Erratum to: Modular properties of nodal curves on K3 surfaces

Mihai Halic ${ }^{1}$

Published online: 27 May 2015
© Springer-Verlag Berlin Heidelberg 2015

Erratum to: Math. Z. (2012) 270:871-887 DOI 10.1007/s00209-010-0830-2

In the original publication [3], the Theorem 3.1 and Theorem 4.2 are erroneous.
(i) First, the proof of Theorem 3.1 is incorrect: The fault is at the Step 2 of the proof. In the meantime, the result has been proved in [4] with better bounds.
(ii) Second, I correct Theorem 4.2. At p. 884, the last row of the diagram A. 1 should be tensored by $\mathscr{O}_{E}(-2 E)$. This error affects the subsequent computations from Lemma A. 2 onward, which are used in the proof of the Theorem.

The corrected version is provided below.

1 The modified Wahl map

Recall that $\hat{C} \in\left|\mathscr{L}=\mathscr{A}^{d}\right|$ is a nodal curve with nodes $\mathcal{N}:=\left\{\hat{x}_{1}, \ldots, \hat{x}_{\delta}\right\}$ on the polarized $K 3$ surface (S, \mathscr{A}), such that $\mathscr{A} \in \operatorname{Pic}(S)$ is not divisible, $\mathscr{A}^{2}=2(n-1)$. (Note that the article [3] deals only with $K 3$ surfaces with cyclic Picard group). Let $\sigma: \tilde{S} \rightarrow S$ be the blow-up of S at \mathcal{N}, and denote by $E^{a}, a=1, \ldots, \delta$, the exceptional divisors, and $E:=E^{1}+\cdots+E^{\delta}$. The normalization C of \hat{C} fits into

[^0]\tilde{u} is an embedding, and $K_{C}=\sigma^{*} \mathscr{L}(-E) \otimes \mathscr{O}_{C}$. The curve C carries the divisor
$$
\Delta:=x_{1,1}+x_{1,2}+\cdots+x_{\delta, 1}+x_{\delta, 2},
$$
where $\left\{x_{a, 1}, x_{a, 2}\right\}=E^{a} \cap C$ is the pre-image of $\hat{x}_{a} \in \hat{C}$ by ν.
In general, if V^{\prime} is a subscheme of some variety $V, \mathscr{I}_{V}\left(V^{\prime}\right)$ or $\mathscr{I}\left(V^{\prime}\right)$ stands for its sheaf of ideals, and $D V^{\prime} \subset V \times V$ denotes the diagonally embedded V^{\prime}.

Let $\left(X, \Delta_{X}\right)$ be an arbitrary smooth, irreducible curve together with δ pairwise disjoint pairs of points $\Delta_{X}=\left\{\left\{x_{1,1}, x_{1,2}\right\}, \ldots,\left\{x_{\delta, 1}, x_{\delta, 2}\right\}\right\} \subset X$. The exact sequence $0 \rightarrow \mathscr{I}(D X)^{2} \rightarrow \mathscr{I}(D X) \rightarrow K_{X} \rightarrow 0$ yields the Wahl map

$$
w_{X}: H^{0}\left(X \times X, \mathscr{I}(D X) \otimes K_{X \times X}\right) \rightarrow H^{0}\left(X, K_{X}^{3}\right) .
$$

The vector space $H^{0}\left(\mathscr{I}(D X) \otimes K_{X \times X}\right)$ splits into

$$
H^{0}\left(\mathscr{I}(D X) \otimes K_{X \times X}\right) \cap \operatorname{Sym}^{2} H^{0}\left(K_{X}\right) \oplus \bigwedge^{2} H^{0}\left(K_{X}\right)
$$

and w_{X} vanishes on the first direct summand, as it is skew-symmetric. Denote

$$
\begin{equation*}
P_{\Delta_{X}}:=\bigcup_{a=1}^{\delta}\left\{x_{a, 1}, x_{a, 2}\right\} \times\left\{x_{a, 1}, x_{a, 2}\right\} \subset X \times X, \tag{2}
\end{equation*}
$$

and let $w_{X, \Delta_{X}}$ be the restriction of w_{X} to $H^{0}\left(\mathscr{I}\left(P_{\Delta_{X}}\right) \cdot \mathscr{I}(D X) \otimes K_{X \times X}\right) \cap{ }^{2} H^{0}\left(K_{X}\right)$. (Thus, $w_{X, \Delta_{X}}$ is a punctual modification of the usual Wahl map.) With this notation, we replace [3, Theorem4.2] by the following.

Theorem 1 (i) Let $(S, \mathscr{A}), \mathscr{A}^{2} \geqslant 6$, be as above. Consider a nodal curve $\hat{C} \in|d \mathscr{A}|$ with

$$
\begin{equation*}
\delta \leqslant \min \left\{\frac{d^{2} \mathscr{A}^{2}}{3(d+4)}, \delta_{\max }(n, d)\right\} \tag{3}
\end{equation*}
$$

nodes and let (C, Δ) be as above ($\delta_{\max }(n, d)$ is defined in [3, p. 872]; the minimum is the first expression, except a finite number of cases). Then, the homomorphism $w_{C, \Delta}$ is not surjective. (ii) For generic a generic curve X of genus $g \geqslant 12$ with generic markings Δ_{X}, such that $\delta \leqslant \frac{g-1}{2}$, the homomorphism $w_{X, \Delta_{X}}$ is surjective.

