ERRATUM

Erratum to: Modular properties of nodal curves on *K*3 surfaces

Mihai Halic¹

Published online: 27 May 2015 © Springer-Verlag Berlin Heidelberg 2015

Erratum to: Math. Z. (2012) 270:871–887 DOI 10.1007/s00209-010-0830-2

In the original publication [3], the Theorem 3.1 and Theorem 4.2 are erroneous.

- (i) First, the proof of Theorem 3.1 is incorrect: The fault is at the Step 2 of the proof. In the meantime, the result has been proved in [4] with better bounds.
- (ii) Second, I correct Theorem 4.2. At p. 884, the last row of the diagram A.1 should be tensored by $\mathcal{O}_E(-2E)$. This error affects the subsequent computations from Lemma A.2 onward, which are used in the proof of the Theorem.

The corrected version is provided below.

1 The modified Wahl map

Recall that $\hat{C} \in |\mathscr{L} = \mathscr{A}^d|$ is a nodal curve with nodes $\mathcal{N} := \{\hat{x}_1, \ldots, \hat{x}_\delta\}$ on the polarized *K*3 surface (S, \mathscr{A}) , such that $\mathscr{A} \in \operatorname{Pic}(S)$ is not divisible, $\mathscr{A}^2 = 2(n-1)$. (Note that the article [3] deals only with *K*3 surfaces with cyclic Picard group). Let $\sigma : \tilde{S} \to S$ be the blow-up of *S* at \mathcal{N} , and denote by E^a , $a = 1, \ldots, \delta$, the exceptional divisors, and $E := E^1 + \cdots + E^{\delta}$. The normalization *C* of \hat{C} fits into

$$\begin{array}{cccc} (C,\Delta) & \stackrel{\widetilde{u}}{\longrightarrow} \tilde{S} \\ & \stackrel{\nu}{\searrow} & \stackrel{u}{\searrow} & \stackrel{\downarrow}{\swarrow} \sigma \\ (\hat{C},\mathcal{N}) & \stackrel{\iota}{\longrightarrow} S, \end{array}$$
 (1)

Mihai Halic mihai.halic@gmail.com

The online version of the original article can be found under doi:10.1007/s00209-010-0830-2.

¹ Department of Mathematics and Statistics, King Fahd University of Petroleum and Minerals, P. O. Box 5046, Dhahran 31261, Saudi Arabia

 \tilde{u} is an embedding, and $K_C = \sigma^* \mathscr{L}(-E) \otimes \mathscr{O}_C$. The curve *C* carries the divisor

$$\Delta := x_{1,1} + x_{1,2} + \dots + x_{\delta,1} + x_{\delta,2},$$

where $\{x_{a,1}, x_{a,2}\} = E^a \cap C$ is the pre-image of $\hat{x}_a \in \hat{C}$ by ν .

In general, if V' is a subscheme of some variety V, $\mathscr{I}_V(V')$ or $\mathscr{I}(V')$ stands for its sheaf of ideals, and $DV' \subset V \times V$ denotes the diagonally embedded V'.

Let (X, Δ_X) be an arbitrary smooth, irreducible curve together with δ pairwise disjoint pairs of points $\Delta_X = \{\{x_{1,1}, x_{1,2}\}, \dots, \{x_{\delta,1}, x_{\delta,2}\}\} \subset X$. The exact sequence $0 \to \mathscr{I}(DX)^2 \to \mathscr{I}(DX) \to K_X \to 0$ yields the Wahl map

 $w_X : H^0(X \times X, \mathscr{I}(DX) \otimes K_{X \times X}) \to H^0(X, K_X^3).$

The vector space $H^0(\mathscr{I}(DX) \otimes K_{X \times X})$ splits into

$$H^0(\mathscr{I}(DX)\otimes K_{X\times X})\cap \operatorname{Sym}^2 H^0(K_X)\oplus \bigwedge^2 H^0(K_X),$$

and w_X vanishes on the first direct summand, as it is skew-symmetric. Denote

$$P_{\Delta_X} := \bigcup_{a=1}^{\delta} \{x_{a,1}, x_{a,2}\} \times \{x_{a,1}, x_{a,2}\} \subset X \times X,$$
(2)

and let w_{X,Δ_X} be the restriction of w_X to $H^0(\mathscr{I}(P_{\Delta_X}) \cdot \mathscr{I}(DX) \otimes K_{X \times X}) \cap \bigwedge^2 H^0(K_X)$. (Thus, w_{X,Δ_X} is a punctual modification of the usual Wahl map.) With this notation, we replace [3, Theorem4.2] by the following.

