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Abstract
The paper analyzes the Navier–Stokes system coupled with the convective-diffusion
equation responsible for thermal effects. It is a version of the Boussinesq approxi-
mation with a heat source. The problem is studied in the two dimensional plane and
the heat source is a measure transported by the flow. For arbitrarily large initial data,
we prove global in time existence of unique regular solutions. Measure being a heat
source limits regularity of constructed solutions and it requires a non-standard frame-
work of inhomogeneous Besov spaces of the L∞(0, T ; Bs

p,∞)-type. The uniqueness
of solutions is proved by using the Lagrangian coordinates.

Mathematics Subject Classification Primary 76D03 · 35Q35 · 35Q86

1 Introduction

Heat conducting fluids systems are an important part of the fluid mechanics. For the
most general models the total energy is usually conserved in time. Viscous fluids
generate internal friction and produce thermal effects. Variability of the temperature,
on the other hand, creates motion of the fluid. As a basic model the theory considers
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1902 P. B. Mucha, L. Xue

the Navier–Stokes–Fourier system for the compressible flows:

⎧
⎪⎪⎨

⎪⎪⎩

∂tρ + div(ρu) = 0,

∂t (ρu) + div(ρu ⊗ u) − div S(θ,∇u) + ∇ p(ρ, θ) = ρ f ,

∂t
(
ρs(ρ, θ)

)+ div
(
ρs(ρ, θ)u

)+ div
(
q(θ,∇θ)

θ

)
= σ.

(1.1)

In short, ρ, u, θ are sought quantities: the density, velocity and temperature of the
fluid, respectively. Functions p(·, ·) and s(·, ·) are the pressure and entropy. The stress
tensor S is given in the Newtonian form, the energy flux is given in the Fourier form

q = −κ(θ)∇θ and the entropy production σ = 1
θ
(S : ∇u + κ(θ)|∇θ |2

θ
) (for more

details see [12]).
Nowadays mathematics is able to deliver existence of weak solutions [12–14] for

the system (1.1), but regular solutions can be obtained for small data [5,24,29] only.
The structure of nonlinearities in (1.1) is complex, hence it is natural to look for a
reduced version of the system. Taking a low Mach number limit (see [9,15]), we
obtain an incompressible limit which takes into account weak thermal effects. This
system is known as the Boussinesq approximation

⎧
⎪⎨

⎪⎩

∂tθ + v · ∇θ − �θ = μ,

∂tv + v · ∇v − �v + ∇ p = θ ed ,

div v = 0,

(1.2)

where d = 2, 3, ed is the last canonical vector of Rd , v is the velocity and θ is the
temperature. In simple words, the above system (1.2) is the incompressible Navier–
Stokes equations coupledwith the heat equationwith a drift given by the velocity. Force
in the momentum equation is defined by the change of temperature along the direction
of the gravitational force (i.e. ed -direction). The application of such a system relates
to modeling phenomena for which the thermal effects cannot be neglected [1,11]. This
includes models of atmosphere [21]. As relates to the mathematical characteristics of
system (1.2) with μ = 0, the well-posedness was studied in [3,4,17,20,28].

It is important to underline the following fact, the system does not preserve the
energy. Indeed, the authors in [3] proved that for system (1.2) with μ = 0 the norm
‖u(t)‖2

L2 may grow in time. It makes mathematical analysis below more interesting,
since the dynamics considered is nontrivial for long time andmost of normsof solutions
are expected to grow in time.

Let us explain the goal of our paper. We consider a special case of system (1.2) in
which μ is given by a heat source transported by the flow:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tμ + v · ∇μ = 0,

∂tθ + v · ∇θ − �θ = μ,

∂tv + v · ∇v − �v + ∇ p = θ ed ,

div v = 0,

(μ, θ, v)|t=0(x) = (μ0, θ0, v0)(x),

(1.3)
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Boussinesq system with measure forcing 1903

where the system is considered in the whole space R2.
One can think ofμ as describing combustion by ameasure like a linear combination

of Dirac atoms. From the perspective of physical modeling it would describe the
movement of water after putting chemical material, like Sodium (Na), rapidly reacting
with water into a pool. We assume that total transfer of energy byμ is constant in time.
We also neglect all other chemical or thermodynamical effects to keep the simple form
of system (1.3).

The main goal of the paper is to construct large global-in-time unique solutions.
Since the Millennium Problem concerning the regularity of weak solutions to the
three dimensional Navier–Stokes system is still open, we thus concentrate on the
case of dimension two. The key point is to consider general data admitting initial
heat production defined as a Radon measure and large initial data of velocity and
temperature.We adopt the framework of Besov spaces Bs

p,∞ for the initial temperature
and velocity in order to be able to apply the maximal regularity results of the heat
equation with measure as a force (only L∞-in-time information is available).

Our result is stated as follows.

Theorem 1.1 Let μ0 ∈ M+(R2) with suppμ0 ⊂ BR0(0) for some R0 > 0. For each
σ ∈ (0, 3

2 ], let θ0 ∈ L1∩B2−σ
2

2−σ
,∞(R2)with θ0 ≥ 0, and v0 ∈ H1(R2) be a divergence-

free vector field with initial vorticity ω0 = ∂1v2,0 − ∂2v1,0 ∈ B3−σ
2

2−σ
,∞(R2). Then the

system (1.3) admits a global in time unique solution (μ, θ, v) such that for any T > 0,

μ ∈ L∞(0, T ;M+(R2)), with suppμ ⊂ BR0+CT , (1.4)

and

θ ∈ L∞
(

0, T ; L1 ∩ B2−σ
2

2−σ
,∞(R2)

)

, with θ ≥ 0 on [0, T ] × R
2, (1.5)

and

v ∈ L∞ (0, T ; H1 ∩ W 1,∞(R2)) ∩ L2(0, T ; H2(R2)
)

,

∇v ∈ L∞(0, T ; B3−σ
2

2−σ
,∞(R2)), (1.6)

where CT > 0 is a constant depending only on T and the norms of initial data.

The globalwellposedness of system (1.3)with smooth forcingμ in 2D case for large
data can be deduced from the current state of the art. Thanks to the classical result
of Ladyzhenskaya [22] (and in the language of Besov spaces [10]), we are able to
obtain the regular solutions to the Navier–Stokes equations. The system (1.3) from the
regularity viewpoint is a weak perturbation of (1.3)3,4 and basic energy estimates grant
the existence at the level of Galerkin’s method. However this approach works only for
smooth μ. In our case the heat source is a measure and a non-standard approach has
to be created. To fit the regularity of temperature and velocity to properties of μ, we
apply the Besov spaces of type Bs

p,∞, defined in Definition (2.3), Sect. 2.2. We also
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assume that the initial heat source is compactly supported in space, to avoid technical
problems with the definition of measures at infinity.

Our result has the following interesting ingredients:
∗ The heat source is a measure which is not vanishing in time—see Proposition 3.1.

Solvability of (1.3)1 requires high regularity of the velocity (Lipschitz continuity) to
guarantee the existence and uniqueness. On the other hand, one can not expect too
high regularity of solutions since they are generated by a measure. Thanks to the low
spatial dimension, our solutions are regular enough and (1.3)1 can be solved in terms
of characteristics.

∗ It is an application of inhomogeneous Besov spaces L∞(0, T ; Bs
p,∞(R2)) to

address the regularity of solutions. Properties of these spaces allow to consider reg-
ularity of (μ, θ, v) in the L∞-norm in time, which is required by the basic bound of
μ (1.4). By embedding μ belongs to L∞(0, T ; B−σ

2
2−σ

,∞(R2)). This framework fits to

the regularity properties of the right-hand side of Eq. (1.3)2. In addition, Besov spaces
admit the theory of maximal regularity for the heat and Stokes equations, which allows
to maintain the full information about the solutions.

∗ In the construction of the a priori estimates, the source μ given as a measure
does not allow to use the standard bounds by energy norms. The basic L2-estimate
of velocity v requires the control of ‖θ(t)‖L2 . However, the properties of μ imply a
natural uniform L1-bound ‖θ‖L∞

t (L1) only. To close the estimation there is a need to

interpolate between the L1-estimate and a bound in the high-regularity Besov norm.
Here the limit case is considered, and the final estimate is obtained by an application
of a new logarithmic interpolation inequality for the Besov spaces (Lemma 2.6).

∗ Since the sourceμ is determined by the transport equation, the issue of uniqueness
does not fit well to the framework of the Euler coordinates. Our regularity is high
enough to define the Lagrangian coordinates (see [7,8] and references therein for
this method used in the density-dependent incompressible Navier–Stokes equations).
Then after the transformation, μ becomes fixed in time (see Sect. 3.3). This reduction
allows to show uniqueness by elementary energy methods, with the difference of the
temperatures in L2(0, T ; L2(R2)).

The simple proof of uniqueness given in this paper requires σ ∈ (0, 3/2], thus the
whole analysis is limited to this case. However by using the idea stated in the following
remark it can be extended to σ ∈ (0, 2).

Remark 1.2 The restriction σ ∈ (0, 3/2] comes only from the embedding relation
(3.40) used in the uniqueness part, and if we instead use the continuous embeddings
that for every σ ∈ (0, 2),

B2−σ
2

2−σ
,∞(R2) ↪→ L

4
2−σ (R2) and L∞(0, T ; L2(R2)) ∩ L2(0, T ; Ḣ1(R2))

↪→ L
4

2−σ (0, T ; L 4
σ (R2)),

we can similarly show the uniqueness and Theorem 1.1 in the range σ ∈ (0, 2).

The outline of this paper is as follows. We present preliminary results including some
auxiliary lemmas in Sect. 2. We give the detailed proof of Theorem 1.1 in the whole
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Sect. 3: we firstly show the key a priori estimates of solution (μ, θ, v) in Sect. 3.1,
then we sketch the proof of existence in Sect. 3.2, and finally we prove the uniqueness
by using Lagrangian coordinates in Sect. 3.3. At last in the appendix we show the
proof of Lemmas 2.5, 3.4 and 3.5.

The following notation is used throughout this paper.
� C stands for a constant which may be different in different estimates.
� D(Rd) orD(Rd ×[0, T ]) denotes the space of C∞-smooth functions with compact
support on R

d or Rd × [0, T ], respectively. D′(Rd × [0, T ]) is the dual space of
D(Rd × [0, T ]). Denote S(Rd) the Schwartz class of rapidly decreasing C∞-smooth
functions, and S ′(Rd) the space of tempered distributions which is the dual space of
S(Rd).
� For m ∈ N, r ∈ [1,+∞], s ∈ R, we denote byWm,r (Rd) (Ẇm,r (Rd)) and Hs(Rd)

(Ḣ s(Rd)) the usual Lr -based and L2-based inhomogeneous (homogenous) Sobolev
spaces. For Banach space X = X(Rd) and ρ ∈ [1,∞], Lρ(0, T ; X) denotes the usual
space-time space Lρ([0, T ]; X), which is also abbreviated as Lρ

T (X). We also use the
usual abbreviation that ‖( f1, . . . , fn)‖X := ‖ f1‖X + · · · + ‖ fn‖X .
� We use Br (x0) := {x ∈ R

d : |x − x0| < r} to denote the open ball of Rd .