This is a nonsurjectivity property for the pair (C, Δ), rather than for C itself. I conclude the note (see Sect. 4) with some evidence toward the nonsurjectivity of the Wahl map w_{C} itself, and comment on related work in [4].

2 Relationship between the Wahl maps of C and \tilde{S}

Lemma 2 (i) The following diagram has exact rows and columns:

In other words, we have $\mathscr{I}:=\mathscr{I}_{C \times C}(D \Delta) \cdot \mathscr{I}_{C \times C}(D C)=w_{C}^{-1}\left(K_{C}(-\Delta)\right)$. Also, the involution τ_{C} which interchanges the factors of $C \times C$ leaves \mathscr{I} invariant.
(ii) $\left.H^{0}\left(C \times C, \mathscr{I} \otimes K_{C \times C}\right)\right)=w_{C}^{-1}\left(H^{0}\left(C, K_{C}^{3}(-\Delta)\right)\right)$.
(iii) For $\left.\Lambda:=\left\{s-\tau_{C}^{*}(s) \mid s \in H^{0}\left(\mathscr{I} \otimes K_{C \times C}\right)\right)\right\}$ holds

$$
\Lambda \stackrel{(\star)}{=} H^{0}\left(\mathscr{I} \otimes K_{C \times C}\right) \cap \bigwedge^{2} H^{0}\left(K_{C}\right) \stackrel{(\star \star)}{\subset} H^{0}\left(\mathscr{I}_{C \times C}(D C) \otimes K_{C \times C}\right)
$$

(iv) $w_{C}^{\prime}(\Lambda)=w_{C}^{\prime}\left(H^{0}\left(\mathscr{I} \otimes K_{C \times C}\right)\right)$.

Proof (i) The middle column is exact because $\mathscr{I}_{C \times C}(D C)$ is locally free. We check the exactness of the first row around each point $(o, o) \in D \Delta$. Let u be a local (analytic) coordinate on C such that $o=0$, and u_{1}, u_{2} be the corresponding coordinates on $C \times C$. Then, the first row becomes $0 \rightarrow\left\langle u_{2}-u_{1}\right\rangle^{2} \rightarrow\left\langle u_{2}-u_{1}\right\rangle \cdot\left\langle u_{1}, u_{2}\right\rangle \rightarrow\langle u\rangle \cdot \mathrm{d} u \rightarrow 0$, with $\mathrm{d} u:=\left(u_{2}-u_{1}\right) \bmod \left(u_{2}-u_{1}\right)^{2}$, which is exact. The second statement is obvious.
(ii) We tensor (4) by $K_{C \times C}$, and take the sections in the last two columns. An elementary diagram chasing yields the claim.
(iii) Let us prove (\star). The vector space Λ is contained in $\bigwedge^{2} H^{0}\left(K_{C}\right)$ by the very definition, and also in $H^{0}\left(\mathscr{I} \otimes K_{C \times C}\right)$ because the sheaf $\mathscr{I}(C, \Delta)$ is τ_{C}-invariant. For the inclusion in the opposite direction, take s in the intersection. As $s \in \bigwedge^{2} H^{0}\left(K_{C}\right)$, it follows $\tau_{C}^{*}(s)=-s$, so $s=1 / 2 \cdot\left(s-\tau_{C}^{*}(s)\right) \in \Lambda$. The inclusion $(\star \star)$ is obvious.
(iv) Indeed, the Wahl map is anti-commutative: $w_{C}\left(\sum_{i} s_{i} \otimes t_{i}\right)=-w_{C}\left(\sum_{i} t_{i} \otimes s_{i}\right)$.

Lemma 3 Let $\Xi:=\left\{\left(x_{a, 1}, x_{a, 2}\right),\left(x_{a, 2}, x_{a, 1}\right) \mid a=1, \ldots, \delta\right\} \subset C \times C$, and consider the sheaf of ideals $\mathscr{I}(C, \Delta):=\mathscr{I}(\Xi) \cdot \mathscr{I} \stackrel{(2)}{=} \mathscr{I}\left(P_{\Delta}\right) \cdot \mathscr{I}(D C) \subset \mathscr{I}$. Furthermore, denote

$$
\begin{equation*}
\Lambda(\Delta):=H^{0}\left(\mathscr{I}(C, \Delta) \otimes K_{C \times C}\right) \cap \bigwedge^{2} H^{0}\left(K_{C}\right) \tag{5}
\end{equation*}
$$

Then, the following statements hold:
(i) $\mathscr{I}(C, \Delta)$ is τ_{C}-invariant, so $w_{C}^{\prime}(\Lambda(\Delta))=w_{C}^{\prime}\left(H^{0}\left(\mathscr{I}(C, \Delta) \otimes K_{C \times C}\right)\right)$.
(ii) $\mathscr{I}(C, \Delta)+\mathscr{I}_{C \times C}(D C)^{2}=\mathscr{I}$, and $\mathscr{I}(C, \Delta) \cap \mathscr{I}(D C)^{2}=\mathscr{I}(\Xi) \cdot \mathscr{I}(D C)^{2}$.