Theorem 1 (i) Let $(S, \mathscr{A}), \mathscr{A}^2 \ge 6$, be as above. Consider a nodal curve $\hat{C} \in |d\mathscr{A}|$ with

$$\delta \leqslant \min\left\{\frac{d^2\mathscr{A}^2}{3(d+4)}, \delta_{\max}(n, d)\right\}$$
(3)

nodes and let (C, Δ) be as above $(\delta_{\max}(n, d)$ is defined in [3, p. 872]; the minimum is the first expression, except a finite number of cases). Then, the homomorphism $w_{C,\Delta}$ is not surjective. (ii) For generic a generic curve X of genus $g \ge 12$ with generic markings Δ_X , such that $\delta \le \frac{g-1}{2}$, the homomorphism w_{X,Δ_X} is surjective.

This is a nonsurjectivity property for *the pair* (C, Δ) , rather than for C itself. I conclude the note (see Sect. 4) with some evidence toward the nonsurjectivity of the Wahl map w_C itself, and comment on related work in [4].

2 Relationship between the Wahl maps of C and \tilde{S}

Lemma 2 (i) *The following diagram has exact rows and columns:*

In other words, we have $\mathscr{I} := \mathscr{I}_{C \times C}(D\Delta) \cdot \mathscr{I}_{C \times C}(DC) = w_C^{-1}(K_C(-\Delta))$. Also, the involution τ_C which interchanges the factors of $C \times C$ leaves \mathscr{I} invariant.

(ii) $H^0(C \times C, \mathscr{I} \otimes K_{C \times C}) = w_C^{-1}(H^0(C, K_C^3(-\Delta))).$ (iii) For $\Lambda := \{s - \tau_C^*(s) \mid s \in H^0(\mathscr{I} \otimes K_{C \times C})\}$ holds $\Lambda \stackrel{(\star)}{=} H^0(\mathscr{I} \otimes K_{C \times C}) \cap \bigwedge^2 H^0(K_C) \stackrel{(\star\star)}{\subset} H^0(\mathscr{I}_{C \times C}(DC) \otimes K_{C \times C}).$ (iv) $w'_C(\Lambda) = w'_C(H^0(\mathscr{I} \otimes K_{C \times C})).$

- *Proof* (i) The middle column is exact because $\mathscr{I}_{C \times C}(DC)$ is locally free. We check the exactness of the first row around each point $(o, o) \in D\Delta$. Let u be a local (analytic) coordinate on C such that o = 0, and u_1, u_2 be the corresponding coordinates on $C \times C$. Then, the first row becomes $0 \to \langle u_2 u_1 \rangle^2 \to \langle u_2 u_1 \rangle \cdot \langle u_1, u_2 \rangle \to \langle u \rangle \cdot du \to 0$, with $du := (u_2 u_1) \mod (u_2 u_1)^2$, which is exact. The second statement is obvious.
- (ii) We tensor (4) by $K_{C \times C}$, and take the sections in the last two columns. An elementary diagram chasing yields the claim.
- (iii) Let us prove (*). The vector space Λ is contained in $\bigwedge^2 H^0(K_C)$ by the very definition, and also in $H^0(\mathscr{I} \otimes K_{C \times C})$ because the sheaf $\mathscr{I}(C, \Delta)$ is τ_C -invariant. For the inclusion in the opposite direction, take *s* in the intersection. As $s \in \bigwedge^2 H^0(K_C)$, it follows $\tau_C^*(s) = -s$, so $s = 1/2 \cdot (s - \tau_C^*(s)) \in \Lambda$. The inclusion (**) is obvious.
- (iv) Indeed, the Wahl map is anti-commutative: $w_C(\sum_i s_i \otimes t_i) = -w_C(\sum_i t_i \otimes s_i)$.

Lemma 3 Let $\Xi := \{(x_{a,1}, x_{a,2}), (x_{a,2}, x_{a,1}) \mid a = 1, ..., \delta\} \subset C \times C$, and consider the sheaf of ideals $\mathscr{I}(C, \Delta) := \mathscr{I}(\Xi) \cdot \mathscr{I} \stackrel{(2)}{=} \mathscr{I}(P_{\Delta}) \cdot \mathscr{I}(DC) \subset \mathscr{I}$. Furthermore, denote

$$\Lambda(\Delta) := H^0(\mathscr{I}(C,\Delta) \otimes K_{C \times C}) \cap \bigwedge^2 H^0(K_C).$$
(5)

Then, the following statements hold:

(i) 𝒯(C, Δ) is τ_C-invariant, so w'_C(Λ(Δ)) = w'_C(H⁰(𝒯(C, Δ) ⊗ K_{C×C})).
(ii) 𝒯(C, Δ) + 𝒯_{C×C}(DC)² = 𝒯, and 𝒯(C, Δ) ∩ 𝒯(DC)² = 𝒯(Ξ) · 𝒯(DC)².
Therefore, the various sheaves introduced so far fit into the commutative diagram

(The homomorphism $w_{C,\Delta}$ in the introduction equals $H^0(w'_{C,\Delta})$, defined after tensoring by $K_{C\times C}$.)

