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Abstract
Given a locally integrable structure V over a smooth manifold Ω and given p ∈ Ω

we define the Borel map of V at p as the map which assigns to the germ of a smooth
solution of V at p its formal Taylor power series at p. In this work we continue the
study initiated in Barostichi et al. (Math. Nachr. 286(14–15):1439–1451, 2013), Della
Sala and Lamel (Int J Math 24(11):1350091, 2013) and present new results regarding
the Borel map.We prove a general necessary condition for the surjectivity of the Borel
map to hold and also, after developing some new devices, we study some classes of
CR structures for which its surjectivity is valid. In the final sections we show how the
Borel map can be applied to the study of the algebra of germs of solutions of V at p.
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1 Introduction

The purpose of this paper is to discuss our recent results on theBorel map and theBorel
property for locally integrable structures. If one thinks about an integrable structure
as a system of (linear, first order) PDEs with the right number of basic solutions, it
becomes an intriguing question to study the relationship between formal solutions (i.e.
formal power series in the solutions of the structure) and solutions. The relationship
between the two comes, of course, from associating to a smooth solution its formal
Taylor series at a distinguished point (e.g. the origin) in the structure. The Taylor series
of a solution can be written as a series in the elements of a set of basic first integrals
{Z1, . . . , Zm} defined near the origin; we refer to this map, defined by

b : S0 → C�Z1, . . . , Zm�, b(u) =
∑

α∈Nm

uαZα,

where the uα are appropriate derivatives evaluated at 0 of u, as the Borel map (at the
origin).

We have started the study of this map, in particular the natural question of when
it is surjective (the Borel property), in a series of papers of the second author with
Barostichi and Petronilho [3] and of the first and the third author in the context of
CR structures [6]. In our current paper, we can give important insights into the nature
of the geometric properties of the structure determining whether the Borel property
holds or not, and we find relationships with interesting open questions in the analysis
of locally integrable structures.

Before we begin with the discussion of our results, we refer the reader to Sect. 2 for
thorough definitions of locally integrable structures, the Borel map (which associates
to any smooth solution its formal solution), and the Borel property (meaning that the
Borel map is surjective). The Borel property can be used to understand, and, in some
circumstances, bridge the gap between the local algebra of power series spaces and
the analysis of properties of smooth solutions.

In Sect. 3 we use functional analytic methods in order to characterize (abstractly)
when the Borel property holds in Proposition 3.2: roughly stated, the Borel property
holds if and only if the following is true: when one can uniformly control the action of
a sequence of differential operators on the solutions of the structure by the C�-norm
on some compact set, then the operators in the sequence need to be of bounded order.
We use this fact to provide some conceptually simpler and, in view of later results,
cleaner proofs of the fact that the existence of peak functions of finite type (or in the
locally integrable case, the fact that property (B) holds) is sufficient for the Borel
property to hold, and for the fact that the existence of a flat solution is necessary for
the Borel property to hold.

However, the results in our current paper show that geometric properties of this
form are far too rough to understand the Borel map. We hope that this means that
understanding the Borel map is more feasible than understanding whether e.g. a peak
function exists (which is a very hard undertaking, see e.g. the survey by Noell [11]),
as it turns out that the Borel map is a very subtle instrument which feels a lot of the
intrinsic geometry of the integrable structure. In particular, the present results give

123



The Borel map in locally integrable structures 1157

hope (and lead to some actual conjectures) that one can reach a satisfactory geometric
characterization of the Borel property, and show that its application to e.g. the structure
of ideals of solutions gives important insights into the behaviour of solutions.

There are also structural aspects of the Borel mapwhichmake its study very appeal-
ing:We encounter one such aspect whenwe study partial Borel maps in Sect. 4. Partial
Borel maps are defined as restrictions of the Borel map to solutions which are flat in a
number of the basic solutions, giving rise to formal series only depending on the other
basic solutions. It turns out (Theorem 4.1) that the Borel map is surjective if and only
if the partial Borel maps associated to a choice of a set of basic solutions and to its
complementary set are both surjective.

Our main new necessary condition (Theorem 6.1) for the surjectivity of the Borel
map is that the polynomial hull of Z(K ), where Z = (Z1, . . . , Zm) is the embedding
of the structure into C

m by means of a set of basic solutions, does not contain any
analytic discs. It is tempting to conjecture (especially when considering the proof of
that statement) that this condition is not only necessary but also sufficient.

Hence one of the remaining objectives of the paper is a discussion of the possible
gap between the necessity of the condition and the stronger conditions known to be
sufficient. A particular case in question is an application of the result on partial Borel
maps to structures whose characteristic set is of maximal dimension; in that case, we
see that the Borel map is surjective if none of the solutions of the structure is open
(Theorem 7.3).

This result highlights yet another interesting problem to which the Borel prop-
erty has a curious connection, namely the question whether there is a solution (with
nontrivial differential in a noncharacteristic direction) which is actually open; it also,
therefore connects with the question of whether a maximum principle is valid for
solutions of the given structure. We shall, however, in this paper not follow these lines
of inquiry further.

Instead, we have decided to focus on the study of what we think is the main geomet-
ric question left over in our approach here in a special model case of tube structures.
We obtain a rather complete picture in that case, which is discussed in Sect. 8. We
show in Theorem 8.1 that if neither the known condition for surjectivity (property
(B)), nor the condition for failure of surjectivity (open mapping property) hold, that
we can reduce the problem to studying sets which are in some sense “characteristic”
for property B. and it is in many cases the geometry of these sets which allows us to
determine whether the Borel map is onto or not (Theorems 8.2 and 8.3).

In the last two sections of the paper, Sects. 9 and 10, we study two particular
algebraic aspects of the ring of solutions: we first show that its maximal ideal is
finitely generated by a set of basic solutions if property (B) holds (Theorem 9.1).
There are also other situations in which we can guarantee this basic property, but we
would definitely like to know whether the maximal ideal in the ring of solutions is
always generated by a set of basic solutions (or not). In the other extreme, we also
show that principal manifold ideals automatically (without further assumptions on the
structure) satisfy the Nullstellensatz (Lemma 10.1).

We would like to note that the current paper leaves open a number of fascinating
problems concerning the behaviour of the Borel map and the relation between the
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1158 G. Della Sala et al.

algebra of formal solutions and the algebra of solutions; we discuss a number of them
in section 11.

2 The Borel property in locally integrable structures

A. LetΩ be a smooth (paracompact) manifold of dimension N over which we assume
given a locally integrable structure V of rank n. Thus V is a vector subbundle of CTΩ
of rank n whose orthogonal bundleV⊥ ⊂ CT∗Ω is locally spanned by the differentials
of m = N − n smooth functions.

If p ∈ Ω we set

Sp
.= { f ∈ C∞

p : L f = 0, ∀ sections L of V near p},

where we are denoting by C∞
p the ring of germs of smooth functions at p. It is clear

that Sp is also a ring.
For each k ≥ 0 let mk

p denote the ideal of C∞
p formed by all f ∈ C∞

p for which
there is a constant C > 0 such that | f (q)| ≤ Cd(q, p)k+1 for q in a neighborhood
of p.1 It is also clear that mk+1

p ⊂ mk
p for every k ≥ 0 and that mk

p ∩ Sp is an
ideal of Sp. We can then form the quotient ring J (V)kp .= Sp/(m

k
p ∩ Sp), which is

called the ring of k- jets of solutions at p. We have well defined homomorphisms
ιk : J (V)kp → J (V)k−1

p , k ≥ 1, induced by the inclusions mk
p ⊂ mk−1

p . Furthermore
ιk ◦ πk = πk−1, k ≥ 1, where πk stands for the quotient map Sp → J (V)kp. We can
form the projective limit

J (V)∞p .= lim← J (V)kp

which is then called the ring of formal solutions for V at p. Recall that J (V)∞p is the
set of all sequences (sk)k≥0 with sk ∈ J k

p and sk−1 = ιk(sk) for every k ≥ 1. Finally
we define

bV,p : Sp → J (V)∞p , bV,p(u) = (πk(u))k≥0

Definition 2.1 We shall refer to the ring homomorphism bV,p as the Borel map for V
at p. We shall also say that V satisfies the Borel property at p if bV,p is surjective.

B. Let V be a smooth, locally integrable structure defined on a smooth manifoldΩ and
let p ∈ Ω . According to [4] we can assert the following: p is the center of a smooth
coordinate system (x1, . . . , xm, t1, . . . , tn), which can be assumed defined in a product
U = B × Θ , where B (respectively Θ) is an open ball centered at the origin in R

m
x

(respectively R
n
t ), over which there is defined a smooth, real vector-valued function

Φ(x, t) = (Φ1(x, t), . . . , Φm(x, t)) satisfying Φ(0, 0) = 0, DxΦ(0, 0) = 0, such

1 Here d is any distance function defined near p by using local coordinates. It is easily seen that the
definition of the ideals mk

p is invariant.
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The Borel map in locally integrable structures 1159

that the differential of the functions

Zk(x, t) = xk + iΦk(x, t), k = 1, . . . ,m,

span V⊥ over U .
Moreover dZ1, . . . , dZm, dt1, . . . , dtn span CT∗Ω over U .
Over U we can define smooth vector fields

Mk =
m∑

k′=1

μkk′(x, t)
∂

∂xk′
, k = 1, . . . ,m

characterized by the rule

Mk Zk′ = δk,k′ , k, k′ = 1, . . . ,m.

It follows that the complex vector fields

L j = ∂

∂t j
− i

m∑

k=1

∂Φk

∂t j
(x, t)Mk, j = 1, . . . , n,

span V|U . Moreover, L1, . . . ,Ln,M1, . . . ,Mm span CTΩ|U .
The following relations are easily checked, for every j, j ′ = 1, . . . , n, k, k′ =

1, . . . ,m:

dZk(L j ) = 0, dZk(Mk′) = δkk′ , dt j (L j ′) = δ j j ′ , dt j (Mk) = 0,

from which we conclude that L1, . . . ,Ln,M1, . . . ,Mm are pairwise commuting.
Set, for W ⊂ U open,

S(W )
.= {u ∈ C∞(W ) : L j u = 0, j = 1, . . . , n};

it follows, according to the previously established, that

S0 = lim
W→{0}S(W ).

We are now ready to give a concrete representation of the Borel map for V at
the origin using this basic set of generators {Z1, . . . , Zm}. Firstly we observe that if
u ∈ S0 then all derivatives up to order k of the solution

vk
.= u −

∑

|α|≤k

Mαu(0)

α! Z(x, t)α

vanish at the origin; this can be easily seen for (MβLγ vk)(0) = 0 if β ∈ Z
m+, γ ∈ Z

n+,
|β| + |γ | ≤ k. In particular vk ∈ mk

0 ∩ S0 and hence the class of u in J (V)k0 equals
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1160 G. Della Sala et al.

that of u − vk , which gives rise to an isomorphism

ηk : J k
0 (V)0 −→ Ck[Z1, . . . , Zm]

where the latter denotes the vector space of all polynomials in Z1, . . . , Zm of order
≤ k. Furthermore, for each k ≥ 1 we have commutative diagrams

J k
0 (V)0 Ck[Z1, . . . , Zm]

J k−1
0 (V)0 Ck−1[Z1, . . . , Zm]

ηk

ιk

ηk−1

where the vertical arrows at the right stand for the natural projections. If we recall
that the ring of formal power series C�Z1, . . . , Zm� equals the projective limit
lim← Ck[Z1, . . . , Zm] we finally obtain an isomorphism

η : J∞
0 −→ C�Z1, . . . , Zm�.