Therefore, the various sheaves introduced so far fit into the commutative diagram

(The homomorphism $w_{C, \Delta}$ in the introduction equals $H^{0}\left(w_{C, \Delta}^{\prime}\right)$, defined after tensoring by $K_{C \times C}$.)
Proof (i) The proof is identical to Lemma 2(iv).
(ii) The inclusion \subset is clear. For the reverse, notice that $\mathscr{O}_{C \times C}=\mathscr{I}(\Xi)+\mathscr{I}$, so $\mathscr{I} \subset$ $\mathscr{I}(C, \Delta)+\mathscr{I}^{2} \subset \mathscr{I}(C, \Delta)+\mathscr{I}(D C)^{2}$. The second claim is analogous.

Now, we compare the Wahl maps of C and \tilde{S}. Let $\rho: \mathscr{I}_{\tilde{S} \times \tilde{S}}(D \tilde{S}) \rightarrow \mathscr{I}_{C \times C}(D C)$ be the restriction homomorphism, and $\mathscr{M}:=\sigma^{*} \mathscr{L}(-E)$. The diagram below relates various objects involved in the definition of w_{C} and $w_{\tilde{S}}$:

The rightmost column corresponds to the first-order expansions of the sections along E and at Δ. By using $0 \rightarrow \mathscr{O}_{E}(1) \rightarrow \mathscr{O}_{2 E} \rightarrow \mathscr{O}_{E} \rightarrow 0$, we deduce that it fits into:

Along each $E^{a} \subset \tilde{S}$, we consider local coordinates u, v as follows: v is the coordinate along E^{a}, and u is a coordinate in the normal direction to E^{a} (so E^{a} is given by $\{u=0\}$). Moreover, we assume that C is given by $\{v=0\}$ around the intersection points $\left\{x_{a, 1}, x_{a, 2}\right\}=E^{a} \cap C$. Then, any element $\tilde{s} \in H^{0}(\mathscr{M})$ can be expanded as

$$
\begin{equation*}
\tilde{s}=\tilde{s}_{0}^{a}(v)+u \tilde{s}_{1}^{a}(v)+O\left(u^{2}\right), \tag{9}
\end{equation*}
$$

and its image in $H^{0}\left(\mathscr{M} \otimes \mathscr{O}_{2 E^{a}}\right)$ is $\tilde{s}_{0}^{a}(v)+u \tilde{s}_{1}^{a}(v)$. Finally, observe that the values of $w_{\tilde{S}}$ are sections of $\Omega_{\tilde{S}}^{1} \otimes \mathscr{M}^{2}$, and the restriction of this latter to E fits into

$$
\left.0 \rightarrow \underbrace{\mathscr{O}_{E}(3)}_{\text {normal component }} \rightarrow \Omega_{\tilde{S}}^{1} \otimes \mathscr{M}^{2}\right|_{E} \rightarrow \underbrace{\Omega_{E}^{1} \otimes \mathscr{M}_{E}^{2}=\mathscr{O}_{E}}_{\text {tangential component }} \rightarrow 0 .
$$

Lemma 4 Let the notation be as in (9). We consider $\tilde{e}=\sum_{i} \tilde{s}_{i} \wedge \tilde{t}_{i} \in{ }_{\wedge}^{2} H^{0}(\mathscr{M})$, and let $e:=\rho(\tilde{e})=\sum_{i} s_{i} \wedge t_{i}$. Then, the following statements hold:
(i) $w_{\tilde{S}}(\tilde{e}) \in H^{0}\left(\Omega_{\tilde{S}}^{1}(-E) \otimes \mathscr{M}^{2}\right)$ if and only if:

$$
\begin{cases}(\star) & \sum_{i}\left(s_{i}\left(x_{a, 1}\right) t_{i}\left(x_{a, 2}\right)-t_{i}\left(x_{a, 1}\right) s_{i}\left(x_{a, 2}\right)\right)=0, \quad \text { and } \\ (\star \star) & \sum_{i}\left(\tilde{s}_{i, 0}^{a} \tilde{t}_{i, 1}^{a}-\tilde{t}_{i, 0}^{a} \tilde{s}_{i, 1}^{a}\right)=0, \quad \forall a=1, \ldots, \delta .\end{cases}
$$

(ii) $\Lambda(E):=w_{\tilde{S}}^{-1}\left(H^{0}\left(\Omega_{\tilde{S}}^{1}(-E) \otimes \mathscr{M}^{2}\right)\right) \cap \bigwedge^{2} H^{0}(\mathscr{M})$ has the property

$$
w_{\tilde{S}}(\Lambda(E))=w_{\tilde{S}}\left(w_{\tilde{S}}^{-1}\left(H^{0}\left(\Omega_{\tilde{S}}^{1}(-E) \otimes \mathscr{M}^{2}\right)\right)\right)
$$

(iii) $\rho(\Lambda(E)) \subset \Lambda(\Delta)$, where the right hand side is defined by (5).