Proof (i) The proof is identical to Lemma 2(iv).

(ii) The inclusion \subset is clear. For the reverse, notice that $\mathscr{O}_{C\times C} = \mathscr{I}(\varXi) + \mathscr{I}$, so $\mathscr{I} \subset \mathscr{I}(C, \Delta) + \mathscr{I}^2 \subset \mathscr{I}(C, \Delta) + \mathscr{I}(DC)^2$. The second claim is analogous.

Now, we compare the Wahl maps of *C* and \tilde{S} . Let $\rho : \mathscr{I}_{\tilde{S} \times \tilde{S}}(D\tilde{S}) \to \mathscr{I}_{C \times C}(DC)$ be the restriction homomorphism, and $\mathscr{M} := \sigma^* \mathscr{L}(-E)$. The diagram below relates various objects involved in the definition of w_C and $w_{\tilde{S}}$:

Deringer

The rightmost column corresponds to the first-order expansions of the sections along *E* and at Δ . By using $0 \rightarrow \mathcal{O}_E(1) \rightarrow \mathcal{O}_{2E} \rightarrow \mathcal{O}_E \rightarrow 0$, we deduce that it fits into:

$$\begin{split} H^{0}(\mathscr{O}_{E}) &\cong \mathbb{C}^{\delta C} \longrightarrow H^{0}(\mathscr{O}_{E}(2)) \cong \mathbb{C}^{3\delta} \xrightarrow{} H^{0}(\mathscr{O}_{\Delta}) \cong \mathbb{C}^{2\delta} \\ & \downarrow^{\cong} & \checkmark & \checkmark \\ H^{0}(\mathscr{O}_{2E}(E))^{C} \longrightarrow H^{0}(\mathscr{M} \otimes \mathscr{O}_{2E}) \xrightarrow{} H^{0}(K_{C} \otimes \mathscr{O}_{2\Delta}) \\ & \downarrow^{\forall} & \downarrow^{\forall} \\ H^{0}(\mathscr{O}_{E}(1)) \cong \mathbb{C}^{2\delta} \xrightarrow{\cong} H^{0}(\mathscr{O}_{\Delta}) \cong \mathbb{C}^{2\delta} \end{split}$$
(8)

Along each $E^a \subset \tilde{S}$, we consider local coordinates u, v as follows: v is the coordinate along E^a , and u is a coordinate in the normal direction to E^a (so E^a is given by $\{u = 0\}$). Moreover, we assume that C is given by $\{v = 0\}$ around the intersection points $\{x_{a,1}, x_{a,2}\} = E^a \cap C$. Then, any element $\tilde{s} \in H^0(\mathcal{M})$ can be expanded as

$$\tilde{s} = \tilde{s}_0^a(v) + u\tilde{s}_1^a(v) + O\left(u^2\right),\tag{9}$$

and its image in $H^0(\mathcal{M} \otimes \mathcal{O}_{2E^a})$ is $\tilde{s}_0^a(v) + u\tilde{s}_1^a(v)$. Finally, observe that the values of $w_{\tilde{S}}$ are sections of $\Omega_{\tilde{S}}^1 \otimes \mathcal{M}^2$, and the restriction of this latter to *E* fits into

$$0 \to \underbrace{\mathscr{O}_E(3)}_{\text{normal component}} \to \Omega^1_{\tilde{S}} \otimes \mathscr{M}^2|_E \to \underbrace{\Omega^1_E \otimes \mathscr{M}^2_E = \mathscr{O}_E}_{\text{tangential component}} \to 0.$$

Lemma 4 Let the notation be as in (9). We consider $\tilde{e} = \sum_i \tilde{s}_i \wedge \tilde{t}_i \in \bigwedge^2 H^0(\mathcal{M})$, and let $e := \rho(\tilde{e}) = \sum_i s_i \wedge t_i$. Then, the following statements hold:

