ ∈ H ⊂ ad. In particular, an adequate subgroup acts absolutely irreducibly
in its tautological representation on Kn .

Proposition 2.21 Let S = (F, r ,O, χ, S, {Dv}v∈S) be a global deformation problem, and
let T = S − S∞. We make the following assumptions:

(i) For each v ∈ S∞, μ(cv) = −1 and Dv = Lift�v .
(ii) If p �= 2, then F = F+(ζp). If p = 2, then F = F+(

√−1).
(iii) If p = 2 and n is even, then there exists v ∈ S∞ such that r(cv) is GLn(k)-conjugate to

(1n, 1)j (cf. Sect. 2.3.1).
(iv) The group ρ(GF ) ⊂ GLn(k) is adequate.

Let q = h1S⊥,T
− 1 and g = q + |T | − 1 − [F+: Q]n(n − 1)/2. Then for each N ≥ 1, we

can find infinitely many Taylor–Wiles data (Q, (αv)v∈Q) of level N such that #Q = q and
the map Rloc

S,T → RT
SQ

can be extended to a surjection Rloc
S,T �X1, . . . , Xg� � RT

SQ
.

Proof We first note that Rloc
S,T = Rloc

SQ ,T by definition, and that RT
SQ

can be topologically

generated as an Rloc
SQ ,T -algebra by h1SQ ,T elements. To prove the proposition, it is there-

fore enough to show that for each N ≥ 1, we can find infinitely many Taylor–Wiles data
(Q, (αv)v∈Q) of level N such that |Q| = q and h1SQ ,T = g.

On the other hand, we have by Corollary 2.14 and the local calculations of Sect. 2.3 an
equality

χSQ ,T = 1 − |T | − |Q| + [F+: Q]n(n − 1)/2.

Combining this with Lemma 2.15, we obtain an equality

h1SQ ,T = h2SQ ,T − h3SQ ,T − 1 + |T | + |Q| − [F+: Q]n(n − 1)/2

= h1S⊥
Q ,T

− 2 + |T | + |Q| − [F+: Q]n(n − 1)/2.

It is therefore enough to show that for each N ≥ 1, we can find infinitely many Taylor–Wiles
data (Q, (αv)v∈Q) of level N such that h1S⊥

Q ,T
= 1 = h1S⊥,T

−|Q|. We will do this by killing

cohomology classes in H1
S⊥,T

in the usual manner, using Lemma 2.19.
Fix now a choice of N ≥ 2, large enough so that FN = F(ζpN ) strictly contains F .

Let [ψ] ∈ H1
S⊥,T

⊂ H1(F(S)/F+, ad r(1)) be a cohomology class with non-zero image

in H1(F(S)/FN , ad r(1)). We claim that we can find infinitely many Taylor–Wiles data
({w}, αw) of level N such that [ψ] /∈ H1

S⊥{w},T
.

We first show that this claim implies the proposition. Indeed, let s denote the dimension
of the image of H1

S⊥,T
in H1(F(S)/FN , ad r(1)). By applying the claim repeatedly we can

find infinitely many Taylor–Wiles data (Q, {αv}v∈Q) of level N such that |Q| = s, h1S⊥
Q ,T

=
h1S⊥,T

− s and the map H1
S⊥
Q ,T

→ H1(F(S)/FN , ad r(1)) is trivial.
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It follows that H1
S⊥
Q ,T

is contained inside

ker
[
H1(F(S)/F+, ad r(1)) → H1(F(S)/FN , ad r(1))

] = H1
(
FN/F+, ad r(1)GFN

)
.

Our assumption that ρ(GF ) is adequate implies that ρ(GFN ) = ρ(GF ) and ad r(1)GFN = k
(i.e. the subspace of scalar matrices). At this point, we split into cases according to the parity
of p. If p is odd, then it is easy to see that H1

S⊥
Q ,T

= H1(FN/F+, k) is 1-dimensional.

It follows that s = q = |Q|, and the proof of the proposition is completed in this case.
If p = 2, then H1(FN /F+, k) is 2-dimensional. However, it follows from our hypotheses
and the second part of Lemma 2.17 that there exists a place v ∈ S∞ such that the map
H1(FN/F+, k) → H1(F+

v , k) → H1(F+
v , ad r(1)) is injective, and hence that H1

S⊥
Q ,T

is

again 1-dimensional (we observe that classes in H1
S⊥
Q ,T

are locally trivial at v ∈ S∞, by

definition, because v /∈ T ). We again see that s = q = |Q|, and the proof of the proposition
is completed in this case also.

We now return to the proof of the claim. Let [ψ] ∈ H1
S⊥,T

⊂ H1(F(S)/F+, ad r(1)) be

a cohomology class with non-zero image in H1(F(S)/FN , ad r(1)). By Lemma 2.19, it is
enough to find a place w of F+ and an element αw ∈ k satisfying the following conditions:

• w splits in FN and ρ(Frobw) is semi-simple.
• αw ∈ k is an eigenvalue of ρ(Frobw) such that tr eFrobw,αwψ(Frobw) �= 0.

By the Chebotarev density theorem, it is even enough to find elements σ ∈ GFN and α ∈ k
such that ρ(σ ) is semi-simple, and α is an eigenvalue of ρ(σ ) such that tr eσ,αψ(σ ) �= 0.

Let K/F be the extension cut out by ad ρ, and let KN = K · FN . Let f = ψ |KN ,
an element of H1(F(S)/KN , ad r(1))GF ⊂ H1(F(S)/KN , ad ρ)GFN . The image of [ψ]
in H1(F(S)/FN , ad r) is non-zero. On the other hand, the group H1(KN /FN , ad r) ∼=
H1(K/F, ad ρ) = 0, as follows from the assumption that ρ has adequate image. It fol-
lows that f is non-zero, as a homomorphism f : Gal(F(S)/KN ) → ad r .

Let V ⊂ ad ρ denote the k-span of the image of f , a k[GFN ]-module. We can find a
simple k[GFN ]-submodule W ⊂ V , an element σ0 ∈ GFN such that ρ(σ0) is semi-simple,
and an eigenvalue α0 ∈ k of ρ(σ0) such that tr eσ0,α0W �= 0. If tr eσ0,α0ψ(σ0) �= 0, then we
are done on taking σ = σ0 and α = α0.

Let us suppose instead that tr eσ0,α0ψ(σ0) = 0, and choose an element τ ∈ KN such that
tr eσ0,α0 f (τ ) �= 0. We claim that we are now done on taking σ = τσ0. Indeed, there is an
eigenvalue α of ρ(σ ) such that eσ0,α0 = eσ,α , and we calculate using the cocycle relation

tr eσ,αψ(σ ) = tr eσ0,α0(ψ(τ) + ψ(σ0)) = tr eσ0,α0 f (τ ) �= 0.

This completes the proof. ��

3 Galois representations and automorphic representations of GLn(AF)

In this section, we recall the class of automorphic representations with which we work and
make some preliminary observations about their attached Galois representations.

Definition 3.1 Let n ≥ 1 be an integer.

(i) Let F be an imaginary CM number field. A RACSDC automorphic representation is an
automorphic representation π of GLn(AF ) satisfying the following conditions:
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18 J. A. Thorne

(a) π is regular algebraic.
(b) π is conjugate self-dual, i.e. πc ∼= π∨, c ∈ Gal(F/F+) the non-trivial element.
(c) π is cuspidal.

(ii) Let F be a totally real number field. A RAESDC automorphic representation is a pair
(π, χ) consisting of an automorphic representation π of GLn(AF ) and a continuous
character χ : A

×
F → C×, satisfying the following conditions:

(a) π is regular algebraic.
(b) π is essentially self-dual, i.e. π ∼= π∨ ⊗ (χ ◦ det).
(c) π is cuspidal.

It is usual to require in the definition of a RAESDC automorphic representation that
the value χv(−1) is independent of the choice of place v|∞ of F ; however, Patrikis [24,
Theorem 2.0.1] has recently shown that this follows from the other conditions.

If F is an imaginaryCMfield or a totally real field, andπ [resp. (π, χ)] is aRACSDC (resp.
RAESDC) automorphic representation of GLn(AF ), and ι: Qp

∼= C is an isomorphism, then
there exists a continuous semi-simple representation rι(π):GF → GLn(Qp), which satisfies
the following local-global compatibility condition at each finite place v of F :

WD(rι(π)|GFv
)F-ss ∼= recTFv

(ι−1πv).

In particular, if v|p then rι(π)|GFv
is de Rham, and there is a recipe for the Hodge–Tate

weights of π in terms of ι and π∞; see [9, § 2.1] for a precise statement and list of references.

3.1 The sign of a conjugate self-dual Galois representation

Let F be an imaginary CM number field with maximal totally real subfield F+, and let
c ∈ GF+ be a fixed choice of complex conjugation. Let k be a field, ρ:GF → GLn(k) an
absolutely irreducible representation, and μ:GF+ → k× a character.

Suppose that there is an isomorphism ρc ∼= ρ∨ ⊗ μ; equivalently, that there exists a
pairing 〈·, ·〉: kn × kn → k such that for all δ ∈ GF , x, y ∈ kn , we have 〈ρ(δ)x, ρ(δc)y〉 =
μ(δ)〈x, y〉. The pairing 〈·, ·〉 is then uniquely determined up to scalar, and (after possibly
replacing μ by μδF/F+ , as in the proof of Lemma 2.2) we have

〈x, y〉 = −μ(c)〈y, x〉 (6)

for all x, y ∈ kn . Following [5, § 2], we say that a pair (ρ, μ) satisfying the condition (6)
is polarized. By Lemma 2.1, this is equivalent to asking that ρ extend to a homomorphism
r :GF+ → Gn(k) such that ν ◦ r = μ. This condition is independent of the choice of c. We
have the following result, due to Bellaiche–Chenevier [2].