Proof (i) The element $w_{\tilde{S}}(\tilde{e})$ vanishes along E if and only if both its tangential and normal components along each $E^{a} \subset E$ vanish. A short computation shows that the normal component is $(\star \star)$. The tangential component is $\sum_{i}\left(\tilde{s}_{i, 0}^{a}\left(\tilde{t}_{i, 0}^{a}\right)^{\prime}-\tilde{t}_{i, 0}^{a}\left(\tilde{s}_{i, 0}^{a}\right)^{\prime}\right)$. But $\tilde{s}_{i, 0}^{a}, \tilde{t}_{i, 0}^{a} \in H^{0}\left(\mathscr{O}_{E^{a}}(1)\right)$, that is they are linear polynomials in v, so

$$
\tilde{s}_{i, 0}^{a}\left(\tilde{t}_{i, 0}^{a}\right)^{\prime}-\tilde{t}_{i, 0}^{a}\left(\tilde{s}_{i, 0}^{a}\right)^{\prime}=\tilde{s}_{i, 0}^{a}\left(x_{a, 1}\right) \tilde{t}_{i, 0}^{a}\left(x_{a, 2}\right)-\tilde{t}_{i, 0}^{a}\left(x_{a, 1}\right) \tilde{s}_{i, 0}^{a}\left(x_{a, 2}\right),
$$

up to a constant factor. Also, we have $\tilde{s}_{i, 0}^{a}\left(x_{a, j}\right)=\tilde{s}^{a}\left(x_{a, j}\right)=s\left(x_{a, j}\right)$, and (\star) follows.
(ii) The vector space $w_{\tilde{S}}^{-1}\left(H^{0}\left(\Omega{ }_{\tilde{S}}^{1}(-E) \otimes \mathscr{M}^{2}\right)\right)$ is invariant under the involution $\tau_{\tilde{S}}$ of $\tilde{S} \times \tilde{S}$ which switches the two factors. As $w_{\tilde{S}}$ is anti-commutative, the claim follows as in Lemma 2.
(iii) Take $\tilde{e} \in \Lambda(E)$ and $e:=\rho(\tilde{e})$. Then, $e\left(x_{a, 1}, x_{a, 2}\right)=-e\left(x_{a, 2}, x_{a, 1}\right) \stackrel{(\star)}{=} 0$, and also $w_{C}(e)\left(x_{a, j}\right)$ equals the expression $(\star \star)$ at $x_{a, j}$ (so it vanishes), for $j=1,2$.

Now. we consider the commutative diagram:

It is the substitute in the case of nodal curves for [3, diagram (4.2)].
Lemma 5 Assume $\operatorname{Pic}(S)=\mathbb{Z} \mathscr{A}$. Then, $\rho_{\Delta}: \Lambda(E) \rightarrow \Lambda(\Delta)$ is surjective.
Proof The restriction $H^{0}(\tilde{S}, \mathscr{M}) \rightarrow H^{0}\left(C, K_{C}\right)$ is surjective (see [3, LemmaA.1]), and the kernel of $\bigwedge_{\bigwedge}^{2} H^{0}(\tilde{S}, \mathscr{M}) \rightarrow \bigwedge^{2} H^{0}\left(C, K_{C}\right)$ consists of elements of the form $\tilde{t} \wedge\left(\tilde{s}_{C} \tilde{s}_{E}\right)$, where $\tilde{t} \in H^{0}(\mathscr{M})$ and $\tilde{s}_{C}, \tilde{s}_{E}$ are the canonical sections of $\mathscr{O}_{\tilde{S}}(C)$ and $\mathscr{O}_{\tilde{S}}(E)$, respectively. (See the middle column of (7).)

$$
\text { Consider } e=\sum_{i}\left(s_{i} \otimes t_{i}-t_{i} \otimes s_{i}\right) \in \Lambda(\Delta), \text { and let } \tilde{e}=\sum_{i}\left(\tilde{s}_{i} \otimes \tilde{t}_{i}-\tilde{t}_{i} \otimes \tilde{s}_{i}\right) \in \bigwedge^{2} H^{0}(\mathscr{M})
$$ be such that $\rho(\tilde{e})=e$. The proof of 4(i) shows that, for all a, the tangential component of $\left.w_{\tilde{S}}(\tilde{e})\right|_{E^{a}}$ equals $e\left(x_{a, 1}, x_{a, 2}\right)=0$, so $\left.w_{\tilde{S}}(\tilde{e})\right|_{E}$ is a section of $\Omega_{E / \tilde{S}}^{1} \otimes \mathscr{M}_{E}^{2} \cong \mathscr{O}_{E}(3)$. Since $\left.w_{\tilde{S}}(\tilde{e})\right|_{E}$ vanishes at the points of Δ, it is actually determined up to an element in $H^{0}\left(\mathscr{O}_{E}(1)\right)$. We claim that this latter can be canceled by adding to \tilde{e} a suitable element of the form $\tilde{t} \wedge\left(\tilde{s}_{C} \tilde{s}_{E}\right)$. A short computation yields