(i)
$$w_{\tilde{S}}(\tilde{e}) \in H^0(\Omega^1_{\tilde{S}}(-E) \otimes \mathscr{M}^2)$$
 if and only if:

$$\begin{cases}
(\star) \quad \sum_i \left(s_i(x_{a,1})t_i(x_{a,2}) - t_i(x_{a,1})s_i(x_{a,2})\right) = 0, \quad \text{and} \\
(\star\star) \quad \sum_i \left(\tilde{s}^a_{i,0}\tilde{t}^a_{i,1} - \tilde{t}^a_{i,0}\tilde{s}^a_{i,1}\right) = 0, \quad \forall a = 1, \dots, \delta.
\end{cases}$$
(ii) $\Lambda(E) := w_{\tilde{S}}^{-1} \left(H^0(\Omega^1_{\tilde{S}}(-E) \otimes \mathscr{M}^2)\right) \cap \bigwedge^2 H^0(\mathscr{M})$ has the property
 $w_{\tilde{S}}(\Lambda(E)) = w_{\tilde{S}} \left(w_{\tilde{s}}^{-1} \left(H^0(\Omega^1_{\tilde{S}}(-E) \otimes \mathscr{M}^2)\right)\right).$

(iii) $\rho(\Lambda(E)) \subset \Lambda(\Delta)$, where the right hand side is defined by (5).

Proof (i) The element $w_{\tilde{S}}(\tilde{e})$ vanishes along E if and only if both its tangential and normal components along each $E^a \subset E$ vanish. A short computation shows that the normal component is $(\star\star)$. The tangential component is $\sum_i \left(\tilde{s}_{i,0}^a \left(\tilde{t}_{i,0}^a\right)' - \tilde{t}_{i,0}^a \left(\tilde{s}_{i,0}^a\right)'\right)$. But $\tilde{s}_{i,0}^a, \tilde{t}_{i,0}^a \in H^0(\mathscr{O}_{E^a}(1))$, that is they are linear polynomials in v, so

$$\tilde{s}_{i,0}^{a} \left(\tilde{t}_{i,0}^{a} \right)' - \tilde{t}_{i,0}^{a} \left(\tilde{s}_{i,0}^{a} \right)' = \tilde{s}_{i,0}^{a} \left(x_{a,1} \right) \tilde{t}_{i,0}^{a} \left(x_{a,2} \right) - \tilde{t}_{i,0}^{a} \left(x_{a,1} \right) \tilde{s}_{i,0}^{a} \left(x_{a,2} \right)$$

Deringer

up to a constant factor. Also, we have $\tilde{s}_{i,0}^a(x_{a,j}) = \tilde{s}^a(x_{a,j}) = s(x_{a,j})$, and (*) follows.

- (ii) The vector space $w_{\tilde{S}}^{-1}(H^0(\Omega_{\tilde{S}}^1(-E)\otimes \mathscr{M}^2))$ is invariant under the involution $\tau_{\tilde{S}}$ of $\tilde{S} \times \tilde{S}$ which switches the two factors. As $w_{\tilde{S}}$ is anti-commutative, the claim follows as in Lemma 2.
- (iii) Take $\tilde{e} \in \Lambda(E)$ and $e := \rho(\tilde{e})$. Then, $e(x_{a,1}, x_{a,2}) = -e(x_{a,2}, x_{a,1}) \stackrel{(\star)}{=} 0$, and also $w_C(e)(x_{a,j})$ equals the expression ($\star\star$) at $x_{a,j}$ (so it vanishes), for j = 1, 2.

Now. we consider the commutative diagram:

$$\begin{array}{ccc}
\Lambda(E) & \stackrel{w_{\tilde{S}}}{\longrightarrow} & H^{0}\left(\tilde{S}, \, \Omega_{\tilde{S}}^{1}(-E) \otimes \mathscr{M}^{2}\right) & \stackrel{\operatorname{res}_{C}}{\longrightarrow} & H^{0}\left(C, \, \Omega_{\tilde{S}}^{1}|_{C} \otimes K_{C}^{2}(-\Delta)\right) \\
 & \rho_{\Delta} \downarrow \stackrel{cf.}{\longleftarrow} & \downarrow & \downarrow & \downarrow & \downarrow \\
\Lambda(\Delta) & \stackrel{w_{C,\Delta}}{\longrightarrow} & H^{0}\left(C, \, K_{C}^{3}(-\Delta)\right) & (10)
\end{array}$$

It is the substitute in the case of nodal curves for [3, diagram (4.2)].

Lemma 5 Assume $\operatorname{Pic}(S) = \mathbb{Z} \mathscr{A}$. Then, $\rho_{\Delta} : \Lambda(E) \to \Lambda(\Delta)$ is surjective.

