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In the original publication [3], the Theorem 3.1 and Theorem 4.2 are erroneous.

(i) First, the proof of Theorem 3.1 is incorrect: The fault is at the Step 2 of the proof. In the
meantime, the result has been proved in [4] with better bounds.

(ii) Second, I correct Theorem 4.2. At p. 884, the last row of the diagram A.1 should be
tensored byOE (−2E). This error affects the subsequent computations from LemmaA.2
onward, which are used in the proof of the Theorem.

The corrected version is provided below.

1 The modified Wahl map

Recall that Ĉ ∈ |L = A d | is a nodal curvewith nodesN := {x̂1, . . . , x̂δ}on the polarized K3
surface (S,A ), such that A ∈ Pic(S) is not divisible, A 2 = 2(n − 1). (Note that the article
[3] deals only with K3 surfaces with cyclic Picard group). Let σ : S̃ → S be the blow-up of
S at N, and denote by Ea , a = 1, . . . , δ, the exceptional divisors, and E := E1 + · · · + Eδ .
The normalization C of Ĉ fits into

(C,Δ)

ν ��

� � ũ ��
u

����������� S̃
σ��

(Ĉ,N)
� � j �� S,

(1)

The online version of the original article can be found under doi:10.1007/s00209-010-0830-2.
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1204 M. Halic

ũ is an embedding, and KC = σ ∗L (−E) ⊗ OC . The curve C carries the divisor

Δ := x1,1 + x1,2 + · · · + xδ,1 + xδ,2,

where {xa,1, xa,2} = Ea ∩ C is the pre-image of x̂a ∈ Ĉ by ν.
In general, if V ′ is a subscheme of some variety V ,IV (V ′) orI (V ′) stands for its sheaf

of ideals, and DV ′ ⊂ V × V denotes the diagonally embedded V ′.
Let (X,ΔX ) be an arbitrary smooth, irreducible curve together with δ pairwise dis-

joint pairs of points ΔX = {{x1,1, x1,2}, . . . , {xδ,1, xδ,2}} ⊂ X. The exact sequence
0 → I (DX)2 → I (DX) → KX → 0 yields the Wahl map

wX : H0 (X × X,I (DX) ⊗ KX×X ) →H0 (X, K 3
X

)
.

The vector space H0(I (DX) ⊗ KX×X ) splits into

H0(I (DX) ⊗ KX×X ) ∩ Sym2 H0(KX ) ⊕
2∧

H0(KX ),

and wX vanishes on the first direct summand, as it is skew-symmetric. Denote

PΔX :=
δ⋃

a=1

{xa,1, xa,2} × {xa,1, xa,2} ⊂ X × X, (2)

and let wX,ΔX be the restriction of wX to H0
(
I (PΔX ) · I (DX) ⊗ KX×X

) ∩
2∧
H0(KX ).

(Thus, wX,ΔX is a punctual modification of the usual Wahl map.) With this notation, we
replace [3, Theorem4.2] by the following.

Theorem 1 (i) Let (S,A ), A 2 � 6, be as above. Consider a nodal curve Ĉ ∈ |dA | with

δ � min

{
d2A 2

3(d + 4)
, δmax(n, d)

}
(3)

nodes and let (C,Δ) be as above (δmax(n, d) is defined in [3, p. 872]; the minimum is the first
expression, except a finite number of cases). Then, the homomorphismwC,Δ is not surjective.
(ii) For generic a generic curve X of genus g � 12 with generic markings ΔX , such that
δ � g−1

2 , the homomorphism wX,ΔX is surjective.

This is a nonsurjectivity property for the pair (C,Δ), rather than for C itself. I conclude
the note (see Sect. 4) with some evidence toward the nonsurjectivity of the Wahl map wC

itself, and comment on related work in [4].