$$
\left.w_{\tilde{S}}\left(\tilde{t} \wedge\left(\tilde{s}_{C} \tilde{s}_{E}\right)\right)\right|_{E}=\left.\tilde{t}_{E} \cdot\left(\left.\tilde{s}_{C}\right|_{E}\right) \cdot\left(\mathrm{d} \tilde{s}_{E}\right)\right|_{E} \in \mathscr{O}_{E}(3),
$$

where $\tilde{t}_{E} \in H^{0}\left(\mathscr{O}_{E}(1)\right),\left.\tilde{s}_{C}\right|_{E} \in H^{0}\left(\mathscr{O}_{E}(2)\right)$ vanishes at $\Delta=E \cap C$, and $\left.\left(\mathrm{d} \tilde{s}_{E}\right)\right|_{E} \in H^{0}\left(\mathscr{O}_{E}\right)$ (it is a section of $\left.\Omega_{\tilde{S}}^{1}\right|_{E}$ with vanishing tangential component). Thus, these two latter factors are actually (nonzero) scalars.

The previous discussion shows that $\tilde{e}+\tilde{t} \wedge\left(\tilde{s}_{C} \tilde{s}_{E}\right) \in \Lambda(E)$ as soon as $\tilde{t} \in H^{0}(\mathscr{M})$ satisfies $\tilde{t}_{E}=-\left.w_{\tilde{S}}(\tilde{e})\right|_{E} \in H^{0}\left(\mathscr{M}_{E}\right)$. According to Corollary 8, such an element \tilde{t} exists because the restriction $H^{0}(\mathscr{M}) \rightarrow H^{0}\left(\mathscr{M}_{E}\right)$ is surjective.

Proof of Theorem 1 (i) Case $\operatorname{Pic}(S)=\mathbb{Z} \mathscr{A}$. If $w_{C, \Delta}$ is surjective; then, the homomorphism b in the diagram (10) is surjective too. Now, we follow the same pattern as in [3, p. 884,top]: b is the restriction homomorphism at the level of sections of

$$
\left.0 \rightarrow K_{C} \rightarrow \Omega_{\tilde{S}}^{1}\right|_{C} \otimes K_{C}^{2}(-\Delta) \rightarrow K_{C}^{3}(-\Delta) \rightarrow 0
$$

and its surjectivity implies that this sequence splits. This contradicts [3, Lemma4.1]. General case. It is a deformation argument. We consider

$$
\begin{aligned}
& \mathscr{K}_{n}:=\left\{(S, \mathscr{A}) \mid \mathscr{A} \in \operatorname{Pic}(S) \text { is ample, not divisible, } \mathscr{A}^{2}=2(n-1)\right\}, \\
& \mathscr{V}_{n, \delta}^{d}:=\left\{((S, \mathscr{A}), \hat{C})\left|(S, \mathscr{A}) \in \mathscr{K}_{n}, \hat{C} \in\right| d \mathscr{A} \mid \text { nodal curve with } \delta \text { nodes }\right\} .
\end{aligned}
$$

Then, the natural projection $\kappa: \mathscr{V}_{n, \delta}^{d} \rightarrow \mathscr{K}_{n}$ is submersive onto an open subset of \mathscr{K}_{n}. (See [3, Theorem 1.1(iii)] and the reference therein.)

Hence, for any $((S, \mathscr{A}), \hat{C}) \in \mathscr{V}_{n, \delta}^{d}$ there is a smooth deformation $\left(\left(S_{t}, \mathscr{A}_{t}\right), \hat{C}_{t}\right)$ parameterized by an open subset $T \subset \mathscr{K}_{n}$. The points $t \in T$ such that $\operatorname{Pic}\left(S_{t}\right)=\mathbb{Z} \mathscr{A}_{t}$ are dense; for these $w_{C_{t}, \Delta_{t}}$ are nonsurjective. Since the nonsurjectivity condition is closed, we deduce that $w_{C, \Delta}$ is nonsurjective too.
(ii) Now let $\left(X, \Delta_{X}\right)$ be a generic marked curve of genus at least 12. By [1], the Wahl map $w_{X}: \bigwedge^{2} H^{0}\left(K_{X}\right) \rightarrow H^{0}\left(K_{X}^{3}\right)$ is surjective; thus, $\widetilde{w}_{X}^{\prime}:=H^{0}\left(w_{X}^{\prime} \otimes K_{X \times X}\right)$ in (6) is surjective as well (see lemma 2(ii)). As $\delta \leqslant \frac{g-1}{2}$, the evaluation homomorphism $H^{0}\left(K_{X}\right) \rightarrow K_{X} \otimes \mathscr{O}_{\Delta_{X}}$ is surjective for generic markings, so the same holds for

$$
H^{0}\left(K_{X}\right)^{\otimes 2} \rightarrow \bigoplus_{a=1}^{\delta}\left(K_{X, x_{a, 1}} \oplus K_{X, x_{a, 2}}\right)^{\otimes 2}
$$