For the representation of the Borel map for V at the origin in terms of {Z1, . . . , Zm}
we must just observe that the map b : S0 −→ C�Z1, . . . , Zm� given by

b(u) =
∑

α∈Zm

(Mαu)(0)

α! Z(x, t)α

makes the diagram

S0

J∞
0 C�Z1, . . . , Zm�

b0,V b

η

commutative. In particular we conclude that the Borel property for V holds at the
origin if and only if b is surjective. Moreover the image of b0,V and b are isomorphic.

3 General properties of the Borel map

A. It is our goal in this work to study not only conditions to ensure the surjectivity
of b but also to analyze its algebraic properties and apply them to the study of the
properties of the algebra S0.

We first recall a result proved in [3], Lemma 3.2: b is surjective if and only if there
exists an open neighborhood of the origin V ⊂ U such that

bV : S(V ) −→ C�Z1, . . . , Zm� (1)

is surjective. Here bV = b ◦ σV , where σV : S(V ) → S0 asssociates to u ∈ S(V )
its germ at the origin.
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The Borel map in locally integrable structures 1161

BothS(V ) andC�Z1, . . . , Zm� can be endowedwith natural Fréchet algebra struc-
tures. Indeed the first is a closed subalgebra of C∞(V ) whereas for the second we
consider its usual algebra structure endowed with its Fréchet topology defined by the
seminorms

∑
α aαZα �→ |aβ |, β ∈ Z

m+. Furthermore bV is a homomorphism of
Fréchet algebras, a consequence of the Leibniz rule, and has dense image since it
contains C[Z1, . . . , Zm].

Let S∞(V , 0) denote the ideal of S(V ) formed by all v ∈ S(V ) which vanish to
infinite order at the origin. Thus ker bV = S∞(V ; 0) and hence if bV is surjective we
obtain an isomorphism of Fréchet algebras

S(V )/S∞(V , 0) � C�Z1, . . . , Zm�.

Notice that bV can never be an isomorphism for C�Z1, . . . , Zm� is a local algebra
whereas the spectrum of S(V ) is not an unitary set: if (x0, t0) ∈ V is such that
Z j (x0, t0) �= 0 for some j ∈ {1, . . . ,m} then the Dirac measure at (x0, t0) defines
continuous homomorphism of S(V ) which is different from the Dirac measure at
the origin (cf. Theorem 3.1 in [3]). In general the spectrum of the Fréchet algebra
S(V )/S∞(V , 0) equals the set of all nonzero continuous homomorphismsS(V ) →
C that vanish on S∞(V ; 0) [7, pp. 81–82]. Hence when bV is surjective the only
homomorphism S(V ) → C that vanishes on S∞(V ; 0) is the Dirac measure at the
origin.

B. BothS(V ) and C�Z1, . . . , Zm� are also Fréchet-Montel spaces. Indeed the former
is a closed subspace of the Fréchet-Montel space C∞(V ) and the latter is isomorphic
to a countable product of copies of the complex field, which is easily seen to be
Fréchet-Montel (Tychonoff theorem). We will make use the following result:

Proposition 3.1 Let E, F be Fréchet-Montel spaces and let A : E → F be a contin-
uous linear map with A(E) dense in F. The following properties are equivalent:

1. A(E) = F;
2. t A(F ′) is strongly closed;
3. ∀B ⊂ F ′, t A(B) ⊂ E ′ strongly bounded ⇒ B strongly bounded;
4. ∀{y′

j } ⊂ F ′, { t A(y′
j )} strongly bounded ⇒ {y′

j } is strongly bounded;
5. t A(F ′) is strongly sequentially closed in E ′.

Proof The equivalence of (1) and (2) follows from [9], p. 22. The equivalence of (1)
and (5) follows from [9], p. 18. Now, since t A is injective, (2) implies that ( t A)−1 :
t A(F ′) → F ′ is continuous with respect to the strong topologies and then it maps
strongly bounded sets into strongly bounded sets, which gives (3). It is clear that (3)
implies (4). Assume now that (4) holds and let { t A(y′

j )} ⊂ t A(F ′), t A(y′
j ) → x ′

strongly in E ′. By (4) {y′
j } is strongly bounded in E ′. Since E ′, endowed with the

strong topology, is also a Montel space, it follows that {y′
j } is compact, which in

particular implies that { t A(y′
j )} = t A{y′

j }. Then x ′ ∈ t A(E ′), which proves (5).
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1162 G. Della Sala et al.

We apply Proposition 3.1 with A = bV , E = S(V ), F = C�Z1, . . . , Zm�. The
dual of C�Z1, . . . , Zm� is the space C[Z, . . . , Zm] under the duality

C�Z1, . . . , Zm� × C[Z1, . . . , Zm] → C,

(
∑

α

aαZα,
∑

finite

bαZα
)

�→
∑

aα bα.

Hence the transpose of bV is the map C[Z, . . . , Zm] � P �→ λP ∈ S(V )′,

λP ( f ) = (P̃(M) f )(0), f ∈ S(V ),

where P̃ is the polynomial obtained from P after dividing its coefficient bα by α!. Thus
the Borel map bV is surjective if and only if given any sequence of polynomials Pj ∈
C[Z1, . . . , Zm] with λPj bounded in S(V )′ then Pj is bounded in C[Z1, . . . , Zm].

Now a sequence Pj is bounded in C[Z1, . . . , Zm] if and only if there is k such that
degree(Pj ) ≤ k for every j and the sequences of the corrresponding coefficients are
bounded in C. On the other hand the sequence λPj is bounded inS(V )

′ if and only if
it is equicontinuous, that is

There are an open set 0 ∈ W ⊂⊂ V , � ∈ Z+ and C > 0 such that

|(P̃j (M) f )(0)| ≤ C‖ f ‖C�(W̄ ), f ∈ S(V ), j ≥ 1.
(3.1)

Notice that applying (3.1) to the monomials f = Zβ implies that the sequence of
corresponding coefficients of Pj is bounded in C. We summarize:

Proposition 3.2 bV is surjective if and only if the following holds: given any sequence
of polynomials Pj ∈ C[Z1, . . . , Zm] satisfying (3.1) then sup{degree(Pj )} < ∞.

4 The partial Borel maps

A.We keep the notation established in the previous section and start with a digression
regarding the theory of tensor products in the category of Fréchet spaces.

Let 1 ≤ p < m and consider the natural inclusions

C�Z1, . . . , Z p� ↪→ C�Z1, . . . , Zm�, C�Z p+1, . . . , Zm� ↪→ C�Z1, . . . , Zm�.

ThenC�Z1, . . . , Z p�⊗C�Z p+1, . . . , Zm� can be identified to the (dense) subspace
of C�Z1, . . . , Zm� formed by all power series of the form

M∑

j=1

S1, j (Z1, . . . , Z p)S2, j (Z p+1, . . . , Zm).
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The Borel map in locally integrable structures 1163

Recall that C�Z1, . . . , Z p�⊗̂πC�Z p+1, . . . , Zm� is the completion of this space
endowed with the strongest locally convex topology which makes the natural map

B : C�Z1, . . . , Z p� × C�Z p+1, . . . , Zm� → C�Z1, . . . , Z p� ⊗ C�Z p+1, . . . , Zm�

continuous. On the other hand since the space of formal power series is nuclear [12],
p. 526, Corollary 1, it follows from [12], p. 511, Theorem 50.1 that the canonical map
of

C�Z1, . . . , Z p�⊗̂πC�Z p+1, . . . , Zm� −→ C�Z1, . . . , Z p�⊗̂εC�Z p+1, . . . , Zm�

is an isomorphism (cf. the definition of the ε topology in [12], page 434). In otherwords
both π and ε topologies coincide. If we apply the same reasoning as in the proof of
[12], p. 531, Theorem 51.6, it follows that C�Z1, . . . , Z p�⊗̂C�Z p+1, . . . , Zm� ∼=
C�Z1, . . . , Zm�.

By a property of the π -topology [14], Theorem 6.4, p. 63, it then follows that every
element S ∈ C�Z1, . . . , Zm� can be represented in the form

S =
∞∑

j=1

S1, j (Z1, . . . , Z p)S2, j (Z p+1, . . . , Zm), (4.1)

where

∞∑

j=1

qk(S1, j )qk(S2, j ) < 1

and q1 < q2 < . . . is a sequence of continuous seminorms that define the Fréchet
topology in C�Z1, . . . , Zm�.

B. Denote by S
(1)
0 (resp. S(2)

0 ) the space of all u ∈ S0 such that Mαu(0) = 0 if
α �⊂ {1, . . . , p} (resp. α �⊂ {p + 1, . . . , n}). We then obtain homomorphisms induced
by b:

b1 : S(1)
0 → C�Z1, . . . , Z p�, b2 : S(2)

0 → C�Z p+1, . . . , Zm�.

We shall refer to the maps b� as the partial Borel maps for V at the origin with the
respect to the decomposition {1, . . . ,m} = {1, . . . , p} ∪ {p + 1, . . . ,m}.
Theorem 4.1 The Borel map b is surjective if and only if each b� is surjective, � = 1, 2.

Proof If b is surjective and if S ∈ C�Z1, . . . , Z p� ⊂ C�Z1, . . . , Zm� then there is

u ∈ S0 such that b(u) = S. But a fortiori u ∈ S
(1)
0 by the definition of b and thus

b1(u) = b(u) = S, which shows that b1 is surjective. An analogous argument shows
the surjectivity of b2.

We show the converse. Firstly we remark that if V is an open neighborhood of the
origin and if we denote by S(�)(V ), j = 1, 2, the space of all u ∈ S(V ) such that
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1164 G. Della Sala et al.

the germ of u at the origin belongs the S(�)
0 then each S(�)(V ) is a closed subspace

of S(V ) and hence also a Fréchet space.
By a Baire category argument (cf. Lemma 3.2 in [3]) there is an open neighborhood

V of the origin such that both induced maps

b1,V : S(1)(V ) → C�Z1, . . . , Z p�, b2,V : S(2)(V ) → C�Z p+1, . . . , Zm�

are surjections between Fréchet spaces. From [14], Theorem 6.6, p. 65, it follows that

b1,V ⊗̂b2,V : S(1)(V )⊗π S(2)(V ) −→ C�Z1, . . . , Z p�⊗̂πC�Z p+1, . . . , Zm�

is a surjection between Fréchet spaces.
Thus by [14], Theorem 6.5, p. 63, given S as in (4.1) there are u j ∈ S(1)(V ),

v j ∈ S(2)(V ) such that
∑∞

j=1 u j (x, t)v j (y, t) converges in C∞(V × V ) and such
that

S =
∞∑

j=1

b1(u j )b2(v j ).

Now since each b j is defined as the restriction of b we can further write

S =
∞∑

j=1

b(u j )b(v j ) =
∞∑

j=1

b(u jv j ),

sinceb is an algebra homomorphism.But then ifwe setu(x, t)
.= ∑∞

j=1 u j (x, t)v j (x, t)
then u ∈ S(V ) and b(u) = S, which completes the proof.

Still keeping the notation previously established we consider the locally integrable
structure V1 over U defined as V⊥

1 = span{dZ1, . . . ,Zp}. Notice that a u is a solution
for V1 if and only if

L j u = 0, Mku = 0, j = 1, . . . , n, k = p + 1, . . . , n.

In particular Mαu = 0 in a full neighborhood of the origin if α �⊂ {1, . . . , p} and
consequently the following statement is immediate:

Proposition 4.1 If the Borel map for V1 at the origin is surjective then the same is true
for the partial Borel map b1.