2 Relationship between the Wahl maps of C and S̃

Lemma 2 (i) The following diagram has exact rows and columns:

0 �� IC×C (DC)2 �� IC×C (DΔ) · IC×C (DC)
w′C ��

� �

��

KC (−Δ) ��
� �

��

0

0 �� IC×C (DC)2 �� IC×C (DC)
wC ��

evΔ����

KC ��

evΔ����

0

IC×C (DC)DΔ KC,Δ

(4)

In other words, we have I := IC×C (DΔ) · IC×C (DC) = w−1
C (KC (−Δ)). Also, the

involution τC which interchanges the factors of C × C leaves I invariant.
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Modular properties of nodal curves on K3 surfaces 1205

(ii) H0
(
C × C,I ⊗ KC×C )

) = w−1
C

(
H0(C, K 3

C (−Δ))
)
.

(iii) For Λ := {s − τ ∗
C (s) | s ∈ H0

(
I ⊗ KC×C )

)}
holds

Λ
(�)= H0(I ⊗ KC×C

) ∩
2∧

H0(KC )
(��)⊂ H0(IC×C (DC) ⊗ KC×C

)
.

(iv) w′
C (Λ) = w′

C

(
H0
(
I ⊗ KC×C

))
.

Proof (i) The middle column is exact because IC×C (DC) is locally free. We check the
exactness of the first row around each point (o, o) ∈ DΔ. Let u be a local (analytic)
coordinate on C such that o = 0, and u1, u2 be the corresponding coordinates on C ×C .
Then, the first row becomes 0 → 〈u2 − u1〉2 → 〈u2 − u1〉 · 〈u1, u2〉 → 〈u〉 · du → 0,
with du := (u2 − u1)mod(u2 − u1)2, which is exact. The second statement is obvious.

(ii) We tensor (4) by KC×C , and take the sections in the last two columns. An elementary
diagram chasing yields the claim.

(iii) Let us prove (�). The vector space Λ is contained in
2∧
H0(KC ) by the very definition,

and also in H0
(
I ⊗KC×C

)
because the sheafI (C,Δ) is τC -invariant. For the inclusion

in the opposite direction, take s in the intersection. As s ∈
2∧

H0(KC ), it follows
τ ∗
C (s) = −s, so s = 1/2 · (s − τ ∗

C (s)) ∈ Λ. The inclusion (��) is obvious.
(iv) Indeed, the Wahl map is anti-commutative: wC (

∑
i si ⊗ ti ) = −wC (

∑
i ti ⊗ si ).

�

Lemma 3 Let Ξ := {(xa,1, xa,2), (xa,2, xa,1) | a = 1, . . . , δ} ⊂ C × C, and consider the

sheaf of ideals I (C,Δ) := I (Ξ) · I (2)= I (PΔ) · I (DC) ⊂ I . Furthermore, denote

Λ(Δ) := H0(I (C,Δ) ⊗ KC×C ) ∩
2∧

H0(KC ). (5)

Then, the following statements hold:

(i) I (C,Δ) is τC-invariant, so w′
C

(
Λ(Δ)

) = w′
C

(
H0(I (C,Δ) ⊗ KC×C )

)
.

(ii) I (C,Δ) + IC×C (DC)2 = I , and I (C,Δ) ∩ I (DC)2 = I (Ξ) · I (DC)2.
Therefore, the various sheaves introduced so far fit into the commutative diagram

0 �� I (Ξ) · I (DC)2 ��
� �

��

I (C,Δ)
w′
C,Δ��

� �

��

KC (−Δ) �� 0

0 �� I (DC)2

ev′′
Ξ����

�� I
ev′

Ξ����

w′
C �� KC (−Δ) �� 0

OΞ

∼= �� OΞ

(The homomorphism wC,Δ in the introduction equals H0(w′
C,Δ), defined after tensoring by KC×C .)