2 Preliminaries

In this section,we compile basic results related tomeasure andLagrangian coordinates,
and also show several auxiliary lemmas used in the paper.

2.1 Results related tomeasures

We denote M = M(Rd) as the space of finite Radon measures defined on R
d with

total variation topology, i.e., for any μ Radon measure, define

‖μ‖M(Rd ) = |μ|(Rd) := sup

{∣
∣
∣
∣

∫

Rd
f dμ

∣
∣
∣
∣ : ‖ f ‖L∞ ≤ 1, f ∈ C0(R

d)

}

.

As a consequence of Riesz representation theorem, M(Rd) is the dual space of
C0(R

d), that is,M(Rd) = (C0(R
d))∗. For {μn}n∈N ⊂ M(Rd) and μ ∈ M(Rd), we

say μn → μ weakly∗ if

lim
n→∞

∫

Rd
f dμn =

∫

Rd
f dμ, for every f ∈ C0(R

d).

We also denote M = M(Rd , d) as the space of finite Radon measures on R
d

equipped with bounded Lipschitz distance topology, i.e., for any Radon measures μ

and ν, define
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d(μ, ν) := sup

{∣
∣
∣
∣

∫

Rd
f dμ −

∫

Rd
f dν

∣
∣
∣
∣ : ‖ f ‖L∞ ≤ 1 and Lip( f )

:= sup
x �=y∈Rd

| f (x) − f (y)|
|x − y| ≤ 1

}

. (2.1)

By M+ = M+(Rd) we denote the set of nonnegative finite Radon measures on R
d ,

that is,

M+ :=
{
μ ∈ M(Rd) : μ ≥ 0

}
,

both with the strong total variation and weak d(·, ·) topologies.
Definition 2.1 We say that a sequence {μn} ⊂ M(Rd) is tight if for any ε > 0, there
exists a compact set Kε ⊂⊂ R

d so that

sup
n∈N

|μn|(Rd \ Kε) < ε, where |μn| is the total variation measure of μn .

Proposition 2.2 (cf. Theorem 2.7 of [18]) Let {μn}n∈N be a tight sequence inM(Rd)

and let μ ∈ M(Rd). Then as n → ∞, μn → μ weakly∗ if and only if d(μn, μ) → 0
and supn∈N |μn|(Rd) < ∞.

The space (M+, d) is a complete metric space.

Proposition 2.3 (cf. Corollary 21 of [25]) Let {μn}n∈N be a sequence bounded in
M+(Rd) with support contained in a given ball. Then there exists a (M+, d)-
convergent subsequence {μnk }.

2.2 Besov spaces and auxiliary lemmas

We recall definitions of inhomogeneous Besov spaces and their space-time counter-
parts. One can choose two nonnegative radial functions χ, ϕ ∈ D(Rd) be supported
respectively in the ball {ξ ∈ R

d : |ξ | ≤ 4
3 } and the annulus {ξ ∈ R

d : 3
4 ≤ |ξ | ≤ 8

3 }
such thatχ(ξ)+∑ j∈N ϕ(2− jξ) = 1 for every ξ ∈ R

d (see [6]). For every f ∈ S′(Rd),
we define the nonhomogeneous Littlewood–Paley operators as follows

�−1 f := χ(D) f ; � j f := ϕ(2− j D) f , S j f :=
∑

−1≤k≤ j−1

�k f , ∀ j ∈ N.

(2.2)

Now for s ∈ R, (p, r) ∈ [1,+∞]2, the inhomogeneousBesov space Bs
p,r = Bs

p,r (R
d)

is defined as

Bs
p,r :=

⎧
⎪⎨

⎪⎩
f ∈ S ′(Rd); ‖ f ‖Bs

p,r
:=
⎛

⎝
∑

j≥−1

2 jsr‖� j f ‖rL p

⎞

⎠

1/r

< ∞

⎫
⎪⎬

⎪⎭
. (2.3)
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Boussinesq system with measure forcing 1907

The space-time Besov space Lρ([0, T ], Bs
p,r ), abbreviated by Lρ

T (Bs
p,r ), is the set of

tempered distribution f such that

‖ f ‖Lρ
T (Bs

p,r )
:=
(∫ T

0
‖ f (t)‖ρ

Bs
p,r
dt

)1/ρ

< ∞. (2.4)

The Besov spaces nowadays belong to the standard toolbox of analytical techniques.
They give precise information about regularity of functions. They can be defined also
by the real interpolation between classical Sobolev spaces. The basic properties are
shown by the embedding theorem

Bs
p,r (R

d) ↪→ C0(R
d) as ps > d (or ps = d for r = 1), (2.5)

and

Bs
p,r (R

d) ↪→ Lq(Rd) as
1

p
− 1

q
<

s

d

(

or
1

p
− 1

q
= s

d
for r ≤ q

)

. (2.6)

One can refer to [2] for an introduction to this subject from theviewpoint of applications
in PDEs.

The following regularity estimates of the heat equation in the framework of Besov
spaces are required by our techniques.

Lemma 2.4 (cf. Theorem 2.2.5 of [6]) Let s ∈ R and p ∈ [1,∞]. Let T > 0,
u0 ∈ Bs

p,∞(Rd), and f ∈ L∞
T (Bs−2

p,∞(Rd)). Then the following nonhomogeneous heat
equation

∂t u − �u = f , u|t=0(x) = u0(x), x ∈ R
d ,

has a unique solution u ∈ L∞
T (Bs

p,∞) and there exists a constant C = C(d) such that

‖u‖L∞
T (Bs

p,∞(Rd )) ≤ C
(
‖u0‖Bs

p,∞(Rd ) + (1 + T )‖ f ‖L∞
T (Bs−2

p,∞(Rd ))

)
. (2.7)

In obtaining theapriori estimates of themain theorem,weuse the following product
estimates in Besov spaces (whose proof is put in the appendix section).

Lemma 2.5 Let v : R2 → R
2 be a divergence-free vector field and θ : R2 → R be a

scalar function.

(1) Let s ∈ (0, 1), p ∈ [1,∞]. Then there exists a positive constant C = C(s) such
that

‖v · ∇θ‖B−s
p,∞(R2)

≤ C
(‖v‖L2(R2) + ‖∇v‖L2(R2)

)
(

sup
k≥−1

2k(1−s)
√
k + 2‖�kθ‖L p(R2)

)

. (2.8)
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(2) Let s ∈ (0,∞), p ∈ [1,∞]. Then there exists a positive constant C = C(s) such
that

‖v · ∇θ‖Bs
p,∞(R2) ≤ C

(
‖v‖L2p(R2)‖∇θ‖Bs

2p,∞(R2) + ‖v‖Bs
2p,∞(R2)‖∇θ‖L2p(R2)

)

≤ C‖v‖Bs
2p,∞(R2)‖∇θ‖Bs

2p,∞(R2). (2.9)

The following interpolation inequalities are required in the main proof.

Lemma 2.6 Let θ : R2 × [0, T ] → R be a scalar function.

(1) Let s ∈ (0, 1), p ∈ [1,∞], then there is a positive constant C = C(s, p) such
that

sup
k≥−1

2k(1−s)
√
k + 2‖�kθ‖L∞

T (L p)

≤ C‖θ‖
1

4−s−2/p

L∞
T (L1)

‖θ‖
3−s−2/p
4−s−2/p

L∞
T (B2−s

p,∞)

√
√
√
√log

(

e +
‖θ‖L∞

T (B2−s
p,∞)

‖θ‖L∞
T (L1)

)

+ C‖θ‖L∞
T (L1). (2.10)

(2) Let p ∈ [1,∞), then there is a positive constant C = C(p) such that

‖θ‖2L∞
T (L2)

≤ C‖θ‖L∞
T (L1)‖θ‖

L∞
T (B2/p

p,∞)
. (2.11)

Proof of Lemma 2.6 (1) Let N ∈ N ∩ [2,∞) be an integer chosen later, then by using
Bernsteins’s inequality we have

sup
k≥−1

2k(1−s)
√
k + 2‖�kθ‖L∞

T (L p)

≤ sup
−1≤k≤N

2k(1−s)
√
k + 2‖�kθ‖L∞

T (L p) + sup
k≥N

2k(1−s)
√
k + 2‖�kθ‖L∞

T (L p)

≤ C0 sup
−1≤k≤N

2k(1−s)
√
2 + k2k(2−

2
p )‖�kθ‖L∞

T (L1)

+ C0 sup
k≥N

√
2 + k2−k2k(2−s)‖�kθ‖L∞

T (L p)

≤ C02
N (3−s− 2

p )
√
N‖θ‖L∞

T (L1) + C02
−N

√
N‖θ‖L∞

T (B2−s
p,∞)

.

Now we define the constant N as

N :=

⎧
⎪⎨

⎪⎩

2, if ‖θ‖L∞
T (B2−s

p,∞)
≤ 2‖θ‖L∞

T (L1),
[

1
4−s−2/p log

( ‖θ‖
L∞
T (B2−s

p,∞)

‖θ‖L∞
T (L1)

)]

+ 1, if ‖θ‖L∞
T (B2−s

p,∞)
≥ 2‖θ‖L∞

T (L1),

(2.12)

with notation [a] the integer part of a ∈ R, then it is clear that the desired inequality
(2.10) follows by a direct computation.
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(2) We only consider the case p ∈ (2,∞), since the remaining case is standard.
Let K ∈ N be an integer chosen later, then by a high-low frequency decomposition
we get

‖θ‖2L∞
T (L2)

≤
∑

−1≤k≤K

‖�kθ‖2L∞
T (L2)

+
∑

k≥K

‖�kθ‖2L∞
T (L2)

≤ C0

∑

−1≤k≤K

22k‖�kθ‖2L∞
T (L1)

+ C
∑

k≥K

‖�kθ‖
p−2
p−1

L∞
T (L1)

‖�kθ‖
p

p−1

L∞
T (L p)

≤ C22K ‖θ‖2L∞
T (L1)

+ C2− 2K
p−1 ‖θ‖

p−2
p−1

L∞
T (L1)

‖θ‖
p

p−1

L∞
T (B2/p

p,∞)
,

which clearly guarantees the desired inequality by optimalizing the constant K . ��
The proof of uniqueness requires the following L2-based estimate on the Stokes

system.

Lemma 2.7 (cf. Lemma 3 of [8]) Let R be a vector field satisfying ∂t R ∈ L2(Rd ×
(0, T ]) and ∇ div R ∈ L2(Rd × (0, T ]). Then the following system

⎧
⎪⎨

⎪⎩

∂t u − �u + ∇P = f , in R
d × (0, T ],

div u = div R, in R
d × (0, T ],

u|t=0 = u0, on R
d ,

(2.13)

admits a unique solution (u,∇P) which satisfies that

‖∇u‖L∞
T (L2) + ‖(∂t u,∇2u,∇P)‖L2

T (L2)

≤ C
(
‖∇u0‖L2 + ‖( f , ∂t R)‖L2

T (L2) + ‖∇ div R‖L2
T (L2)

)
, (2.14)

where C is a positive constant independent of T .

2.3 The Lagrangian coordinates

The use of Lagrangian coordinates plays a fundamental role in the uniqueness proof.
In this subsection we introduce notations and basic results related to the Lagrangian
coordinates.