5 Partial hypocomplexity

In this section we continue to write Z(x, t) = (Z1(x, t), . . . , Zm(x, t)) ∈ C
m and

remark that for a fixed structure V all concepts below are independent of a particular
choice of such map.
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The Borel map in locally integrable structures 1165

A. In the first paragraph of this section we recall the concept of hypocomplexity and
some results presented in [12]. Denote by O(m) the sheaf of germs of holomorphic
functions at the origin in C

m . We say that V is hypocomplex at the origin if every
germ of (weak) solution u for V at the origin can be written as u = H ◦ Z for
some H ∈ O(m). In this case given any solution u for V defined near the origin we
have, for some constant C > 0, |Mαu(0)| ≤ C |α|+1α!, α ∈ Z

m+, and consequently
hypocomplexity at the origin implies the non surjectivity of the Borel map.

The following theorem gives a complete characterization of hypocomplexity in
terms of the compact neighborhoods of the origin in U . If we recall that for a compact
set P ⊂ C

m its rational hull can be characterized as the set all z ∈ C
m having the

following property: every algebraic hypersurface through z intersects P , we can
state Theorem III.5.1 in [12] in the following form:

Theorem 5.1 The following properties are equivalent:

1. V is hypocomplex at the origin;
2. For every compact neighborhood K0 ⊂⊂ U of the origin in R

N the rational hull
of Z(K0) is a neighborhood of the origin in C

m;
3. For every compact neighborhood K0 ⊂⊂ U of the origin in R

N the polynomial
hull of Z(K0) is a neighborhood of the origin in C

m.

As a consequence we obtain:

Corollary 5.1 If V is hypocomplex at the origin then any non constant solution near
the origin is open at the origin.

For a proof see ([12], Corollary III.5.2).

Corollary 5.2 Assume m = 1. Then V is hypocomplex at the origin if and only if Z is
open at the origin.

Proof The rational hull of any compact set in C is the compact itself.

B. Recall that if V is a locally integrable structure over Ω its characteristic set is the
subset of T∗Ω defined by To = V⊥ ∩ T∗Ω .

Taking into account Corollary 5.1, and for further reference, we conclude this
section introducing a weakened version of hypocomplexity:

Definition 5.1 We shall say that V is partially hypocomplex at the origin if there is a
smooth solution W for V near the origin, with dW |0 ∈ To

0 \ 0, such that W is open at
the origin.

Remark 5.1 Write the coordinates in C
2 as z = x + iy, w = s + i t and consider

the hypersurface Σ defined by t = s|z|2. The CR structure V on Σ is such that its
orthogonal is spanned by the differentials of the functions Z1 = x+iy, Z2 = s+is|z|2.
The characteristic set at the origin is spanned by ds|0 and the function W = Z2 + i Z2

1
is a solution with dW (0) = ds|0. Moreover introducing s′ = s −2xy as a new variable
we have

W (x, y, s′) = s′ + i(x2 − y2 + (s′ + 2xy)(x2 + y2))
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and then (ImW )(x, y, 0) changes sign at the origin inR
2. Hence W is open at the origin

and consequently this CR structure is partially hypocomplex (but not hypocomplex)
at the origin. ��

6 A necessary condition for the surjectivity of the Borel map

In the preceding section we have seen that when Ẑ(K ) is a neighborhood of the origin
C

m (K ⊂ U a compact neighborhood of the origin) the Borel map is not surjective.
We now prove a much stronger statement:

Theorem 6.1 Suppose that for every K ⊂ U compact neighborhood of the origin the
polynomial hull Ẑ(K ) of Z(K ) in C

m contains a non constant complex curve through
the origin. Then the Borel map for V at the origin is not surjective.

Proof Let u be a solution for V defined near the origin. There are a compact neigh-
borhood K of the origin in R

N and a sequence of polynomials Pν ∈ C[z1, . . . , zm]
such that Pν ◦ Z converges to u over K in the C∞ topology (the Baouendi–Treves
approximation theorem). In particular Pν converges uniformly over Z(K ). Now by
hypothesis there is a non constant complex curve τ �→ γ (τ) ∈ Ẑ(K ), defined near
the origin in the complex plane and such that γ (0) = 0. Hence Pν(γ (τ )) converges
uniformly to a holomorphic function α(τ) in a neighborhood of the origin in C. In
particular

dk

dτ k
Pν(γ (τ ))|τ=0 → α(k)(0) (6.1)

for every k. On the other hand, the Faà di Bruno formula gives

dk

dτ k
Pν(γ (τ ))|τ=0 =

∑

1≤|α|≤k

Λα,k(∂
α
z Pν)(0),

Λα,k
.=

k∑

s=1

∑

ps (α,k)

k!
s∏

j=1

[γ (� j )(0)]α j

α j !� j !|α j |

where ps(α, k) is the set of all (α1, . . . , αs, �1, . . . , �s) ∈ (Zm+)s × Z
s+ satisfying

|α j | > 0,
∑
α j = α and

∑ |α j |� j = k.
By hypothesis there is r ≥ 1 such that

γ (τ) = τ rγ•(τ )/r !, ζ
.= γ•(0) �= 0.

Thus γ ( j)(0) = 0 if j ≤ r − 1 and γ (r)(0) = ζ �= 0.
We assume k = rq, where q = 1, 2, . . . and consider two cases:

– Case 1: |α| > q. If (α1, . . . , αs, �1, . . . , �s) ∈ ps(α, rq) we have
∑

j |α j |� j <

|α|r . Hence � j < r for some j and thus Λα,rq = 0. �
– Case 2.: |α| = q. f (α1, . . . , αs, �1, . . . , �s) ∈ ps(α, rq) we have

∑
j |α j |� j =

|α|r . Hence if � j ≥ r for every j we necessarily must have � j = r for every j ��
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Summing up when k = rq we conclude that Λα,rq = 0 if |α| > q and

Λα,rq = (rq)!
rq∑

s=1

∑
∑s

j=1 α j =α
α j �=0

s∏

j=1

[γ (r)(0)]α j

α j !r !|α j |
.= Aα,qζ

α if |α| = q,

where Aα,q is a positive constant. Thus

drq

dτ rq
Pν(γ (τ ))|τ=0 =

∑

|α|=q

Aα,qζ
α(∂αz Pν)(0)+ Qq(∂z)Pν(0)

where Qq(X) = ∑
|β|≤q−1 Qq,βXβ/β! ∈ C[X1, . . . , Xm] has degree ≤ q − 1.

Now since

(∂αPν/∂zα)(0) = Mα {Pν ◦ Z} |(x,t)=(0,0)

from (6.1) we obtain

α(rq)(0) =
∑

|α|=q

Aα,qζ
α(Mαu)(0)+ Qrq(M)u(0)

and consequently for some constant C > 0 we have

∣∣∣∣∣∣

∑

|α|=q

Aα,qζ
α(Mαu)(0)+ Qq(M)u(0)

∣∣∣∣∣∣
≤ Cq+1(rq)!.

In particular, if
∑

β aβ Z(x, t)β/β! ∈ C�Z1, . . . , Zm� belongs to the image of the
Borel map for V at the origin then

∣∣∣∣∣∣

∑

|α|=q

Aα,qaαζ
α +

∑

|β|≤q−1

Qq,βaβ

∣∣∣∣∣∣
≤ Cq+1(rq)!, k ≥ 0,

for some C > 0. Since it is easy to construct indutively a sequence (aβ) for which
this property is not satisfied for any C > 0 our proof is complete.

Remark 6.1 Our argument in the proof of Theorem 6.1 can be enlightened by the
following discussion. Given a formal curve γ (t) ∈ C�t�m , with γ (0) = 0, the map

γ ∗ : C�z1, . . . , zm� −→ C�t�, u �→ u ◦ γ,
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is onto if γ ′(0) �= 0. More generally, if γ (t) = tdδ(t) with δ(0) �= 0, and if we
consider the projection map

π : C�t� −→ C�td�, π

⎛

⎝
∑

j

α j t
j

⎞

⎠ =
∑

k

αdktdk,

then

π ◦ γ ∗ : C�z1, . . . , zm� −→ C�td�

is onto, since by the Faà di Bruno formula, for each k there exists a polynomial pk

such that the coefficient of tdk in (π ◦ γ ∗)(
∑

α aαZα) can be written as

∑

|α|=k

aαδ(0)
α + pk(aβ, δ j : |β| < k, j ≤ dk).

Theorem 6.1 shows that if γ happens to be an analytic curve contained in Ẑ(K ),
then by the Baouendi–Treves approximation theorem,

(π ◦ γ ∗) (b(S0)) ⊂ C{td}

and hence the Borel property must fail. ��
Remark 6.2 For the CR structure defined in Remark 5.1 the Borel map at the origin is
not surjective since the complex curve w = 0 is contained Σ .

Remark 6.3 Write the coordinates in C
3 as z j = x j + iy j , j = 1, 2, and w = s + i t

and consider the hypersurface Σ defined by

t =
∣∣∣z21 − z32

∣∣∣
2
.

Let V be the CR structure on Σ induced by the complex structure in C
3. Since Σ

contains the germ of the curve ζ �→ (ζ 3, ζ 2, 0) it follows from Theorem 6.1 that the
Borel map for V at the origin is not surjective. We do conjecture that the polynomial
hull of a compact neighbourhood of 0 in M also does not contain any regular curve.
For such a compact neighborhood of the origin K ⊂ Σ in Σ it can be shown (see
[5]) that the the analogous question for the holomorphic hull of K has an affirmative
answer, that is, the holomorphic hull of K does not contain any germ of a regular
curve curve through the origin.

7 Sufficient conditions for the surjectivity of the Borel map

In this section we recall two conditions which imply the surjectivity of the Borel map.
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The Borel map in locally integrable structures 1169

A.Here we assume thatV defines onΩ a CR structure of the hypersurface type. Hence
we have V ∩ V = 0 and To is a real line subbundle of T∗Ω . Let p ∈ Ω , let V ⊂ Ω

be an open neighborhood of p and let ψ ∈ S(V ). We say that ψ is a peak function
at p if ψ(p) = 0, ψ(q) �= 0 for q �= p and argψ �= −π in V \{p}. Furthermore, we
say that a peak function if of finite type if |ψ(q)| ≥ Cd(q, p)α for positive constants
C and α.

The following theorem is the main result in [6] :

Theorem 7.1 If V is a CR structure of the hypersurface type inΩ which admits a peak
function of finite type at p ∈ Ω then the Borel map for V at p is surjective.

We shall present a sketch of a proof of this result based on the characterization given
in Proposition 3.2. For this we shall show that given any sequence of polynomials
Pj ∈ C[Z1, . . . , Zm] such that degree(Pj ) → ∞, given 0 ∈ W ⊂ U a neighborhood
of the origin and � ∈ Z+ there is a sequence f j ∈ S(W ) such that

|(P̃j (M) f j )(0)| = 1, ‖ f j‖C�(W̄ ) → 0.

We can assume that Ω is a hypersurface embedded in C
m and that Z j = z j |Ω ,

j = 1, . . . ,m, where (z1, . . . , zm) are the holomorphic coordinates in C
m . We can

also assume that the peak function ψ is defined in in V .
For any j let bα j z

α j be a non-vanishing monomial of Pj of maximal degree, and
define Cα j = 1/bα j . For any multiindex β ∈ Z

m+ we put dβ = 2−|β|. We define
a sequence f j ∈ S(V ) by f j = Cα j Zα jϕα j , where ϕα j ∈ S(V ) is the function
constructed in [6], Lemma 4.2. We have that ϕα j (0) = 1 for all j ∈ N, and all its
derivative vanish at 0 (see [6] Corollary 4.3).