Theorem 3.2 Let π be a RACSDC automorphic representation of GLn(AF ), ι: Qp
∼= C

an isomorphism, and suppose that rι(π) is irreducible. Then the pair (rι(π), ε1−nδnF/F+) is
polarized.

Now suppose that k is a perfect field of characteristic 2 and that n is even, and that the
pair (ρ, μ) is polarized. We can attach a discrete invariant to ρ at each infinite place v of
F+ as follows. Let cv ∈ GF+ be a choice of complex conjugation at this place, and let
r :GF+ → Gn(k) be a choice of extension of ρ such that ν ◦ r = μ.

According to Lemma 2.16, there are two distinct possibilities for the GLn(k)-conjugacy
class of r(cv) ∈ Gn(k): it is conjugate either to (1n, 1)j , or to (�n, 1)j . We observe that the
matrix �n admits skew-symmetric lifts in GLn(W (k)), while the matrix 1n does not (here
W (k) denotes the ring of Witt vectors of k).
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Definition 3.3 Let k be a perfect field of characteristic 2, and suppose that n is even. Let
(ρ, μ) be polarized, and let v be an infinite place of F+.We say that the pair (ρ, μ) is strongly
residually odd at v if r(cv) is GLn(k)-conjugate to (1n, 1)j .

To motivate this definition, we have the following simple lemma.

Lemma 3.4 Let p = 2, and let n be an even integer. Let E be a finite extension of Qp, and
let r :GF+ → Gn(O) be a homomorphism such that (setting ρ = r |GF , μ = ν ◦ r) ρ is
absolutely irreducible. Then the pair (ρ, μ) is polarized. If v|∞ is a place of F+, and (ρ, μ)

is strongly residually odd at v, then μ(cv) = −1.

Lemma 3.5 Let k be a finite field, and let σ :GF+ → GL2(k) be a continuous representation
such that σ |GF is absolutely irreducible. Let χ = det σ , and letψ :GF → k× be a character
such that ψψc = εχ , and set ρ = σ |GF ⊗ ψ−1. Then:

(i) The character χ is totally odd if and only if the pair (ρ, ε−1) is polarized.
(ii) Suppose that k has characteristic 2, and let v be an infinite place of F+. Then (ρ, ε−1)

is strongly residually odd at v if and only if σ(cv) ∈ GL2(k) is non-trivial.

Proof The proof is by explicit calculation. Fix a place v|∞ of F+ and a choice c = cv ∈ GF+
of complex conjugation at v. Note first that ρ is absolutely irreducible and ρc ∼= ρ∨ ⊗ ε−1.
Define

J =
(
0 1
−1 0

)

,

so that tσ(γ )Jσ(γ ) = χ(γ )J for all γ ∈ GF+ . An easy calculation then shows that the
relation

tρ(δ)A−1ρ(δc) = ε−1(δ)A−1

holds if we take A = σ(c)J−1, in which case t A = −χ(c)A. We can therefore define an
extension r :GF+ → G2(k) of ρ by setting r(c) = (A, ε−1χ(c))j . This shows the first part
of the lemma.

For the second part, we observe that the only two possibilities for σ(cv) (up to conjugation
in GL2(k)) are σ(cv) = 1 or

σ(cv) =
(
1 1
0 1

)

.

In the first case, we obtain A = J−1 = �2. In the second case, we obtain

A =
(
1 1
0 1

)(
0 1
1 0

)

=
(
1 1
1 0

)

,

and this symmetric matrix is GL2(k)-conjugate to 12. This completes the proof. ��
3.2 Irreducible components of Galois deformation rings

In this section we recall some important ideas from [5], which formalize the idea of two
global Galois representations having the same local properties (compare the statement of
Theorem 1.1). Fix a prime p. Let l be a prime, and let K be a finite extension of Ql inside
Ql .
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Definition 3.6 Fix continuous representations ρ1, ρ2:GK → GLn(Zp), and let r1, r2:
GK → GLn(Fp) be the corresponding residual representations r1 = ρ1 mod m

Zp
, r2 =

ρ2 mod m
Zp
. Suppose that r1 ∼= r2.

(i) Suppose that l �= p. We say that ρ1 connects with ρ2, and write ρ1 ∼ ρ2, if ρ1, ρ2 define
points on a common irreducible component of Spec(Rfl

v ⊗ Qp), where Rfl
v ⊗ Qp is the

ring defined with respect to r1 in Sect. 2.3.4.
(ii) Suppose that l = p. We say that ρ1 connects with ρ2, and write ρ1 ∼ ρ2, if there exists a

finite extension K ′/K and λv ∈ (Zn+)
HomQp (K ,Qp) such that each of ρ1|GK ′ and ρ2|GK ′

is crystalline of Hodge–Tate type λv , and ρ1, ρ2 define points on a common irreducible

component of Spec(Rλv,K ′−cr
v ⊗ Qp), where Rλv,K ′−cr

v ⊗ Qp is the ring defined with
respect to r1 in Sect. 2.3.3.

(We use the notation r1, r2 instead of ρ1, ρ2 because of our convention that ρi is the
semi-simplified residual representation of ρ). It follows from [5, Lemma 1.2.2] that these
definitions make sense, independently of the choice of isomorphism r1 ∼= r2.

Now let F be a number field, and suppose that ρ:GF → GLn(Qp) is a continuous
representation such that ρ is absolutely irreducible. Then after conjugating, we can assume
that ρ takes values in GLn(Zp), and ρ is then unique up to GLn(Zp)-conjugation.

Suppose ρ1, ρ2:GF → GLn(Qp) are continuous representations such that ρ1 and ρ2 are
absolutely irreducible and ρ1

∼= ρ2, and let v be a finite place of F . We will say that ρ1|GFv

connects to ρ2|GFv
, and write ρ1|GFv

∼ ρ2|GFv
, if this relation holds as in Definition 3.6 with

respect to these choices of integral lattice.

4 Automorphic forms on definite unitary groups

In this section we define spaces of algebraic modular forms on definite unitary groups, and
use them to prove an R = T type result. Apart from the Galois-theoretic ingredients of
Sect. 2, there is nothing in the current section that will be new to an expert. In order to avoid
repetition, we therefore refer to [32, § 6] for detailed definitions and proofs, and merely
recall notation and basic properties here. We first fix a prime p and an integer n ≥ 2. At the
beginning of [32, § 6], it is assumed that p is odd, but this plays no role in the parts recalled
here. We fix a coefficient field E ⊂ Qp with ring of integersO, maximal ideal λ, and residue
field k.

We begin with an imaginary CM number field F with maximal totally real subfield F+,
satisfying the following conditions:

• The extension F/F+ is everywhere unramified, and each prime of F+ above p splits in
F .

• We have n[F+: Q] ≡ 0 mod 4.

Let c ∈ Gal(F/F+) denote the non-trivial element. We can then find a unitary group G over
F+, split by F , and satisfying the following conditions:

• For each finite place v of F+, G(F+
v ) is quasi-split.

• The group G(F+ ⊗Q R) is compact.

We can extend G to an affine group scheme over OF+ , still denoted G, with the follow-
ing property: for each place v of F+ split as v = wwc in F , there is an isomorphism
ιw:G(OF+) ∼= GLn(OFw ). We use the following notation:
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• Sp is the set of places of F+ above p. For each v ∈ Sp , we choose a place ṽ of F above
v and write S̃p = {̃v | v ∈ Sp}. We write Ip for the set of embeddings F+ ↪→ Qp , and
Ĩ p for the set of embeddings F ↪→ Qp inducing a place of S̃p .

• Let Z+
n = {(λ1, . . . , λn) ∈ Zn | λ1 ≥ · · · ≥ λn}. For each λ = (λτ )τ ∈ (Z+

n ) Ĩ p , there
is a finite free O-module Mλ, with a continuous action of the group

∏
v∈Sp G(OF+

v
) ∼=

∏
w∈S̃p GLn(OFw ). It is constructed from the tensor product (over τ ∈ Ĩ p) of the algebraic

representations of GLn of highest weights λτ .
• If U = ∏

v Uv ⊂ G(A∞
F+) is an open compact subgroup such that Uv ⊂ G(OF+

v
) for

each v ∈ Sp , and λ ∈ (Z+
n ), and A is a O-module, then we write Sλ(U, A) for the set of

all functions

f :G(F+)\G(A∞
F+) → Mλ ⊗O A

satisfying the following condition: for all u ∈ U, g ∈ G(A∞
F+), we have f (gu) =

u−1
p f (g), where u p denotes projection to the p-component.

• If v is a finite place of F+ andUv ⊂ G(F+
v ) is an open compact subgroup, then we write

H(G(F+
v ),Uv) for the convolution algebra of Uv-biinvariant functions f :G(F+

v ) → Z

(with the Haar measure giving Uv total measure 1). If v = wwc is split in F and
Uv = ι−1

w (GLn(OFw )), then we write T i
w, i = 1, . . . , n for the standard unramified

Hecke operators given as the characteristic functions of the double cosets

Uvι
−1
w

⎛

⎝diag(�w, . . . , �w︸ ︷︷ ︸
i

, 1, . . . , 1
︸ ︷︷ ︸

n−i

)

⎞

⎠Uv.