(6)

Proof (i) The proof is identical to Lemma 2(iv).
(ii) The inclusion ⊂ is clear. For the reverse, notice that OC×C = I (Ξ) + I , so I ⊂

I (C,Δ) + I 2 ⊂ I (C,Δ) + I (DC)2. The second claim is analogous.
�

Now, we compare the Wahl maps of C and S̃. Let ρ : IS̃×S̃(DS̃) → IC×C (DC) be
the restriction homomorphism, and M := σ ∗L (−E). The diagram below relates various
objects involved in the definition of wC and wS̃ :
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1206 M. Halic

0
��

0
��

0

��
0 �� OS̃(−E) ��

��

OS̃(E) ��

��

O2E (E) ��

��
0

0 �� M (−2E) ��

��
M ��

��
M ⊗ O2E ��

��
0

0 �� KC (−2Δ) ��

��
KC ��

��
KC ⊗ O2Δ ��

��
0

0 0 0

0 ��

��

H0(OS̃(E)) = Cs̃E ��
� �

��

H0(O2E (E)) ��
� �

��

H1(OS̃(−E)) �� 0

H0(M (−2E))
� � ��

��

H0(M ) ��

����

H0(M ⊗ O2E ) ��

����

H1(M (−2E)) �� . . .

H0(KC (−2Δ))
� � ��

��

H0(KC ) ��
⊕

x∈Δ

KC,2x ��

H1(OS̃(−E)) (7)

The rightmost column corresponds to the first-order expansions of the sections along E and
at Δ. By using 0→OE (1)→O2E→OE→0, we deduce that it fits into:

H0(OE ) ∼= C
δ � � ��

∼=��
H0(OE (2)) ∼= C

3δ �� ��
� �

��

H0(OΔ) ∼= C
2δ

� �

��
H0(O2E (E))

� � �� H0(M ⊗ O2E ) �� ��

����

H0(KC ⊗ O2Δ)

����
H0(OE (1)) ∼= C

2δ
∼= �� H0(OΔ) ∼= C

2δ

(8)

Along each Ea ⊂ S̃, we consider local coordinates u, v as follows: v is the coordinate along
Ea , and u is a coordinate in the normal direction to Ea (so Ea is given by {u = 0}).Moreover,
we assume that C is given by {v = 0} around the intersection points {xa,1, xa,2} = Ea ∩ C .
Then, any element s̃ ∈ H0(M ) can be expanded as

s̃ = s̃a0 (v) + us̃a1 (v) + O
(
u2
)
, (9)

and its image in H0(M ⊗ O2Ea ) is s̃a0 (v) + us̃a1 (v). Finally, observe that the values of wS̃
are sections of Ω1

S̃
⊗ M 2, and the restriction of this latter to E fits into

0 → OE (3)︸ ︷︷ ︸
normal component

→ Ω1
S̃

⊗ M 2|E → Ω1
E ⊗ M 2

E = OE︸ ︷︷ ︸
tangential component

→ 0.

Lemma 4 Let the notation be as in (9). We consider ẽ = ∑i s̃i ∧ t̃i ∈
2∧

H0(M ), and let
e := ρ(ẽ) =∑i si ∧ ti . Then, the following statements hold:

(i) wS̃(ẽ) ∈ H0(Ω1
S̃
(−E) ⊗ M 2) if and only if:

⎧
⎨

⎩

(�)
∑

i

(
si (xa,1)ti (xa,2) − ti (xa,1)si (xa,2)

) = 0, and

(��)
∑

i

(
s̃ai,0 t̃

a
i,1 − t̃ ai,0s̃

a
i,1

) = 0, ∀ a = 1, . . . , δ.

(ii) Λ(E) := w−1
S̃

(
H0(Ω1

S̃
(−E) ⊗ M 2)

) ∩
2∧
H0(M ) has the property

wS̃(Λ(E)) = wS̃

(
w−1

S̃

(
H0(Ω1

S̃
(−E) ⊗ M 2)

))
.

(iii) ρ
(
Λ(E)

) ⊂ Λ(Δ), where the right hand side is defined by (5).