By [6] Lemma 5.1 and more in particular from equation (5.4) in [6], we have
the following: for fixed β ∈ Z

m+ there exists j0(β) ∈ Z+ such that |Mβ f j (q)| ≤
A|α j ||J |dα j for all q ∈ V and j ≥ j0(β) (here we are using the fact that |α j | → ∞ as
j → ∞), where the constant A depends on |β| but not on α j . Using these inequalities
for all β ∈ Z

m+ with |β| ≤ �, it follows that there exist j1(�) ∈ Z+ and A1 = A1(�) >

0 such that ‖ f j‖C�(V ) ≤ A1|α j |�dα j . Thus ‖ f j‖C�(W̄ ) → 0 as j → ∞ for any
neighborhood W ⊂⊂ V of the origin.

On the other hand, let us consider (P̃j (M) f j )(0). Since (Mkϕα j )(0) = 0 for all
k, it follows that (P̃j (M) f j )(0) = Cα j (P̃j (M)Zα j )(0)ϕα j (0) = Cα j (P̃j (M)Zα j )(0).
Using that Mk Zk′ = δkk it is clear that Mβ Zα j (0) = 0 for all β �= α j , hence
Cα j (P̃j (M)Zα j )(0) = Cα j bα j (M

α j Zα j )(0)/α j ! = Cα j bα j = 1, which completes
the proof. ��
B. Next we introduce a very similar condition stated in [3] which now applies to an
arbitrary locally integrable structure V . We say that V satisfies condition (B) at p ∈ Ω

if there is a smooth solution W for V near p such that the following conditions holds:

1. W (p) = 0, dW (p) ∈ To
p\0 and arg W �= −π/2 near p;

2. There are smooth solutions W1, . . . ,Wm−1 defined in a neighborhood of p,
W j (p) = 0, such that dW1, . . . ,Wm−1, dW are linearly independent and posi-
tive constants μ and C such that (|W1| + · · · + |Wm−1|)μ ≤ C |W | near p.
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The main result in [3] is the following:

Theorem 7.2 Property (B) at p implies the surjectivity of the Borel map for V at p.

It is an easy corollary of Theorem 7.2 the fact that when V has rank N − 1, that is
when V⊥ is locally spanned by the differential of a single function, the surjectivity
of the Borel map at p ∈ Ω is equivalent to the fact that V is not hypocomplex at p
([3], Corollary 6.2).

The conjunction of Theorem 4.1 and this result allows us to obtain the following
statement:

Theorem 7.3 Assume that the characteristic set for the locally integrable V over Ω
at p ∈ Ω has maximum dimension (= m). If V is not partially hypocomplex at p then
the Borel map for V at p is surjective.

Proof Since dim To
p = m by ( [4] Theorem I.10.1) we can find smooth solutions

Z1, . . . , Zm for V near p with dZ1, . . . , dZm linearly independent and dZ j (p) ∈ To
p

for all j = 1, . . . ,m. By hypothesis none of the functions Z j is open at p and hence
by Corollary 4.1 and the result just stated we conclude that the Borel maps for the
structures V j = span {dZ j }⊥ are surjective at p. Hence Proposition 4.1 in conjunction
with Theorem 4.1 gives the sought conclusion.

8 A class of tubular structures

A. We recall (cf. [13], p. 308) that a locally integrable structure V over Ω of rank n
is tubular if given any point p ∈ Ω there are an open neighborhood U of p and an
abelian finite dimensional subalgebra g of C∞(U ;TΩ) such that [g,V|U ] ⊂ V|U ,
dim gq = dim g and CTΩq = Vq + gq for all q ∈ U . Here

gq = {Xq : X ∈ g} ⊂ TqΩ, q ∈ U .

It is proved in ([12], p. 308) that V is tubular if and only if given any point p ∈ Ω

there are, as in section 1(B), a coordinate system (x1, . . . , xm, t1, . . . , tn) centered at
p (N = m + N ) and defined in an open neighborhood U = B × Θ of the origin in
R

N and a smooth map Φ = (Φ1, . . . , Φm) : Θ → R
m satisfying Φ(0) = 0 such that

V⊥ is spanned over U by the differential of the functions

Z j (x, t) = x j +Φ j (t), j = 1, . . . ,m.

Observe that a set of n linearly independent vector fields which span V|U is given by

L j = ∂

∂t j
− i

m∑

k=1

∂Φk

∂t j
(t)

∂

∂xk
, j = 1, . . . , n.
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The Borel map in locally integrable structures 1171

Moreover since that in this particular case the vector fields Mk equal ∂/∂xk the
Borel map at the origin for V is given by

S0 � u �→ b(u) =
∑

α∈Zm

(∂αx u)(0, 0)

α! Z(x, t)α.

From now on we shall assume that

Ω and V are real-analytic.

In particularΦ is a real-analytic map. The main reason for assuming such a hypoth-
esis is that in this case hypocomplexity for V at the origin is perfectly determined: by
a result due to Baouendi and Treves [2] this structure V is hypocomplex at the origin
if and only if for every ξ ∈ R

m\{0} the map t �→ Φ(t) · ξ is open at the origin.

B. Assume that m = n + 1 and suppose that Φ has the special form

Φ(t) = (t, φ(t))

where φ : R
n → R is real analytic, φ(0) = 0, dφ(0) = 0. Such structure V• is CR of

the hypersurface type: indeed in this case it is the CR structure induced by the complex
structure onC

n+1, where the complex coordinates are written as (z1, . . . , zn+1), on the
hypersurface defined by Im zm+1 = φ(Im z1, . . . , Im zn). Notice that for this structure
the CR vector fields read

L j = ∂

∂t j
− i

∂

∂x j
− i

∂φ

∂t j
(t)

∂

∂xm
, j = 1, . . . ,m.

Notice also that in this case

ξ ·Φ(t) =
m−1∑

j=1

ξ j t j + ξmφ(t)

which is open at the origin if ξ j �= 0 for some j = 1, . . . ,m − 1. Hence V• is
hypocomplex at the origin if and only if φ(t) is open at the origin.

We first study the case n = 1, which is very simple. If V is not hypocomplex
at the origin then either φ has a zero of even order at the origin or else φ vanishes
identically. In the latter case we are in the Levi flat case in which case the Borel map
at the origin is not surjective whereas that in the former case the argument in the proof
of Theorem 8.1 below shows the existence of a peak function for V• at the origin and
hence the surjectivity of the Borel map at the origin follows from Theorem 7.1.

In what follows we then assume that n ≥ 2 and that φ does not vanish identically.
Our discussion of the surjectivity of the Borel map for this particular CR structure

will be given in terms of the (germ of the) variety V
.= φ−1{0}. We start with the

following result:
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Theorem 8.1 Let V•, φ and V be as before.

1. If φ is open at the origin then the Borel map for V• is not surjective;
2. If V = {0} then the Borel map for V• is surjective.

Proof We have already seen that if φ is open then V• is hypocomplex at the origin and
hence (1) follows.

For (2) we can assume without loss of generality that φ > 0 outside the origin.
Hence from the analiticity of φ we conclude that φ(t) ≥ c|t |2q if |t | ≤ r , where c > 0,
r > 0 are small constants and q ∈ N . We set

ψ(x, t) = −i(xm + iφ(t))+ (xm + iφ(t))2 + κ

m−1∑

j=1

(x j + i t j )
2q ,

where κ is positive small constant. It is clear that ψ ∈ S(U ). Furthermore if r > 0 is
chosen such that φ(t) ≤ 1/2 if |t | ≤ r then

Re�(x, t) ≥ x2m + φ(t)/2 + κ

m−1∑

j=1

Re {(x j + i t j )
2q} ≥ x2m + c|t |2q/2

+κ
m−1∑

j=1

Re {(x j + i t j )
2q}

If we now use the elementary fact that for every 0 < ε < 1 there is Cε > 0 (depending
on q) such that

Re (z2q) ≥ (1 − ε)(Re z)2q − Cε(Im z)2q , z ∈ C,

choosing ε = 1/2 and κ small enough gives

Re�(x, t) ≥ x2m + c|t |2q/4 + κ(x2q
1 + . . .+ x2q

m−1)/2, |t | ≤ r .

Henceψ is a peak function of finite type for V• at the origin and then (2) follows from
Theorem 7.1.

We have now to face the situation when V �= {0} and say φ ≥ 0. The former is
equivalent to the existence of a (germ of a) non trivial real analytic curve γ (s) through
the origin in t-space over which φ vanishes identically. Notice that φ = 0 implies
dφ = 0 (because φ ≥ 0) and hence also dφ vanishes on γ .

Theorem 8.2 Let V•, φ and V be as before. Assume that V contains the (germ of) a
non trivial real analytic curve γ (s) through the origin such that each of its components
has a zero of odd order at the origin. Then the Borel map for V• at the origin is not
surjective.
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Proof Write γ (s) = (γ1(s), . . . , γn(s)) and consider the tube structure V� on the
(x, s)-space defined by the first integrals

Z �j (x, t) = x j + iγ j (s), j = 1, . . . , n.

This structure is defined by a single vector field, namely:

L� = ∂

∂s
−

n∑

j=1

γ ′
j (s)

∂

∂x j
.

The point for considering this new tube structure is the following key obser-
vation: if u(x, t) is a smooth solution for V• near the origin then v(x, s)

.=
u(x1, . . . , xn, 0, γ (s)) is a smooth solution for V� near the origin, that is, L�v = 0.
This follows from a simple computation.

Now if each γ j has an odd order zero at the origin then the map

s �→
n∑

j=1

γ j (s)ξ j

is open at the origin inR for any ξ ∈ R
n\0, and consequently by the Baouendi–Treves

[2] result alluded to above, it follows that V� is hypocomplex. Hence if u is any smooth
solution for V• near the origin and if v is defined as above then we obtain the bounds

|∂αx u(0, 0)| = |∂αx v(0, 0)| ≤ C |α|+1α!, α ∈ Z
m+,

which imply that the Borel map for V• at the origin is not surjective.

C. In the rest of this section we shall focus on the case when n = 2 and φ(t) =
(t p
1 − tq

2 )
2, p, q ∈ N. Write p/q = α/β, with α and β without common factors. By

Theorem 8.2 the Borel map for V• at the origin is not surjective if both α and β are
odd since φ vanishes on the curve γ (s) = (sβ, sα).

We shall now study some of the cases when α �= β and either α or β is even. We
are able to settle the following situations:

Theorem 8.3 Let φ be as before:

– if q = 2 and p is odd then the Borel map is surjective;
– if q = 2 and p is even then the Borel map is not surjective.

Remark 8.1 In each one of the cases where the Borel map is not surjective, the nec-
essary condition established in Theorem 6.1 is not satisfied (indeed, we prove the
non-surjectivity precisely by applying Theorem 6.1).

We will first concentrate on the second statement.

123



1174 G. Della Sala et al.

C1. Given k ∈ N, consider the following hypersurface of C
3, which is equivalent to

the ones introduced in subsection B. up to a complex linear change of coordinates:

Σ = {x3 = (x21 − x2k
2 )

2}.

We also put Σ0 = Σ ∩ {z3 = 0}. Then Σ0 can be seen as the union of the two
hypersurfaces S+ = {x1 = xk

2 } and S− = {x1 = −xk
2 }, biholomorphic to each other.

We want to show that the polynomial hull Σ̂0 of Σ0 in C
2 (and thus the polynomial

hull Σ̂ of Σ in C
3) contains a complex line passing through 0.