The restriction to the anti-symmetric part (on both sides) yields the surjectivity of

$$
\mathrm{ev}_{\Xi}: \bigwedge^{2} H^{0}\left(K_{X}\right) \rightarrow \bigoplus_{a=1}^{\delta} K_{X, x_{a, 1}} \otimes K_{X, x_{a, 2}}=\bigoplus_{a=1}^{\delta} K_{X \times X,\left(x_{a, 1}, x_{a, 2}\right)}
$$

(For $s \in \bigwedge_{\bigwedge}^{2} H^{0}\left(K_{X}\right), \mathrm{ev}_{\Xi}(s)$ takes opposite values at $\left(x_{a, 1}, x_{a, 2}\right)$ and $\left(x_{a, 2}, x_{a, 1}\right)$.)
The diagram (6) yields

A straightforward diagram chasing shows that $w_{X, \Delta_{X}}$ is surjective if

$$
\mathrm{ev}_{\Xi}^{\prime \prime}: \underbrace{H^{0}\left(\mathscr{I}(D X)^{2} \cdot K_{X \times X}\right) \cap \bigwedge^{2} H^{0}\left(K_{X}\right)}_{:=G} \rightarrow \underbrace{\bigoplus_{a=1}^{\delta} K_{X \times X,\left(x_{a, 1}, x_{a, 2}\right)}}_{:=H_{\Xi}}
$$

is so, or equivalently when the induced $h_{\Xi}: \bigwedge^{\delta} G \rightarrow \bigwedge_{\Lambda}^{\delta} H_{\Xi}$ is nonzero. This is indeed the case for generic markings.
Claim $\bigcap_{\Delta_{X}} \operatorname{Ker}\left(h_{\Xi}\right)=0$. (h_{Ξ} depends on Δ_{X}.) Indeed, since $\operatorname{dim} G \geqslant \delta$, we have

$$
\begin{aligned}
& \bigoplus_{a=1}^{\delta} K_{X \times X,\left(x_{a, 1}, x_{a, 2}\right)} \bigoplus_{a=1}^{\delta} K_{X \times X,\left(x_{a, 1}, x_{a, 2}\right)} \bigoplus_{a=1}^{\delta} K_{X \times X,\left(x_{a, 1}, x_{a, 2}\right)}, \\
& 0 \neq \bigwedge^{\delta} G \subset \bigwedge^{\delta}\left(\bigwedge^{2} H^{0}\left(K_{X}\right)\right) \subset H^{0}\left(K_{X \times X}\right)^{\otimes \delta}=H^{0}\left(\left(X^{2}\right)^{\delta}, K_{X \times X} \boxtimes \cdots \boxtimes K_{X \times X}\right) .
\end{aligned}
$$

The wedge is a direct summand of the tensor product (appropriate skew-symmetric sums), and h_{Ξ} is induced by the evaluation map

$$
\mathrm{ev}^{\delta}: H^{0}\left(\left(X^{2}\right)^{\delta}, K_{X \times X} \boxtimes \cdots \boxtimes K_{X \times X}\right) \otimes \mathscr{O} \rightarrow K_{X \times X} \boxtimes \cdots \boxtimes K_{X \times X}
$$

at $\left(\left(x_{1,1}, x_{1,2}\right), \ldots,\left(x_{\delta, 1}, x_{\delta, 2}\right)\right) \in\left(X^{2}\right)^{\delta}$. If $e \in \bigwedge^{\delta} G$ belongs to the intersection above, then $e \in H^{0}\left(\operatorname{Ker}\left(\mathrm{ev}^{\delta}\right)\right)=\{0\}$. Hence, for any $e_{1}, \ldots, e_{\delta} \in G$ with $e_{1} \wedge \cdots \wedge e_{\delta} \neq 0$, there are markings Δ_{X} such that $\mathrm{ev}_{\Xi}^{\prime \prime}\left(e_{1}\right), \ldots, \mathrm{ev}_{\Xi}^{\prime \prime}\left(e_{\delta}\right)$ are linearly independent in H_{Ξ} (thus, they span it).

3 Multiple point Seshadri constants of $K 3$ surfaces with cyclic Picard group

This section is independent of the rest. Here we determine a lower bound for the multiple point Seshadri constants of \mathscr{A}, which is necessary for proving Lemma 5 .

Definition 6 (See [2, Section 6] for the original definition) The multiple point Seshadri constant of \mathscr{A} corresponding to $\hat{x}_{1}, \ldots, \hat{x}_{\delta} \in S$ is defined as

$$
\begin{equation*}
\varepsilon=\varepsilon_{S, \delta}(\mathscr{A}):=\inf _{Z} \frac{Z \cdot \mathscr{A}}{\sum_{a=1}^{\delta} \operatorname{mult}_{\hat{x}_{a}}(Z)}=\sup \left\{c \in \mathbb{R} \mid \sigma^{*} \mathscr{A}-c E \text { is ample on } \tilde{S}\right\} . \tag{12}
\end{equation*}
$$

The infimum is taken over all integral curves $Z \subset S$ which contain at least one of the points \hat{x}_{a} above. Throughout this section, we assume that $Z \in|z \mathscr{A}|$, with $z \geqslant 1$.