Proof (i) The element wS̃(ẽ) vanishes along E if and only if both its tangential and normal
components along each Ea ⊂ E vanish. A short computation shows that the normal

component is (��). The tangential component is
∑

i

(
s̃ai,0

(
t̃ ai,0

)′ − t̃ ai,0

(
s̃ai,0

)′)
. But

s̃ai,0, t̃
a
i,0 ∈ H0(OEa (1)), that is they are linear polynomials in v, so

s̃ai,0
(
t̃ ai,0
)′ − t̃ ai,0

(
s̃ai,0
)′ = s̃ai,0

(
xa,1
)
t̃ ai,0
(
xa,2
)− t̃ ai,0

(
xa,1
)
s̃ai,0
(
xa,2
)
,
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Modular properties of nodal curves on K3 surfaces 1207

up to a constant factor. Also, we have s̃ai,0(xa, j ) = s̃a(xa, j ) = s(xa, j ), and (�) follows.

(ii) The vector space w−1
S̃

(
H0(Ω1

S̃
(−E) ⊗ M 2)

)
is invariant under the involution τS̃ of

S̃ × S̃ which switches the two factors. As wS̃ is anti-commutative, the claim follows as
in Lemma 2.

(iii) Take ẽ ∈ Λ(E) and e := ρ(ẽ). Then, e(xa,1, xa,2) = −e(xa,2, xa,1)
(�)= 0, and also

wC (e)(xa, j ) equals the expression (��) at xa, j (so it vanishes), for j = 1, 2. �
Now. we consider the commutative diagram:

Λ(E)
wS̃ ��

ρΔ
cf.
4(iii)��

H0
(
S̃,Ω1

S̃
(−E) ⊗ M 2

) resC ��

��

H0
(
C,Ω1

S̃
|C ⊗ K 2

C (−Δ)
)

b��������������

Λ(Δ)
wC,Δ �� H0

(
C, K 3

C (−Δ)
)

(10)

It is the substitute in the case of nodal curves for [3, diagram (4.2)].

Lemma 5 Assume Pic(S) = ZA . Then, ρΔ : Λ(E) → Λ(Δ) is surjective.

Proof The restriction H0(S̃,M ) → H0(C, KC ) is surjective (see [3, LemmaA.1]), and the

kernel of
2∧

H0(S̃,M ) →
2∧

H0(C, KC ) consists of elements of the form t̃ ∧ (s̃C s̃E ),
where t̃ ∈ H0(M ) and s̃C , s̃E are the canonical sections of OS̃(C) and OS̃(E), respectively.
(See the middle column of (7).)

Consider e =∑i (si ⊗ti −ti ⊗si ) ∈ Λ(Δ), and let ẽ =∑i (s̃i ⊗ t̃i − t̃i ⊗s̃i ) ∈
2∧

H0(M )

be such that ρ(ẽ) = e. The proof of 4(i) shows that, for all a, the tangential component of
wS̃(ẽ)|Ea equals e(xa,1, xa,2) = 0, so wS̃(ẽ)|E is a section of Ω1

E/S̃
⊗ M 2

E
∼= OE (3).

Since wS̃(ẽ)|E vanishes at the points of Δ, it is actually determined up to an element in
H0(OE (1)). We claim that this latter can be canceled by adding to ẽ a suitable element of
the form t̃ ∧ (s̃C s̃E ). A short computation yields

wS̃

(
t̃ ∧ (s̃C s̃E )

) |E = t̃E · (s̃C |E ) · (ds̃E ) |E ∈ OE (3),

where t̃E ∈ H0(OE (1)), s̃C |E ∈ H0(OE (2)) vanishes atΔ = E∩C , and (ds̃E )|E ∈ H0(OE )

(it is a section of Ω1
S̃
|E with vanishing tangential component). Thus, these two latter factors

are actually (nonzero) scalars.
The previous discussion shows that ẽ+ t̃∧(s̃C s̃E ) ∈ Λ(E) as soon as t̃ ∈ H0(M ) satisfies

t̃E = −wS̃(ẽ)|E ∈ H0(ME ). According to Corollary 8, such an element t̃ exists because the
restriction H0(M ) → H0(ME ) is surjective. �
Proof of Theorem 1 (i) Case Pic(S) = ZA . If wC,Δ is surjective; then, the homomorphism
b in the diagram (10) is surjective too. Now, we follow the same pattern as in [3, p. 884,top]:
b is the restriction homomorphism at the level of sections of