To this aim, we define Σ ′
0 = Σ0 ∩ {x2 ≥ 0}, Σ ′′

0 = Σ0 ∩ {x2 ≤ 0}: then we can
write Σ ′

0 = {x2 = k
√|x1|} and Σ ′′

0 = {x2 = − k
√|x1|}. We claim that Σ̂ ′

0 contains
(a neighborhood of 0 in) {(0, z2) ∈ C

2 : x2 ≥ 0}, and similarly Σ̂ ′′
0 contains (a

neighborhood of 0 in) {(0, z2) ∈ C
2 : x2 ≤ 0}.

Choose then c ∈ C, c = a + ib with 0 < a < (2k − 1)/(2k)
2k

2k−1 and define
f : C → C

2 as f (ζ ) = (ζ, c + ζ 2); furthermore define ρ : C
2 → R as ρ(z1, z2) =

x2 − k
√|x1|. Writing ζ = u + iv we can express the composition ρ ◦ f : C → R as

ρ ◦ f (ζ ) = a − v2 + u2 − k
√|u|.

Let now ϕ : R
+ → R be defined as ϕ(t) = k

√
t − t2. A simple computation

shows that ϕ is strictly increasing on the interval [0, 1/(2k)
k

2k−1 ] and ϕ(1/(2k)
k

2k−1 ) =
(2k − 1)/(2k)

2k
2k−1 . We can thus set d ′ = ϕ−1(a) and, choosing d ′ < d < 1/(2k)

k
2k−1 ,

define the rectangle R = {u + iv : |u| < d, |v| < √
a + 1}.

With this choice of R we have that ρ ◦ f |∂R < 0. Indeed, whenever |v| = √
a + 1

we can write ρ ◦ f (ζ ) ≤ a − v2 = −1, while for |u| = d one has ρ ◦ f (ζ ) ≤
a −ϕ(|u|) ≤ a −ϕ(d) < 0 by the choice of d. On the other hand ρ ◦ f (0) = a > 0. It
follows that the open set U ′ = R ∩ {ρ ◦ f > 0} is non-empty and relatively compact
in R. The open set C\U

′
has a unique unbounded connected component V . Putting

U = C\V , it follows that U is simply connected, 0 ∈ U and ∂U ⊂ {ρ ◦ f = 0}.
We can thus consider f : U → C

2 as an analytic disc attached to Σ ′
0 because

f (∂U ) ⊂ Σ ′
0. Since f (0) = (0, c), it follows that (0, c) ∈ Σ̂ ′

0, which verifies the
claim. By Theorem 6.1 we conclude that the Borel map is not surjective, which proves
the second statement in Theorem 8.3.

C2. We are now going to treat the first claim in Theorem 8.3.
In order to do so we are going to study the properties of some particular domains

of C
2. Fix a small enough τ > 0 (to be specified later) and k0 ∈ N. We define

Ω ⊂ C
2(z1, z3) to be the set

Ω = {(z1, z3) ∈ C
2 : x3 ≥ 0, |z3| < τ, |z1| < 1 + k0

√
x3}

andputΩ0 = Ω∩{z3 = 0}(i.e. the unit disc inC(z1)).Wedenote by A∞(Ω), A∞(Ω0)

the subspace of C∞(Ω),C∞(Ω0) given by the functions which are holomorphic in
the interior of Ω,Ω0.

Proposition 8.1 The restriction map A∞(Ω) → A∞(Ω0) is surjective. More pre-

cisely, for all f ∈ A∞(Ω0) there is f̃ ∈ A∞(Ω) such that f̃ |Ω0 = f and ∂k f̃
∂zk

3
|Ω0 = 0

for all k ≥ 1.
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The Borel map in locally integrable structures 1175

To achieve the proof of the Proposition, we modify the construction in [6], and
sometimes refer to lemmas in there without further mention. First, we need to prove
an estimate which will be useful later:

Lemma 8.1 Fixed r > 0, we have

1

2
log( j2) ≤ 1

sin(1/ jr+2)
(1 − ( jr sin(1/ jr+2))

1
jr+2 ) ≤ 2 log(2 j2)

for all large enough j ∈ N.

Proof Put x j = 1 − ( jr sin(1/ jr+2))
1

jr+2 ; then x j > 0 and

(1 − x j )
jr+2 = jr sin(1/ jr+2).

Moreover, since ( jr sin(1/ jr+2))
1

jr+2 ≥ (1/2 j2)
1

jr+2 → 1 as j → ∞, we have
x j → 0 as j → ∞. From the expression above we get

log(1 − x j ) = 1

jr+2 log( jr sin(1/ jr+2));

since for j large enough we have −2x j ≤ log(1 − x j ) ≤ −x j and 1
2 jr+2 ≤

sin(1/ jr+2) ≤ 1
jr+2 , we can write

−x j ≥ log(1/2 j2)

jr+2 ⇒ x j ≤ log(2 j2)

jr+2 , −x j ≤ log(1/ j2)

2 jr+2 ⇒ x j ≥ log( j2)

2 jr+2

for large j . The conclusion follows from these inequalities and again from the fact
that 1

2 jr+2 ≤ sin(1/ jr+2) ≤ 1
jr+2 for large enough j .

Fix an increasing sequence {m�} of positive integers such that m� ≥ e�. Define
sequences of functions {ψ j }, {ξ j }, {ϕ j } by putting

ψ j (z1, z3) = −λ(1/ j k0�+2)

z�/ j k0�+2 + B(1/ j k0�+2), ξ j = eψ j , ϕ j = e−ξ j .

for all m� ≤ j < m�+1, where B(y) = 1/ sin(y) and λ(y) = B(y)1−y . Note that
ψ j is well-defined onΩ\Ω0, and Reψ j (z1, z3) → −∞ as z3 → 0. Furthermore the
function ϕ j extends continuously to Ω and ϕ j ≡ 1 on Ω0. Put D j = {(z1, z3) ∈ Ω :
|z3| ≤ 1/ j k0)}, and fix p ∈ Ω\D j . With the same computations as in Lemma 4.1
(choosing Aβ = j2) we have |Im ψ j (p)| ≤ 1

cos(�/ j2�+2)
=: d j for m� ≤ j < m�+1

and

Reψ j (p) ≥ B
(
1/ j k0�+2

)
⎛

⎝1 −
(

( j k0)�

B
(
1/ j k0�+2

)
) 1

jk0�+2
⎞

⎠ =
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1176 G. Della Sala et al.

= 1

sin(1/ j k0�+2)
(1 − ( j k0� sin(1/ j k0�+2))

1
jk0�+2

) ≥ log( j2)/2 = log( j)

by Lemma 8.1. Choose 1 < d < π/2 such that d ≥ d j for all j ∈ N large enough
(indeed d j → 1 as j → ∞). From the expression above follows that

Re ξ j (p) ≥ |ξ j (p)| cos(d j ) = eReψ j (p) cos(d j ) ≥ j cos(d j ) ≥ j cos(d)

and thus

|ϕ j (p)| = e−Re ξ j (p) ≤ e− j cos(d).

On the other hand we have |ϕ j (p)| ≤ e for all p ∈ D j (same proof as in Lemma 4.2).

Lemma 8.2 For all p = (z1, z3) ∈ Ω we have |ϕ j (p)| ≤ e2

(1+ k0
√|z3|) j .

Proof Suppose first that p ∈ D j , i.e. |z3| ≤ 1/ j k0 . Then e2

(1+ k0
√|z3|) j ≥ e2

(1+1/ j) j ≥
e ≥ |ϕ j (p)|. If instead p ∈ Ω\D j we can write e2

(1+ k0
√|z3|) j ≥ 1

(1+ k0
√
τ) j = 1

(ecos(d)) j ≥
|ϕ j (p)| if τ > 0 is small enough.

The next statement is an immediate consequence of the chain rule.

Lemma 8.3 Fix k ∈ N. There is a polynomial Pk(X1, X2, . . . , Xk) such that

∂kϕ j

∂zk
3

= ϕ j Pk

(
∂ξ j

∂z3
,
∂2ξ j

∂z23
, . . . ,

∂kξ j

∂zk
3

)

for all j ∈ N. Furthermore, Pk is weighted homogeneous of degree k (where the
variable X j has weight j).

Thus, to obtain an estimate for
∂kϕ j

∂zk
3
we need to give one for

∂hξ j

∂zh
3
, h ≤ k. In the next

lemma we show that | ∂hξ j

∂zh
3
(p)| grows as a polynomial in j if p ∈ Ω ∩ D j , while if

p ∈ Ω\D j its growth is compensated by the exponential decay of |ϕ j (p)|, resulting
in the following statement:

Lemma 8.4 Let k ∈ N, k ≥ 1. There exist Nk > 0, τ ′ > 0 such that

∣∣∣∣∣
∂kϕ j

∂zk
3

(p)

∣∣∣∣∣ ≤ Nk j3k0k 1

(1 + k0
√|z3|) j

for all p = (z1, z3) ∈ Ω with |z3| ≤ τ ′ and all j ∈ N.
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The Borel map in locally integrable structures 1177

Proof In the following we always consider �, j ∈ N such that m� ≤ j < m�+1, and

fix h ∈ N. Moreover we put y j = 1/ j k0�+2. The following expression for
∂hξ j

∂zh
3
can be

checked inductively:

∂hξ j

∂zh
3

= ξ j

h∑

a=1

βa, j
�a

z
a�y j +h
3

where βa, j is bounded in j for all 1 ≤ a ≤ h. Thus we have

∣∣∣∣∣
∂hξ j

∂zh
3

∣∣∣∣∣ ≤ |ξ j |
h∑

a=1

|βa, j | �a

|z3|a�y j +h
≤ Ch�

h |ξ j | 1

|z3|h�y j +h

for some constant Ch > 0 (independent of j). Taking in account the definition of ξ j ,
we can write

∣∣∣∣∣
∂hξ j

∂zh
3

∣∣∣∣∣ ≤ Ch�
h 1

|z3|h�y j +h
e
−Re

λ(y j )

z
�y j
3 eB(y j )

≤ Ch�
h 1

|z3|h�y j +h
e
− λ(y j ) cos(π�y j )

|z3|�y j eB(y j ).

Define the function κ : R
+ → R

+ as

κ(r) = 1

rh�y j +h
e
− λ(y j ) cos(π�y j )

r
�y j ;

clearly κ(r) → 0 as r → 0+ and as r → +∞. Computing the first derivative

κ ′(r) =
(

− h�y j + h

rh�y j +h+1 + �y jλ(y j ) cos(π�y j )

r (h+1)�y j +h+1

)
e
− λ(y j ) cos(π�y j )

r
�y j

we see that it vanishes only at

r̃ =
(
�y jλ(y j ) cos(π�y j )

h�y j + h

)1/�y j

hence κ is increasing for 0 ≤ r < r̃ and decreasing for r > r̃ . Furthermore

(y jλ(y j ))
1/�y j =

(
y j sin(y j )

y j

sin(y j )

)1/�y j

=
(

y j

sin(y j )

)1/�y j

sin(y j )
1/�

=
(

1

(1 − y2j /6 + O(y4j ))
1/y j

sin(y j )

)1/�
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1178 G. Della Sala et al.

and

cos(π�y j )
1/�y j = (1 − (π�y j )

2/2 + O((π�y j )
4))1/�y j

are bounded (above and below) independently of j , so that for some K > 0 we can
write

r̃ ≥ K

(
�

h�y j + h

)1/�y j

= K

(
�

h

) j k0�+2/� (
1

1 + �/ j k0�+2

) j k0�+2/�

≥ K

e

(
�

h

) j k0�+2/�

.

