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Abstract We obtain a complete solution to the problem of classifying all two-
dimensional ideal fluid flows with harmonic Lagrangian labelling maps; thus, we
explicitly provide all solutions, with the specified structural property, to the incom-
pressible two-dimensional Euler equations (in Lagrangian variables).

Mathematics Subject Classification 76B03 · 35Q31 · 76M40

1 Introduction

Within the realm of fluid dynamics, the most complete description of a flow is attained
within the Lagrangian framework. Qualitative studies of fluids are concerned with
perturbations of explicitly known flows. Therefore non-trivial explicit solutions that
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capture important aspects of the physical reality are of great importance [3]. Several
publications in the applied mathematics, engineering and physics research literature
(see [6,7,10–12,15,18] and references therein) exploited a remarkable feature shared
by some celebrated explicit solutions to the two-dimensional incompressible Euler
equations, in Lagrangian variables (such as Kirchhoff’s elliptical vortex [16] found in
1876, Gerstner’s flow [9] found in 1809 and re-discovered in 1863 by Rankine [19],
and the Ptolemaic vortices found in 1984 by Abrashkin and Yakubovich [1]), namely
that in all of them the labelling map is harmonic at all times.

Recently, in [2], the authors proposed a complex analysis approach aimed at clas-
sifying all such flows. While new explicit solutions were obtained, the exhaustion of
all possibilities was reduced to an explicit nonlinear ordinary differential system in
C
4. Solving this system in full generality proved elusive so far.
We propose a different approach that provides a complete solution to the original

problem of finding all flows with harmonic labelling maps. Our approach is based
on ideas from the theory of harmonic mappings, more precisely, on the fact that it
is possible to characterize the relationship between planar harmonic maps having the
same Jacobian—a property of the labelling maps that is a consequence of the equation
of mass conservation, expressed in Lagrangian variables. Apart from achieving the
full picture, our considerations provide an illustration of the deep links between the
fields of complex analysis and fluid mechanics.

2 The governing equations

The Eulerian description of the two-dimensional motion of an ideal homogeneous
fluid is obtained by imposing the law of mass conservation

ux + vy = 0, (1)

and Euler’s equation of motion

{
ut + uux + vuy = −Px ,
vt + uvx + vvy = −Py,

(2)

where
(
u(t, x, y), v(t, x, y)

)
is the velocity field in the time and space variables

(t, x, y) and the scalar function P(t, x, y) represents the pressure. Since the refer-
ence density in hydrodynamics is 1 g/cm3, we normalize the constant fluid density to
1.

Themost complete flow representation is provided in (material) Lagrangian coordi-
nates, in which one describes the motion of all fluid particles. For a given velocity field(
u(t, x, y), v(t, x, y)

)
, the motion of the individual particles

(
x(t), y(t)

)
is obtained

by integrating the system of ordinary differential equations

{
x ′(t) = u(t, x, y),
y′(t) = v(t, x, y),
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A harmonic maps approach to fluid flows 3

whereas the knowledge of the particle path t �→ (
x(t), y(t)

)
provides by differentia-

tion with respect to t the velocity field at time t and at the location
(
x(t), y(t)

)
.

Starting with a simply connected domain �0, representing the labelling domain,
each label (a, b) ∈ �0 identifies by means of the injective map

(a, b) �→ (
x(t; a, b), y(t; a, b)

)
(3)

the evolution in time of a specific particle, the fluid domain at time t , �(t), being
the image of �0 under the map (3). To write the governing equations in Lagrangian
coordinates, we use the following relations:

⎧⎪⎪⎨
⎪⎪⎩

∂

∂a
= xa

∂

∂x
+ ya

∂

∂y
,

∂

∂b
= xb

∂

∂x
+ yb

∂

∂y
,

and ⎧⎪⎪⎨
⎪⎪⎩

∂

∂x
= 1

J

(
yb

∂

∂a
− ya

∂

∂b

)
,

∂

∂y
= 1

J

(
xa

∂

∂b
− xb

∂

∂a

)
,

(4)

where J is the Jacobian of the transformation given by

J =
∣∣∣∂(x, y)

∂(a, b)