0 → KC → Ω1
S̃

∣∣
C ⊗ K 2

C (−Δ) → K 3
C (−Δ) → 0,

and its surjectivity implies that this sequence splits. This contradicts [3, Lemma4.1].
General case. It is a deformation argument. We consider

Kn := {(S,A ) | A ∈ Pic(S) is ample, not divisible,A 2 = 2(n − 1)
}
,

V d
n,δ :=

{(
(S,A ), Ĉ

)
| (S,A ) ∈ Kn, Ĉ ∈ |dA | nodal curve with δ nodes

}
.
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1208 M. Halic

Then, the natural projection κ : V d
n,δ → Kn is submersive onto an open subset of Kn . (See

[3, Theorem 1.1(iii)] and the reference therein.)
Hence, for any ((S,A ), Ĉ) ∈ V d

n,δ there is a smooth deformation ((St ,At ), Ĉt ) parame-
terized by an open subset T ⊂ Kn . The points t ∈ T such that Pic(St ) = ZAt are dense; for
these wCt ,Δt are nonsurjective. Since the nonsurjectivity condition is closed, we deduce that
wC,Δ is nonsurjective too.
(ii) Now let (X,ΔX ) be a generic marked curve of genus at least 12. By [1], the Wahl map

wX :
2∧

H0(KX ) → H0(K 3
X ) is surjective; thus, w̃ ′

X := H0(w′
X⊗KX×X ) in (6) is surjective

aswell (see lemma2(ii)). As δ � g−1
2 , the evaluation homomorphism H0(KX ) → KX⊗OΔX

is surjective for generic markings, so the same holds for

H0(KX )⊗2 →
δ⊕

a=1

(
KX,xa,1 ⊕ KX,xa,2

)⊗2
.

The restriction to the anti-symmetric part (on both sides) yields the surjectivity of

evΞ :
2∧

H0(KX ) →
δ⊕

a=1

KX,xa,1 ⊗ KX,xa,2 =
δ⊕

a=1

KX×X,(xa,1, xa,2).

(For s ∈
2∧
H0(KX ), evΞ(s) takes opposite values at (xa,1, xa,2) and (xa,2, xa,1).)

The diagram (6) yields

H0
(
I (Ξ) · I (DX)2 ⊗ KX×X

) ∩
2∧
H0(KX )

� � ��
� �

��

H0
(
I (Ξ) · I ⊗ KX×X

) ∩
2∧
H0(KX )

wX,ΔX��
� �

��

H0(K 3
X (−ΔX ))

H0
(
I (DX)2 ⊗ KX×X

) ∩
2∧
H0(KX )

��

ev′
Ξ��

H0
(
I ⊗ KX×X

) ∩
2∧
H0(KX )

w̃ ′
X �� ��

evΞ ′��

H0(K 3
X (−ΔX ))

δ⊕

a=1
KX,xa,1 ⊗ KX,xa,2

δ⊕

a=1
KX,xa,1 ⊗ KX,xa,2 . (11)

A straightforward diagram chasing shows that wX,ΔX is surjective if

ev′′
Ξ : H0(I (DX)2 · KX×X

) ∩
2∧

H0(KX )
︸ ︷︷ ︸

:=G

→
δ⊕

a=1

KX×X,(xa,1, xa,2)

︸ ︷︷ ︸
:=HΞ

is so, or equivalently when the induced hΞ :
δ∧

G →
δ∧

HΞ is nonzero. This is indeed the
case for generic markings.
Claim

⋂
ΔX

Ker(hΞ) = 0. (hΞ depends on ΔX .) Indeed, since dimG � δ, we have

H0(I (DX)2 ⊗ KX×X ) ∩
2∧

H0(KX )
� � ��

ev′′
Ξ��

H0(I ⊗ KX×X ) ∩
2∧

H0(KX )
� � ��

evΞ ′��

2∧
H0(KX )

evΞ��
δ⊕

a=1
KX×X,(xa,1, xa,2)

δ⊕

a=1
KX×X,(xa,1, xa,2)