If h ≤ � we obtain r̃ ≥ K
e . In fact, if h < � we have r̃ → ∞ as j → ∞, so we can

assume r̃ ≥ τ . Thus the function κ is increasing on the interval [0, τ ].
Let p ∈ Ω ∩ D j , p = (z1, z3). Since |z3| ≤ 1/ j k0 we have

∣∣∣∣∣
∂hξ j

∂zh
3

(p)

∣∣∣∣∣ ≤ Ch�
hκ(|z3|)eB(1/ j k0�+2)

≤ Ch�
hκ(1/ j k0)eB(1/ j k0�+2)

≤ Ch�
h jk0h(1+�/ j k0�+2)

exp
(
B(1/ j k0�+2)

)

exp
(

j k0�/ j k0�+2
λ(1/ j k0�+2) cos(π�/ j k0�+2)

)

= Ch�
h jk0h(1+�/ j k0�+2) exp(α j ).

We can rewrite the argument of the exponential as follows:

α j = 1

sin(1/ j k0�+2)

(
1 − cos(π�/ j k0�+2)( j k0� sin(1/ j k0�+2))

1
jk0�+2

)

= 1

sin(1/ j k0�+2)

(
1 − ( j k0� sin(1/ j k0�+2))

1
jk0�+2

)

+ 1 − cos(π�/ j k0�+2)

sin(1/ j k0�+2)
( j k0� sin(1/ j k0�+2))

1
jk0�+2

.

The second summand in the expression above is bounded (in fact it can be seen to
be O(�2/ j k0�+2)), while the first one is estimated by 2 log(2 j2) by Lemma 8.1. We
deduce that

∣∣∣∣∣
∂hξ j

∂zh
3

(p)

∣∣∣∣∣ ≤ Ch�
h jk0h(1+�/ j k0�+2) exp(log( j4)+ O(1)) ≤ C ′

h j3k0h

for a large enough C ′
h > 0 (here we are using the fact that � ≤ log( j) by the choice

of m�).
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The Borel map in locally integrable structures 1179

The estimate above, together with Lemma 8.3, show that there exists N ′
k > 0 such

that ∣∣∣∣∣
∂kϕ j

∂zk
3

(p)

∣∣∣∣∣ ≤ N ′
k j3k0k (8.1)

for all p ∈ Ω ∩ D j .
Consider now p ∈ Ω\D j , p = (z1, z3). Since |z3| ≥ 1/ j k0 we have

∣∣∣∣∣
∂hξ j

∂zh
3

(p)

∣∣∣∣∣ ≤ Ch�
h 1

|z3|h�/ j k0�+2+h
|ξ j (p)| ≤ Ch�

h jk0h(1+�/ j k0�+2)|ξ j (p)|

≤ Ch(log( j))h jk0h(1+�/ j k0�+2)|Re ξ j | cos(d j ) ≤ C ′′
h j2k0h(− log(|ϕ j (p)|)).

As before, using Lemma 8.3 we get that there exists N ′′
k > 0 such that

∣∣∣∣∣
∂kϕ j

∂zk
3

(p)

∣∣∣∣∣ ≤ N ′′
k j2k0k |ϕ j (p)|(− log(|ϕ j (p)|))k

for all p ∈ Ω\D j . Since |ϕ j (p)| ≤ e− j cos(d) → 0 as j → ∞ we have that

(− log(|ϕ j (p)|))k ≤ 1/
√

|ϕ j (p)|

for all p ∈ Ω\D j and all large enough j , and thus

∣∣∣∣∣
∂kϕ j

∂zk
3

(p)

∣∣∣∣∣ ≤ N ′′
k j2k0k

√
|ϕ j (p)| ≤ N ′′

k j2k0ke− j cos(d)/2. (8.2)

Using that 1/(1+ k0
√|z3|) j ≥ 1/e if |z3| ≤ 1/ j k0 and 1/(1+ k0

√|z3|) j ≥ e− j cos(d)/2

if |z3| ≤ τ ′ small enough, we can put together (8.1) and (8.2) as in Lemma 8.2 to
conclude that there exists Nk > 0 such that

∣∣∣∣∣
∂kϕ j

∂zk
3

(p)

∣∣∣∣∣ ≤ Nk j3k0k 1

(1 + k0
√|z3|) j

for all p ∈ Ω , j ∈ N.

Proof of Proposition 8.1: For t > 0, define the dilation ψt : C
2 → C

2 as ψt (z1, z3) =
(z1, t z3), and let Ω t = ψ−1

t (Ω). We have

Ω t = {(z1, z3) ∈ C
2 : x3 ≥ 0, |z3| < τ/t, |z1| < 1 + k0

√
t k0

√
x3}

so that Ω t ∩ {z3 = 0} = Ω0 and Ω t ∩ {|z3| < τ } ⊂ Ω if t < 1. For a given

f ∈ A∞(Ω0), we will construct f̃ , holomorphic in the interior ofΩ , such that ∂
h+k f̃
∂zh

1∂zk
3
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1180 G. Della Sala et al.

extends continuously toΩ0 for all h, k ≥ 0. Then it is clear that f̃ |Ω t ∈ A∞(Ω t ), and
thus f̃ ◦ψ−1

t ∈ A∞(Ω); furthermore f̃ ◦ψ−1
t |Ω0 = f since ψt is the identity onΩ0.

Let f ∈ A∞(Ω0), f (z1) = ∑∞
j=0 a j z

j
1. Since f is smooth up to bΩ0 the sequence

a j goes to 0 faster than any polynomial, that is for all k ∈ N there is Ak > 0 such that
|a j | ≤ Ak/ j k for all j ≥ 1.

We define now f̃ (z1, z3) = ∑
j a j z

j
1ϕ j (z3). By Lemma 8.2 follows that the series

∑
j a j z

j
1ϕ j converges uniformly on compact sets of the interior of Ω , hence f̃ is a

well-defined holomorphic function in the interior ofΩ . We will show now that, for all

k ≥ 1, supΩc
| ∂k f̃
∂zk

3
| → 0 as c → 0, where Ωc = Ω ∩ {z3 = c}. This will imply that

f̃ (as well as ∂k f̃
∂zk

3
) extends continuously to Ω0, and f̃ |Ω0 = f . The same argument,

applied to ∂h f̃
∂zh

1
, proves that ∂

h+k f̃
∂zh

1∂zk
3
extends continuously to Ω0.

Fix then k ∈ N, and let A3k0k+2 > 0 such that |a j | ≤ A3k0k+2/ j3k0k+2 for all
j ∈ N. Given ε > 0, let j0 ∈ N such that Nk A3k0k+2

∑
j> j0

1
j2

< ε. For any
p = (z1, z3) ∈ Ω we get

∣∣∣∣∣
∂k f̃

∂zk
3

(p)

∣∣∣∣∣ =
∣∣∣∣∣∣

∑

j≤ j0

a j z
j
1
∂kϕ j

∂zk
3

(z3)+
∑

j> j0

a j z
j
1
∂kϕ j

∂zk
3

(z3)

∣∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

j≤ j0

a j z
j
1
∂kϕ j

∂zk
3

(z3)

∣∣∣∣∣∣
+

∑

j> j0

|a j ||z1| j

∣∣∣∣∣
∂kϕ j

∂zk
3

(z3)

∣∣∣∣∣

≤
∣∣∣∣∣∣

∑

j≤ j0

a j z
j
1
∂kϕ j

∂zk
3

(z3)

∣∣∣∣∣∣
+

∑

j> j0

A3k0k+2

j3k0k+2 Nk j3k0k
( |z1|
1 + k0

√|z3|
) j

≤
∣∣∣∣∣∣

∑

j≤ j0

a j z
j
1
∂kϕ j

∂zk
3

(z3)

∣∣∣∣∣∣
+ ε

where we used Lemma 8.4 and the fact that |z1| ≤ (1 + k0
√

x3) ≤ (1 + k0
√|z3|).

Since
∑

j≤ j0 a j z
j
1
∂kϕ j

∂zk
3
(z3) is a finite sum and ϕ j is flat at 0 for all j , we conclude that

∣∣∣∣
∂k f̃
∂zk

3
(p)

∣∣∣∣ < 2ε for |z3| small enough.

Corollary 8.1 Define  ⊂ C
3(z1, z2, z3) as the set

 = {(z1, z2, z3) ∈ C
3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + k0

√
x3}

and let  0 =  ∩ {z3 = 0} be the unit ball in C
2. Then the restriction map A∞( ) →

A∞( 0) is surjective. More precisely, for all f ∈ A∞( 0) there is f̃ ∈ A∞( ) such

that f̃ | 0 = f and ∂k f̃
∂zk

3
| 0 = 0 for all k ≥ 1.
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The Borel map in locally integrable structures 1181

Proof Given f ∈ A∞( 0), we can apply the construction of Proposition 8.1 on the
slices  ∩ {αz1 = βz2} to define an extension f̃ of f to  , holomorphic on each
slice. Since the sequence of “cut off” functions ϕ j is independent of α, β, f̃ is in fact
globally holomorphic in (z1, z2, z3).

Corollary 8.2 Define Σ ′′ ⊂ C
3(z1, z2, z3) as the set

Σ ′′ = {(z1, z2, z3) ∈ C
3 : x3 ≥ 0, x1 ≥ x22 − k0

√
x3}

and let (S, 0) be a germ of smooth real hypersurface of C3 such that 0 ∈ S and S ⊂ Σ ′′.
Furthermore let S0 = S∩{z3 = 0}. Then for any formal series σ = ∑

j1, j2 a j1 j2 z j1
1 z j2

2
there is a (germ of a) solution g ∈ S(S) whose Taylor series at 0 is given by σ and
∂k g
∂zk

3
|S0 = 0 for all k ≥ 1.

Proof Define the Cayley transformation Φ : C
3\{z1 = 1} → C

3 as

Φ(z1, z2, z3) =
(
1 + z1
1 − z1

,
z2

1 − z1
, z3

)
;

we have that Φ maps  ′ to Σ ′′, where

 ′ = {(z1, z2, z3) ∈ C
3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + |1 − z1|2 k0

√
x3}

on the other hand, since |1 − z1|2 is bounded we have (locally)  ′ ⊂  ′′ with

 ′′ = {(z1, z2, z3) ∈ C
3 : x3 ≥ 0, |z3| < τ, |z1|2 + |z2|2 < 1 + C k0

√
x3}

for some large enough C > 0. However  ′′ is biholomorphic to the set  of Corol-
lary 8.1 via a rescaling of the z3 coordinate, so the conclusion of Corollary 8.1 holds
for  ′′. Since Φ(−1, 0, 0) = (0, 0, 0) we can consider σ ′ = σ ◦Φ as a formal power
series centered at the point p0 = (−1, 0, 0) ∈  ′′

0 . Since ψ = −i(z1 + 1) is a (global)
peak function of finite order for ′′

0 at p0, there exists a smoothCR solution f ∈ S( ′′
0 )

whose Taylor expansion at p0 is σ ′. By Corollary 8.1 there exists f̃ ∈ A∞( ′′) such
that f̃ | ′′

0
= f and ∂k f̃

∂zk
3
| ′′

0
= 0 for all k ≥ 1. Putting g = f̃ ◦Φ−1, we have that g is

defined on a neighborhood of 0 inΣ ′′ and smooth up to the boundary. By construction
g|S satisfies the requirements of the Corollary.

Consider now for � ≥ 0 the hypersurface

Σ = {x3 = (x2�+1
1 − x22 )

2} ⊂ C
3

and put Σ0 = Σ ∩ {z3 = 0}.
Using the notation of section 3 with m = 3, p = 2, we consider the partial Borel

maps

b1 : S(1)
0 → C�z1, z2�, b2 : S(2)

0 → C�z3�.
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1182 G. Della Sala et al.

We have that b2 is surjective because z3|Σ = (x2�+1
1 − x22 )

2 + iy3 is a peak function at
0, which implies that the corank 1 structure induced on Σ by the function z3 satisfies
the Borel property.