If U = ∏
v Uv ⊂ G(A∞

F+) is an open compact subgroup, and A is an O-module, then
for each finite place v of F+, the algebra H(G(F+

v ),Uv) acts on Sλ(U, A) in a natural
way.

• If U = ∏
v Uv ⊂ G(A∞

F+) is an open compact subgroup and T is a finite set of finite
places of F+ such that for each v /∈ T, Uv is a hyperspecial maximal compact subgroup
and v is prime to p, then we defineTT

λ (U,O) to be theO-subalgebra of EndO(Sλ(U,O))

generated by the operators T i
w, i = 1, . . . , n, as w ranges through the set of all finite

places of F which are split over F+ and prime to T .
• We define

Aλ = lim−→
U

Sλ(U, Qp),

the direct limit running through all open compact subgroups U = ∏
v Uv ⊂ G(A∞

F+).
Then Aλ is an semi-simple admissible Qp[G(A∞

F+)]-module. If ι: Qp
∼= C is a fixed

choice of isomorphism, then for each irreducible submodule π ⊂ A, π ⊗
Qp,ι

C is the
finite part of an automorphic representation of G(AF+), with an infinite part that can be
described explicitly in terms of λ.

Theorem 4.1 Let U = ∏
v Uv ⊂ G(A∞

F+) be an open compact subgroup, and let T be a
finite set of finite places of F+ such that TT

λ (U,O) is defined.

(i) Let π ⊂ Aλ be an irreducible submodule such that πU �= 0. Then there exists a con-
tinuous semi-simple representation ρp(π):GF → GLn(Qp), satisfying the following
conditions:

(a) ρp(π)c ∼= ρp(π)∨ε1−n.
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(b) If v is a finite place of F+ such that Uv is a hyperspecial maximal compact subgroup,
and w is a place of F dividing v, then ρp(π)|GFw

is unramified.
(c) If v ∈ Sp, then ρp(π)|GF̃v

is de Rham, and for each τ ∈ Ĩ p, we have

HTτ (rp(π)) = {λτ,1 + (n − 1), λτ,2 + (n − 2), . . . , λτ,n}.
(d) If v is a finite place of F+ split in F as v = wwc, then there is an isomorphism

WD(ρp(π)|GFw
)F-ss ∼= recTFw

(πw◦ι−1
w ). In particular, if v ∈ Sp andπv is unramified,

then ρp(π)|GF̃v
is crystalline.

(e) If ρp(π) is irreducible, then the pair (ρp(π), ε1−nδnF/F+) is polarized.

(ii) Let m ⊂ TT
λ (U,O) be a maximal ideal with residue field k. Then there exists a continu-

ous semi-simple representation ρm:GF → GLn(Tλ(U,O)/m) satisfying the following
conditions:

(a) ρc
m

∼= ρ∨
mε1−n.

(b) If v /∈ T is a finite place of F+ and w is a place of F above v, then ρm|GFw
is

unramified. If moreover w is split over F+, then the characteristic polynomial of
ρm(Frobw) is equal to

Xn+· · ·+(−1) j q j ( j−1)/2
w T j

wXn− j + · · · + (−1)nqn(n−1)/2
w T n

w ∈(Tλ(U,O)/m)[X ].
(c) If ρm is irreducible, then the pair (ρm, ε1−nδnF/F+) is polarized.

(iii) Let m ⊂ TT
λ (U,O) be a maximal ideal with residue field k, and suppose that ρm is

irreducible. Let rm:GF+ → Gn(Tλ(U,O)/m) be a choice of extension of ρm (which
exists, by Lemma 2.2, and satisfies ν ◦ rm = ε1−nδnF/F+ , by the second part of the
theorem). Then there exists a lifting rm:GF+ → Gn(Tλ(U,O)m) of rm satisfying the
following conditions:

(a) ν ◦ rm = ε1−nδnF/F+ .

(b) If v /∈ T is a finite place of F+ and w is a place of F above v, then rm|GFw
is

unramified. If moreover w is split over F+, then the characteristic polynomial of
rm|GF (Frobw) is equal to

Xn + · · · + (−1) j q j ( j−1)/2
w T j

wXn− j + · · · + (−1)nqn(n−1)/2
w T n

w ∈ TT
λ (U,O)m[X ].

Moreover, rm is uniquely determined by these conditions, up to strict equivalence.

Proof The first part follows by the argument in the proof of [14, Theorem 2.3], together
with local-global compatibility for RACSDC automorphic representations of GLn(AF ), in
its strong form (see [6,7]), and Theorem 3.2. The second part follows from the first part by
reduction modulo p.

To prove the third part, we use the Galois representations constructed in the first.
The algebra TT

λ (U,O)m is O-flat and reduced, of dimension 1. For each minimal prime
p ⊂ TT

λ (U,O)m, we can find an O-embedding TT
λ (U,O)m/p ↪→ Qp and an irreducible

subrepresentation π ⊂ Aλ such that πU �= 0 and for each unramified Hecke operator
T i

w ∈ TT
λ (U,O), the image of T i

w in TT
λ (U,O)m/p ⊂ Qp equals the eigenvalue of T i

w on
πU .

In particular, we can find (by combining the first part of the lemma, Lemmas 2.2 and 2.3)
a finite extension Kp of TT

λ (U,O)m/p[1/p] inside Qp with ring of integers OKp , together
with a representation rp:GF+ → Gn(OKp ) satisfying the following conditions:
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• rp|GF ⊗OKp
Qp

∼= rp(π).

• If v /∈ T is a finite place of F+ and w is a place of F above v, then rp|GFw
is unramified.

If moreover w is split over F+, then the characteristic polynomial of rp|GF (Frobw) is
equal to

Xn + · · · + (−1) j q j ( j−1)/2
w T j

wXn− j + · · · + (−1)nqn(n−1)/2
w T n

w ∈ (TT
λ (U,O)m/p)[X ].

• We have rp mod mOKp
= rm (i.e. equality, not just G0

n (k)-conjugacy).

Let O0
Kp

⊂ OKp denote the subring consisting of elements whose image in the residue field

OKp /mOKp
in fact lies in k. Then rp is valued in Gn(O0

Kp
), and we can form the lifting

r0m = ×prp, valued in the ring

A = ×pO0
Kp

=
{

(xp)p ∈
∏

p

O0
Kp

| xp mod mOKp
independent of p

}

.

(thus the pullback is taken relative to k). There is a natural embedding TT
λ (U,O)m ↪→ A,

and for each δ ∈ GF , we have tr r0m|GF (δ) ∈ TT
λ (U,O)m. Indeed, by the Chebotarev density

theorem it suffices to check that tr r0m|GF (Frobw) lies in TT
λ (U,O)m, when w is a finite

place of F split over F+ and not dividing T ; but this follows from our knowledge of the
characteristic polynomial of r0m|GF (Frobw).

By Lemma 2.4, therefore, we can find a G0
n (A)-conjugate rm of r0m which is valued in

Gn(TT
λ (U,O)m). Then rm is a lifting of rm which clearly has the desired properties. By

Lemma 2.5, rm is uniquely determined by these properties, up to strict equivalence. This
completes the proof. ��
We now specialize to our situation of interest. Fix a finite set T of finite places of F+, split
in F , and containing Sp , and let U = ∏

v Uv ⊂ G(A∞
F+) be an open compact subgroup

satisfying the following conditions:

• If v ∈ Sp , then Uv = ι−1
ṽ GLn(OF̃v ).

• If v /∈ T is a finite place of Uv , then Uv is a hyperspecial maximal compact subgroup of
G(F+

v ).
• For all g ∈ G(A∞

F+), the (a priori finite) group U ∩ gG(F+)g−1 is trivial.

Fix a choice of λ ∈ (Zn+) Ĩ p , and let π ⊂ Aλ be an irreducible submodule such that πU �= 0
and ρp(π) is irreducible. Let m ⊂ TT

λ (U,O) be the maximal ideal associated to the Hecke
eigenvalues of π . Then there is an isomorphism rp(π) ∼= ρm. We fix a choice of extension
rm and lifting rm, as in the statement of Theorem 4.1. Let S = T ∪ S∞, and consider the
global deformation problem

S =
(
F, rm,O, ε1−nδnF/F+ , S, {Dλv,cr

v }v∈Sp ∪ {Dfl
v }v∈T−Sp

)
.

(the local deformation problems have been defined in Sect. 2.3). It follows immediately from
the construction of Theorem 4.1 that the lifting rm is of type S, so is classified by a surjective
homomorphism RS → TT

λ (U,O)m.

Theorem 4.2 Let f : RS → O be a homomorphism corresponding to a lifting r :GF+ →
Gn(O) of rm. Suppose that:

(i) The subgroup ρm(GF ) ⊂ GLn(k) is adequate, in the sense of Definition 2.20.
(ii) For each v ∈ T , we have ρ|G

F+
v

∼ rp(π)|G
F+
v
.
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(iii) If p is odd, then F = F+(ζp). If p = 2, then F = F+(
√−1).

(iv) If p = 2 and n is even, then there exists a place v|∞ such that (ρm, ε1−nδnF/F+) is
strongly residually odd, in the sense of Definition 3.3.

Then there exists an irreducible submodule σ ⊂ Aλ such that σU �= 0 and ρp(σ ) ∼= r |GF .

Proof The proof is essentially the same as the proof of [32, Theorem 6.8], with references
to Proposition 4.4 of op. cit. replaced with references to Proposition 2.21 of this article.
We therefore feel free to only sketch parts of the proof that are substantially the same as
the proof of [32, Theorem 6.8]. After possibly enlarging O, we can find a homomorphism
f ′: TT

λ (U,O)m → O such that ( f ′ ◦ rm)|GF ⊗O Qp
∼= ρp(π).