Proof The restriction $H^0(\tilde{S}, \mathcal{M}) \to H^0(C, K_C)$ is surjective (see [3, LemmaA.1]), and the kernel of $\bigwedge^2 H^0(\tilde{S}, \mathcal{M}) \to \bigwedge^2 H^0(C, K_C)$ consists of elements of the form $\tilde{t} \land (\tilde{s}_C \tilde{s}_E)$, where $\tilde{t} \in H^0(\mathcal{M})$ and \tilde{s}_C, \tilde{s}_E are the canonical sections of $\mathcal{O}_{\tilde{S}}(C)$ and $\mathcal{O}_{\tilde{S}}(E)$, respectively. (See the middle column of (7).)

Consider $e = \sum_i (s_i \otimes t_i - t_i \otimes s_i) \in \Lambda(\Delta)$, and let $\tilde{e} = \sum_i (\tilde{s}_i \otimes \tilde{t}_i - \tilde{t}_i \otimes \tilde{s}_i) \in \bigwedge^2 H^0(\mathcal{M})$ be such that $\rho(\tilde{e}) = e$. The proof of 4(i) shows that, for all *a*, the tangential component of $w_{\tilde{s}}(\tilde{e})|_{E^a}$ equals $e(x_{a,1}, x_{a,2}) = 0$, so $w_{\tilde{s}}(\tilde{e})|_E$ is a section of $\Omega^1_{E/\tilde{s}} \otimes \mathscr{M}^2_E \cong \mathscr{O}_E(3)$. Since $w_{\tilde{s}}(\tilde{e})|_E$ vanishes at the points of Δ , it is actually determined up to an element in $H^0(\mathscr{O}_E(1))$. We claim that this latter can be canceled by adding to \tilde{e} a suitable element of the form $\tilde{t} \wedge (\tilde{s}_C \tilde{s}_E)$. A short computation yields

$$w_{\tilde{S}}\left(\tilde{t} \wedge (\tilde{s}_C \tilde{s}_E)\right)|_E = \tilde{t}_E \cdot (\tilde{s}_C|_E) \cdot (\mathrm{d}\tilde{s}_E)|_E \in \mathscr{O}_E(3),$$

where $\tilde{t}_E \in H^0(\mathscr{O}_E(1)), \tilde{s}_C|_E \in H^0(\mathscr{O}_E(2))$ vanishes at $\Delta = E \cap C$, and $(d\tilde{s}_E)|_E \in H^0(\mathscr{O}_E)$ (it is a section of $\Omega^1_{\tilde{s}}|_E$ with vanishing tangential component). Thus, these two latter factors are actually (nonzero) scalars.

The previous discussion shows that $\tilde{e} + \tilde{t} \wedge (\tilde{s}_C \tilde{s}_E) \in \Lambda(E)$ as soon as $\tilde{t} \in H^0(\mathcal{M})$ satisfies $\tilde{t}_E = -w_{\tilde{s}}(\tilde{e})|_E \in H^0(\mathcal{M}_E)$. According to Corollary 8, such an element \tilde{t} exists because the restriction $H^0(\mathcal{M}) \to H^0(\mathcal{M}_E)$ is surjective.

Proof of Theorem 1 (i) *Case* $Pic(S) = \mathbb{ZA}$. If $w_{C,\Delta}$ is surjective; then, the homomorphism *b* in the diagram (10) is surjective too. Now, we follow the same pattern as in [3, p. 884,top]: *b* is the restriction homomorphism at the level of sections of

$$0 \to K_C \to \Omega^1_{\tilde{S}} \Big|_C \otimes K^2_C(-\Delta) \to K^3_C(-\Delta) \to 0,$$

and its surjectivity implies that this sequence splits. This contradicts [3, Lemma4.1]. *General case*. It is a deformation argument. We consider

$$\mathcal{K}_{n} := \left\{ (S, \mathscr{A}) \mid \mathscr{A} \in \operatorname{Pic}(S) \text{ is ample, not divisible, } \mathscr{A}^{2} = 2(n-1) \right\},$$

$$\mathcal{V}_{n,\delta}^{d} := \left\{ \left((S, \mathscr{A}), \hat{C} \right) \mid (S, \mathscr{A}) \in \mathcal{K}_{n}, \ \hat{C} \in |d\mathscr{A}| \text{ nodal curve with } \delta \text{ nodes} \right\}.$$

Springer

Then, the natural projection $\kappa : \mathscr{V}_{n,\delta}^d \to \mathscr{K}_n$ is submersive onto an open subset of \mathscr{K}_n . (See [3, Theorem 1.1(iii)] and the reference therein.)