Let Xv(t, y) solve the following ordinary differential equation (treating y as a
parameter)

dXv(t, y)

dt
= v(t, Xv(t, y)), Xv(t, y)|t=0 = y, (2.15)

which directly leads to

Xv(t, y) = y +
∫ t

0
v(τ, Xv(τ, y))dτ. (2.16)
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1910 P. B. Mucha, L. Xue

Denoting by v̄(t, y) := v(t, Xv(t, y)), flow equation (2.16) can also be expressed as

Xv(t, y) = y +
∫ t

0
v̄(τ, y)dτ. (2.17)

We list some basic properties for the Lagrangian change of variables.

Lemma 2.8 Assume that v is a velocity vector field belonging to L1(0, T ; Ẇ 1,∞(Rd)).
The following statements hold true.

(1) The system (2.15) has a unique solution Xv(t, y) on the time interval [0, T ] sat-
isfying ∇y Xv ∈ L∞(0, T ; L∞) with

‖∇y Xv(t)‖L∞(Rd ) ≤ exp

{∫ t

0
‖∇xv(τ)‖L∞(Rd )dτ

}

, (2.18)

and also ∇y Xv(t, y) = Id + ∫ t0 ∇y v̄(τ, y)dτ .
(2) Let Yv(t, ·) be the inverse diffeomorphism of Xv(t, ·), then ∇xYv(t, x) =
(∇y Xv(t, y)

)−1
with x = Xv(t, y), and if

∫ t

0
‖∇y v̄(τ )‖L∞(Rd )dτ ≤ 1

2
, (2.19)

we have

|∇xYv(t, x) − Id| ≤ 2
∫ t

0
|∇y v̄(τ, y)|dτ. (2.20)

(3) If additionally ∇2
xv ∈ L1(0, T ; L p(Rd)) with some p ∈ [1,∞], then for every

t ∈ [0, T ],

‖∇2
y Xv(t)‖L p(Rd ) ≤ exp

{

3
∫ t

0
‖∇xv(τ)‖L∞(Rd )dτ

}∫ t

0
‖∇2

xv(τ)‖L p(Rd )dτ.

(2.21)

Proof of Lemma 2.8 The proof of (1) and (2) is standard, and one can refer to [8,
Proposition 1] for details. For (3), observing that

∇2
y Xv(t, y) =

∫ t

0
∇2
y v̄(τ, y)dτ =

∫ t

0
∇y Xv · ∇2

xv(τ, Xv1) · ∇y Xvdτ

+
∫ t

0
∇xv(τ, Xv) · ∇2

y Xv(τ, y)dτ,

we get

‖∇2
y Xv(t)‖L p ≤

∫ t

0
‖∇y Xv(τ )‖2L∞‖∇2

x v(τ)‖L pdτ +
∫ t

0
‖∇xv(τ)‖L∞‖∇2

y Xv(τ )‖L pdτ,
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and then, Gronwall’s inequality implies

‖∇2Xv(t)‖L p ≤ e
∫ t
0 ‖∇xv(τ)‖L∞dτ

∫ t

0
‖∇Xv(τ )‖2L∞‖∇2

xv(τ)‖L pdτ,

which combined with estimate (2.18) leads to (2.21), as desired. ��
Under the assumption v ∈ L1(0, T ; Ẇ 1,∞(Rd)), and using the Lagrangian coor-

dinates introduced as above, we set

μ̄(t, y) := μ(t, Xv(t, y)), θ̄ (t, y) := θ(t, Xv(t, y)), p(t, y) := p(t, Xv(t, y)),(2.22)

then according to properties of the Lagrangian coordinates [7], [8], the Boussinesq
type system (1.3) recasts in

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂t μ̄ = 0,

∂t θ̄ − div
(
AvAT

v∇y θ̄
) = μ̄,

∂t v̄ − div
(
AvAT

v∇y v̄
)+ AT

v∇y p = θ̄ ed ,

div (Avv̄) = 0,

μ̄|t=0 = μ0, θ̄ |t=0 = θ0, v̄|t=0 = v0,

(2.23)

where we adopted the notation Av(t, y) := (∇y Xv(t, y))−1 which under the condition
(2.19) has the following formula

Av(t, y) = (Id + (∇y Xv − Id))−1 =
∞∑

k=0

(−1)k
(∫ t

0
∇y v̄(τ, y)dτ

)k

. (2.24)

As pointed out by [7,8], under the condition (2.19), the system (2.23) in the Lagrangian
coordinates is equivalent to the system (1.3) in the Eulerian coordinates.

The first equation of (2.23) implies force μ̄ becomes time independent, hence it is
given by the initial datum

μ̄(t, y) ≡ μ0(y), ∀t ∈ [0, T ]. (2.25)

Then system (2.23) reduces to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t θ̄ − �θ̄ = μ0 + N1(Av,∇ θ̄ ),

∂t v̄ − �v̄ + ∇ p = θ̄ ed + N2(Av,∇v̄) + N3(Av,∇ p̄),

div v̄ = div ((Id − Av)v̄) = (Id − AT
v ) : ∇v̄,

θ̄ |t=0 = θ0, v̄|t=0 = v0.

(2.26)

Nonlinear terms N1, N2, N3 are defined by

N1(Av,∇ θ̄ ) := div
(
(AvA

T
v − Id)∇ θ̄

)
, and (2.27)
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1912 P. B. Mucha, L. Xue

N2(Av,∇v̄) := div
(
(AvA

T
v − Id)∇v̄

)
, N3(Av,∇ p̄) := (Id − AT

v )∇ p.

(2.28)

Observe that the left-hand side of (2.26) fits perfectly to the needs of Lemma 2.7.
Hence the easiest framework in order to prove the uniqueness property is via the
L2(0, T ; L2(R2)) estimate for the difference of temperatures. Note that the change of
the Lagrangian coordinates makes our system quasi-linear, and the input from matrix
Av is negligible as the time interval is short.

Finally we shall note that the uniqueness to system (1.3) could be proved directly
in the Eulerian coordinates. Adopting methods from [19] based on the considerations
in Besov spaces with negative regularity index, we shall be able to control the part
coming from the transport equation (1.3)1. However this approach for our system
seems to be very technical with nontrivial considerations for convection terms.

3 Proof of Theorem 1.1

3.1 A priori estimates

In this subsection we collect the key a priori estimates of solutions (μ, θ, v) to system
(1.3).

Proposition 3.1 Let μ0 ∈ M+(R2) satisfy that suppμ0 ⊂ BR0(0) for some R0 > 0.
Let T > 0 be any given, and (μ, θ, v) be smooth functions on R2 × [0, T ] solving the
system (1.3). Then for every t ∈ [0, T ], we have μ(t, x) = μt (x) ∈ M+(R2) with

‖μt‖M(R2) ≤ ‖μ0‖M(R2), ∀t ∈ [0, T ], (3.1)

and also suppμt ⊂ BR0+C (0) with C = ‖v‖L1
T (L∞).

Proof of Proposition 3.1 Let Xv,t (y) = Xv(t, y) be the flow function generated by
the velocity v, which solves Eq. (2.15) or (2.16). Since we assume that v ∈
L1([0, T ];W 1,∞(R2)), from Lemma 2.8, it admits a unique vector field Xv,t : R2 →
R
2, t ∈ [0, T ] which is a diffeomorphism.
Let Yv,t = Yv(t, ·) be the inverse diffeomorphism of Xv,t , then we see that

μ(t, x) = μt (x) = μ0(Yv,t (x)). (3.2)

Clearly, μt ≥ 0, and since Xv,t is volume-preserving (from the divergence-free prop-
erty of v), we have
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‖μt‖M(R2)= sup
‖g‖L∞≤1

∣
∣
∣
∣

∫

R2
g(x)dμt (x)

∣
∣
∣
∣ = sup

‖g‖L∞≤1

∣
∣
∣
∣

∫

R2
g(x)dμ0(Yv,t (x))

∣
∣
∣
∣

= sup
‖g‖L∞≤1

∣
∣
∣
∣

∫

R2
g(Xv,t (y))dμ0(y)

∣
∣
∣
∣

≤ sup
‖g̃‖L∞≤1

∣
∣
∣
∣

∫

R2
g̃(y)dμ0(y)

∣
∣
∣
∣=‖μ0‖M(R2),

where the supremum is taken over all C0(R
2) functions.

From (3.2) and suppμ0 ⊂ BR0(0), we get suppμt ⊂ Xt (BR0(0)), and thus formula
(2.16) ensures that suppμt ⊂ BR0+‖v‖

L1T (L∞)
(0). ��

Proposition 3.2 Let μ0 ∈ M+(R2) satisfy suppμ0 ⊂ BR0(0) for some R0 > 0, and
θ0 ∈ L1(R2) be with θ0 ≥ 0. For T > 0 any given, assume (μ, θ, v) are smooth
functions on R

2 × [0, T ] solving system (1.3), and also θ has the point-wise spatial
decay. Then we have that θ(t) ≥ 0 for every t ∈ [0, T ] and

sup
t∈[0,T ]

‖θ(t)‖L1(R2) ≤ ‖θ0‖L1(R2) + T ‖μ0‖M(R2). (3.3)

Proof of Proposition 3.2 We first prove the nonnegativity property of θ(t). The proof
is standard (e.g. see [23]) and it uses a contradiction argument. Denote by �T :=
(0, T ]×R

2. We define θ̃ (t, x) = θ(t, x)e−t and assume that there is a constant λ > 0
so that

inf
(t,x)∈�T

θ̃ (t, x) = −λ.

Such a constant λ exists sincewe assume θ̃ is a bounded smooth function.We also infer
that there exists some point (t∗, x∗) ∈ �T attaining this infimum. If not, then there
exists a sequence of points (tn, xn)n∈N becoming unbounded such that θ̃ (tn, xn) → −λ

as n → ∞, which is a contradiction with the assumption that θ̃ is a smooth function
with suitable spatial decay. From the equation of θ̃ , we get

(∂t θ̃ )(t∗, x∗) = −θ̃ (t∗, x∗) − (v · ∇ θ̃ )(t∗, x∗) + �θ̃(t∗, x∗) + μ(t∗, x∗)e−t .

Due to that θ̃ attains the infimum at (t∗, x∗), it yields that (∇ θ̃ )(t∗, x∗) = 0 and
(�θ̃)(t∗, x∗) ≥ 0, and also μ(t∗, x∗) ≥ 0 from Proposition 3.1, thus we find

(∂t θ̃ )(t∗, x∗) ≥ −θ̃ (t∗, x∗) = λ.

But this clearly contradicts with the fact that (t∗, x∗) is the infimum point of θ̃ , hence
the nonnegativity of θ for every t ∈ [0, T ] obviously follows. Note that in the above
proof the smoothness of θ is required. So this part works for smooth approximation of
solutions (seeSect. 3.2). Passage to the limit saves the nonnegativity of the temperature.
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Next, we show θ ∈ L∞([0, T ]; L1(R2)). Let ϕ ∈ D(R2) be a test function satis-
fying suppϕ ⊂ B1(0), ϕ ≡ 1 on B1/2(0), and 0 ≤ ϕ ≤ 1. Set ϕR := ϕ( ·

R ) for every
R > 0. Multiplying both sides of the equation of θ with ϕR and integrating on the
spatial variable, we obtain

d

dt

∫

R2
θ(t)ϕRdx +

∫

R2
v · ∇θ ϕRdx −

∫

R2
�θ ϕRdx =

∫

R2
μϕRdx .