Let q = h1S⊥,T
−1 and g = q+|T |−1−[F+: Q]n(n−1)/2. By Proposition 2.21, we can

find for each N ≥ 1 a Taylor–Wiles datum (QN , (αv)v∈Q) of level N such that #QN = q and
the map Rloc

S,T → RT
SQN

can be extended to a surjection Rloc
S,T �X1, . . . , Xg� � RT

SQN
(we

write hereSQN for the auxiliary deformation problem constructed in Sect. 2.4.We remark that
in applying Proposition 2.21, we are using hypotheses (i), and (i i i) and (iv) of the theorem).
We define�QN =∏v∈QN

k(v)×(p), as in Sect. 2.4. Then RSQN
is anO[�QN ]-algebra, and

there is a canonical isomorphism RSQN
⊗O[�QN ] O ∼= RS .

Let H = Sλ(U,O)m. Then H is a faithful Tλ(U,O)m-module, and becomes an RS -
module via the surjective homomorphism RS → Tλ(U,O)m constructed above. Arguing
exactly as in [32, § 5] and the proof of [32, Theorem 6.8], we can construct for each N ≥ 1 an
RSQN

-module HQN , free overO[�QN ], togetherwith an isomorphism HQN ⊗O[�QN ]O ∼= H
of RSQN

-modules (we remark that it is assumed at some point in [32, § 5] that the residue
characteristic is odd; however, this assumption plays no role in the proof).

Let T = O�X1, . . . , X(n2+1)|T |−1�. Choose a representative rS :GF+ → Gn(RS) of
the universal deformation, and for each N ≥ 1 a representative rSQN

:GF+ → Gn(RSQN
)

lifting RS . These choices determine canonical isomorphisms RT
S ∼= RS⊗̂OT and RT

SQN

∼=
RSQN

⊗̂OT , and give HT = H⊗̂OT and HT
QN

= HQN ⊗̂OT the structure of RT
S and

RT
SQN

-module, respectively.

We choose for each N ≥ 1 a surjection Rloc
S,T �X1, . . . , Xg� � RT

SQN
. We let R∞ =

Rloc
S,T �X1, . . . , Xg� and S∞ = O�Z

q
p�⊗̂OT , and choose for each N ≥ 1 a surjection Z

q
p →

�QN (which gives rise to a surjection S∞ → T [�QN ]).
After patching exactly as in the proof of [32, Theorem 6.8], we obtain the following

objects:

• A ring homomorphism S∞ → R∞, together with an R∞-module H∞, free over S∞.
• A surjection R∞ → RS of S∞-algebras, together with an isomorphism H∞ ⊗S∞ O ∼= H

of R∞-modules.

In particular, we have

depthR∞ H∞ ≥ depthS∞ H∞ = dim S∞ = 1 + q + (n2 + 1)|T | − 1

= q + (n2 + 1)|T | = dim R∞.

It follows that depthR∞ H∞ = dim R∞, and SuppR∞ H∞ ⊂ Spec R∞ is a union of irre-
ducible components, by [31, Lemma 2.3]. For each v ∈ T , let Cv be the unique irreducible
component of Spec Rλv,cr

v or Spec Rfl
v containing the point corresponding to rp(π) (if v ∈ Sp ,

it is unique because Rλv,cr
v [1/p] is formally smooth over E . If v ∈ T−Sp , it is unique because

πv is generic, cf. Sect. 2.3.4). Let R
Cv
v denote the affine ring of Cv , endowed with its reduced
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subscheme structure, and let R′∞ = (⊗̂v∈T RCv
v )�X1, . . . , Xg�. Then Spec R′∞ ⊂ Spec R∞

is an irreducible component, which lies in the support of H∞ as R∞-module; indeed, the
closed point x ′ of Spec R∞[1/p] corresponding to the composite

R∞ → RS → TT
λ (U,O)m → O

given by f ′ lies in Spec R′∞[1/p], and Spec R′∞[1/p] is (by hypothesis 2 of the theorem)
the unique irreducible component of Spec R∞[1/p] containing this closed point. It follows
that the closed point x of Spec R∞[1/p] corresponding to f is also in the support of H∞,
and hence that

H∞ ⊗R∞, f O[1/p] ∼= H ⊗RS , f O[1/p] �= 0.

This is only possible if f factors through the quotient RS → TT
λ (U,O)m or, equivalently, if

there exists an irreducible submodule σ ⊂ Aλ such that σU �= 0 and r |GF ⊗O Qp
∼= ρp(σ ).

This completes the proof. ��
We now state as a corollary a consequence of Theorem 4.2 for Galois representations

valued in GLn .

Corollary 4.3 Let F be an imaginary CM number field with totally real subfield F+, and
let T be a finite set of finite places of F+ containing Sp and split in F. We assume that F
satisfies the following conditions:

(i) The extension F/F+ is everywhere unramified, and n[F+: Q] ≡ 0 mod 4.
(ii) If p is odd, then F = F+(ζp). If p = 2, then F = F+(

√−1).

Let ρ:GF → GLn(Qp) be a continuous representation satisfying the following conditions:

(i) The group ρ(GF ) is adequate. In particular, ρ is absolutely irreducible.
(ii) We have ρc ∼= ρ∨ε1−n.
(iii) If w is a finite place of F not dividing T , then ρ|GFw

is unramified.
(iv) If w is a finite place of F dividing p, then ρ|GFw

is crystalline.
(v) There exists a RACSDC automorphic representation� of weight λ and an isomorphism

ι: Qp
∼= C satisfying the following conditions:

(a) There is an isomorphism rι(�) ∼= ρ.
(b) If w is a finite place of F not dividing T , then �w is unramified.
(c) If w is a finite place of F dividing p, then �w is unramified.
(d) If w is a finite place of F dividing T , then rι(�)|GFw

∼ ρ|GFw
.

(e) If p = 2 and n is even, then there exists a place v|∞ such that ρ is strongly residually
odd at v.

Then ρ is automorphic: there exists a RACSDC automorphic representation � of weight λ

and an isomorphism ρ ∼= rι(�).

Proof After possibly enlarging T , we can assume that it contains a place v0, prime to p,
such that both � and ρ are unramified above v0. We introduce a unitary group G as at the
beginning of Sect. 4. By [22, Théorème 5.4], there exists an isomorphism ι: Qp

∼= C and an
irreducible submodule π ⊂ Aλ satisfying the following conditions:

• If v is an inert place of F+, then πv is unramified.
• If v = wwc is a split place of F+, then there is an isomorphism πv

∼= ι−1�w ◦ ι−1
w .
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Then ρp(π) ∼= rι(�). By Lemmas 2.3 and 2.2, together with the fact that ρp(π) ∼= ρ, we can
find a coefficient field E and a homomorphism r :GF+ → Gn(O) satisfying the following
conditions:

• r |GF ⊗O Qp
∼= ρ.

• ν ◦ r = ε1−nδnF/F+ .

Let U =∏v Uv ⊂ G(A∞
F+) be the open compact subgroup defined as follows:

• If v /∈ T , then Uv is a hyperspecial maximal compact subgroup of G(F+
v ).

• If v ∈ Sp , then Uv = ι−1
ṽ (GLn(OF̃v )).

• If v ∈ T − Sp , then Uv is any torsion-free subgroup of G(F+
v ) such that πUv

v �= 0.

Then πU �= 0, and for all g ∈ G(A∞
F+), the group U ∩ gG(F+)g−1 is trivial. We can then

apply Theorem 4.2 to r , to deduce the existence of an irreducible subrepresentation σ ⊂ Aλ

such that ρ ∼= rp(σ ). We then deduce from [22, Corollaire 5.3] the existence of a RACDSC
automorphic representation � of GLn(AF ) such that ρ ∼= rι(�). This completes the proof.

��

5 An automorphy lifting theorem

Theorem 5.1 Let n ≥ 2. Let F be an imaginary CM number field with totally real subfield
F+. Fix a prime p and an isomorphism ι: Qp

∼= C, and consider a continuous representation

ρ:GF → GLn(Qp).

Suppose that ρ satisfies the following conditions:

(i) There is an isomorphism ρc ∼= ρ∨ε1−n.
(ii) The group ρ(GF(ζp)) ⊂ GLn(Fp) is adequate, in the sense of Definition 2.20.
(iii) The representation ρ is almost everywhere unramified.
(iv) There exists a RACSDC automorphic representation π of GLn(AF ) such that:

(a) There is an isomorphism rι(π) ∼= ρ.
(b) For each finite place v of F, we have rι(π)|GFv

∼ ρ|GFv
(this condition is automatic

if πv and ρ|GFv
are both unramified). In particular, if v|p, then ρ|GFv

and rι(π)|GFv

are potentially crystalline.

(v) If p = 2 and n is even, then there exists a place v|∞ of F+ at which the pair
(ρ, ε1−nδnF/F+) is strongly residually odd, in the sense of Definition 3.3.

Then ρ is automorphic: there exists a RACSDC automorphic representation � of GLn(AF )

such that ρ ∼= rι(�).

Remark Before giving the proof of Theorem 5.1, we compare it with [32, Theorem 7.1],
in the case that the character μ in loc. cit. is taken to be trivial. Then the hypotheses and
conclusions of the two theorems are essentially the same, except for the following:

(i) Here we do not assume that the residue characteristic p is odd (the main point of this
paper).