∣∣∣ = xa yb − ya xb �= 0. (5)

The local injectivity of the transformation between the Eulerian and Lagrangian coor-
dinates is expressed by (5). In view of (4) and

⎧⎪⎪⎨
⎪⎪⎩
u(t, x, y) = ∂

∂t
x(t; a, b),

v(t, x, y) = ∂

∂t
y(t; a, b),

(6)

the equation of mass conservation (1) takes the form

0 = ux + vy = yb xat − ya xbt + xa ybt − xb yat
J

= Jt
J

in Lagrangian coordinates, that is,
Jt = 0. (7)

On the other hand, from (6) we get

xtt = ut + ux xt + uy yt = ut + uux + vuy,

ytt = vt + uvx + vvy,
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so that the Euler equation (2), in Lagrangian variables, becomes

⎧⎪⎨
⎪⎩
xtt = − yb Pa − ya Pb

J
,

ytt = − xa Pb − xb Pa
J

.

Since the Jacobian of the above system does not vanish, due to (5), we can solve for
the gradient of P in the label space, obtaining

{
Pa = − xa xtt − ya ytt ,
Pb = − xb xtt − yb ytt ,

in �0. The domain �0 being simply connected, the above system is equivalent to the
compatibility condition Pab = Pba , that is,

xa xbtt + ya ybtt = xb xatt + yb yatt ,

or, equivalently, (
xa xbt + ya ybt − xb xat − yb yat

)
t
= 0. (8)

These considerations show that, in Lagrangian coordinates, the governing equations
are equivalent to (7) and (8), under the constraint that, at any instant t , the map (3) is
a global diffeomorphism from the label domain �0 to the fluid domain �(t).

3 Harmonic labellings

As already mentioned in Introduction, the common structural property of the known
explicit solutions to the governing equations (Kirchhoff’s vortex [16], Gerstner’s wave
[9], the Ptolemaic solutions [1]) is that the labelling map (3) is harmonic at every fixed
time t . Our aim is to explicitly find all solutions having this property. Most ideas in
this section are inspired by [2] and are included for the sake of completeness. Since
from now on our methods will rely exclusively on complex analysis, it is convenient to
adapt the notation accordingly. Therefore we look for solutions to (7) and (8) having
the form

x(t; a, b) + i y(t; a, b) = F(t, z) + G(t, z), z = a + ib, (9)

with z �→ F(t, z) and z �→ G(t, z) analytic in the simply connected domain �0 ⊂ C,

at every time t . Recall that
∂F

∂z
= 0 characterizes analyticity and that

∂

∂a
= ∂

∂z
+ ∂

∂z
,

∂

∂b
= i

( ∂

∂z
− ∂

∂z

)
,

∂ f

∂z
= ∂ f

∂z
. (10)
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A harmonic maps approach to fluid flows 5

The Jacobian of the harmonic map (9) is J = |F ′|2 − |G ′|2. Therefore the equation
of mass conservation (7) can be re-written as

(
F ′ F ′ − G ′ G ′)

t = 0, that is,

Re
(
F ′
t F

′ − G ′ G ′
t
) = 0. (11)

Relation (10) together with (9) yield

xa = F ′ + G ′ + F ′ + G ′
2

, xb = i
F ′ + G ′ − F ′ − G ′

2
,

ya = F ′ − G ′ − F ′ + G ′
2i

, yb = F ′ − G ′ + F ′ − G ′
2

.

A lengthy but straightforward calculation using the above relations shows that (8) is
equivalent to

Im
(
F ′
t F

′ − G ′ G ′
t
)
t = 0. (12)

In view of (11) and (12), the governing equations reduce to the single equation

F ′
t F

′ − G ′ G ′
t = i ν(z, z̄) (13)

for some real-valued function ν.