By viewing the measure μ(t) as an element in the dual space of C0(R
2), we deduce

that
∫

R2
μ(t, x) ϕR(x)dx = (μ(t), ϕR) ≤ ‖μ(t)‖M ≤ ‖μ0‖M.

Thus integrating on the time interval [0, t] (t ∈ [0, T ]) and using integration by parts,
we find

∫

R2
θ(t)ϕRdx ≤

∫

R2
θ0ϕRdx + 1

R

∫ T

0

∫

R2
|vθ |
∣
∣
∣∇ϕ
( x

R

)∣
∣
∣ dxdt

+ 1

R

∫ T

0

∫

R2
|∇θ |

∣
∣
∣∇ϕ
( x

R

)∣
∣
∣ dxdt + T ‖μ0‖M.

Since we assume θ, v are smooth functions which guarantee that v, θ ∈ L2(R2 ×
[0, T ]) and ∇θ ∈ L

3
2 (R2 × [0, T ]), by passing R to +∞, it yields that

∫

R2
θ(t, x)dx ≤

∫

R2
θ0(x)dx + T ‖μ0‖M.

Hence the desired inequality (3.3) follows from the nonnegativity of θ(t). ��
Proposition 3.3 Let μ0 ∈ M+(R2) satisfy suppμ0 ⊂ BR0(0) for some R0 > 0. For
each σ ∈ (0, 2), let θ0 ∈ L1 ∩ B2−σ

2
2−σ

,∞(R2) be with θ0 ≥ 0, and v0 ∈ H1(R2) be a

divergence-free vector field with initial vorticityω0 := ∂1v2,0−∂2v1,0 ∈ B3−σ
2

2−σ
,∞(R2).

Let T > 0 be any given, and assume that (μ, θ, v) are smooth functions onR2×[0, T ]
solving the system (1.3). Then we have

‖θ‖L∞
T (B2−σ

2
2−σ

,∞(R2))
+ ‖v‖L∞

T (H1(R2)) + ‖v‖L2
T (H2(R2)) ≤ Ceexp(C(1+T )8), (3.4)

and

‖∇v‖L∞
T (B3−σ

2
2−σ

,∞(R2))
+ ‖v‖L∞

T (W 1,∞(R2)) + ‖(∇ p, ∂tv,∇2v)‖L∞
T (B2−σ

2
2−σ

,∞)

≤ Ceexp(C(1+T )8), (3.5)

where C > 0 depends only on σ and the norms of initial data (μ0, θ0, v0).
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Proof of Proposition 3.3 We first consider the energy type estimates of v. By taking the
scalar product of the velocity field v with its equation in (1.3), we get

1

2

d

dt
‖v(t)‖2L2 + ‖∇v(t)‖2L2 ≤

∣
∣
∣
∣

∫

R2
θ v2(t, x)dx

∣
∣
∣
∣ ≤ ‖θ(t)‖L1(R2)‖v(t)‖L∞(R2).

By using L1-estimate (3.3) and the interpolation inequality, we infer that

1

2

d

dt
‖v(t)‖2L2(R2)

+ ‖∇v(t)‖2L2(R2)
≤ C(1 + t)‖v(t)‖1/2

L2(R2)
‖∇2v‖1/2

L2(R2)
, (3.6)

where C > 0 depends on the norms of initial data ‖μ0‖M and ‖θ0‖L1(R2). We then
consider the equation of vorticity ω := curl v = ∂1v2 − ∂2v1, which reads as

∂tω + v · ∇ω − �ω = ∂1θ. (3.7)

By taking the inner product of the above equation with ω, and using the integration
by parts, we derive that

1

2

d

dt
‖ω(t)‖2L2 + ‖∇ω(t)‖2L2 ≤

∣
∣
∣
∣

∫

R2
θ ∂1ω(t, x)dx

∣
∣
∣
∣ ≤ ‖θ(t)‖L2‖∇ω(t)‖L2 .

Young’s inequality directly leads to

d

dt
‖ω(t)‖2L2(R2)

+ ‖∇ω(t)‖2L2(R2)
≤ ‖θ(t)‖2L2(R2)

.

Noting that ‖∇2v‖L2 ≤ ‖∇ω‖L2 and ab ≤ εa4 + Cεb4/3 for any a, b, ε > 0, we
combine the above inequality with (3.6) to get

d

dt

(
‖v(t)‖2L2 + ‖ω(t)‖2L2

)
+ ‖∇v(t)‖2L2 + 1

2
‖∇ω(t)‖2L2 ≤ ‖θ(t)‖2L2(R2)

+C(1 + t)
4
3 ‖v(t)‖

2
3
L2 . (3.8)

In order to control the norm ‖θ(t)‖L2(R2), we will use the equation of θ . However
the smoothness of θ is limited by source μ which is a measure. Observe that

μ(t) ∈ M(R2) = (C0(R
2))∗ ⊂ B−σ

2
2−σ

,∞(R2),

since Bσ
2/σ,1(R

2) ⊂ C0(R
2) for σ ∈ (0, 2). This Besov regularity of μ guarantees

the temperature in L2(R2). Indeed, from estimates of the maximal regularity type we
expect that θ ∈ L∞(0, T ; B2−σ

2
2−σ

,∞), and in combination with (3.3) it yields θ(t) ∈
L2(R2).
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Hence applying Lemma 2.4 to the equation ∂tθ − �θ = −v · ∇θ + μ, we infer
that for every t ∈ [0, T ],

‖θ‖L∞(0,t;B2−σ
2

2−σ
,∞(R2))

≤ C0

(

‖θ0‖B2−σ
2

2−σ
,∞

+ (1 + t)‖μ‖L∞
t (B−σ

2
2−σ

,∞) + (1 + t)‖v · ∇θ‖L∞
t (B−σ

2
2−σ

,∞)

)

.

Owing to (3.1) and Lemma 2.5, it follows that

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
≤ C0

(

‖θ0‖B2−σ
2

2−σ
,∞

+ (1 + t)‖μ0‖M
)

+ C0(1 + t)‖(v, ω)‖L∞
t (L2)

(

sup
k≥−1

2k(1−σ)
√
2 + k‖�kθ‖

L∞
t (L

2
2−σ )

)

.

We first derive a rough estimate of ‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
in terms of ‖(v, ω)‖L∞

t (L2). By

using the interpolation inequality and Young’s inequality, it gives that

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)

≤ C0

⎛

⎝‖θ0‖B2−σ
2

2−σ
,∞

+ (1 + t)‖μ0‖M + (1 + t)‖(v, ω)‖L∞
t (L2)‖θ‖

L∞
t (B

1− σ
2

2
2−σ

,∞)

⎞

⎠

≤ C0

(

‖θ0‖B2−σ
2

2−σ
,∞

+ (1 + t)‖μ0‖M

+(1 + t)‖(v, ω)‖L∞
t (L2)‖θ‖

2−σ
4

L∞
t (L1)

‖θ‖
2+σ
4

L∞
t (B2−σ

2
2−σ

,∞)

)

≤ C(1 + t) + C0

(

(1 + t)
4

2−σ ‖(v, ω)‖
4

2−σ

L∞
t (L2)

‖θ‖L∞
t (L1)

)

+ 1

2
‖θ‖L∞

t (B2−σ
2

2−σ
,∞)

,

(3.9)

thus using (3.3) yields

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
≤ C(1 + t)

6−σ
2−σ

(

1 + ‖(v, ω)‖
4

2−σ

L∞
t (L2)

)

, (3.10)

with C depending on the norms ‖θ0‖L1∩B2−σ
2

2−σ
,∞

and ‖μ0‖M.

Thenwe showamore refined estimate of (3.10) by slightly reducing the power index
of ‖(v, ω)‖L∞

t L2 . Through applying the interpolation inequality (2.10), L1-estimate

(3.3) and the fact that the function z �→ z
1
2

√

log(e + 1
z ) is increasing on (0,∞), we
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find

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)

≤ C0

(

‖θ0‖B2−σ
2

2−σ
,∞

+ (1 + t)‖μ0‖M
)

+ C(1 + t)‖(v, ω)‖L∞
t (L2)

(

‖θ‖
1
2
L∞
t (L1)

‖θ‖
1
2

L∞
t (B2−σ

2
2−σ

,∞)

√
√
√
√log

(

e +
‖θ‖L∞

t (B2−σ
2/(2−σ),∞)

‖θ‖L∞
t (L1)

)

+ ‖θ‖L∞
t (L1)

⎞

⎠

≤ C(1 + t) + C(1 + t)2‖(v, ω)‖L∞
t (L2)

⎛

⎝‖θ‖
1
2

L∞
t (B2−σ

2
2−σ

,∞)

√
√
√
√log

(

e + ‖θ‖L∞
t (B2−σ

2
2−σ

,∞)

)

+ 1

⎞

⎠ , (3.11)

where C depends on the norms of initial data. By virtue of estimate (3.10), we also
see that

√
√
√
√log

(

e + ‖θ‖L∞
t (B2−σ

2
2−σ

,∞)

)

≤
√

log

((
e + C(1 + t)

6−σ
2−σ

)(

e + ‖(v, ω)‖
4

2−σ

L∞
t (L2)

))

≤
√

1 + log
(
e + C(1 + t)

6−σ
2−σ

)
√

log

(

e + ‖(v, ω)‖
4

2−σ

L∞
t (L2)

)

≤ C(1 + t)

√

log
(
e + ‖(v, ω)‖2

L∞
t (L2)

)
,

thus inserting this inequality into (3.11) leads to that

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
≤ C(1 + t) + C(1 + t)3‖(v, ω)‖L∞

t (L2)

(√

log
(
e + ‖(v, ω)‖2

L∞
t (L2)

)
‖θ‖

1
2

L∞
t (B2−σ

2
2−σ

,∞)
+ 1

)

.
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By arguing as (3.9) and (3.10), we obtain

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
≤ C(1 + t)6

(
1 + ‖(v, ω)‖2L∞

t (L2)

)
log
(
e + ‖(v, ω)‖2L∞

t (L2)

)
.

(3.12)

Now we go back to inequality (3.8). By using the interpolation inequality (2.11),
estimates (3.3) and (3.12), we deduce that

d

dt
‖(v, ω)(t)‖2L2 + 1

2
‖(∇v,∇ω)(t)‖2L2

≤ C‖θ‖L∞
t (L1)‖θ‖L∞

t (B2−σ
2

2−σ
,∞)

+ C(1 + t)
4
3 ‖v(t)‖

2
3
L2(R2)

≤ C(1 + t)7
(
1 + ‖(v, ω)‖2L∞

t (L2)
log
(
e + ‖(v, ω)‖2L∞

t (L2)

))
.

Integrating on the time variable yields that for every t ∈ [0, T ],

‖(v, ω)‖2L∞
t (L2)

+ ‖(∇v,∇ω)‖2
L2
t (L2)

≤ C
(‖(v0, ω0)‖2L2 + (1 + t)8

)

+ C
∫ t

0
(1 + τ)7‖(v, ω)‖2L∞

τ (L2)
log
(
e + ‖(v, ω)‖2L∞

τ (L2)

)
dτ.