(ii) We do not assume that ζp /∈ F .
(iii) The definition of ‘adequate subgroup’ used here (i.e. Definition 2.20) is more general

than that of [32, Definition 2.3] in the case that p is odd and p|n.
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Proof of Theorem 5.1 We reduce the theorem to Corollary 4.3, using the technique of soluble
base change (i.e. using [5, Lemma 2.2.2]). First, we can replace F by F(ζp) (if p is odd) or
F(

√−1) (if p = 2). If p = 2 and n is even, then it is necessary to check that this preserves
the condition that (ρ, ε1−nδnF/F+) is strongly residually odd at some infinite place, but this
follows easily from the definitions.

It now suffices to observe that we can find a soluble extension L/F satisfying the following
conditions:

• n[L+: Q] ≡ 0 mod 4 and L/L+ is everywhere unramified.
• ρ(GL) = ρ(GF ).
• If v is a place of L dividing p, then ρ|GFv

is crystalline and v is split over L+.
• If v is a finite place of L not dividing p, then ρ|GFv

is unipotently ramified and πv has
an Iwahori-fixed vector. If either of ρ|GFv

or πv is ramified, then v is split over L+.

We can now apply Corollary 4.3 to deduce that ρ|GL is automorphic, and hence that ρ is
automorphic. This concludes the proof. ��

6 Application: the case of GL2

In this section, we apply Theorem 5.1 to improve a modularity lifting theorem of Kisin
[18] for 2-adic potentially Barsotti-Tate representations. More precisely, we remove the local
conditions at p but add a local condition at ∞. The theorem we prove is the following:

Theorem 6.1 Let F be a totally real number field, and let ρ:GF → GL2(Q2) be a contin-
uous representation satisfying the following conditions:

(i) ρ is almost everywhere unramified.
(ii) For each place v|2 of F, ρ|GFv

is potentially crystalline. For each embedding τ : Fv ↪→
Qp, HTτ (ρ) = {0, 1}.

(iii) ρ is absolutely irreducible, and has non-soluble image. There exists a place v|∞ of F
such that ρ(cv) is non-trivial.

(iv) There exists a RAESDC automorphic representation (π, χ) ofGL2(AF ) and an isomor-
phism ι: Q2

∼= C such that rι(π) ∼= ρ.

Then ρ is automorphic: there exists a RAESDC automorphic representation (σ, ψ) of
GL2(AF ) such that ρ ∼= rι(σ ).

(We remind the reader that the condition that ρ has non-soluble image is equivalent, by the
classification of finite subgroups of PGL2(F2), to asking that the projective image of ρ(GF )

is a conjugate of PSL2(F2a ) for some a > 1. In particular, the projective image is a simple
group.) By [18, Proposition 3.2.9], to prove Theorem 6.1, it is enough to show the following
result:

Theorem 6.2 Let F be a totally real number field, and let (π, χ) be a RAESDC automorphic
representation of GL2(AF ). Fix an isomorphism ι: Q2

∼= C. Suppose that rι(π) is absolutely
irreducible, with non-soluble image, and that there exists a place v|∞ of F such that rι(π)(cv)

is non-trivial. Then there exists a soluble totally real extension F ′/F and a RAESDC auto-
morphic representation (σ, ψ) of GL2(AF ′) satisfying the following conditions:

(i) σ has weight 0 and rι(σ ) ∼= rι(π)|GF ′ .
(ii) For each place v|2 of F ′, σv is unramified and ι-ordinary.
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The idea of proving a result like Theorem 6.2, and applying it to improve Kisin’s results
is due to Barnet-Lamb, Gee, and Geraghty, and has been carried out by them in the case that
the residue characteristic p is odd [3,4]. Here we will use our main theorem to generalize
their technique to the case p = 2.

The main idea, as in [3, Introduction], is to construct lifts with prescribed local properties
by using tensor products. However, we cannot use automorphic induction from GL2 to GL4,
as the induction of a representation from an even degree extension can never be adequate in
characteristic 2. Instead, we use the GL2 ×GL2 → GL4 tensor product functoriality, and
check that adequacy is preserved in our case of interest.

We begin with some preliminary results about tensor products.

Lemma 6.3 Let F be a number field, and let k be a finite field of characteristic 2. Let
r1, r2:GF → GL2(k) be absolutely irreducible representations with non-soluble image,
and suppose that the extensions F(ad r1) and F(ad r2) are disjoint over F. Then the group
(r1 ⊗ r2)(GF ) ⊂ GL4(k) is adequate.

Proof Let H1 = r1(GF ), H2 = r2(GF ), and r = r1 ⊗ r2 and H = r(GF ) ⊂ GL4(k). We
recall that we must show the following:

• We have H1(H, k) = 0 and H1(H, ad0 r) = 0.
• For each simple k[H ]-submodule W ⊂ ad r , there exists a semi-simple element σ ∈ H

with an eigenvalue α ∈ K such that tr eσ,αW �= 0.

We first note that the groups H1, H2 are adequate. Indeed, they have no 2-power quotients,
and the group H1(H, ad0 r) is 0, by [10, Lemma 42]. The unique simple k[H1]-submodule
of ad r1 is the subspace Z1 of scalar matrices, and we have tr eσ,αZ1 �= 0 for any element
σ ∈ H with two distinct eigenvalues α, β ∈ k.

It follows immediately that the group H has no 2-power quotients, since it is itself a
quotient of H1 × H2. To show that H1(H, ad0 r) = 0, it is enough (by inflation-restriction)
to show that H1(H1 × H2, ad0 r) = 0. By the Künneth formula, we have

H1(H1 × H2, ad r) = H1(H1 × H2, ad r1 ⊗k ad r2) = 0,

so it is enough to show that the map H2(H1 × H2, k) → H2(H1 × H2, ad r) arising from
the short exact sequence

0 k ad r ad0 r 0

is injective. However, this map is identified under the Künneth isomorphism with a map

H2(H1 × H2, k) ∼= H2(H2, k) ⊕ H2(H1, k) → H2(H2, ad r2) ⊕ H2(H1, ad r1)
∼= H2(H1 × H2, ad r),

since H1(H1, k) = H1(H2, k) = 0. It is therefore a sum of the maps H2(Hi , k) →
H2(Hi , ad ri ), which are injective because the groups Hi are adequate.

The space ad r has a unique simple submodule Z1 ⊗k Z2 = Z , the subspace of scalar
matrices. To establish the second point in the definition of adequacy, it is therefore enough
to show that H contains a semi-simple element σ with an eigenvalue of multiplicity 1. Since
the projective images of H1 and H2 are assumed equal to conjugates of PGL2(F2ai ) for some
ai > 1, it is easy to see that this can be achieved. ��
Lemma 6.4 Let F ′/F be a Galois extension of totally real number fields, let (π, χ) be
a RAESDC automorphic representation of GLn(AF ′) (n ≥ 2), let p be a prime, and let
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ι: Qp
∼= C be an isomorphism such that rι(π) is irreducible. Let ρ:GF → GLn(Qp) be a

continuous representation such that ρ|GF ′ ∼= rι(π). Finally, let S be a finite set of places of
F, containing the infinite places, the places above p, and any place above which ρ or F ′ is
ramified. Then the L-function

LS(ιρ, s) =
∏

v /∈S
det(1 − ιρ(Frobv)q

−s
v )−1

has a meromorphic continuation to C and is analytic and non-vanishing at the point s =
1
2 (1 + n − α), where α ∈ Z is the unique integer such that χ‖ · ‖−α

F ′ has finite order.

Proof By Brauer’s theorem, we can find subfields F ′/Fi/F, i = 1, . . . ,m, with Gal(F ′/Fi )
soluble, integers ni , and finite order characters ψi :GFi → Q

×
p , such that

ρ =
∑

i

ni Ind
GFi
GF

(
ρ|GFi

⊗ ψi

)

in the Grothendieck group of continuous representations of GF . Let Si denote the set of
places of Fi above S; we then have a similar identity of L-functions (valid a priori in a right
half-plane where the relevant Euler products converge absolutely)

LS(ιρ, s) =
m∏

i=1

LS
(
Ind

GFi
GF

(ιρ|GFi
⊗ ψi ), s

)ni =
m∏

i=1

LSi
(
ιρ|GFi

⊗ ψi , s
)ni

.

For each i = 1, . . . ,m, the representation π descends to a cuspidal automorphic representa-
tion πi of GLn(AFi ). We can therefore rewrite the above product as

LS(ιρ, s) =
m∏

i=1

LSi (πi‖ · ‖(1−n)/2
Fi

⊗ ιψi , s)
ni

=
m∏

i=1

LSi

(

πi‖ · ‖−α/2
Fi

⊗ ιψi , s + 1

2
(α + 1 − n)

)ni
.

Each πi‖ · ‖−α/2
Fi

⊗ ιψi is a unitary cuspidal automorphic representation of GLn(AFi ). It

is known (see [16, Theorem 1.3]) that each of the L-functions LSi (πi‖ · ‖−α/2
Fi

⊗ ιψi , s)
has a meromorphic continuation to the whole complex plane, and is holomorphic and non-
vanishing at the point s = 1. It follows that LS(ιρ, s) has a meromorphic continuation to the
whole complex plane, and is holomorphic and non-vanishing at the point s = 1

2 (1+ n − α).
This completes the proof. ��

Proposition 6.5 Let F be a totally real number field, let p be a prime, and let ρ1, ρ2:GF →
GL2(Qp) be continuous representations such that ρ1 ⊗ ρ2, Sym2 ρ1 and Sym2 ρ2 are irre-
ducible. Suppose moreover that each of ρ1 and ρ2 is unramified outside finitely many places,
and de Rham with distinct Hodge–Tate weights. Fix an isomorphism ι: Qp

∼= C.