In view of Theorem 4.1, the first claim of Theorem 8.3 is proved if b1 is also
surjective. This is the content of the following statement:

Proposition 8.2 Let
∑

j1, j2 a j1 j2 z j1
1 z j2

2 be any formal series in (z1, z2). Then there is
a neighborhood U of 0 in Σ and a solution g ∈ S(U ) such that

– the Taylor expansion of g at 0 is given by
∑

j1, j2 a j1 j2 z j1
1 z j2

2 ;

– ∂k g
∂zk

3
|Σ0 = 0 for all k ≥ 1.

Proof Define the domains

Σ ′ = {(z1, z2, z3) ∈ C
3 : x3 ≥ 0, x1 ≥ 2�+1

√
x22 − √

x3},
Σ ′′ = {(z1, z2, z3) ∈ C

3 : x3 ≥ 0, x1 ≥ x22 − 2 4�+2
√

x3}.

It is clear that Σ ⊂ Σ ′; we claim that, if ε > 0 is small enough, Σ ′ ∩ Bε(0) ⊂
Σ ′′ ∩ Bε(0) (where Bε(0) ⊂ C

3 is the ball of radius ε centered at 0). Indeed, for
(small) fixed x3 ≥ 0 consider the function γ : R

+ → R

γ (t) = 2�+1
√√

x3 − t − (2 4�+2
√

x3 − t).

Looking at the interval [0, 2 4�+2
√

x3] we note that γ (0) = − 4�+2
√

x3 ≤ 0 and moreover
γ (2 4�+2

√
x3) = 2�+1

√√
x3 − 2 4�+2

√
x3 ≤ 2�+1

√√
x3 − 2

√
x3 = − 4�+2

√
x3 ≤ 0. On the

other hand we have

γ ′(t) = − 1

2�+ 1
· 1

(
√

x3 − t)2�/(2�+1)
+ 1

hence γ ′ vanishes exactly at t = √
x3 ± 1

2�
√
(2�+1)2�+1

. If x3 is small enough, neither

of these values lies in the interval [0, 2 4�+2
√

x3], showing that γ is monotone on that
interval. Since γ (0) ≤ 0 and γ (2 4�+2

√
x3) ≤ 0 we must have γ ≤ 0 on [0, 2 4�+2

√
x3],

i.e.

2�+1
√

x22 − √
x3 ≥ x22 − 2 4�+2

√
x3 for 0 ≤ x22 ≤ 2 4�+2

√
x3.

If instead
√

x3 ≤ x22 ≤ 1 we have 0 ≤ x22 − √
x3 ≤ 1, so we can write (for small x3)

2�+1
√

x22 − √
x3 ≥ x22 − √

x3 ≥ x22 − 2 4�+2
√

x3 for
√

x3 ≤ x22 ≤ 1.

Since
√

x3 ≤ 4�+2
√

x3 we conclude that
2�+1

√
x22 − √

x3 ≥ x22 − 2 4�+2
√

x3 for x3 small

enough and −1 ≤ x2 ≤ 1, which proves the claimed inclusion Σ ′ ∩ Bε(0) ⊂ Σ ′′ ∩
Bε(0).

123



The Borel map in locally integrable structures 1183

Using a suitable change of coordinates we can map Σ ′′ biholomorphically to the
domain {x1 ≥ |z2|2 − 4�+2

√
x3}, so that Σ ′′

0 is a one-sided neighborhood of the Lewy

hypersurface {x1 = |z2|2}. We denote again by σ = ∑
j1, j2 a j1 j2 z j1

1 z j2
2 the formal

series obtained by transforming the one in the statement through this coordinate
change. The conclusion of the Proposition follows then by applying Corollary 8.2
with S = Σ and k0 = 4�+ 2.

By using themethods above, we can deduce directly the following (apparentlymore
general) consequence:

Theorem 8.4 With the notation of Theorem 8.1, suppose that n = 2 and φ(t) =
( f (t1, t2))2 where the differential of f does not vanish at 0 and the domain { f (t1, t2) >
0} is strictly convex (or concave) around 0. Then the Borel map is surjective.

Proof Let us consider the tube manifold Σ = {x3 = ( f (x1, x2))2}. Up to a linear
change of coordinates, we can suppose that the tangent line of { f = 0} at 0 is ∂

∂x1
and

{ f > 0} is (locally) strictly convex. Then it is easy to show that there exists C > 0
such that f (x1, x2) ≥ x1 − Cx22 for all x1, x2 around 0. This implies thatΣ is locally
contained in the domain

{(z1, z2, z3) ∈ C
3 : x3 ≥ 0, x1 ≥ Cx22 − √

x3}.
From Corollary 8.2 follows that the partial Borel map b1 is surjective, which implies
the Borel property just as in the proof of the first claim in Theorem 8.3.

9 The structure of themaximal ideal ofSp

A. In most of this section we shall assume that the locally integrable structure V over
Ω satisfies condition (B) at p ∈ Ω (cf. Section 6B).

According to ([3], proof of Theorem 6.1) we can assert the following: p is the
center of a smooth coordinate system (x1, . . . , xm, t1, . . . , tn), which can be assumed
defined in a product U = B ×Θ , where B (respectively Θ) is an open ball centered
at the origin in R

m
x (respectively R

n
t ), over which there is defined a smooth, real

vector-valued function Φ(x, t) = (Φ1(x, t), . . . , Φm(x, t)) satisfying Φ(0, 0) = 0,
DxΦ(0, 0) = 0, in such a way that the differential of the functions

Zk(x, t) = xk + iΦk(x, t), k = 1, . . . ,m,

span V⊥ over U . Contracting U even more around the origin we may achieve:

1. dZm(0, 0) ∈ T 0
(0,0) and arg Zm �= −π in U ;

2. There are constants C, M > 0 so that (|Z1| + . . .+ |Zm−1|)M ≤ C |Zm | in U .

As before we can consider the corresponding vector fields L j , Mk satisfying the
standard orthogonality conditions.

B. S0 is a commutative local ring with maximal ideal

m = {u ∈ S0 : u(0) = 0}.
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1184 G. Della Sala et al.

Our goal now is to give sufficient conditions in order to insure that m is a finitely
generatedS0-module. This is of course true when V is hypocomplex at the origin. On
the other hand we also have the following result:

Theorem 9.1 Assume thatV satisfies condition (B) at the origin. If eitherV is minimal
at the origin or if V is a real-analytic locally integrable structure then the following
holds: if W1, . . .Wm ∈ m are such that dW1(0), . . . , dWm(0) are linearly independent
then

m = 〈W1, . . .Wm〉

as a S0-module

We start by proving:

Lemma 9.1 If V satisfies condition (B) given u ∈ m there are v j ∈ S0 such that

u −
m∑

j=1

v j Z j ∈ ker b.

Proof Since u(0) = 0 we can write b(u) = ∑m
j=1 g j Z j , where g j ∈ C�Z1, . . . , Zm�.

By the surjectivity of b we can find v j ∈ S0 such that b(v j ) = g j , j = 1, . . . ,m.

Then b
(

u − ∑m
j=1 v j Z j

)
= b(u)− ∑m

j=1 g j Z j = 0.

We also have:

Lemma 9.2 Assume that condition (B) holds and also that V is minimal at 0. Then

ker b =
∞⋂

k=1

〈Zk
m〉.

Before we embark in the proof of Lemma 9.2 we show how it leads to the proof of
Theorem 9.1. Indeed let W1, . . . ,Wm be as in its statement. By Lemmas 9.1 and 9.2
we can write

Wk =
m∑

r=1

γkr Zr , γkr ∈ S0.

Since Zk(0) = 0 for every k we have

dWk(0) =
m∑

r=1

γkr (0)dZr (0)

and hence the matrix (γkr (0))1≤k,r≤m is invertible. By continuity it follows that the
matrix of germs (γkr )1≤k,r≤m is invertible and that its inverse (γ kr )1≤k,r≤m is such
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The Borel map in locally integrable structures 1185

that γ kr belongs to S0, since the latter is a ring. Furthermore we have

Zk =
m∑

r=1

γ kr Wr

and this concludes the proof of Theorem 9.1.

Proof of Lemma 9.2. Let V ⊂ U be an open neighborhood of the origin and let u ∈
S(V ) vanish to infinite order at 0. Assume first that V is minimal at the origin. By
[10] there are an open set U in C

m , a compact neighborhood of the origin K ⊂ V
(both indeed independent of u) and h ∈ O(U) such that the following is true:

– Z(K ) ⊂ Ū , for every α ∈ Z
m+ the holomorphic function ∂αh extends continuously

up to U ∪ Z(K ) and
(∂αh) ◦ Z = Mαu on K . (9.1)

��
Notice in particular that if we consider the continuous functions on U × U

Uα(z, w) = |∂αh(z)−
∑

|β|≤k−|α|
∂α+βh(w)(z − w)β/β!|/|z − w||α−k|,

defined as zero when z = w, they all extend continuously to Z(K ) × Z(K ). Conse-
quently the family {uα,β}(α,β)∈Zm+×Z

m+ , defined as

uα,β(z, z̄) =
{
(∂αh)|Z(K ) if β = 0,

0 if β �= 0

is a Whitney family on Z(K ).
By the Whitney extension theorem ([8], Theorem 2.3.6) for every p there is Hp ∈

C p(Cm) such that

(∂αz ∂
β
z̄ Hp)|Z(K ) =

{
(∂αz h)|K if β = 0,

0 if β �= 0

and |α| + |β| ≤ p. By (9.1) all the derivatives of Hp of order ≤ p − 1 vanish at the
origin and hence we must have |Hp(z)| = O(|z|p), for z near the origin in C

m . In
particular

|u(x, t)| = |h(Z(x, t))| = |Hp(Z(x, t))| = O(|Z(x, t)|p).

Hence, by (B), we obtain

|u(x, t)| = O(|Zm(x, t)|p), p ≥ 0. (9.2)
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Repeating the argument with Mαu replacing u we further obtain

|(Mαu)(x, t)| = O(|Zm(x, t)|p), p ≥ 0. (9.3)

Define vk(x, t) = u(x, t)/Zk
m(x, t), if Zm(x, t) �= 0, vk(x, t) = 0 when

Zm(x, t) = 0. Then (9.2) implies that vk(x, t) is continuous and is smooth when
xm �= 0. By a standard result in distribution theory ([8], Theorem 3.1.3) we have
L jvk = 0 and

M�vk = (M�u)/Zk
m − ku/Zk+1

m (9.4)

in the distribution sense, j = 1, . . . , n, � = 1, . . . ,m. By (9.3) it follows that the
right hand side of (9.4) is continuous (if defined as zero when Zm = 0) and then by
([8], Theorem 3.1.7) it follows that vk ∈ C1 and that L jvk = 0 in the classical sense,
j = 1, . . . , n. If we iterate the argument it follows that vk is smooth for every k ∈ Z+
and also that L jvk = 0 for all j = 1, . . . , n and all k ∈ Z+.

Next we assume that Z1, . . . , Zm are real-analytic functions and let V be an open
neighborhood of the origin in U . By the Baouendi–Treves approximation theorem the
following can be said: there is an open ball W ⊂⊂ V centered the origin such that
every element in S(V ) is constant on the set

F0 = {(x, t) ∈ W : Z(x, t) = 0}.