Remark 1 Using the notation F0 := F(0, ·), G0 := G(0, ·), the equation of mass
conservation expressed as Jt = 0 means that the Jacobian of the labelling map is
constant in time, and hence it is given by J = |F ′

0|2 − |G ′
0|2. Since �0 is simply

connected and J does not vanish in �0, we deduce that we either have J > 0 (i.e.
F0 + G0 is sense preserving) or J < 0 (i.e. F0 + G0 is sense reversing) throughout
�0. From now on we shall assume without loss of generality that F0 + G0 is sense
preserving. Indeed, if F0 +G0 is sense reversing, we can replace the label domain by
�0, and, in this case, the labelling map at time t = 0 becomes F0(z̄) + G0(z̄), which
is sense preserving.

An equivalent condition to the fact that F0 + G0 is sense preserving in the simply
connected domain �0 is that F0 is locally univalent (thus F ′

0 �= 0 in �0) and the
(second complex) dilatation ω of F0 +G0, defined by ω = G ′

0/F
′
0, is an analytic map

into the open unit disk.

Since the Jacobian of the harmonic maps F(t, z) + G(t, z), defined for t ≥ 0 and
z ∈ �0, that satisfy (13) is independent of time, in order to find all solutions it is natural
to start by looking for a characterization of the relationship between two harmonic
maps with equal Jacobians.

4 Harmonic functions with equal Jacobian

We now find the relationship between two harmonic maps with equal Jacobians. Our
approach is inspired by the proof of [4, Theorem 3] (see also the considerations made
in [14]).
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6 O. Constantin, M. J. Martín

We start by proving the following lemma that might have some independent interest
and will be used later on.

Lemma 1 Let ϕ and ψ be two analytic functions in a simply connected domain �,
with ϕ �≡ 0. Then

|ϕ|2 = r |ψ |2 + s (14)

in � for some real numbers r and s different from zero if and only if there exist two
complex constants c1 and c2 with |c1|2 = r |c2|2 + s such that ϕ ≡ c1 and ψ ≡ c2.

Proof Note that for (14) to hold, it is necessary that r |ψ(z)|2 + s ≥ 0 for all z ∈ �.
If r |ψ |2 + s ≡ 0, then a direct application of the open mapping theorem for analytic
functions gives us the desired result.

Assume now that r |ψ |2 + s is not identically zero. Then, there exists a disk D =
D(z0, R) centered at some z0 ∈ � and radius R > 0 such that D ⊂ � and r |ψ(z)|2 +
s > 0 for all z ∈ D. The forthcoming analysis will be done in this disk.

We take logarithms in (14) to get

log |ϕ|2 = log
(
r |ψ |2 + s

)
. (15)

Now, the function of the left-hand side in (15) is harmonic so that the one on the
right-hand side must be harmonic as well. The Laplacian of this latter function equals

� log
(
r |ψ |2 + s

)
= 4rs

|ψ ′|2
(r |ψ |2 + s)2

,

so that ψ ′ is identically zero in D and hence there exists a non-zero constant c2 ∈ C

such that ψ ≡ c2. Bearing in mind (14), we get that ϕ equals a constant c1 too, with
|c1|2 = r |c2|2 + s. A direct application of the identity principle for analytic functions
completes the proof. 
�

4.1 The case of linear dependence

We first treat the easier case when the harmonic mapping F + G is such that F ′ and
G ′ are linearly dependent.

Theorem 1 Let F1+G1 be a (sense preserving) harmonic map in a simply connected
domain� ⊂ C. Assume further that G ′

1 = λF ′
1 where λ ∈ C. If F2+G2 is a harmonic

map in � whose Jacobian equals that of F1 + G1, that is,

|F ′
1|2 − |G ′

1|2 = |F ′
2|2 − |G ′

2|2, (16)

then there exist constants α, β ∈ C such that F ′
2 = αF ′

1 and G ′
2 = βF ′

1, with
|α|2 − |β|2 = 1 − |λ|2 > 0. Moreover, if F1 + G1 is univalent in �, then F2 + G2 is
univalent in �.
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A harmonic maps approach to fluid flows 7

Proof Let us first notice that F ′
1 has no zeros in � since the Jacobian J1 of F1 + G1

is strictly positive. Dividing by |F ′
1|2 in (16), we get

1 − |λ|2 =
∣∣∣ F ′

2

F ′
1

∣∣∣2 −
∣∣∣G ′

2

F ′
1

∣∣∣2.