(i) Suppose there exist RAESDC automorphic representations (π1, χ1) and (π2, χ2) of
GL2(AF ) such that rι(π1) ∼= ρ1 and rι(π2) ∼= ρ2. Suppose moreover that ρ1 ⊗ ρ2
is Hodge–Tate regular (i.e. for each embedding τ : F ↪→ Qp, the set HTτ (ρ1 ⊗ ρ2)

contains 4 distinct elements). Then there exists a RAESDC automorphic representation
(σ, ψ) of GL4(AF ) such that rι(σ ) ∼= ρ1 ⊗ ρ2, where ψ = χ1χ2‖ · ‖F .
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(ii) Suppose that there exists a RAESDC automorphic representation (σ, ψ) of GL4(AF )

such that rι(σ ) ∼= ρ1 ⊗ ρ2 and rι(ψ) = (det ρ1)(det ρ1)ε3. Suppose moreover that
there exist Galois totally real extensions F1/F, F2/F and RAESDC automorphic rep-
resentations (�1, ξ1) and (�2, ξ2) of GL2(AF1) and GL2(AF2), respectively, such that
rι(�1) ∼= ρ1|GF1

and rι(�2) ∼= ρ2|GF2
. Then there exists a RAESDC automorphic

representation (π1, χ1) of GL2(AF ) such that rι(π1) ∼= ρ1.

Proof The first part follows from [27, TheoremM] (take σ = π1 � π2). For the second part,
let S be a finite set of places of F containing the infinite places, the places dividing p, and
any places at which F1, F2, ρ1, ρ2, or σ is ramified. Then we have an equality

LS(σ × σ∨, s) = LS(σ × σψ−1, s) = LS(σ,Sym2 ⊗ψ−1, s)LS(σ,∧2 ⊗ ψ−1, s).

Both sides have a meromorphic continuation to the entire complex plane. The left-hand side
has a simple pole at s = 1, because σ is cuspidal. On the other hand, we have

LS(σ,∧2 ⊗ ψ−1, s) = LS(ι[∧2rι(σ )] ⊗ rι(ψ)−1ε3, s), (7)

and decomposing the representation ∧2rι(σ ) allows us to factorize this L-function as

= LS(ιSym2 ρ1 ⊗ det(ρ2)rι(ψ)−1ε3, s)LS(ιSym2 ρ2 ⊗ det(ρ1)rι(ψ)−1ε3, s). (8)

It follows from our assumptions, Lemma 6.4 and the existence of the symmetric square lifting
for GL2 that the function in (8) is analytic and non-vanishing at the point s = 1. We deduce
that the function LS(σ,Sym2 ⊗ψ−1, s) has a simple pole at s = 1. It then follows from
[15, Corollary 3.2.1] (see also [1, Theorem 4.26]) that there exists a cuspidal automorphic
representation � of GSpin4(AF ) with weak transfer equal to σ (here we write GSpin4 for
the split general spin group in 4 variables).

Let us now write H = GSpin4, G = GL2 ×GL2, and ZH , ZG for the centres of these
groups. There is a short exact sequence

0 H G Gm 0,

the map G → Gm being given by the formula (g1, g2) �→ det(g1)/ det(g2). This identifies
ZH with the group {λ1, λ2 ∈ Gm × Gm | λ21 = λ22} ⊂ ZG .

We have G(F) ∩ (H(AF )ZG(AF )) = H(F)ZG(F). The argument of [25, Proposi-
tion 3.1.4] then allows us to construct a cuspidal automorphic representation π ′ = π ′

1⊗π ′
2 of

G(AF ) = GL2(AF )×GL2(AF )with the property that π ′|H(AF ) contains�. The representa-
tions π ′

1, π
′
2 are necessarily essentially square-integrable at infinity, and it follows from [25,

Proposition 2.6.7] that there exist continuous homomorphisms R1, R2:GF → PGL2(Ql)

with the following properties:

• The representations R1, R2 are unramified at all finite places v /∈ S of F .
• For all v /∈ S, we have WD(R1|GFv

)F-ss ∼= ad0 recTFv
(ι−1π ′

1,v) and WD(R2|GFv
)F-ss ∼=

ad0 recTFv
(ι−1π ′

2,v).

Combining [25, Corollary 3.1.6] with the Chebotarev density theorem, we see that there is
an isomorphism R1 ⊕ R2 ∼= ad0 ρ1 ⊕ ad0 ρ2, hence (after possibly swapping R1 and R2) we
can identify R1 ∼= ad0 ρ1 and R2 ∼= ad0 ρ2.

The existence of the representation ρ1 implies that π ′
1 has a twist π ′′

1 which is regular
algebraic, hence RAESDC (see [25, Proposition 2.6.7]). The representations ρ1 and rι(π ′′

1 )

satisfy ad0 ρ1 ∼= ad0 rι(π ′′
1 ), which implies that there is a character η:GF → Q

×
l such that

ρ1 ⊗ η ∼= rι(π ′′
1 ). To complete the proof of the proposition, we just need to show that the
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character η is geometric (so that ρ1 = rι(π ′′
1 ) ⊗ η−1 is itself automorphic). However, this

follows from the existence of an inclusion η ⊂ ρ∨
1 ⊗ rι(π ′′

1 ) and the fact that the property of
being de Rham is stable under tensor products. ��

We now construct an auxiliary automorphic Galois representation which has the right
local properties at 2.

Proposition 6.6 Let F be a totally real number field, and let K/F beaGalois extension. Then
there exists a soluble totally real extension F ′/F, an isomorphism ι: Q2

∼= C, and a RAESDC
automorphic representation (π, χ) of GL2(AF ′) satisfying the following conditions:

(i) π is ι-ordinary and unramified at every finite place.
(ii) π has weight 0 and is of trivial central character.
(iii) The residual representation rι(π) is absolutely irreducible, with projective image con-

jugate to PGL2(F4). For each place v|∞ of F ′, rι(π)(cv) is non-trivial.
(iv) The extension F ′(ad rι(π))/F is linearly disjoint from K .

Proof After possibly replacing F by a preliminary soluble extension, we can find an every-
where unramified and totally odd representation ρ:GF → GL2(C) with projective image
isomorphic to A5. It then follows from [26, Théorème 0.3] that ρ is automorphic (i.e. asso-
ciated to a cuspidal automorphic representation of GL2(AF ) of limit of discrete series type
at infinity). The representation ρ is absolutely irreducible, with projective image a conjugate
of A5 ∼= PGL2(F4) (of course, ρ makes sense because of our fixed identification ι: Q2

∼= C).
By Hida theory, in the guise of [33, § 1], we can find an ι-ordinary RAESDC automorphic
representation (σ, ψ) of weight 0 such that rι(π) ∼= ρ. Finally, passing to a further exten-
sion F ′/F and arguing as in [12, Lemma 5.1.7], we can replace the base change of π to F ′
by another RAESDC automorphic representation which satisfies all the requirements of the
proposition. ��

In the next proposition, we use potential automorphy techniques as in [30] to construct
automorphic ordinary lifts of our residual Galois representation of interest.

Proposition 6.7 Let k be a finite field of characteristic 2, let F be a totally real field, and
let ρ:GF → GL2(k) be an absolutely irreducible representation with non-soluble image.
Let K/F be a Galois extension. Then we can find a Galois totally real extension F ′/F, an
isomorphism ι: Q2

∼= C, and a RAESDC automorphic representation (π, χ) of GL2(AF ′)
satisfying the following conditions:

(i) π is ι-ordinary and unramified at every finite place.
(ii) π has weight 0 and is of trivial central character.
(iii) There is an isomorphism rι(π) ∼= ρ|GF ′ .
(iv) The extension F ′/F is linearly disjoint from K .

Proof Let N/Q be a totally real number field of degree [k: Q] in which 2 is totally inert. Let
x be the unique place of N above 2, and fix an identification k(x) ∼= k. We recall (following
[30, § 1]) that a N -HBAV over a field K is a triple (A, i, j), where:

• A is an abelian variety over K of dimension [N : Q].
• ι is an embedding ι:ON ↪→ EndK (A).
• j is an isomorphism O+

N
∼= P(A, i) of ordered invertible ON -modules.

(an ordered invertible ON -module is an invertible ON -module M with choice of connected
component of M ⊗Q R; P(A, i) is the module of ON -linear polarizations of A; O+

N is the
standard invertible ON -module given by the identity component of ON ⊗Q R).
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Let p > 5 be a prime split in N and unramified in F , and let E/F be an elliptic curve
such that the mod p Galois representation ρE,p of E has image GL2(Fp), the mod 3 Galois
representation ρE,3 has image GL2(F3), and E has ordinary reduction at each place v|3 of
F . Let y be a place of N above p, so that k(y) = Fp . Let Vx be the F-scheme in k(x)-vector
spaces corresponding to ρ, and fix a choice of non-degenerate, Galois equivariant, symplectic
pairing Vx ×Vx → k(x)(1). Let Vy be the F-scheme in k(y)-vector spaces corresponding to
E[p], and fix a choice of pairing Vy × Vy → k(y)(1) (for example, the Weil pairing of E).