Hence, for any $((S, \mathscr{A}), \hat{C}) \in \mathscr{V}_{n,\delta}^d$ there is a smooth deformation $((S_t, \mathscr{A}_t), \hat{C}_t)$ parameterized by an open subset $T \subset \mathscr{K}_n$. The points $t \in T$ such that $\operatorname{Pic}(S_t) = \mathbb{Z}\mathscr{A}_t$ are dense; for these w_{C_t, Δ_t} are nonsurjective. Since the nonsurjectivity condition is closed, we deduce that $w_{C,\Delta}$ is nonsurjective too.

(ii) Now let (X, Δ_X) be a generic marked curve of genus at least 12. By [1], the Wahl map $w_X : \bigwedge^2 H^0(K_X) \to H^0(K_X^3)$ is surjective; thus, $\tilde{w}'_X := H^0(w'_X \otimes K_{X \times X})$ in (6) is surjective as well (see lemma 2(ii)). As $\delta \leq \frac{g-1}{2}$, the evaluation homomorphism $H^0(K_X) \to K_X \otimes \mathcal{O}_{\Delta_X}$ is surjective for generic markings, so the same holds for

$$H^0(K_X)^{\otimes 2} \to \bigoplus_{a=1}^{\delta} \left(K_{X,x_{a,1}} \oplus K_{X,x_{a,2}} \right)^{\otimes 2}.$$

The restriction to the anti-symmetric part (on both sides) yields the surjectivity of

$$\operatorname{ev}_{\varXi}: \bigwedge^{2} H^{0}(K_{X}) \to \bigoplus_{a=1}^{\delta} K_{X, x_{a,1}} \otimes K_{X, x_{a,2}} = \bigoplus_{a=1}^{\delta} K_{X \times X, (x_{a,1}, x_{a,2})}$$

(For $s \in \bigwedge^2 H^0(K_X)$, $ev_{\Xi}(s)$ takes opposite values at $(x_{a,1}, x_{a,2})$ and $(x_{a,2}, x_{a,1})$.) The diagram (6) yields

A straightforward diagram chasing shows that w_{X,Δ_X} is surjective if

$$\operatorname{ev}_{\Xi}'': \underbrace{H^{0}(\mathscr{I}(DX)^{2} \cdot K_{X \times X}) \cap \bigwedge^{2} H^{0}(K_{X})}_{:=G} \to \underbrace{\bigoplus_{a=1}^{\delta} K_{X \times X, (x_{a,1}, x_{a,2})}}_{:=H_{\Xi}}$$

is so, or equivalently when the induced $h_{\Xi} : \bigwedge^{\delta} G \to \bigwedge^{\delta} H_{\Xi}$ is nonzero. This is indeed the case for generic markings.

Claim $\bigcap_{\Delta_X} \text{Ker}(h_{\mathcal{Z}}) = 0$. $(h_{\mathcal{Z}} \text{ depends on } \Delta_X)$ Indeed, since dim $G \ge \delta$, we have

Deringer

0

The wedge is a direct summand of the tensor product (appropriate skew-symmetric sums), and h_{Ξ} is induced by the evaluation map

$$\operatorname{ev}^{\delta}: H^0((X^2)^{\delta}, K_{X \times X} \boxtimes \cdots \boxtimes K_{X \times X}) \otimes \mathscr{O} \to K_{X \times X} \boxtimes \cdots \boxtimes K_{X \times X}$$

at $((x_{1,1}, x_{1,2}), \ldots, (x_{\delta,1}, x_{\delta,2})) \in (X^2)^{\delta}$. If $e \in \bigwedge^{\delta} G$ belongs to the intersection above, then $e \in H^0(\text{Ker}(\text{ev}^{\delta})) = \{0\}$. Hence, for any $e_1, \ldots, e_{\delta} \in G$ with $e_1 \wedge \cdots \wedge e_{\delta} \neq 0$, there are markings Δ_X such that $\text{ev}''_{\Xi}(e_1), \ldots, \text{ev}''_{\Xi}(e_{\delta})$ are linearly independent in H_{Ξ} (thus, they span it).

3 Multiple point Seshadri constants of K3 surfaces with cyclic Picard group

This section is independent of the rest. Here we determine a lower bound for the multiple point Seshadri constants of \mathscr{A} , which is necessary for proving Lemma 5.

Definition 6 (See [2, Section 6] for the original definition) The multiple point Seshadri constant of \mathscr{A} corresponding to $\hat{x}_1, \ldots, \hat{x}_{\delta} \in S$ is defined as

$$\varepsilon = \varepsilon_{S,\delta}(\mathscr{A}) := \inf_{Z} \frac{Z \cdot \mathscr{A}}{\sum_{a=1}^{\delta} \operatorname{mult}_{\hat{x}_{a}}(Z)} = \sup \{ c \in \mathbb{R} \mid \sigma^{*}\mathscr{A} - cE \text{ is ample on } \tilde{S} \}.$$
(12)

The infimum is taken over all integral curves $Z \subset S$ which contain at least one of the points \hat{x}_a above. Throughout this section, we assume that $Z \in |z\mathcal{A}|$, with $z \ge 1$.