As the self-intersection number of any ample line bundle is positive, the upper bound $\varepsilon \leqslant \frac{\sqrt{\mathscr{A}^{2}}}{\sqrt{\delta}}$ is automatic. We are interested in finding a lower bound.

Theorem 7 Assume that $\operatorname{Pic}(S)=\mathbb{Z} \mathscr{A}, \mathscr{A}^{2}=2(n-1) \geqslant 4$, and $\delta \geqslant 1$. Then, the Seshadri constant (12) satisfies $\varepsilon \geqslant \frac{2 \mathscr{\mathscr { A } ^ { 2 }}}{\delta+\sqrt{\delta^{2}+4 \delta\left(2+\mathscr{A}^{2}\right)}}$, for any points $\hat{x}_{1}, \ldots, \hat{x}_{\delta} \in S$.

Our proof is inspired from [5], which treats the case $\delta=1$.

Proof We may assume that the points are numbered such that

$$
\operatorname{mult}_{\hat{x}_{a}}(Z) \geqslant 2, \text { for } a=1, \ldots, \alpha, \quad \operatorname{mult}_{\hat{x}_{a}}(Z)=1, \text { for } a=\alpha+1, \ldots, \beta, \quad(\beta \leqslant \delta) .
$$

We denote $p:=\sum_{a=1}^{\alpha} \operatorname{mult}_{\hat{x}_{a}}(Z) \geqslant 2 \alpha$ and $m:=\sum_{a=1}^{\delta} \operatorname{mult}_{\hat{x}_{a}}(Z) \leqslant p+\delta-\alpha$.
If $\alpha=0$, then $\frac{z \cdot \mathscr{L}^{2}}{m} \geqslant \frac{\mathscr{L}^{2}}{\delta}$ satisfies the inequality, so we may assume $\alpha \geqslant 1$. A point of multiplicity m lowers the arithmetic genus of Z by at least $\binom{m}{2}$; hence,

$$
p_{a}(Z)=\frac{z^{2} \mathscr{A}^{2}}{2}+1 \geqslant \frac{1}{2} \sum_{a=1}^{\alpha}\left(\operatorname{mult}_{\hat{x}_{a}}(Z)^{2}-\operatorname{mult}_{\hat{x}_{a}}(Z)\right) \underset{\text { inequality }}{\stackrel{\text { Jensen }}{\gtrless}} \frac{1}{2}\left(\frac{p^{2}}{\alpha}-p\right),
$$

so $p \leqslant \frac{\alpha+\sqrt{\alpha^{2}+4 \alpha\left(2+z^{2} \mathscr{A}^{2}\right)}}{2}$. We deduce the following inequalities:

$$
\begin{aligned}
\frac{z \mathscr{A}^{2}}{m} & \geqslant \frac{z \mathscr{A}^{2}}{p-\alpha+\delta} \geqslant \underbrace{\frac{z \mathscr{A}^{2}}{\delta+\frac{\sqrt{\alpha^{2}+4 \alpha\left(2+z^{2} \mathscr{A}^{2}\right)}-\alpha}{2}} \geqslant \underbrace{\frac{z \mathscr{A}^{2}}{\delta+\frac{\sqrt{\delta^{2}+4 \delta\left(2+z^{2} \mathscr{A}^{2}\right)}-\delta}{2}}}_{\text {increasing in } z}}_{\text {decreasing in } \alpha} \begin{aligned}
& \geqslant \frac{2 \mathscr{A}^{2}}{\delta+\sqrt{\delta^{2}+4 \delta\left(2+\mathscr{A}^{2}\right)}} .
\end{aligned} .
\end{aligned}
$$

Corollary $8 H^{0}(\mathscr{M}) \rightarrow H^{0}\left(\mathscr{M}_{E}\right)$ is surjective, for $\mathscr{A}^{2} \geqslant 6$ and $\delta \leqslant \frac{d^{2} \mathscr{A}^{2}}{3(d+4)}$.

Proof Indeed, it is enough to check that $H^{1}(\tilde{S}, \mathscr{M}(-E))=H^{1}\left(\tilde{S}, K_{\tilde{S}} \otimes \mathscr{M}(-2 E)\right)$ vanishes. By the Kodaira vanishing theorem, this happens as soon as $\mathscr{M}(-2 E)=\sigma^{*} \mathscr{A}^{d}(-3 E)$ is ample. The previous theorem implies that, in order to achieve this, is enough to impose $\frac{3}{d} \leqslant \frac{2 \mathscr{A}^{2}}{\delta+\sqrt{\delta^{2}+4 \delta\left(2+\mathscr{A}^{2}\right)}}$, which yields $\delta \leqslant \frac{d^{2}\left(\mathscr{A}^{2}\right)^{2}}{3\left(d \mathscr{A}^{2}+3 \mathscr{A}^{2}+6\right)}$.