There is a fine moduli space X/F for tuples (A, i, j, ηx , ηy), where (A, i, j) is an N -
HBAV, and ηx : Vx → A[x] and ηy : Vy → A[y] are isomorphisms which take our fixed
pairings to the j (1)-Weil pairings on A[x] and A[y], respectively; see [28, § 1]. Using the
complex uniformization, one sees that X is smooth and X (C) is connected, hence X is
geometrically connected.

We now claim the following:

• For each place v|2 of F , there exists a Galois extension Lv/Fv and a Galois-invariant
subset �v ⊂ X (Lv) such that for each P ∈ �v , the corresponding N -HBAV A over Lv

has good ordinary reduction.
• For each place v|∞ of F, X (Fv) is non-empty.

We establish each point in turn. We first observe that if E ′/F is any elliptic curve, then
E ′ ⊗Z ON has a canonical structure of N -HBAV. In particular, there exists an N -HBAV
(A, i, j) over F which has good ordinary reduction at each place v|2 of F . Let Lv/Fv be a
Galois extension such that A[2p], ρ, and E[p] are all trivial as GFv -modules; then A defines
a point P of X (Lv). Having good ordinary reduction is an open condition, so any sufficiently
small open neighbourhood �v ⊂ X (Lv) of P satisfies the first point above.

For the second point, it is enough to show that there exist N -HBAV (A, i, j)/Fv such that
cv acts trivially on A[x] (if ρ(cv) is trivial) or that cv acts non-trivially on A[x] (if ρ(cv) is
non-trivial). Indeed, if v|∞ then there are exactly 2 isomorphism classes of representations
GFv → GL2(k) and exactly 1 isomorphism class of representations GFv → GL2(k(y))
with odd determinant. However, this follows from the above observation and the existence
of elliptic curves E ′/F with E ′[2] either trivial or non-trivial as GFv -module.

By the theorem of Moret–Bailly (see e.g. [5, Proposition 3.1.1]), we can find a Galois
totally real extension F ′/F and a point P ∈ X (F ′) such that for each place v|2 of F and
each place w|v of F ′, we have F ′

w
∼= Lv as Fv-algebras and P ∈ �v . In particular, writing

(A, i, j) for the N -HBAV over F ′ corresponding to P , we see that A has good ordinary
reduction at each place w|2 of F ′, A[x] ∼= ρ|GF ′ , and A[y] ∼= ρE,p|GF ′ . We can moreover
choose F ′/F be disjoint from K/F . By first enlarging K/F to contain the extension of F cut
out by ρ and E[3p], we can therefore assume that ρ(GF ′) = GF , ρE,p(GF ′) = ρE,p(GF ),
and ρE,3(GF ′) = ρE,3(GF ).

It follows from the theorem of Langlands–Tunnell that ρE,3|GF ′ is modular, hence E/F ′ is
modular by [11, Theorem 1.1], hence A/F ′ is modular by [5, Theorem 4.2.1], i.e. there exists
a RAESDC automorphic representation (π, χ) of GL2(AF ′) and an isomorphism ι: Q2

∼= C

such that rι(π) ∼= Tx A. We observe that π has weight 0, is ι-ordinary and unramified at the
places above 2, and has trivial central character. The proposition now follows on replacing
F ′ by a soluble totally real extension and applying the main theorem of [29]. ��
Lemma 6.8 Let F be a totally real number field, and let ρ:GF → SL2(F2) be a continuous,
absolutely irreducible representation with insoluble image. Suppose that ρ is everywhere
unramified, and that for each place v|2 of F, ρ|GFv

is trivial. Then there exists a continuous
lifting ρ:GF → GL2(Q2) of ρ satisfying the following conditions:
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(i) For each finite place v � 2 of F, ρ|GFv
is unramified.

(ii) For each place v|2 of F and for each embedding τ : Fv ↪→ Q2, ρ|GFv
is crystalline

ordinary and HTτ (ρ) = {0, 1}.
(iii) det ρ = ε−1.
(iv) There is a totally real Galois extension F ′/F, a RAESDC automorphic representation

(π, χ) of GL2(AF ′) and an isomorphism ι: Q2
∼= C such that ρ|GF ′ ∼= rι(π).

Proof This follows from Proposition 6.7 and the method of Khare–Wintenberger, as we now
sketch. Fix a coefficient field E with ring of integers O and residue field k, such that ρ takes
values in GL2(k). Let us say that a totally real extension F ′/F is allowable if F ′ and F(ρ)

are linearly disjoint over F . If F ′/F is allowable, we writeD�
F ′ :CNL → Sets for the functor

of liftings ρ:GF ′ → GL2(R) of ρ|GF ′ satisfying the following conditions:

• If v � 2 is a place of F ′, then ρ|GF ′
v
is unramified.

• If v|2 is a place of F ′, then ρ|GF ′
v
is crystalline and ordinary with Hodge–Tate weights

{0, 1}. More precisely, ρ|∨GF ′
v

defines a point of the ring Rord,1,�
ρ which is defined in [18,

Proposition 2.4.6]. We note that it is shown in loc. cit. that under our hypotheses, the ring
Rord,1,�

ρ is a domain.

• det ρ = ε−1.

We write DF ′ for the corresponding functor of deformations (i.e. quotient of D�
F ′ by the free

action of P̂GL2). We write RF ′ ∈ CNLO for the representing object ofDF ′ (which exists). A
standard calculation in obstruction theory (cf. [21, Proposition 4.5]) shows that dim RF ′ ≥ 1
for any choice of F ′ as above.

By Proposition 6.7, we can find an allowable extension F ′/F such that RF ′ has an auto-
morphic Q2-point. It then follows from a patching argument (cf. [21, Proposition 9.3]) that
RF ′ is a finite O-algebra, and every Q2-point of RF ′ corresponds to an automorphic Galois
representation. Themap RF ′ → RF is finite (cf. [19, Lemma3.6]), so RF is a finiteO-algebra,
so has a Q2-point (as dim RF ≥ 1) corresponding to a representation ρ:GF → GL2(Q2).
We see that ρ|GF ′ is automorphic. This completes the proof of the lemma. ��
6.1 The proof of Theorem 6.2

We can now finish the proof of Theorem 6.2. Recall that in the situation of the theorem, F
is a totally real number field and ρ1:GF → GL2(F2) is a continuous, absolutely irreducible
representation with insoluble image. Moreover, there is an isomorphism ι: Q2

∼= C and a
RAESDC automorphic representation (π1, χ1) such that rι(π1) ∼= ρ1.

After replacing F by a soluble totally real extension and π1 by another automorphic
representation, we can assume the following:

• The representation π1 has weight 0 and trivial central character. For each finite place v

of F, π1,v is unramified. For each place v|2 of F, π1,v is not ι-ordinary and ρ1|GFv
is

trivial. Let ρ1 = rι(π1).
• There exists a continuous liftρ′

1:GF → GL2(Q2)ofρ1, unramifiedoutside 2, crystalline-
ordinary above 2, andwithHTτ (ρ

′
1) = {0, 2} for each embedding τ : F ↪→ Q2.Moreover,

ρ′
1 is potentially automorphic (use Lemma 6.8, and Hida theory to change the weight).

We can also assume given the following:

• A continuous, everywhere unramified representation ρ2:GF → GL2(F2), with projec-
tive image conjugate to PGL2(F4). For each place v|2, ρ2|GFv

is trivial and for each
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place v|∞, ρ2(cv) is non-trivial. Moreover, the extensions F(ad ρ1) and F(ad ρ2) are
linearly disjoint over F (use Proposition 6.6).

• A RAESDC automorphic representation (π2, χ2) of GL2(AF ) which is everywhere
unramified, of trivial central character, ι-ordinary, and of weight λ = (λτ )τ∈Hom(F,C), λτ

= (1, 0) for all τ . Moreover, we have rι(π2) ∼= ρ2.Wewrite ρ2 = rι(π2) (use Proposition
6.6, and Hida theory to change the weight).

• A RAESDC automorphic representation (π ′
2, χ

′
2) of GL2(AF ) which is everywhere

unramified, of trivial central character, and of weight 0. Moreover, we have rι(π ′
2)

∼= ρ2
and for each place v|2 of F, π ′

2,v is not ι-ordinary.Wewrite ρ′
2 = rι(π ′

2) (the existence of
π ′
2 is can be deduced from that of π2, together with our freedom to make a base change).

Let r = ρ1 ⊗ ρ′
2, and r

′ = ρ′
1 ⊗ ρ2. Then we have r ∼= r ′ ∼= ρ1 ⊗ ρ2. To prove the theorem,

it is enough to show that the representation r ′ is automorphic. Indeed, it then follows from
the second part of Proposition 6.5 that ρ′

1 is automorphic, and another application of Hida
theory implies the existence of an ordinary weight 0 automorphic lift of ρ1.

On the other hand, we know by the first part of Proposition 6.5 that the representation r is
automorphic. We will now apply Theorem 5.1 to deduce the automorphy of r ′ from that of
r . Let E/F be a totally imaginary quadratic extension in which every place v|2 of F splits.
Let S2 denote the set of places of F above 2, and choose for each place v ∈ S2 a place
ṽ of E above v. Let S̃2 = {̃v | v ∈ S2}. By [5, Lemma A.2.5], we can find a crystalline
character μ:GE → Q

×
2 such that μμc = ε−1 and for each embedding τ : E ↪→ Q2, we

have HTτ (μ) = 0 if τ induces a place of S̃2, and HTτ (μ) = 1 otherwise. We now claim the
following:

• There exists a RACSDC automorphic representation σ of GL4(AE ) such that rι(σ ) ∼=
r |GE ⊗μ. Indeed, we can take σ = (π1 �π ′

2)E ⊗ (| · |1/2ι−1μ◦det), where (?)E denotes
quadratic base change to E .