δ⊕

a=1
KX×X,(xa,1, xa,2),

0 �=
δ∧

G ⊂
δ∧( 2∧

H0(KX )
) ⊂ H0(KX×X )⊗δ = H0((X2)δ, KX×X � · · · � KX×X

)
.
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Modular properties of nodal curves on K3 surfaces 1209

The wedge is a direct summand of the tensor product (appropriate skew-symmetric sums),
and hΞ is induced by the evaluation map

evδ : H0((X2)δ, KX×X � · · · � KX×X
)⊗ O → KX×X � · · · � KX×X

at
(
(x1,1, x1,2), . . . , (xδ,1, xδ,2)

) ∈ (X2)δ . If e ∈
δ∧
G belongs to the intersection above, then

e ∈ H0
(
Ker(evδ)

) = {0}. Hence, for any e1, . . . , eδ ∈ G with e1 ∧ · · · ∧ eδ �= 0, there
are markings ΔX such that ev′′

Ξ(e1), . . . , ev′′
Ξ(eδ) are linearly independent in HΞ (thus, they

span it). �

3 Multiple point Seshadri constants of K3 surfaces with cyclic Picard
group

This section is independent of the rest. Here we determine a lower bound for the multiple
point Seshadri constants of A , which is necessary for proving Lemma 5.

Definition 6 (See [2, Section 6] for the original definition) The multiple point Seshadri
constant of A corresponding to x̂1, . . . , x̂δ ∈ S is defined as

ε = εS,δ(A ) := inf
Z

Z · A
∑δ

a=1mult x̂a (Z)
= sup

{
c ∈ R | σ ∗A − cE is ample on S̃

}
. (12)

The infimum is taken over all integral curves Z ⊂ S which contain at least one of the points
x̂a above. Throughout this section, we assume that Z ∈ |zA |, with z � 1.

As the self-intersection number of any ample line bundle is positive, the upper bound

ε �
√
A 2√
δ

is automatic. We are interested in finding a lower bound.

Theorem 7 Assume that Pic(S) = ZA ,A 2 = 2(n− 1) � 4, and δ � 1. Then, the Seshadri
constant (12) satisfies ε � 2A 2

δ+
√

δ2+4δ(2+A 2)
, for any points x̂1, . . . , x̂δ ∈ S.

Our proof is inspired from [5], which treats the case δ = 1.

Proof We may assume that the points are numbered such that

mult x̂a (Z) � 2, for a = 1, . . . , α, mult x̂a (Z) = 1, for a = α + 1, . . . , β, (β � δ).

We denote p :=
α∑

a=1
mult x̂a (Z) � 2α and m :=

δ∑

a=1
mult x̂a (Z) � p + δ − α.

If α = 0, then z·A 2

m � A 2

δ
satisfies the inequality, so we may assume α � 1. A point of

multiplicity m lowers the arithmetic genus of Z by at least
(m
2

)
; hence,

pa(Z) = z2A 2

2
+ 1 �

1

2

α∑

a=1

(
mult x̂a (Z)2 − mult x̂a (Z)

) Jensen
�

inequality

1

2

( p2

α
− p
)
,
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1210 M. Halic

so p � α+
√

α2+4α(2+z2A 2)

2 . We deduce the following inequalities:

zA 2

m
�

zA 2

p − α + δ
�

zA 2

δ +
√

α2+4α(2+z2A 2)−α

2︸ ︷︷ ︸
decreasing in α

�
zA 2

δ +
√

δ2+4δ(2+z2A 2)−δ

2︸ ︷︷ ︸
increasing in z

�
2A 2

δ +
√

δ2 + 4δ
(
2 + A 2

) .

�

Corollary 8 H0(M ) → H0(ME ) is surjective, for A 2 � 6 and δ � d2A 2

3(d+4) .