We can now apply Lemma 1 to deduce that there exist α, β ∈ C such that F ′
2 = αF ′

1
and G ′

2 = βF ′
1, with 1 − |λ|2 = |α|2 − |β|2. In particular, |α|2 − |β|2 > 0 since

J1 > 0.
It remains to show that univalence is preserved. If F1+G1 is univalent, then, due to

the special form ofG1, we have that F1 is also univalent. Assume there exist z, w ∈ �

with F2(z) + G2(z) = F2(w) + G2(w). Since F2 + G2 = αF1 + βF1 + γ for some
constant γ ∈ C, the last equality yields α (F1(z) − F1(w)) = −β(F1(z) − F1(w)).
Taking the modulus on both sides, we get F1(z) − F1(w) = 0, since |α| �= |β|. The
univalence of F1 forces z = w, thus proving the claim. 
�

4.2 Linearly independent case

We now investigate the generic setting.

Theorem 2 Let F1 + G1 and F2 + G2 be two harmonic mappings on a simply con-
nected domain �, with Jacobians J1 = |F ′

1|2 − |G ′
1|2 and J2 = |F ′

2|2 − |G ′
2|2,

respectively. Assume that F ′
1 and G ′

1 are linearly independent. If J1 = J2 > 0, then
there exist two complex constants α, β with |α|2 = 1+ |β|2 and a real number ξ such
that

(
F ′
2

G ′
2

)
=

(
α β

β α

) (
1 0
0 eiξ

)(
F ′
1

G ′
1

)
. (17)

Proof Since, by assumption, |F ′
1| > 0, wemay denoteϕ = F ′

2/F
′
1. Also, the dilatation

ω1 = G ′
1/F

′
1 of F1 + G1 is not constant. Since J1 = J2, we have

1 − |ω1|2 = |ϕ|2 − |ψ |2,

where ψ = ω2ϕ = G ′
2/F

′
1. We rewrite this as

1 + |ψ |2 = |ω1|2 + |ϕ|2. (18)

Note that if ϕ equals a constant k (necessarily different from zero), then the previous
equation can be written as

1 + |ψ |2 = |ω1|2 + |k|2.

If |k| = 1, then |F ′
2| = |F ′

1| and the above relation implies |G ′
1| = |G ′

2|. In view of
the open mapping theorem we must have F ′

2 = eis1F ′
1 and G

′
2 = eis2G ′

1 for some real
constants s1 and s2, and then (17) holds with β = 0, α = eis1 , and ξ = s1 + s2.
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8 O. Constantin, M. J. Martín

If |k| �= 1, then by Lemma 1 we have that ω1 is constant, which contradicts our
assumption. Thus, we can assume that ϕ is not constant, so that its derivative is not
identically zero. Therefore, there exists a disk D = D(z0, R), centered at some z0 ∈ �

and with radius R > 0, contained in � such that ϕ′(z) �= 0 for all z ∈ D. The
forthcoming analysis is done in this disk.

Taking the Laplacian of both sides of (18), we obtain

|ψ ′|2 = |ϕ′|2 + |ω′
1|2.

Since ϕ′ �= 0, we get

1 +
∣∣∣∣ω

′
1

ϕ′

∣∣∣∣
2

=
∣∣∣∣ψ

′

ϕ′

∣∣∣∣
2

. (19)

By Lemma 1 we see that both ψ ′/ϕ′ and ω′
1/ϕ

′ are constant functions in D and hence
(by the identity principle) throughout �. Let m = ω′

1/ϕ
′. Therefore [using also (19)]

we have

ω′
1 = m ϕ′ and ψ ′ = eiθ

√
1 + |m|2 ϕ′,

where θ is a real number. Thus, for certain complex constants n and p,

ω1 = mϕ + n and ψ = eiθ
√
1 + |m|2ϕ + p. (20)

Using this information in (18), we get

1 + (1 + |m|2)|ϕ|2 + |p|2 + 2Re
{
eiθ p

√
1 + |m|2ϕ

}

= |ϕ|2 + |m|2|ϕ|2 + |n|2 + 2Re {mnϕ} .