(3.13)

Grönwall’s inequality guarantees that

‖(v, ω)‖2L∞
T (L2)

+ ‖(∇v,∇ω)‖2
L2
T (L2)

≤ Ceexp(C(1+T )8), (3.14)

where C depends on the norms ‖v0‖H1 , ‖θ0‖L1∩B2−σ
2

2−σ
,∞

and ‖μ0‖M. Plugging the

above estimate into (3.10) leads to

‖θ‖L∞
t (B2−σ

2
2−σ

,∞)
≤ Ceexp(C(1+T )8), (3.15)

which combined with (3.14) and the facts ‖∇v‖L2 ≤ ‖ω‖L2 and ‖∇2v‖L2 ≤ ‖∇ω‖L2

implies the desired estimate (3.4).
Next we turn to the proof of (3.5). By viewing the equation of ω (3.7) as a heat

equation with forcing, we use estimates (2.7) and (2.9) to get

‖ω‖L∞
T (B3−σ

2
2−σ

,∞)
≤ C0

(

‖ω0‖B3−σ
2

2−σ
,∞(R2)

+ (1 + T )‖∂1θ‖L∞
T (B1−σ

2
2−σ

,∞)

+(1 + T )‖v · ∇ω‖L∞
T (B1−σ

2
2−σ

,∞)

)
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≤ C0

(

‖ω0‖B3−σ
2

2−σ
,∞

+ (1 + T )‖θ‖L∞
T (B2−σ

2
2−σ

,∞)

+(1 + T )‖v‖L∞
T (B1−σ

4
2−σ

,∞)
‖ω‖L∞

T (B2−σ
4

2−σ
,∞)

)

.

In view of (3.14)–(3.15), the continuous embedding H1(R2) ↪→ B1−σ
4

2−σ
,∞(R2), the

interpolation inequality ‖g‖B2−σ
4

2−σ
,∞(R2)

≤ C‖g‖
σ
4
L2(R2)

‖g‖
4−σ
4

B3−σ
2

2−σ
,∞(R2)

and Young’s

inequality, we infer that

‖ω‖L∞
T (B3−σ

2
2−σ

,∞(R2))
≤ Ceexp(C(1+T )8)

+ C0(1 + T )‖v‖L∞
T (H1)‖ω‖

σ
4
L∞
T (L2)

‖ω‖
4−σ
4

L∞
T (B3−σ

2
2−σ

,∞(R2))

≤ Ceexp(C(1+T )8) + (C0(1 + T )‖v‖L∞
T (H1)

) 4
σ ‖ω‖L∞

T (L2)

+ 1

2
‖ω‖L∞

T (B3−σ
2

2−σ
,∞)

≤ Ceexp(C(1+T )8) + 1

2
‖ω‖L∞

T (B3−σ
2

2−σ
,∞(R2))

,

thus the Calderón–Zygmund theorem implies

‖∇v‖L∞
T (B3−σ

2
2−σ

,∞(R2))
≤ C‖ω‖L∞

T (B3−σ
2

2−σ
,∞(R2))

≤ Ceexp(C(1+T )8), (3.16)

and also

‖∇2v‖L∞
T (B2−σ

2
2−σ

,∞(R2))
≤ C0‖∇v‖L∞

T (B3−σ
2

2−σ
,∞(R2))

≤ Ceexp(C(1+T )8), (3.17)

where C depends on the norms ‖v0‖H1 , ‖ω0‖B3−σ
2

2−σ
,∞
, ‖θ0‖L1∩B2−σ

2
2−σ

,∞
and ‖μ0‖M.

Besides, by virtue of the high-low frequency decomposition andBernstein’s inequality,
we have

‖v‖L∞
T (W 1,∞(R2)) ≤ C0‖�−1v‖L∞

T (L∞(R2)) + C0

∑

q∈N
‖�q∇v‖L∞

T (L∞(R2))

≤ C0‖v‖L∞
T (L2(R2)) + C0

∑

q∈N
2−q2q(3−σ)‖�q∇v‖

L∞
T (L

2
2−σ (R2))

≤ C0‖v‖L∞
T (L2(R2)) + C0‖∇v‖L∞

T (B3−σ
2

2−σ
,∞(R2))

≤ Ceexp(C(1+T )8),

(3.18)
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and similarly,

‖v‖L∞
T (B2−σ

4
2−σ

,∞(R2))
≤ C‖v‖L∞

T (L2(R2)) + C‖∇v‖L∞
T (B3−σ

2
2−σ

,∞(R2))
≤ Ceexp(C(1+T )8).

By applying the Eq. (1.3)3 and the divergence-free condition of v, we see that
∇ p = ∇(−�)−1 div(v ·∇v)−∇∂1(−�)−1θ , thus in combination with the Calderón–
Zygmund theorem and inequality (2.9), and using embedding B3−σ

2
2−σ

,∞(R2) ↪→
B2−σ

4
2−σ

,∞(R2), it leads to

‖∇ p‖L∞
T (B2−σ

2
2−σ

,∞(R2))
≤ C‖v · ∇v‖L∞

T (B2−σ
2

2−σ
,∞)

+ C‖θ‖L∞
T (B2−σ

2
2−σ

,∞)

≤ C‖v‖L∞
T (B2−σ

4
2−σ

,∞)
‖∇v‖L∞

T (B2−σ
4

2−σ
,∞)

+ C‖θ‖L∞
T (B2−σ

2
2−σ

,∞)

≤ Ceexp(C(1+T )8). (3.19)

Furthermore, Eq. (1.3)3 and the above estimates also yield that

‖∂tv‖L∞
T (B2−σ

2
2−σ

,∞(R2))
≤ C0‖(v · ∇v,�v,∇ p, θ)‖L∞

T (B2−σ
2

2−σ
,∞)

≤ Ceexp(C(1+T )8).

(3.20)

��

3.2 Global existence

The issue of existence for our system is not immediate since μ = μ(x, t) is merely a
measure. In order to construct a suitable approximation we consider the system with
smooth initial data. We assume that

μn|t=0, θn|t=0, vn|t=0 belong to the Schwartz class over the plane, (3.21)

where n ∈ N
+ is an approximation parameter (n → ∞ in the end) and they converge

to the initial states μ0, θ0, v0 in spaces prescribed by Theorem 1.1 (at least in a weak
sentence).

To show the existence of system (1.3) with such initial data (3.21), we will use
a standard approach via Galerkin method. An approximation we build relies on the
following spaces:

∗ H2(R2) for the velocity field in the divergence-free subset
and
∗ H1(R2) for the temperature.
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In short, vn,N and θn,N are approximations based on the N -dimensional restriction
of H2 and H1 spaces. We have

vn,N =
N∑

k=1

V n,N
k (t)wk(x), θn,N =

N∑

k=1

�
n,N
k (t)gk(x). (3.22)

Vectorswk and gk are the based vectors of H2(R2;R2) of the divergence-free subspace
and H1(R2;R), respectively. The sought functions V n,N

k (t) and �
n,N
k (t) are derived

by solving of the following ODEs

(∂tθ
n,N , ψN ) + (vn,N · ∇θn,N , ψN ) + (∇θn,N ,∇ψN ) = (μn,N , ψN ),

(∂tv
n,N , �N ) + (vn,N · ∇vn,N , �N ) + (∇vn,N ,∇�N ) = (θn,Ne2, �

N ),

V n,N
k (0) = (φn ∗ v0, wk), �

n,N
k (0) = (φn ∗ θ0, gk), k = 1, . . . , N , (3.23)

for all �N ∈ span{w1, . . . , wN } ⊂ H2(R2;R2) with div�N = 0, and ψN ∈
span{g1, . . . , gN } ⊂ H1(R2;R). And μn,N is the classical solution to the transport
equation

∂tμ
n,N + vn,N · ∇μn,N = 0, μn,N |t=0 = φn ∗ μ0. (3.24)

The local in time existence for the system follows from the standard theory of
ODEs, and in order to pass to the limit with N we need just the a priori estimate in
suitable energy norms independent of N , which of course depends on T but never
blows up for any finite T .

Note that the condition div vn,N = 0 leads to the following bound uniformly in N :

μn,N ∈ L∞(0, T ; L2(R2)), indeed μn,N ∈ L∞(0, T ; L1 ∩ L∞(R2)), (3.25)

since by construction‖μn |t=0‖L1(R2) ≤ C0‖μ0‖M(R2) (uniformly inn).Hence testing
the first equation by θn,N in (3.23) we get

θn,N ∈ L∞(0, T ; L2(R2)) ∩ L2(0, T ; H1(R2)), uniformly in N . (3.26)

Then testing the second equation in (3.23) by �vn,N , and using the structure of the
two dimensional Navier–Stokes equations we get

vn,N ∈ L∞(0, T ; H1(R2)) ∩ L2(0, T ; H2(R2)) ∩ H1(0, T ; L2(R2)), uniformly in N .

(3.27)

The above information guarantees strong convergence of (μn,N , θn,N , vn,N ) locally
in space as N → ∞. Hence there is no problem to pass to the limit N → ∞ and we
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get the solution to the system (1.3) with initial data given by (3.21), that is:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∂tμ
n + vn · ∇μn = 0, in R2 × (0, T ],

∂tθ
n + vn · ∇θn − �θn = μn, in R2 × (0, T ],

∂tv
n + vn · ∇vn − �vn + ∇ pn = θn, in R2 × (0, T ],

div vn = 0, in R2 × (0, T ],
μn|t=0, θn|t=0, vn|t=0 ∈ S(R2).

(3.28)

Using the standard bootstap method (here we use just the simple structure of quasi-
linear systems) we conclude that μn, θn, vn are smooth. Moreover we obtain that for
every n ∈ N

+ and for any 1 < q, p < ∞,

μn ∈ L∞(0, T ; L1 ∩ L∞(R2)),

θn ∈ Lq(0, T ;W 2,p) ∩ W 1,q(0, T ; L p(R2)),

vn ∈ Lq(0, T ;W 4,p(R2) ∩ W 2,q(0, T ; L p(R2)).

(3.29)

To conclude (3.29) we note that thanks to (3.26) and (3.27), vn · ∇θn belongs to
L2(0, T ; L p̄(R2)) and vn · ∇vn belong to L2(0, T ;W 1, p̄(R2)) for every p̄ ∈ [1, 2);
by the bootstrapmethod, one can improve the regularity to get that these products are in
Lq(0, T ; L p̄(R2)) and Lq(0, T ;W 1, p̄(R2)) for any q ∈ (1,∞), respectively; more-
over, an another iteration leads to that for any p > 1, vn · ∇θn ∈ Lq(0, T ; L p(R2)),
vn · ∇vn ∈ Lq(0, T ;W 1,p(R2)), and then applying the standard maximal regularity
estimates in Lq(0, T ; L p(R2)) and Lq(0, T ;W 2,p(R2)) for the heat and Stokes sys-
tem, we get (3.29). Due to finiteness of T factor q can be decreased to anyone greater
than one.