As the self-intersection number of any ample line bundle is positive, the upper bound $\varepsilon \leq \frac{\sqrt{\mathscr{A}^2}}{\sqrt{\delta}}$ is automatic. We are interested in finding a lower bound.

Theorem 7 Assume that $\operatorname{Pic}(S) = \mathbb{Z}\mathscr{A}, \mathscr{A}^2 = 2(n-1) \ge 4$, and $\delta \ge 1$. Then, the Seshadri constant (12) satisfies $\varepsilon \ge \frac{2\mathscr{A}^2}{\delta + \sqrt{\delta^2 + 4\delta(2+\mathscr{A}^2)}}$, for any points $\hat{x}_1, \ldots, \hat{x}_\delta \in S$.

Our proof is inspired from [5], which treats the case $\delta = 1$.

Proof We may assume that the points are numbered such that

 $\operatorname{mult}_{\hat{x}_a}(Z) \ge 2$, for $a = 1, \dots, \alpha$, $\operatorname{mult}_{\hat{x}_a}(Z) = 1$, for $a = \alpha + 1, \dots, \beta$, $(\beta \le \delta)$.

We denote $p := \sum_{a=1}^{\alpha} \operatorname{mult}_{\hat{x}_a}(Z) \ge 2\alpha$ and $m := \sum_{a=1}^{\delta} \operatorname{mult}_{\hat{x}_a}(Z) \le p + \delta - \alpha$.

If $\alpha = 0$, then $\frac{z \cdot \mathscr{A}^2}{m} \ge \frac{\mathscr{A}^2}{\delta}$ satisfies the inequality, so we may assume $\alpha \ge 1$. A point of multiplicity *m* lowers the arithmetic genus of *Z* by at least $\binom{m}{2}$; hence,

$$p_a(Z) = \frac{z^2 \mathscr{A}^2}{2} + 1 \ge \frac{1}{2} \sum_{a=1}^{\alpha} \left(\operatorname{mult}_{\hat{x}_a}(Z)^2 - \operatorname{mult}_{\hat{x}_a}(Z) \right) \underset{\text{inequality}}{\overset{\text{Jensen}}{\ge}} \frac{1}{2} \left(\frac{p^2}{\alpha} - p \right),$$

Deringer

so $p \leq \frac{\alpha + \sqrt{\alpha^2 + 4\alpha(2 + z^2 \mathscr{A}^2)}}{2}$. We deduce the following inequalities:

$$\frac{z\mathscr{A}^{2}}{m} \geqslant \frac{z\mathscr{A}^{2}}{p-\alpha+\delta} \geqslant \underbrace{\frac{z\mathscr{A}^{2}}{\underbrace{\delta + \frac{\sqrt{\alpha^{2} + 4\alpha(2+z^{2}\mathscr{A}^{2})} - \alpha}{2}}_{\text{decreasing in }\alpha}} \geqslant \underbrace{\frac{z\mathscr{A}^{2}}{\underbrace{\delta + \frac{\sqrt{\delta^{2} + 4\delta(2+z^{2}\mathscr{A}^{2})} - \delta}{2}}_{\text{increasing in }z}}$$
$$\geqslant \frac{2\mathscr{A}^{2}}{\delta + \sqrt{\delta^{2} + 4\delta(2+\mathscr{A}^{2})}}.$$

Corollary 8 $H^0(\mathscr{M}) \to H^0(\mathscr{M}_E)$ is surjective, for $\mathscr{A}^2 \ge 6$ and $\delta \le \frac{d^2 \mathscr{A}^2}{3(d+4)}$.

Proof Indeed, it is enough to check that $H^1(\tilde{S}, \mathscr{M}(-E)) = H^1(\tilde{S}, K_{\tilde{S}} \otimes \mathscr{M}(-2E))$ vanishes. By the Kodaira vanishing theorem, this happens as soon as $\mathscr{M}(-2E) = \sigma^* \mathscr{A}^d(-3E)$ is ample. The previous theorem implies that, in order to achieve this, is enough to impose $\frac{3}{d} \leq \frac{2\mathscr{A}^2}{\delta + \sqrt{\delta^2 + 4\delta(2+\mathscr{A}^2)}}$, which yields $\delta \leq \frac{d^2(\mathscr{A}^2)^2}{3(d\mathscr{A}^2 + 3\mathscr{A}^2 + 6)}$.