Let u ∈ S(V ) vanish to infinite order at the origin. Then Mαu ∈ S(V ) (α ∈ Z
m+)

vanish at the origin and consequently vanish on F0. Consequently all derivatives of u
vanish on F0 and hence Taylor’s formula gives, for every q ∈ Z+,

|u(x, t)| ≤ Aq |(x, t)− (x ′, t ′)|q , (x, t) ∈ W , (x ′, t ′) ∈ F0,

where Aq only depends on bounds for the derivatives of u on W̄ of order q. Taking
the infimum over (x ′, t ′) ∈ F0 we obtain

|u(x, t)| ≤ Aqdist((x, t), F0)
q , (x, t) ∈ W .

Let K ⊂ W be a compact neighborhood of the origin. Since F0 is the zero set of the
real-analytic function f

.= |Z1|2 + . . . + |Zm |2 by Lojasiewicz inequality (cf. [M],
Theorem 4.1) there are constants C > 0 and γ > 0 such that

dist((x, t), F0)
γ ≤ C |Z(x, t)|2, (x, t) ∈ K .

Hence

|u(x, t)| ≤ C1/γ Aq |Z(x, t)|2q/γ , (x, t) ∈ K ,

for every q ∈ Z+. Again by (B) we derive the validity of (9.2) in this case and
the preceding argument applies without modifications. The proof of Lemma 9.2 is
complete. ��
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The Borel map in locally integrable structures 1187

Corollary 9.1 Assume that V is a real analytic locally integrable structure of rank
N − 1 (that is, V⊥ is a complex fiber subbundle of CT∗Ω). Then the conclusion of
Theorem 8.1 holds at every point in Ω .

Indeed when the rank of V is N − 1 and p ∈ Ω then V is not hypocomplex at p if
and only if property (B) holds at p ([3], Corollary 6.2).

C. Besides the hypocomplex case, the conclusion of Theorem 9.1 holds in some cases
when it is not known whether condition (B) is valid or not. As in section 6(A) we
assume that V is the locally integrable structure associated to a smooth, minimal,
(weakly) convex hypersurface Ω ⊂ C

m . Assume 0 ∈ Ω . We claim that

m = 〈z1|Ω, . . . , zm |Ω 〉.

Indeed let V be an open neighborhood of the origin in Ω and let f ∈ S(V ) satisfy
f (0) = 0. Then there is a weakly convex smooth domain U inC

m such that ∂U ∩Ω .=
W ⊂ V is an open neighborhood of the origin inΩ and there is F ∈ O(U)∩ C∞(U)
such that F = f in W . Since F(0) = 0 we can write, for z ∈ U ,

F(z) = F(z1, . . . , zn) =
∫ 1

0

∂

∂t
(F(t z1, . . . , t zn))dt

where the integral is well-defined because, by convexity, (t z1, . . . , t zn) ∈ U for 0 ≤
t ≤ 1. By the chain rule we get

F(z) =
m∑

j=1

∫ 1

0
z j
∂F

∂z j
(t z1, . . . , t zm)dt =

m∑

j=1

z j Fj (z),

where

Fj (z)
.=

∫ 1

0

∂F

∂z j
(t z1, . . . , t zn)dt

is holomorphic on U and smooth up to the boundary for all 1 ≤ j ≤ m, so that

f =
∑

j

(Fj |W )(z j |W ).

Such argument applies for instance to the hypersurface

Ω� = {(z, w) ∈ C
2 : Imw = e−1/|z|}

which is convex, minimal but not of finite type. Note that we do not currently know
whether the Borel property holds for the CR structure induced on Ω�.
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10 Principal manifold ideals

Wecontinue towork under the notation established in the last section. Let f1, . . . , f� ∈
m and consider the ideal I = 〈 f1, . . . , f�〉 ⊂ m. We say that I is a manifold ideal if

(
d f1 ∧ . . . ∧ d f� ∧ d f1 ∧ . . . ∧ d f�

)
(0) �= 0. (10.1)

We denote by V (I ) the germ { f1 = . . . = f� = 0}, and call it the variety of I .

Lemma 10.1 If I is a manifold ideal then V (I ) is the germ of a regular submanifold
of real codimension 2� of R

N around 0. Moreover, we can find a coordinate sys-
tem (x1, . . . , xm, t1, . . . , tn) centered at the origin in R

N and solutions Z1, . . . , Zm

satisfying the properties listed in Section 1B such that I = 〈Z1, . . . , Z�〉.
Proof The first claim is an immediate consequence of (10.1) whereas the second
follows from the arguments in ([4], Theorem I.10.1) as done in ([3], Section 4).

We shall now restrict our attention principal maximal ideals, that is the ones gen-
erated by a single element f ∈ S0 such that (d f ∧ d f )(0) �= 0. For any submanifold
germ V of R

N around 0, we denote by I(V ) the ideal of V , i.e. the ideal of S0
consisting of those germs vanishing on V . It is clear that I ⊂ I(V (I )). Our aim is to
show that the opposite inclusion also holds:

Theorem 10.1 Let I ⊂ S0 be a principal manifold ideal. Then I(V (I )) = I .

We remark that in the previous statement no assumption is made about the mini-
mality of V nor on the validity of property (B). In order to prove Theorem 10.1 we
first prove a simple lemma.

Lemma 10.2 Let k ≥ 2. Then the function C � z → φk(z) = zk/z ∈ C is of class
Ck−2.

Proof Clearly φk extends continuously to 0 since the function z/z is bounded. Choose
j, � ∈ N such that j + � ≤ k − 2. Then

∂ j+�

∂z j∂z�
φk(z) = (−1) j j !k!

�!
zk−�

z j+1 = (−1) j j !k!
�!

(
z

z

) j+1

zk−( j+�+1)

is again continuous around 0 by the boundedness of z/z, since k − ( j + �+ 1) ≥ 1.

Proof of Theorem 10.1. We can assume that we are in the situation described in Section
1B in such a way I = 〈Z1〉 (cf. Lemma 10.1). Moreover since I is a principal maximal
ideal we can even assume that φ1(x, t) = t1.

Let g ∈ S0 vanish on V (I ) = {Z1 = 0} = {x1 = t1 = 0}. Our goal is to show that
g = g•Z1 for some g• ∈ S0.

We start by setting

hk =
k∑

j=1

(−1) j

j ! Z j
1 M

j
1g, k ≥ 1. (10.2)
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Notice that hk ∈ S0. We claim that

Mα(g + hk)|V (I ) = 0, α ∈ Z
m+, |α| ≤ k. (10.3)

In order to prove (10.3) we first note that if j ≥ 2 then 0 = M j Z1 = M j x1 and
hence M j only involves ∂/∂x2, . . . , ∂/∂xm . Thus if v ∈ C∞

0 vanishes on V (I ) the
same is true for Mαv if α = (0, α2, . . . , αm) ∈ Z

m+. Thus (10.3) follows if we show
that M�

1(g + hk) = 0 on V (I ) if � ≤ k. By Leibniz rule we have

M�
1(g + hk) = M�

1g + M�
1

⎧
⎨

⎩

k∑

j=1

(−1) j

j ! Z j
1M

j
1g

⎫
⎬

⎭

= M�
1g +

k∑

j=1

min{ j,�}∑

r=0

(−1) j

j !
(
�

r

)
j !

( j − r)! Z j−r
1 M j+�−r

1 g

If we restrict this last sum to V (I ) and recall that � ≤ k we obtain

�∑

j=1

(−1) j
(
�

j

)
(M�g)|Z1=0 = −(M�g)|Z1=0 ,

which completes the proof of (10.3).
Let g′ = g/Z1. Then g′ is defined – and is a solution of V – on the complement of

{Z1 = 0}. It is enough to prove that for any k ≥ 2 the germ g′ extends across {Z1 = 0}
as a function of class Ck−2. If hk−1 is as in (10.2) then hk−1/Z1 ∈ S0 and hence we
are left to showing that (g + hk−1)/Z1 extends accross Z1 = 0 as a function of class
Ck−2.

We take advantage of (10.3). By Taylor’s formula we can write

g + hk−1 = Ak Z1 + Bk Z1
k
,

where Ak, Bk ∈ C∞
0 . Consequently by Lemma 10.2 we can write

(g + hk−1)/Z1 = Ak + Bk φk(Z1)

is of class Ck−2, which completes the proof. ��
Example 1 If the assumption that I is a manifold ideal is not satisfied, the conclusion
of Theorem 10.1 can fail to hold. For instance, let V be the locally integrable structure
on R

3, with coordinates written as (x, y, s), whose orthogonal V⊥ is spanned by the
differential of the functions

Z = x + iy, W = s + i(x2 + y2)

(this is the standard Hans Lewy structucture on C
2), and define I = 〈W 〉. Then I is

not a manifold ideal, and we have that V (I ) = {0} and I(V (I )) = 〈Z ,W 〉 = m � I .
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Also note that m does not coincide with the radical of the ideal I , since there is no
k ∈ Z+ such that Zk/W is of class C∞ around 0. It follows that the Nullstellensatz
does not hold for a (general) ideal of S0.

Example 2 On the other hand, consider the structure V on R
5, with coordinates writ-

ten as (x1, x2, y1, y2, s) whose orthogonal V⊥ is spanned by the differential of the
functions

Z1 = x1 + iy1, Z2 = x2 + iy2, W = s + i(x21 + y21 − x22 − y22 ).

Once again we have that I = 〈W 〉 is not a manifold ideal, but in this case we have
I(V (I )) = I . Indeed it is well known that V is hypocomplex at the origin [1]. On
the other hand, writing the complex coordinates in C

3 as (z1, z2, w) we see that that
if H ∈ O(3) vanishes on V (I ) then H(z1, z2, 0) vanishes on |z1|2 = |z2|2, and
consequently H = wH1, with H1 ∈ O(3). This proves our claim.

11 Some open questions

Acertain number of questions arise, in our opinion, naturally from the results presented
in the previous sections. Despite the quite elementary nature of some of them (the topic
of the algebraic properties of the ringSp appears to be to some extent unexplored) their
treatment seems to lead to delicate analytic issues. The following is an (incomplete)
list of the problems which are for us most natural and interesting:

Question 1 Is the necessary condition found in Theorem 6.1 also sufficient for the
surjectivity of the Borel map?

We conjecture that this should be the case, at least when the structure V is real-
analytic.

Question 2 Does the conclusion of Theorem 10.1 hold for a non principal manifold
ideal?

The method used in the proof of Theorem 10.1 does not extend easily to ideals
generated by more than one solution.

Question 3 Is there an example in which the maximal ideal m is not generated by the
basic solutions Z1, . . . , Zm?

The results in Sect. 9 show that this property in various situations, far apart from
each other. The knowledge of the behavior of the Borel map seems to be important in
most of the proofs, with the exception of the argument in Sect. 9C.

Question 4 For what values of p and q does the structure in Theorem 8.3 satisfy the
Borel property?

We expect that the Borel property should hold preciselywhen p and q have different
parity.
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The Borel map in locally integrable structures 1191

Question 5 Is the image of b always a suitable quotient of a ring of the form
(C{Z1, . . . , Z p})�Z p+1, . . . , Zm�?

In other words, in the cases settled so far the image of b consists of formal series in a
subset of variables whose coefficients are holomorphic functions in the other variables
(more precisely, these coefficients must have a common radius of convergence).

Question 6 Suppose that two integrable structures V1,V2 are not hypocomplex (e.g.
correspond to pseudoconvex hypersurfaces M1, M2 ⊂ C

n), and the solutions rings
S1

0,S
2
0 are isomorphic. Does it follow that V1,V2 are locally equivalent (i.e. that M1

and M2 are locally CR diffeomorphic)?

It is clear that the answer to the previous question is negative ifV1,V2 are hypocom-
plex, since both rings of solutions will always be isomorphic to the ring of convergent
power series in n variables: if, however, there are enough solutions, one might hope
that the ring S0 contains enough information.
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