Sobolev embedding implies that vn ∈ L2(0, T ; H4(R2)) ∩ L1(0, T ;C3,α(R2)),
α ∈ (0, 1), and due to μn|t=0 ∈ S(R2), we moreover get μn ∈ L∞(0, T ; H4(R2)) ∩
W 1,∞(0, T ; H3(R2)). Energy estimates and iteration ensure that the approximative
sequence (μn, θn, vn) has sufficient smoothness so that the regularity assumptions
in Propositions 3.1 - 3.3 are fulfilled. Hence we have the following uniform-in-n
estimates

‖μn‖L∞(0,T ;M(R2)) ≤ ‖μ0‖M(R2), μn ≥ 0, and suppμn ⊂ BR0+C (0).

(3.30)

and

‖θn‖L∞
T (L1∩B2−σ

2
2−σ

,∞)
+ ‖vn‖L∞

T (H1∩W 1,∞) + ‖(∂tvn,∇ pn,∇2vn)‖L∞
T (B2−σ

2
2−σ

,∞)
≤ C,

(3.31)

where C is depending on T and norms of initial data (μ0, θ0, v0) but independent of
n ∈ N

+. Note that (3.29) with the trace theorem implies regularity needed for (3.31),
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since

Lq(0, T ;W 2,p) ∩ W 1,q(0, T ; L p(R2)) ⊂ L∞
(

0, T ; B2−σ
2

2−σ
,∞(R2)

)

,

taking p = 2/(2 − σ) and q = 2/σ .
Now we analyze a possible limit of the sequence as n → ∞. For vn and θn , due to

(3.31), and based on the standard compactness argument for the Besov/Soblev spaces,
we find a subsequence with strong (point-wise) convergence to some functions v and
θ , more precisely, one has that for every ϕ ∈ D(R2),

ϕvn → ϕv, in L∞(0, T ; L2 ∩ W 1,∞(R2)),

ϕθn → ϕθ, in L∞(0, T ; L2(R2)).
(3.32)

For μn , we view it as a mapping from [0, T ] to the metric space (M+, d), and by
arguing as a standard procedure in the transport theory (e.g. see [25]), we show that
μn has a strong convergence through using the Arzela–Ascoli theorem. The uniform
boundedness and relative compactness of μn(t) are followed from (3.30) and Propo-
sition 2.3, and for the equicontinuity property of μn(t), we observe that for every
s1, s2 ∈ [0, T ] and every π ∈ W 1,∞(R2),

∣
∣
∣
∣

∫

R2

(
μn(s2) − μn(s1)

)
πdx

∣
∣
∣
∣ =
∣
∣
∣
∣

∫ s2

s1

∫

R2
vnμn∇πdxdt

∣
∣
∣
∣ ≤ CLip(π)‖μ0‖M|s2 − s1|,

(3.33)

so that

d(μn(s2), μ
n(s1)) ≤ C |s2 − s1|.

Thus the assumptions of Arzela–Ascoli theorem are satisfied and there exists μ ∈
L∞(0, T ;M+) such that, up to a subsequence,

μn(t) → μ(t) in d-topology uniformly in time. (3.34)

The information (3.30) also ensures μ ∈ L∞(0, T ;M+(R2)) and suppμ ⊂
BR0+C (0). In addition, in view of Definition 2.1, the bound (3.34) and strong conver-
gence of the velocity in L∞(0, T ;W 1,∞

loc (R2)) guarantee that as n → ∞ we have

vnμn → vμ in D′(R2 × [0, T ]). (3.35)

We thus have the existence.
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3.3 Uniqueness

Consider two solutions (μ1, θ1, v1, p1) and (μ2, θ2, v2, p2) to the Boussinesq type
system (1.3) starting from the same initial data (μ0, θ0, v0) as stated in Theorem 1.1.
According to Proposition 3.3, we know that for i = 1, 2 and for any T > 0,

‖θi‖L∞
T (L1∩B2−σ

2
2−σ

,∞)
< ∞, ‖vi‖L∞

T (H1∩W 1,∞) + ‖(∂tvi ,∇2vi ,∇ pi )‖L∞
T (B2−σ

2
2−σ

,∞)
< ∞.

(3.36)

Denoting by v̄i (t, y) = vi (t, Xvi (t, y))with Xvi (t, y) the particle-trajectory generated
by vi (see (2.15)), we immediately obtain that

‖∇y v̄i‖L∞
T (L∞) ≤ ‖∇xvi‖L∞

T (L∞)‖∇y Xvi ‖L∞
T (L∞) ≤ ‖∇vi‖L∞

T (L∞)e
∫ T
0 ‖∇vi (t)‖L∞dt < ∞,

(3.37)

and moreover by letting T ′ > 0 be small enough, we can have

∫ T ′

0
‖∇xvi (t)‖L∞dt ≤ 1

2
, and

∫ T ′

0
‖∇y v̄i (t)‖L∞dt ≤ T ′‖∇y v̄i‖L∞

T (L∞) ≤ 1

2
.

(3.38)

As a consequence of (3.36) and (3.37), we also infer that

‖θ̄i‖L∞
T (L4) + ‖∇2

y v̄i‖L∞
T (L4) + ‖∂t v̄i‖L∞

T (L4) + ‖∇y p̄i‖L∞
T (L4) < ∞. (3.39)

To keep the simple form of estimates we restrict ourselves to the case 2
2−σ

≤ 4 (i.e.

σ ∈ (0, 3
2 ]) The continuous embedding implies

B2−σ
2

2−σ
,∞(R2) ↪→ B

1
2
4,∞(R2) ↪→ L4(R2), for every σ ∈ (0, 3/2], (3.40)

For general case we refer to Remark 1.2. Next, we find

‖θ̄i‖L∞
T (L4) ≤ ‖θi‖L∞

T (L4) ≤ C‖θi‖L∞
T (B2−σ

2
2−σ

,∞)
< ∞,

‖(∂tvi ,∇2vi ,∇ pi )‖L∞
T (L4) ≤ C‖(∂tvi ,∇2vi ,∇ pi )‖L∞

T (B2−σ
2

2−σ
,∞)

< ∞,

and thanks to estimates (2.18), (2.21),

‖∇2
y v̄i‖L∞

T (L4) ≤C‖∇Xvi ‖2L∞
T (L∞)‖∇2vi‖L∞

T (B2−σ
2

2−σ
,∞)

+ ‖∇vi‖L∞
T (L∞)‖∇2Xvi ‖L∞

T (L4) < ∞,
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and

‖∂t v̄i‖L∞
T (L4) ≤ C‖∂tvi‖L∞

T (B2−σ
2

2−σ
,∞)

+ C‖∇vi‖L∞
T (B2−σ

2
2−σ

,∞)
‖vi‖L∞

T (L∞) < ∞,

‖∇ p̄i‖L∞
T (L4) ≤ ‖∇x pi (t, Xvi )‖L∞

T (L4)‖∇Xvi ‖L∞
T (L∞)

≤ C‖∇ pi‖L∞
T (B2−σ

2
2−σ

,∞)
‖∇Xvi ‖L∞

T (L∞) < ∞.

By adopting the notations introduced in Sect. 2.3 and using (2.26), the system of
(μi , θi , vi , pi ) (i = 1, 2) in the Lagrangian coordinates is written as

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂t θ̄i − �θ̄i = μ0 + N1(Avi ,∇ θ̄i ),

∂t v̄i − �v̄i + ∇y pi = θ̄i e2 + N2(Avi ,∇v̄i ) + N3(Avi ,∇ p̄i ),

div v̄i = div
(
(Id − Avi )v̄i

) = (Id − AT
vi

) : ∇v̄i ,

θ̄i |t=0 = θ0, v̄i |t=0 = v0,

(3.41)

where nonlinear terms N1, N2, N3 are given by (2.27)–(2.28). The choice of the
Lagrangian coordinates setting removes the problem with uniqueness for measure
force μ. They are now given explicitly as follows

μ1(t, Xv1(t, y)) = μ2(t, Xv2(t, y)) = μ0(y). (3.42)

The difference equations of δθ̄ := θ̄1 − θ̄2, δv̄ := v̄1 − v̄2 and δ p̄ := p̄1 − p̄2 read as
follows

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂tδθ̄ − �δθ̄ = δN1,

∂tδv̄ − �δv̄ + ∇δ p = (δθ̄)e2 + δN2 + δN3,

div δv̄ = div(δN4),

δθ̄ |t=0 = 0, δv̄|t=0 = 0,

(3.43)

with

δN1 := div
(
(Av1 A

T
v1

− Av2 A
T
v2

)∇ θ̄2

)
− div

(
(Id − Av1 A

T
v1

)∇δθ̄
)
, (3.44)

δN2 := div
(
(Av1 A

T
v1

− Av2 A
T
v2

)∇v̄2

)
− div

(
(Id − Av1 A

T
v1

)∇δv̄
)
, (3.45)

δN3 := −(AT
v1

− AT
v2

)∇ p2 + (Id − AT
v1

)∇δ p, (3.46)

δN4 := (Av1 − Av2)v̄2 + (Id − Av1)δv̄. (3.47)

The target here is to show uniqueness in the following functional spaces:

δθ̄ ∈ L2(0, T ; L2(R2)), and ∇δv̄ ∈ L∞(0, T ; L2(R2)) ∩ L2(0, T ; Ḣ1(R2)).

(3.48)
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In order to perform the L2
T (L2)-estimate of δθ̄ , we introduce a functionwwhich solves

the backward heat equation

∂tw + �w = δθ̄ , and w|t=T ′ = 0, (3.49)

with T ′ ∈ (0, T ] being any given. Standard energy estimates yield the following result
(for the proof see the appendix).

Lemma 3.4 Let δθ̄ ∈ L2(0, T ′; L2(R2)), then there exists a unique weak solution
w ∈ L∞(0, T ′; H1) ∩ L2(0, T ; H2) which satisfies

sup
t∈[0,T ′]

‖∇w‖2L2(R2)
+
∫ T ′

0
‖∇2w, ∂tw‖2L2dt + ‖∇w‖2L4(0,T ′;L4)

≤ C0‖δθ̄‖2L2(0,T ′;L2)
,

(3.50)

with C0 > 0 a universal constant independent of T ′.

Now we take the space-time scalar product of the first equation of (3.43) with w,
and observing that (which can be justified by integration by parts and an approximation
procedure)

∫ T ′

0

∫

R2
(∂tδθ̄ − �δθ̄)wdxdt =

∫ T ′

0

∫

R2
δθ̄ (−∂tw − �w)dxdt,

we find that

‖δθ̄‖2L2(0,T ′;L2(R2))
≤
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2
(δN1) w dxdt

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(
(Av1 A

T
v1

− Av2 A
T
v2

)∇ θ̄2

)
· ∇w dxdt

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(
(Id − Av1 A

T
v1

)∇δθ̄
) · ∇w dxdt

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(
(Av1 A

T
v1

− Av2 A
T
v2

) θ̄2

)
· ∇2wdxdt

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(
∇(Av1 A

T
v1

− Av2 A
T
v2

) θ̄2

)
· ∇wdxdt

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(
(Id − Av1 A

T
v1

) δθ̄
) · ∇2wdxdt

∣
∣
∣
∣
∣

+
∣
∣
∣
∣
∣

∫ T ′

0

∫

R2

(∇(Id − Av1 A
T
v1

) δθ̄
) · ∇w dxdt

∣
∣
∣
∣
∣

:= I1 + I2 + I3 + I4. (3.51)
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For latter use, we recall an auxiliary lemma on some estimates of Av given by
(2.24).