Hence

2Re
{(

eiθ p
√
1 + |m|2 − mn

)
ϕ
}

= |n|2 − |p|2 − 1.

As a consequence, we see that unless eiθ p
√
1 + |m|2 − mn = 0, the values of ϕ lie

on a line. This is not possible for non-constant ϕ. Therefore, we have

eiθ p
√
1 + |m|2 = mn (21)

and also
|n|2 = 1 + |p|2. (22)

Taking absolute values in (21) gives |p|2(1 + |m|2) = |m|2|n|2, while from (22) we
have |m|2(1 + |p|2) = |m|2|n|2. Therefore

p = eism
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A harmonic maps approach to fluid flows 9

for some real number s. Note that ifm = 0, then ω1 is constant, which contradicts our
assumptions. Thus, m �= 0 and from (21) we get

n = e−iθeism
√
1 + |m|2

m
.

Expressing ω1 and ϕ in the first relation in (20), we obtain

G ′
1

F ′
1

= m
F ′
2

F ′
1

+ n.

Hence

G ′
1 = m F ′

2 + n F ′
1

and

F ′
2 = − n

m
F ′
1 + 1

m
G ′

1 = −e−iθeis
√
1 + |m|2

m
F ′
1 + 1

m
G ′

1. (23)

Making ψ , ϕ and p explicit in the second relation in (20) gives

ψ = G ′
2

F ′
1

= eiθ
√
1 + |m|2 F ′

2

F ′
1

+ eism.

Multiplying this relation by F ′
1 and using (23), we deduce

G ′
2 = eiθ

√
1 + |m|2 F ′

2 + eism F ′
1

= eiθ
√
1 + |m|2

(
− e−iθeis

√
1 + |m|2

m
F ′
1 + 1

m
G ′

1

)
+ eism F ′

1

= −eis

m
F ′
1 + eiθ

√
1 + |m|2
m

G ′
1.

Finally, setting ξ = s + π and denoting

α := eiξ e−iθ
√
1 + |m|2

m
, β := e−iξ

m
,

leads to

F ′
2 = α F ′

1 + eiξ β G ′
1,

G ′
2 = β F ′

1 + eiξ α G ′
1,

which is a re-expression of (17). 
�
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10 O. Constantin, M. J. Martín

Remark 2 Assume that F1 + G1 and F2 + G2 are two sense preserving harmonic
mappings in the simply connected domain�, related by (17). In the casewhen F1+G1
is univalent and ξ = 0, then F2+G2 is obtained by composing with a sense preserving
affine transformation. Since this affine transformation preserves univalence, F2 + G2
is univalent as well. This is not true if ξ �= 0. For example, the so-called harmonic
Koebe function introduced in [5] (see also [8, Sect. 5.3]), defined by K = f + g,
where

f (z) = z − 1
2 z

2 + 1
6 z

3

(1 − z)3
and g(z) =

1
2 z

2 + 1
6 z

3

(1 − z)3
, z ∈ D,

is univalent in the unit diskD but there exists |μ| = 1 such that f +μg is not univalent
(see [13, Theorem 7.1]).

5 The solutions

In what follows we will set

F ′(t, z) = f (t, z) and G ′(t, z) = g(t, z) (24)

and use the notation F0 + G0 for the function F(0, ·) + G(0, ·), which is supposed
to be univalent in the simply connected domain �0. Also, we write f0 = f (0, ·) and
g0 = g(0, ·).

5.1 Solutions in the linearly dependent case

We start by finding the solutions f �≡ 0 and g �≡ 0 such that the governing Eq. (13)
holds under the additional assumption that the initial harmonic (sense preserving)
labelling map F0 + G0 is such that F ′

0 and G ′
0 are linearly dependent, or, in other

words, F0 + G0 has constant dilatation. Indeed, since the harmonic map F0 + G0
is sense preserving, the linear dependence translates into the fact that there exists a
constant λ ∈ C with |λ| < 1 such that G ′

0 = λF ′
0.