4 Concluding remarks

(I) Evidence for the nonsurjectivity of $w_{\boldsymbol{C}}$ Theorem 1 is a nonsurjectivity property for the Wahl map of the pointed curve (C, Δ), rather than that of the curve C itself.

Claim. In order to prove the nonsurjectivity of the Wahl map w_{C}, is enough to have the surjectivity of the evaluation homomorphism

$$
\begin{equation*}
H^{0}\left(\mathscr{I}(D C)^{2} \otimes K_{C \times C}\right) \rightarrow \bigoplus_{a=1}^{\delta} K_{C \times C,\left(x_{a, 1}, x_{a, 2}\right)} \oplus K_{C \times C,\left(x_{a, 2}, x_{a, 1}\right)} . \tag{13}
\end{equation*}
$$

(For δ in the range (3), corollary 8 implies that $K_{C}=\mathscr{M}_{C}$ separates Δ, consequently $\bigwedge^{2} H^{0}\left(K_{C}\right) \rightarrow \bigoplus_{a=1}^{\delta} K_{C \times C,\left(x_{a, 1}, x_{a, 2}\right)}$ is surjective. The surjectivity of (13) yields that of $\mathrm{ev}_{\Xi}^{\prime \prime}$ in (11), which is relevant for us.)
For the claim, observe that one has the following implications (see (4), (11)):

$$
\begin{equation*}
w_{C} \text { surjective } \Rightarrow w_{C}^{\prime} \text { surjective } \underset{\text { surj. }}{\stackrel{(13)}{\Rightarrow}} w_{C, \Delta} \text { surjective, a contradiction. } \tag{14}
\end{equation*}
$$

The surjectivity of (13) is clearly a positivity property for $\mathscr{I}(D C)^{2} \otimes K_{C \times C}$. We use again the Seshadri constants to argue why this is likely to hold. The Ξ-pointed Seshadri constants of the self-product of a very general curve X at very general points Ξ (as in Lemma 3) satisfy (see [6, p. 65 below Theorem 1.6, and Lemma 2.6]):

$$
\begin{align*}
\varepsilon_{X \times X, \Xi}\left(\mathscr{I}(D X)^{2} \otimes K_{X \times X}\right) & \geqslant 2(g-2) \varepsilon_{\mathbb{P}^{2}, g+\delta}\left(\mathscr{O}_{\mathbb{P}^{2}}(1)\right) \\
& >\frac{2(g-2)}{\sqrt{g+\delta}} \sqrt{1-\frac{1}{8(g+\delta)}}, \tag{15}\\
\varepsilon_{X \times X, \Xi}\left(\mathscr{I}(D X)^{4} \otimes K_{X \times X}\right) & \geqslant 4 \cdot \frac{g-3}{2} \cdot \varepsilon_{\mathbb{P}^{2}, g+\delta}\left(\mathscr{O}_{\mathbb{P}^{2}}(1)\right) \\
& >\frac{2(g-3)}{\sqrt{g+\delta}} \sqrt{1-\frac{1}{8(g+\delta)}}=: \varphi(g, \delta) . \tag{16}
\end{align*}
$$

The equation (16) implies (see [2, Proposition6.8]) that $\left(\mathscr{I}(D X)^{2} \otimes K_{X \times X}\right)^{2}$ generates the jets of order $\lfloor\varphi(g, \delta)\rfloor-2$ at $\Xi \subset X \times X$. (We only need the generation of jets of order zero for $\mathscr{I}(D X)^{2} \otimes K_{X \times X}$; also, note that $\varphi(g, \delta)$ grows linearly with \sqrt{g} as long as δ is small compared with g (see (3)).) This discussion suggests that $\mathscr{I}(D X)^{2} \otimes K_{X \times X}$ is 'strongly positive/generated.' However, the passage to (13) above requires even more control.
(II) Related work In [4], the author extensively studies the properties of nodal curves on $K 3$ surfaces. Among several other results, he proves the nonsurjectivity of a marked Wahl map (different from the one introduced in here) for nodal curves on $K 3$ surfaces.

Acknowledgments The comments made by the referee helped to improve the presentation.

References

1. Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57, 829-858 (1988)
2. Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic varieties. Lect. Notes Math. 1507, 87-104 (1992)
3. Halic, M.: Modular properties of nodal curves on $K 3$ surfaces. Math. Z. 270, 871-887 (2012)
4. Kemeny, M.: The Moduli of Singular Curves on $K 3$ Surfaces. http://arxiv.org/abs/1401.1047
5. Knutsen, A.: A note on Seshadri constants on general $K 3$ surfaces. CR Acad. Sci. Paris 346, 1079-1081 (2008)
6. Ross, J.: Seshadri constants on symmetric products of curves. Math. Res. Lett. 14, 63-75 (2007)

[^0]: The online version of the original article can be found under doi:10.1007/s00209-010-0830-2.
 Mihai Halic
 mihai.halic@gmail.com
 1 Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P. O. Box 5046, Dhahran 31261, Saudi Arabia