Lemma 3.5 Assume that v1, v2 ∈ L1(0, T ;W 1,∞(Rd)) are two vector fields such that

∫ T

0
‖∇y v̄i‖L∞dt ≤ 1

2
, for i = 1, 2. (3.52)

Then we have that for every p ∈ [1,∞] and i = 1, 2,

‖Avi ‖L∞
T (L∞) ≤ 1, (3.53)

‖Id − Avi ‖L∞
T (L∞) ≤ 2‖∇v̄i‖L1

T (L∞), (3.54)

‖Av1 − Av2‖L∞
T (L p) ≤ C0‖∇δv̄‖L1

T (L p), (3.55)

‖∇Avi ‖L∞
T (L p) ≤ C0‖∇2v̄i‖L1

T (L p), (3.56)

‖∇Av1 − ∇Av2‖L∞
T (L2) ≤ C0‖∇2δv̄‖L1

T (L2) + C0‖∇δv̄‖L1
T (L4)‖∇2v̄1‖L1

T (L4),

(3.57)

‖∂t Avi ‖L∞
T (L p) ≤ C0‖∇v̄i‖L∞

T (L p), (3.58)

‖∂t Av1 − ∂t Av2‖L∞
T (L2) ≤ C0

(
1 + T ‖∇v̄1‖L∞

T (L∞)

)‖∇δv̄‖L∞
T (L2), (3.59)

where C0 > 0 is an absolute constant.

By applying estimates (3.53), (3.55), (3.38), (3.50), and Young’s inequality, we
treat the term I1 as

I1 ≤ T ′ 12 ‖Av1 − Av2‖L∞
T ′ (L4)‖(Av1 , Av2)‖L∞

T ′ (L∞)‖θ̄2‖L∞
T ′ (L4)‖∇2w‖L2

T ′ (L2)

≤ CT ′ 54 ‖∇δv̄‖L4
T ′ (L4)‖θ̄2‖L∞

T ′ (L4)‖δθ̄‖L2
T ′ (L2) ≤ 1

8
‖δθ̄‖2

L2
T ′ (L2)

+ CT ′ 52 ‖∇δv̄‖2
L4
T ′ (L4)

‖θ̄2‖2L∞
T ′ (L4)

.

For term I2, by virtue of (3.53)–(3.57) and (3.50), we get that

I2 ≤ CT ′ 34 ‖∇w‖L4
T ′ (L4)‖θ̄2‖L∞

T ′ (L4)‖∇Av1 − ∇Av2‖L∞
T ′ (L2)‖Av2‖L∞

T ′ (L∞)

+ CT ′ 34 ‖∇w‖L4
T ′ (L4)‖θ̄2‖L∞

T ′ (L4)‖Av1 − Av2‖L∞
T ′ (L4)‖∇Av1‖L∞

T ′ (L4)

≤ CT ′ 34 ‖δθ̄‖L2
T ′ (L2)‖θ̄2‖L∞

T ′ (L4)

(
T ′ 12 ‖∇2δv̄‖L2

T ′ (L2)

+T ′ 74 ‖∇δv̄‖L4
T ′ (L4)‖∇2v̄1‖L∞

T ′ (L4)

)

≤ 1

8
‖δθ̄‖2

L2
T ′ (L2)

+ CT ′ 52 ‖θ̄2‖2L∞
T ′ (L4)

(

‖∇2δv̄‖2
L2
T ′ (L2)

+T ′ 52 ‖∇2v̄1‖2L∞
T ′ (L4)

‖∇δv̄‖2
L4
T ′ (L4)

)

.
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For term I3, the estimates (3.53), (3.54) and (3.50) directly guarantee that

I3 ≤ 2‖Id − Av1‖L∞
T ′ (L∞)‖Av1‖L∞

T ′ (L∞)‖δθ̄‖L2
T ′ (L2)‖∇2w‖L2

T ′ (L2)

≤ 4T ′‖∇v̄1‖L∞
T ′ (L∞)‖δθ̄‖2

L2
T ′ (L2)

.

For term I4, thanks to (3.56), (3.50) and Young’s inequality again, we deduce

I4 ≤ 2‖∇Av1‖L∞
T ′ (L4)‖Av1‖L∞

T ′ (L∞)‖δθ̄‖L2
T ′ (L2)‖∇w‖L2

T ′ (L4)

≤ CT ′ 54 ‖∇2v̄1‖L∞
T ′ (L4)‖δθ̄‖2

L2
T ′ (L2)

.

Gathering (3.51) and the above estimates on I1 - I4, and also letting T ′ > 0 be
sufficiently small so that

T ′‖∇v̄1‖L∞
T ′ (L∞) ≤ 1

32
, and CT ′ 54 ‖∇2v̄1‖L∞

T (L4) ≤ 1

8
, (3.60)

we get

‖δθ̄‖2
L2
T ′ (L2)

≤ CT ′ 52 ‖θ̄2‖2L∞
T ′ (L4)

(‖∇2δv̄‖2
L2
T ′ (L2)

+ ‖∇δv̄‖2
L4
T ′ (L4)

)
. (3.61)

Next we turn to the estimation of δv̄. According to Lemma 2.7 and the interpolation
inequality

‖∇ f ‖L4
T ′ (L4(R2)) ≤ C0‖∇ f ‖1/2

L∞
T ′ (L2(R2))

‖∇2 f ‖1/2
L2
T ′ (L2(R2))

, (3.62)

we have

‖∇δv̄‖L∞
T ′ (L2) + ‖(∂tδv̄,∇2δv̄,∇δ p̄)‖L2

T ′ (L2) + ‖∇δv̄‖L4
T ′ (L4)

≤ C‖δθ̄‖L2
T ′ (L2) + C‖δN2‖L2

T ′ (L2) + C‖δN3‖L2
T ′ (L2)

+C‖∂t (δN4)‖L2
T ′ (L2) + C‖∇ div(δN4)‖L2

T ′ (L2) := II1 + II2 + II3 + II4 + II5,(3.63)

where δN2, δN3, δN4 are given by (3.45)–(3.47). For II2, similarly as estimating of
I2, from (3.38) and (3.53)–(3.57), we have

II2 ≤ C
∥
∥∇ (Av1 A

T
v1

− Av2 A
T
v2

) · ∇v̄2
∥
∥
L2
T ′ (L2)

+ C
∥
∥
(
Av1 A

T
v1

− Av2 A
T
v2

) · ∇2v̄2
∥
∥
L2
T ′ (L2)

+ C
∥
∥
(
Id − Av1 A

T
v1

) · ∇2δv̄
∥
∥
L2
T ′ (L2)

+ C
∥
∥∇ (Av1 A

T
v1

) ∇δv̄
∥
∥
L2
T ′ (L2)

≤ CT ′ 12 ‖∇v̄2‖L∞
T ′ (L∞)

(
‖∇2δv̄‖L1

T ′ (L2) + ‖∇δv̄‖L1
T ′ (L4)‖∇2v̄1‖L1

T ′ (L4)

)

+ C‖∇δv̄‖L1
T ′ (L4)‖∇2v̄2‖L2

T ′ (L4) + C‖∇v̄1‖L1
T ′ (L∞)‖∇2δv̄‖L2

T ′ (L2)

+ C‖∇2v̄1‖L1
T ′ (L4)‖∇δv̄‖L2

T ′ (L4)
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≤ CT ′‖(∇v̄1,∇v̄2)‖L∞
T ′ (L∞)‖∇2δv̄‖L2

T ′ (L2) + CT ′ 54 ‖(∇2v̄1,∇2v̄2)‖L∞
T ′ (L4)‖∇δv̄‖L4

T ′ (L4).

For II3, (3.53)–(3.56) and Hölder’s inequality lead to that

II3 ≤ C
∥
∥
∥

(
AT

v1
− AT

v2

)
∇ p̄2
∥
∥
∥
L2
T ′ (L2)

+ C
∥
∥
∥

(
Id − AT

v1

)
∇δ p̄
∥
∥
∥
L2
T ′ (L2)

≤ CT ′ 12 ‖Av1 − Av2‖L∞
T ′ (L4)‖∇ p̄2‖L∞

T ′ (L4) + C‖Id − Av1‖L∞
T ′ (L∞)‖∇δ p̄‖L2

T ′ (L2)

≤ CT ′ 54 ‖∇δv̄‖L4
T ′ (L4)‖∇ p̄2‖L∞

T ′ (L4) + CT ′‖∇v̄1‖L∞
T ′ (L∞)‖∇δ p̄‖L2

T ′ (L2).

For II4, through applying estimates (3.38), (3.55), (3.58), (3.59), it follows that

II4 ≤ C‖∂t ((Av1 − A2) v̄2)‖L2
T ′ (L2) + C‖∂t ((Id − Av1) δv̄)‖L2

T ′ (L2)

≤ CT ′ 12 ‖∂t (Av1 − Av2)‖L∞
T ′ (L2)‖v̄2‖L∞

T ′ (L∞)

+ CT ′ 12 ‖Av1 − Av2‖L∞
T ′ (L4)‖∂t v̄2‖L∞

T ′ (L4)

+ CT ′ 12 ‖∂t Av1‖L∞
T ′ (L∞)‖δv̄‖L∞

T ′ (L2) + C‖Id − Av1‖L∞
T ′ (L∞)‖∂tδv̄‖L2

T ′ (L2)

≤ CT ′ 12 ‖∇δv̄‖L∞
T ′ (L2)‖v2‖L∞

T ′ (L∞) + CT ′ 54 ‖∇δv̄‖L4
T ′ (L4)‖∂t v̄2‖L∞

T ′ (L4)

+ CT ′‖∇v̄1‖L∞
T ′ (L∞)‖∂tδv̄‖L2

T ′ (L2),

where in the last inequality we have used the estimate that for every t ∈ [0, T ′],

‖δv̄(t)‖L2 = ‖δv̄(t) − δv̄(0)‖L2 ≤
∫ t

0
‖∂τ δv̄(τ )‖L2dτ ≤ T ′ 12 ‖∂tδv̄‖L2

T ′ (L2).

Observing the magic equality that div((Av1 − Av2)v̄2) = (AT
v1

− AT
v2

) : ∇v̄2 and
div((Id − Av1)δv̄) = (Id − AT

v1
) : ∇δv̄ (e.g. see [7, Corollary A.3]), and by arguing

as the estimation of II2, we deduce that

II5 ≤ CT ′‖(∇v̄1,∇v̄2)‖L∞
T ′ (L∞)‖∇2δv̄‖L2

T ′ (L2)

+ CT ′ 54 ‖(∇2v̄1,∇2v̄2)‖L∞
T ′ (L4)‖∇δv̄‖L4

T ′ (L4).

