Skip to main content
Log in

Ruled Laguerre minimal surfaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A Laguerre minimal surface is an immersed surface in \({\mathbb{R}^3}\) being an extremal of the functional \({\int (H^2/K-1)dA}\). In the present paper, we prove that the only ruled Laguerre minimal surfaces are up to isometry the surfaces \({\mathbf{R}(\varphi,\lambda) = ( A\varphi,\, B\varphi,\, C\varphi + D\cos 2\varphi\, ) + \lambda\left(\sin \varphi,\, \cos \varphi,\, 0\,\right)}\), where \({A,B,C,D\in \mathbb{R}}\) are fixed. To achieve invariance under Laguerre transformations, we also derive all Laguerre minimal surfaces that are enveloped by a family of cones. The methodology is based on the isotropic model of Laguerre geometry. In this model a Laguerre minimal surface enveloped by a family of cones corresponds to a graph of a biharmonic function carrying a family of isotropic circles. We classify such functions by showing that the top view of the family of circles is a pencil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balk M.B., Zuev M.F.: On polyanalytic functions. Russ. Math. Surv. 25(5), 201–223 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blaschke W.: Über die Geometrie von Laguerre II: Flächentheorie in Ebenenkoordinaten. Abh. Math. Sem. Univ. Hamburg 3, 195–212 (1924)

    Article  Google Scholar 

  3. Blaschke W.: Über die Geometrie von Laguerre III: Beiträge zur Flächentheorie. Abh. Math. Sem. Univ. Hamburg 4, 1–12 (1925)

    Article  MathSciNet  MATH  Google Scholar 

  4. Blaschke W.: Vorlesungen über Differentialgeometrie, vol. 3. Springer, Berlin (1929)

    Google Scholar 

  5. Bobenko A.I., Hoffmann T., Springborn B.A.: Minimal surfaces from circle patterns: geometry from combinatorics. Ann. Math. 164, 231–264 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bobenko A.I., Suris Y.: On organizing principles of discrete differential geometry, geometry of spheres. Russ. Math. Surv. 62, 1–43 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bobenko A.I., Suris Y.: Discrete Differential Geoemtry: Integrable Structure. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  8. Cecil T.: Lie Sphere Geometry. Springer, Berlin (1992)

    MATH  Google Scholar 

  9. Dorfmeister, J.: Generalized Weierstrass representations of surfaces. In: Surveys on Geometry and Integrable systems. Advanced Studies in Pure Math., vol. 51

  10. Duffin R.J.: Continuation of biharmonic functions by reflection. Duke Math. J. 22(2), 313–324 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gollek, H.: Deformations of minimal curves containing planar geodesics. In: Proceedings of the 18th Winter School on Geometry and Physics, Srni, 1998 (suppl. ai rendiconti del Circolo matematico di Palermo, serie II, numero 59) (1999)

  12. König, K.: L-Minimalflächen. Mitt. Math. Ges. Hamburg, pp. 189–203 (1926)

  13. König, K.: L-Minimalflächen II. Mitt. Math. Ges. Hamburg, pp. 378–382 (1928)

  14. Li T.: Laguerre geometry of surfaces in \({\mathbb{R}^3}\). Acta Math. Sin. 21, 1525–1534 (2005)

    Article  MATH  Google Scholar 

  15. Liu Y., Pottmann H., Wallner J., Yang Y.-L., Wang W.: Geometric modeling with conical meshes and developable surfaces. ACM Trans. Graphics 25(3), 681–689 (2006)

    Article  Google Scholar 

  16. Musso E., Nicolodi L.: L-minimal canal surfaces. Rendiconti di Mat. 15, 421–445 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Musso E., Nicolodi L.: A variational problem for surfaces in Laguerre geometry. Trans. Am. Math. Soc. 348, 4321–4337 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Palmer B.: Remarks on a variational problem in Laguerre geometry. Rendiconti di Mat. 19, 281–293 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Pinkall U.: Dupin’sche Hyperflächen in E 4. Manuscr. Math. 51, 89–119 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Poritzki H.: Application of analytic functions to two-dimensional biharmonic analysis. Trans. Am. Math. Soc. 59, 248–279 (1946)

    Article  Google Scholar 

  21. Pottmann H., Grohs P., Blaschitz B.: Edge offset meshes in Laguerre geometry. Adv. Comput. Math. 33, 45–73 (2009)

    Article  MathSciNet  Google Scholar 

  22. Pottmann H., Grohs P., Mitra N.J.: Laguerre minimal surfaces, isotropic geometry and linear elasticity. Adv. Comput. Math. 31, 391–419 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pottmann H., Liu Y.: Discrete surfaces of isotropic geometry with applications in architecture. In: Martin, R., Sabin, M., Winkler, J. (eds) The Mathematics of Surfaces. Lecture Notes in Computer Science, vol. 4647, pp. 341–363. Springer, Berlin (2007)

    Google Scholar 

  24. Pottmann H., Liu Y., Wallner J., Bobenko A.I., Wang W.: Geometry of multi-layer freeform structures for architecture. ACM Trans. Graphics 25(3), 1–11 (2007)

    Google Scholar 

  25. Pottmann H., Peternell M.: Applications of Laguerre geometry in CAGD. Comput. Aid. Geom. Des. 15, 165–186 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Pottmann H., Wallner J.: The focal geometry of circular and conical meshes. Adv. Comput. Math 29, 249–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Sachs H.: Isotrope Geometrie des Raumes. Vieweg, Braunschweig (1990)

    Book  MATH  Google Scholar 

  28. Strubecker K.: Differentialgeometrie des isotropen Raumes I: Theorie der Raumkurven. Sitzungsber. Akad. Wiss. Wien, Abt. IIa 150, 1–53 (1941)

    MathSciNet  Google Scholar 

  29. Strubecker K.: Differentialgeometrie des isotropen Raumes II: Die Flächen konstanter Relativkrümmung K = rts 2. Math. Z. 47, 743–777 (1942)

    Article  MathSciNet  Google Scholar 

  30. Strubecker K.: Differentialgeometrie des isotropen Raumes III: Flächentheorie. Math. Z. 48, 369–427 (1942)

    Article  MathSciNet  Google Scholar 

  31. Wallner J., Pottmann H.: Infinitesimally flexible meshes and discrete minimal surfaces. Monatsh. Math. 153, 347–365 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wang C.: Weierstrass representations of Laguerre minimal surfaces in \({\mathbb{R}^3}\). Results Math. 52, 399–408 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Skopenkov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skopenkov, M., Pottmann, H. & Grohs, P. Ruled Laguerre minimal surfaces. Math. Z. 272, 645–674 (2012). https://doi.org/10.1007/s00209-011-0953-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-011-0953-0

Keywords

Mathematics Subject Classification (2000)

Navigation