• The group r(GE ) ⊂ GL4(F2) is adequate. This is the content of Lemma 6.3.
• If v is a place of E , then r |GE ⊗ μ ∼ r ′|GE ⊗ μ (see Sect. 3.2 for the definition of ∼). If

v � 2, then this is clear (as r |GEv
and r ′|GEv

are unramified, so r |GEv
∼ r ′|GEv

, and this
relation is preserved under character twists, cf. the remarks after [5, Lemma 1.3.3]). If v|2,
then we observe that ρ1|GFv

∼ ρ2|GFv
(by [18, Corollary 2.3.13]) and ρ′

1|GFv
∼ ρ′

2|GFv

(by [12, Lemma 3.4.3]). The remarks in [5, § 1.4] then imply that (ρ1 ⊗ ρ′
2)|GFv

∼
(ρ′

1 ⊗ ρ2)|GFv
, hence (r ⊗ μ)|GEṽ

∼ (r ′ ⊗ μ)|GEṽ
.

• Let v|∞ be a place such that ρ1(cv) is non-trivial (which exists, by hypothesis). The
representation (r , ε−3) is polarized, and is strongly residually odd at v (the proof is the
same as the proof of Lemma 3.5, given that r(cv) is the tensor product of two regular
unipotent matrices).

The hypotheses of Theorem 5.1 are therefore satisfied, and we deduce that the representation
r ′|GE ⊗ μ is automorphic, hence r ′ = ρ′

1 ⊗ ρ2 is automorphic, by soluble descent. As
indicated above, this implies the desired result.

7 An erratum to [32]

In this sectionwe correct amistake in [32]. There is a gap in the reduction of [32, Theorem7.1]
to [32, Theorem 6.8]. The same gap appears in the reduction of [32, Theorem 9.1] to [32,
Theorem 8.6]. The problem arises as follows. Let l be a prime, let F be an imaginary
CM number field with maximal totally real subfield F+, and let r :GF+ → Gn(Fl) be
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a continuous representation such that r−1(G0
n (Fl)) = GF , and ρ = r |GF is absolutely

irreducible. If F ⊂ F+(ζl), then GF+(ζl ) ⊂ GF , and it is not possible for the subgroup
r(GF+(ζl )) ⊂ Gn(Fl) to be adequate in the sense of [32, Definition 2.3] (as this definition
requires in particular that the subgroup surject onto the component group of Gn).

The condition that r(GF+(ζl )) ⊂ Gn(Fl) be an adequate subgroup is needed in the proof of
[32, Theorem 6.8] in order to be able to invoke [32, Proposition 4.4]. The hypotheses of [32,
Theorem 7.1] do not rule out the possibility that F ⊂ F+(ζl). This problem does not arise
in e.g. the proof of [8, Theorem 4.4.2] since it is assumed there that the prime l is unramified
in F , so in particular F ∩ Q(ζl) must be trivial.

In order to correct the mistake, we therefore state and prove a revised version of [32,
Proposition 4.4] which holds under more general conditions. This proposition is very similar
to Proposition 2.21. We use notation and deformation-theoretic definitions as in [32]. In
particular, l is a fixed odd prime.

Proposition 7.1 Let q0 ∈ Z≥0 and suppose that ζl /∈ F. Suppose given a deformation
problem

S = (F/F+, S, S̃,O, r , χ, {Dv}v∈S).

Suppose that ρ = r |GF is absolutely irreducible and that ρ(GF(ζl )) ⊂ GLn(Fl) is adequate,
in the sense of Definition 2.20. Suppose also that for v ∈ S − T we have

dimk Lv − dimk H
0(GF̃v , ad r) =

{ [F+
v : Ql ]n(n − 1)/2 if v|l,

0 if v|l.
Let q be the larger of dimk H1

L⊥,T
(GF+,S, ad r(1)) and q0.

Then for any N ∈ Z≥1, we can find (Q, Q̃, {ψv}v∈Q) as in [32, Definition 4.1], such that

• #Q = q ≥ q0.
• if v ∈ Q then Nv ≡ 1 mod lN .
• R�T

SQ
can be topologically generated over Rloc

S,T = Rloc
SQ ,T by

#Q −
∑

v∈T,v|l
[F+

v : Ql ]n(n − 1)/2 − n
∑

v|∞
(1 + χ(cv))/2

elements.

Proof Fix N ≥ 1 and let ρ = r |GF . Just as in the proof of [32, Proposition 4.4], we can
reduce to showing the following claim: for any element [φ] ∈ H1

L⊥,T
(GF+,S, ad r(1)), we

can find an element σ ∈ GF(ζlN ) such that ρ(σ ) is semi-simple, together with an eigenvalue
α of ρ(σ ) such that tr eσ,αφ(σ ) �= 0.

Let L be the extension of F+(ζl N ) cut out by r ; equivalently, the extension of F(ζl N ) cut
out by ρ. We first show that

H1(Gal(L/F+), ad r(1)) = 0. (9)

There is a short exact sequence

0 H1(Gal(F(ζl N )/F+), ad r(1)
GF(ζ

lN
)
)

H1(Gal(L/F+), ad r(1)) H1(Gal(L/F(ζl N )), ad r(1)). (10)
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Since ρ(GF(ζl )) is adequate, it has no l-power order quotients. We find that ρ(GF(ζlN )) =
ρ(GF(ζl )) and ad r(1)

GF(ζ
lN

) ∼= k(εδF/F+). The first term of (10) can therefore be identified
with

H1(Gal(F(ζl N )/F(ζl)), k)
εδF/F+ = { f ∈ Hom(Gal(F(ζl N )/F(ζl)), k) |

∀x ∈ Gal(F(ζl N )/F(ζl)), y ∈ Gal(F(ζl N )/F+), f (yxy−1) = εδF/F+(y) f (x)
}
.

Since the extension F(ζl N )/F+ is abelian, this group can be non-zero if and only if the
character εδF/F+ is trivial on GF+ , if and only if F = F+(ζl). However, we have assumed
that ζl /∈ F , so we find that this group is zero. The third term of (10) is also zero, because
Gal(L/F(ζl N )) ∼= ρ(GF(ζl )) and this last subgroup is assumed to be adequate.

There is another short exact sequence

0 H1(Gal(L/F+), ad r(1)) H1(GF+ , ad r(1)) H1(GL , ad r(1))GF+ .

(11)

We have shown that the first term of (11) is 0, and hence the image of the cohomology class
[φ] in H1(GL , ad r(1))GF+ is non-zero. There is an inclusion

H1(GL , ad r(1))GF+ ⊂ H1(GL , ad ρ)GF(ζl ) ,

so we can identify this restriction with a non-zero, GF(ζl )-equivariant homomorphism
f :GL → ad ρ.
By assumption, we can find an element σ0 ∈ GF(ζlN ) such that ρ(σ0) is semi-simple,

togetherwith an eigenvalueα ∈ k ofρ(σ0) such that tr eσ0,α f (GL) �= 0. If tr eσ0,αφ(σ0) �= 0,
then we’re done on taking σ = σ0. Suppose instead that tr eσ0,αφ(σ0) = 0, and choose
τ ∈ GL such that tr eσ0,αφ(τ) �= 0. We then take σ = τσ0 so that ρ(σ ) = ρ(σ0), and
calculate with the cocycle relation that

tr eσ,αφ(σ ) = tr eσ0,αφ(τ) + tr eσ0,αφ(σ0) = tr eσ0,αφ(τ) �= 0.

This concludes the proof. ��
We then deduce:

Proposition 7.2 The results [32, Theorem 6.8] and [32, Theorem 8.6] hold with the assump-
tion ‘r(GL+(ζl )) is adequate, in the sense of [32, Definition 2.3]’ replaced with the following
two assumptions:

(i) ζl /∈ L.
(ii) Let ρ = r |GL . Then ρ(GL(ζl )) ⊂ GLn(k) is adequate, in the sense of Definition 2.20.

Proof As indicated above, the assumption ‘r(GL+(ζl )) is adequate, in the sense of [32, Defi-
nition 2.2]’ is used only to invoke [32, Proposition 4.4]. To prove the more general result, it is
therefore enough to replace references to [32, Proposition 4.4] in the proofs with references
to Proposition 7.1 above. ��
Corollary 7.3 The results [32, Theorem7.1] and [32, Theorem9.1] holdwith the assumption
‘ρ(GF(ζl )) ⊂ GLn(k) is adequate, in the sense of [32, Definition 2.3]’ replaced with the
following assumption:

(i) The group ρ(GF(ζl )) ⊂ GLn(k) is adequate, in the sense of Definition 2.20.
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Proof The same proofs apply verbatim, except that the results [32, Theorem 6.8] and [32,
Theorem 8.6] should be replaced by the modified versions in Proposition 7.2. ��

Weobserve that if l � n, then [32, Definition 2.3] is equivalent to Definition 2.20. However,
if l|n then a subgroupofGLn(Fl) is never adequate in the sense of [32,Definition 2.3] (because
H0(GLn(Fl), ad0) �= 0), but there are many subgroups of GLn(Fl) which are adequate in
the sense of Definition 2.20, as follows from [13, Theorem 11.5].

It follows that in the case l � n,we havemerelyfixed a gap in the proofs of [32, Theorem7.1]
and [32, Theorem 9.1]. However, in the case l|n, Corollary 7.3 is a new result, which relies
upon the new definition of adequacy given in [13].
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