Proof Indeed, it is enough to check thatH1(S̃,M (−E)) = H1(S̃, KS̃⊗M (−2E))vanishes.
By the Kodaira vanishing theorem, this happens as soon as M (−2E) = σ ∗A d(−3E) is
ample. The previous theorem implies that, in order to achieve this, is enough to impose
3
d � 2A 2

δ+
√

δ2+4δ(2+A 2)
, which yields δ � d2(A 2)2

3(dA 2+3A 2+6)
. �

4 Concluding remarks

(I) Evidence for the nonsurjectivity of wC Theorem 1 is a nonsurjectivity property for the
Wahl map of the pointed curve (C,Δ), rather than that of the curve C itself.

Claim. In order to prove the nonsurjectivity of the Wahl map wC , is enough to have the
surjectivity of the evaluation homomorphism

H0(I (DC)2 ⊗ KC×C ) →
δ⊕

a=1

KC×C,(xa,1,xa,2) ⊕ KC×C,(xa,2,xa,1). (13)

(For δ in the range (3), corollary 8 implies that KC = MC separates Δ, consequently
2∧
H0(KC ) → ⊕δ

a=1KC×C,(xa,1,xa,2) is surjective. The surjectivity of (13) yields that of
ev′′

Ξ in (11), which is relevant for us.)
For the claim, observe that one has the following implications (see (4), (11)):

wC surjective ⇒ w′
C surjective

(13)⇒
surj.

wC,Δ surjective, a contradiction. (14)

The surjectivity of (13) is clearly a positivity property forI (DC)2⊗KC×C .We use again
the Seshadri constants to argue why this is likely to hold. The Ξ -pointed Seshadri constants
of the self-product of a very general curve X at very general pointsΞ (as in Lemma 3) satisfy
(see [6, p. 65 below Theorem 1.6, and Lemma 2.6]):

123
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εX×X, Ξ (I (DX)2 ⊗ KX×X ) � 2(g − 2)εP2, g+δ(OP2(1))

>
2(g − 2)√

g + δ

√

1 − 1

8(g + δ)
, (15)

εX×X, Ξ (I (DX)4 ⊗ KX×X ) � 4 · g − 3

2
· εP2, g+δ(OP2(1))

>
2(g − 3)√

g + δ

√

1 − 1

8(g + δ)
=: ϕ(g, δ). (16)

The equation (16) implies (see [2, Proposition6.8]) that
(
I (DX)2 ⊗ KX×X

)2
generates the

jets of order �ϕ(g, δ)�− 2 at Ξ ⊂ X × X . (We only need the generation of jets of order zero
for I (DX)2 ⊗ KX×X ; also, note that ϕ(g, δ) grows linearly with

√
g as long as δ is small

compared with g (see (3)).) This discussion suggests that I (DX)2 ⊗ KX×X is ‘strongly
positive/generated.’ However, the passage to (13) above requires even more control.

(II) Related work In [4], the author extensively studies the properties of nodal curves on K3
surfaces. Among several other results, he proves the nonsurjectivity of a marked Wahl map
(different from the one introduced in here) for nodal curves on K3 surfaces.

Acknowledgments The comments made by the referee helped to improve the presentation.

References

1. Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57, 829–858
(1988)

2. Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic varieties. Lect.
Notes Math. 1507, 87–104 (1992)

3. Halic, M.: Modular properties of nodal curves on K3 surfaces. Math. Z. 270, 871–887 (2012)
4. Kemeny, M.: The Moduli of Singular Curves on K3 Surfaces. http://arxiv.org/abs/1401.1047
5. Knutsen, A.: A note on Seshadri constants on general K3 surfaces. CR Acad. Sci. Paris 346, 1079–1081

(2008)
6. Ross, J.: Seshadri constants on symmetric products of curves. Math. Res. Lett. 14, 63–75 (2007)

123

http://arxiv.org/abs/1401.1047

	Erratum to: Modular properties of nodal curves  on K3 surfaces
	Erratum to: Math. Z. (2012) 270:871--887   DOI 10.1007/s00209-010-0830-2
	1 The modified Wahl map
	2 Relationship between the Wahl maps of C and tildeS
	3 Multiple point Seshadri constants of K3 surfaces with cyclic Picard group
	4 Concluding remarks
	Acknowledgments
	References