Collecting (3.61), (3.63) and the above estimates on II2 - II5, we obtain

‖∇δv̄‖L∞
T ′ (L2) + ‖(∂tδv̄,∇2δv̄,∇δ p̄)‖L2

T ′ (L2) + ‖∇δv̄‖L4
T ′ (L4)

≤ CT ′‖∇v̄1‖L∞
T ′ (L∞)‖(∂tδv̄,∇δ p̄)‖L2

T ′ (L2) + CT ′ 12 ‖v2‖L∞
T ′ (L∞)‖∇δv̄‖L∞

T ′ (L2)

+C
(
T ′‖(∇v̄1,∇v̄2)‖L∞

T ′ (L∞) + T ′ 54 ‖θ̄2‖L∞
T ′ (L4)

)
‖∇2δv̄‖L2

T ′ (L2)

+CT ′ 54 ‖(θ̄2, ∂t v̄2,∇ p̄2,∇2v̄1,∇2v̄2)‖L∞
T ′ (L4)‖∇δv̄‖L4

T ′ (L4), (3.64)
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where C > 0 is a universal constant. Noting that uniform bounds (3.37) and (3.39)
are at our disposal, we infer that by letting T ′ > 0 small enough so that

CT ′‖(∇v̄1,∇v̄2)‖L∞
T (L∞) + CT ′ 54 ‖θ̄2‖L∞

T (L4) ≤ 1/2, CT ′ 12 ‖v2‖L∞
T ′ (L∞) ≤ 1/2,

CT ′ 54 ‖(θ̄2, ∂t v̄2,∇ p̄2,∇2v̄1,∇2v̄2)‖L∞
T ′ (L4) ≤ 1/2,

(3.65)

the whole right-hand side of (3.64) can be absorbed by the left-hand side, which
yields ‖∇δv̄‖L∞

T ′ (L2) = ‖∇2δv̄‖L2
T ′ (L2) = ‖∇δv̄‖L4

T ′ (L4) ≡ 0, and also from estimate

(3.61), ‖δθ̄‖L2
T ′ (L2) ≡ 0. Since δv̄|t=0 = 0, we conclude that δv̄ ≡ 0 and δθ̄ ≡

0 on R
2 × [0, T ′]. Repeating the above procedure and similarly as the treating of

the corresponding part in [26], we can further prove δv̄ = δθ̄ = 0 on [T ′, 2T ′],
[2T ′, 3T ′], . . ., where T ′ > 0 is a small constant depending only on the time T and
the norms of (θi , vi , pi ) in (3.36) (similar to conditions (3.38), (3.60), (3.65)), hence
we finally get δv̄ = δθ̄ ≡ 0 and also Xv1 = Xv2 on R

2 × [0, T ]. Going back to the
Eulerian coordinates implies that (μ1, θ1, v1) = (μ2, θ2, v2) on R

2 × [0, T ] and the
uniqueness of system (1.3) immediately follows.

Acknowledgements P. B. Mucha was partially supported by National Science Centre grant No2018/29/B/
ST1/00339 (Opus). L.Xuewas partially supported byNationalNatural Science Foundation ofChina (Grants
Nos. 11671039 and 11771043).

OpenAccess This article is licensedunder aCreativeCommonsAttribution 4.0 InternationalLicense,which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included
in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If
material is not included in the article’s Creative Commons licence and your intended use is not permitted
by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the
copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

4 Appendix

In this section we give the detailed proof of auxiliary Lemmas 2.5, 3.4 and 3.5.

Proof of Lemma 2.5 (1) For every q ≥ −1, Bony’s decomposition yields that

�q(v · ∇θ) =
∑

k∈N,|k−q|≤4

�q(Sk−1v · ∇�kθ) +
∑

k∈N,|k−q|≤4

�q(�kv · ∇Sk−1θ)

+
∑

k≥−1,k≥q−3

�q(�kv · ∇�̃kθ) := Iq + I Iq + I I Iq , (4.1)

where �k and Sk−1 are Littlewood–Paley operators introduced in (2.2) and �̃k :=
�k−1 + �k + �k+1. Taking advantage of Hölder’s inequality, Bernstein’s inequality
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and the fact that ‖v‖2
L2 =∑k≥−1 ‖�kv‖2

L2 , we get

2−qs‖Iq‖L p(R2) ≤ C0

∑

k∈N,|k−q|≤4

2−qs‖Sk−1v‖L∞(R2)‖∇�kθ‖L p(R2)

≤ C0

∑

k∈N,|k−q|≤4

⎛

⎝
∑

−1≤l≤k−2

‖�lv‖L∞(R2)

⎞

⎠ 2k(1−s)‖�kθ‖L p(R2)

≤ C0

∑

k∈N,|k−q|≤4

⎛

⎝‖�−1v‖L2(R2) +
∑

0≤l≤k+2

2l‖�lv‖L2(R2)

⎞

⎠ 2k(1−s)‖�kθ‖L p(R2)

≤ C0

∑

k∈N,|k−q|≤4

⎛

⎜
⎝‖v‖L2(R2) +

⎛

⎝
∑

0≤l≤k+2

‖�l∇v‖2L2(R2)

⎞

⎠

1/2
⎞

⎟
⎠

√
k + 2 2k(1−s)‖�kθ‖L p(R2)

≤ C0
(‖v‖L2(R2) + ‖∇v‖L2(R2)

)
(

sup
k≥−1

2k(1−s)
√
k + 2‖�kθ‖L p(R2)

)

,

and

2−qs‖I Iq‖L p(R2) ≤ C0

∑

k∈N,|k−q|≤4

2−qs‖�kv‖L∞(R2)‖∇Sk−1θ‖L p(R2)

≤ C0

∑

k∈N,|k−q|≤4

(‖�−1v‖L∞(R2) + ‖(Id − �−1)�kv‖L∞(R2)

)

⎛

⎝2−ks
∑

−1≤l≤k−2

2l‖�lθ‖L p(R2)

⎞

⎠

≤ C0

∑

k∈N,|k−q|≤4

(‖v‖L2(R2) + ‖(Id − �−1)�k∇v‖L2(R2)

)

⎛

⎝2−ks
∑

−1≤l≤k−2

2ls‖θ‖B1−s
p,∞(R2)

⎞

⎠

≤ C
(‖v‖L2(R2) + ‖∇v‖L2(R2)

) ‖θ‖B1−s
p,∞(R2)

.

By using the divergence-free property of v, we similarly obtain

2−qs‖I I Iq‖L p(R2)

≤ C0

∑

k≥−1,k≥q−3

2q(1−s)‖�kv‖L∞(R2)‖�̃kθ‖L p(R2)

≤ C0
(‖v‖L2(R2) + ‖∇v‖L2(R2)

) ∑

k≥−1,k≥q−3

2(q−k)(1−s)2k(1−s)‖�̃kθ‖L p(R2)
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≤ C
(‖v‖L2(R2) + ‖∇v‖L2(R2)

) ‖θ‖B1−s
p,∞(R2)

.

Gathering the above estimates leads to (2.8), as desired.
(2) In order to prove the first inequality of (2.9), we also use the splitting (4.1), and

by arguing as above, we deduce that for every s > 0 and q ≥ −1,

2qs‖Iq‖L p(R2) ≤ C0

∑

k∈N,|k−q|≤4

2qs‖Sk−1v‖L2p(R2)‖∇�kθ‖L2p(R2)

≤ C0‖v‖L2p(R2)‖∇θ‖Bs
2p,∞(R2),

2qs‖I Iq‖L p(R2) ≤ C0

∑

k∈N,|k−q|≤4

2qs‖�kv‖L2p(R2)‖Sk−1∇θ‖L2p(R2)

≤ C‖v‖Bs
2p,∞(R2)‖∇θ‖L2p(R2),

2qs‖I I Iq‖L p(R2) ≤ C0

∑

k≥−1,k≥q−3

2qs‖�kv‖L2p(R2)‖�̃k∇θ‖L2p(R2)

≤ C0

⎛

⎝
∑

k≥−1,k≥q−3

2(q−k)s

⎞

⎠ ‖v‖Bs
2p,∞(R2)‖∇θ‖L2p(R2)

≤ C‖v‖Bs
2p,∞(R2)‖∇θ‖L2p(R2).

Hence, by collecting the above estimates we conclude the first inequality of (2.9),
and then from continuous embedding Bs

2p,∞ ↪→ L2p the second inequality of (2.9)
directly follows. ��
Proof of Lemma 3.4 Wehere only focus on theapriori estimates ofw, and the existence
and uniqueness of weak solution can be done by a standard approximation process.
By using the equation (3.49) and the integration by parts, it follows that

∫

R2
|δθ̄ |2dx =

∫

R2
|∂tw + �w|2dx =

∫

R2
|∂tw|2dx +

∫

R2
|�w|2dx

+ 2
∫

R2
∂tw �wdx

=
∫

R2
|∂tw|2dx +

∫

R2
|∇2w|2dx

− d

dt

∫

R2
|∇w|2dx .

Integrating on the time interval [t, T ′] (for every t ∈ [0, T ′]) leads to

sup
t∈[0,T ′]

‖∇w(t)‖2L2 + ‖∇2w‖2L2(0,T ′;L2)
+ ‖∂tw‖2L2(0,T ′;L2)

≤ 2‖δθ̄‖2L2(0,T ′;L2)
.

Combined with interpolation inequality (3.62), we get ‖∇w‖L4(0,T ′;L4)

≤ C0‖δθ̄‖L2(0,T ′;L2) and the desired estimate (3.50). On the other hand, by taking
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the scalar product of Eq. (3.49) with w, we have

−1

2

d

dt
‖w(t)‖2L2 +

∫

R2
|∇w|2dx ≤ ‖w(t)‖L2‖δθ̄(t)‖L2 .

which implies that − d
dt ‖w(t)‖L2 ≤ ‖δθ̄‖L2 , and then integrating on the time interval

[t, T ′] yields ‖w‖L∞(0,T ′;L2) ≤ T ′ 12 ‖δθ̄‖L2(0,T ′;L2). Hence, the solution w belongs to
L∞(0, T ′; H1) ∩ L2(0, T ′; H2). ��
Proof of Lemma 3.5 Denoting by Cvi (t, y) = ∫ t0 ∇v̄i (τ, y)dy, i = 1, 2, and using
expression formula (2.24), it is easy to see that

Av1 − Av2 =
∞∑

k=1

(−1)k
(
Ck

v1
− Cv2

)k =
∞∑

k=1

k−1∑

j=0

(−1)kC j
v1
Ck−1− j

v2

∫ t

0
∇δv̄ dτ,

∇Avi =
∞∑

k=0

(−1)k+1(k + 1)Ck
vi

∫ t

0
∇2v̄i dτ,

∇Av1 − ∇Av2 =
∞∑

k=0

(−1)k+1(k + 1)Ck
v2

∫ t

0
∇2δv̄ dτ

+
∞∑

k=1

k−1∑

j=0

(−1)k+1(k + 1)C j
v1
Ck−1− j

v2

(∫ t

0
∇δv̄ dτ

)∫ t

0
∇2v̄1 dτ,

∂t Avi (t, y) =
∞∑

k=1

(−1)kkCk−1
vi

∇v̄i (t, y),

∂t Av1 − ∂t Av2 = (∇δv̄)

∞∑

k=1

(−1)kkCk−1
v2

+ ∇v̄1

∞∑

k=2

k−2∑

j=0

(−1)kkC j
v1
Ck−2− j

v2

∫ t

0
∇δv̄ dτ,

with δv̄ := v̄1−v̄2.Hence, by usingHölder’s inequality and condition (3.52), estimates
(3.53)–(3.59) directly follow from (2.24) and the above expression formulas. ��
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