4 Concluding remarks

(I) Evidence for the nonsurjectivity of w_C Theorem 1 is a nonsurjectivity property for the Wahl map of the *pointed curve* (C, Δ) , rather than that of the curve *C* itself.

Claim. In order to prove the nonsurjectivity of the Wahl map w_C , is enough to have the surjectivity of the evaluation homomorphism

$$H^{0}(\mathscr{I}(DC)^{2} \otimes K_{C \times C}) \to \bigoplus_{a=1}^{\delta} K_{C \times C, (x_{a,1}, x_{a,2})} \oplus K_{C \times C, (x_{a,2}, x_{a,1})}.$$
 (13)

(For δ in the range (3), corollary 8 implies that $K_C = \mathcal{M}_C$ separates Δ , consequently $\bigwedge^2 H^0(K_C) \to \bigoplus_{a=1}^{\delta} K_{C \times C, (x_{a,1}, x_{a,2})}$ is surjective. The surjectivity of (13) yields that of ev''_{Ξ} in (11), which is relevant for us.)

For the claim, observe that one has the following implications (see (4), (11)):

$$w_C$$
 surjective $\Rightarrow w'_C$ surjective $\stackrel{(13)}{\Rightarrow}_{\text{surj.}} w_{C,\Delta}$ surjective, a contradiction. (14)

The surjectivity of (13) is clearly a positivity property for $\mathscr{I}(DC)^2 \otimes K_{C \times C}$. We use again the Seshadri constants to argue why this is likely to hold. The Ξ -pointed Seshadri constants of the self-product of a *very general curve X* at *very general points* Ξ (as in Lemma 3) satisfy (see [6, p. 65 below Theorem 1.6, and Lemma 2.6]):

$$\varepsilon_{X \times X, \Xi}(\mathscr{I}(DX)^2 \otimes K_{X \times X}) \ge 2(g-2)\varepsilon_{\mathbb{P}^2, g+\delta}(\mathscr{O}_{\mathbb{P}^2}(1))$$
$$> \frac{2(g-2)}{\sqrt{g+\delta}}\sqrt{1 - \frac{1}{8(g+\delta)}},$$
(15)

$$\varepsilon_{X \times X, \mathcal{Z}}(\mathscr{I}(DX)^4 \otimes K_{X \times X}) \ge 4 \cdot \frac{g-3}{2} \cdot \varepsilon_{\mathbb{P}^2, g+\delta}(\mathscr{O}_{\mathbb{P}^2}(1))$$
$$> \frac{2(g-3)}{\sqrt{g+\delta}} \sqrt{1 - \frac{1}{8(g+\delta)}} =: \varphi(g, \delta).$$
(16)

The equation (16) implies (see [2, Proposition6.8]) that $(\mathscr{I}(DX)^2 \otimes K_{X \times X})^2$ generates the jets of order $\lfloor \varphi(g, \delta) \rfloor - 2$ at $\Xi \subset X \times X$. (We only need the generation of jets of order zero for $\mathscr{I}(DX)^2 \otimes K_{X \times X}$; also, note that $\varphi(g, \delta)$ grows linearly with \sqrt{g} as long as δ is small compared with g (see (3)).) This discussion suggests that $\mathscr{I}(DX)^2 \otimes K_{X \times X}$ is 'strongly positive/generated.' However, the passage to (13) above requires even more control.

(II) **Related work** In [4], the author extensively studies the properties of nodal curves on K3 surfaces. Among several other results, he proves the nonsurjectivity of a marked Wahl map (different from the one introduced in here) for nodal curves on K3 surfaces.

Acknowledgments The comments made by the referee helped to improve the presentation.

References

- 1. Ciliberto, C., Harris, J., Miranda, R.: On the surjectivity of the Wahl map. Duke Math. J. 57, 829–858 (1988)
- Demailly, J.-P.: Singular Hermitian metrics on positive line bundles. Complex algebraic varieties. Lect. Notes Math. 1507, 87–104 (1992)
- 3. Halic, M.: Modular properties of nodal curves on K3 surfaces. Math. Z. 270, 871–887 (2012)
- 4. Kemeny, M.: The Moduli of Singular Curves on K3 Surfaces. http://arxiv.org/abs/1401.1047
- Knutsen, A.: A note on Seshadri constants on general K3 surfaces. CR Acad. Sci. Paris 346, 1079–1081 (2008)
- 6. Ross, J.: Seshadri constants on symmetric products of curves. Math. Res. Lett. 14, 63-75 (2007)