Theorem 3 Let �0 ⊂ C be a simply connected domain. If the initial harmonic (uni-
valent, sense preserving) labelling map F0 + G0 satisfies G ′

0 = λF ′
0 for some λ ∈ C,

then the particle motion (9) of a fluid flow, defined by means of (24), is given by

⎧⎨
⎩ f (t, z) = √

1 − |λ|2 + |β(t)|2 ei
∫ t
0

ν0+Im{β(s)βt (s)}
1−|λ|2+|β(s)|2 ds

F ′
0(z),

g(t, z) = β(t)F ′
0(z),

(25)

where β : [0,∞) → C is a C1 function with β(0) = λ, and ν0 ∈ R is an arbitrary
constant.

Proof Recall that we are using the notation f0 = F ′
0. Since the Jacobian of the

labelling map remains unchanged at all times t , we can apply Theorem 1 to deduce
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A harmonic maps approach to fluid flows 11

that f (t, z) = α(t) f0(z) and g(t, z) = β(t) f0(z), where |α|2 − |β|2 ≡ 1− |λ|2 > 0.
Using this in (13), we obtain

ft f − g gt = (αt α − β β t ) | f0(z)|2 = i ν(z, z).

As F0 +G0 is a sense preserving mapping, we have | f0| > 0. Thus αt α −β β t = i ν0
for some constant ν0 ∈ R, and we are lead to the system

{
αt α − ββ t = i ν0,

|α|2 = |β|2 + c,
(26)

where c = 1−|λ|2 > 0. The second equation above ensures that |α| > 0, which allows
us to write α(t) = R(t) eiϕ(t) for appropriate C1-functions R : [0,∞) → (0,∞) and
ϕ : [0,∞) → R (see, for instance, [17, Theorem 2.24]). The system (26) written in
polar coordinates becomes

{
Rt R + i R2ϕt − β β t = i ν0,

R = √|β|2 + c.
(27)

The first equation in (27) in conjunction with the time-differentiation of the second
equation in (27) yields R2 ϕt = ν0 + Im{β β t }. Thus (26) reduces to

{
ϕ(t) = ϕ(0) + ∫ t

0
ν0+Im{β(s) β t (s)}

|β(s)|2+c
ds,

R = √|β|2 + c.

The initial conditions f (0, ·) = f0, g(0, ·) = g0 now give β(0) = λ and ϕ(0) = 0.
Therefore we obtain (25). 
�
Example 1 Kirchhoff’s solution [16] is the particular case of (25) in which

F ′
0 = Aeikz, β(t) ≡ λ, and ν0 = 0,

where A and k are non-zero real constants and λ ∈ (0, 1). The condition on the
univalence of F0 requires that �0 does not contain points z and w with

Im{z} = Im{w} and Re{z} = Re{w} + 2mπ

k

for some integer m.

5.2 The solutions in the linearly independent case

Using again the notation F0 + G0 for the function F(0, ·) + G(0, ·) and keeping in
mind that F0 + G0 is sense preserving univalent in the simply connected domain

123



12 O. Constantin, M. J. Martín

�0, we have that |F ′
0|2 − |G ′

0| > 0 in �0. Also, as before, we set f0 = f (0, ·) and
g0 = g(0, ·) (hence | f0|2 − |g0|2 �= 0).

Now, we will consider solutions f �≡ 0 and g �≡ 0 such that (13) holds and such
that F0 + G0 has non-constant dilatation.

Theorem 4 Let �0 ⊂ C be a simply connected domain. Assume that the initial
harmonic (univalent, sense preserving) labelling map F0 +G0 is such that F ′

0 and G
′
0

are linearly independent. The particle motion (9) of a fluid flow, defined by means of
(24), is either described by

⎧⎨
⎩

f (t, z) = √
1 + |β(t)|2 ei

∫ t
0

ν0+Im{βt (s)β(s)}
1+|β(s)|2 ds

F ′
0(z) + β(t)G ′

0(z),

g(t, z) = β(t) F ′
0(z) + √

1 + |β(t)|2 e−i
∫ t
0

ν0+Im{βt (s)β(s)}
1+|β(s)|2 ds

G ′
0(z),

(28)

where β : [0,∞) → C is a C1 function and ν0 ∈ R, or by

{
f (t, z) = eiν0t F ′

0(z),
g(t, z) = ei(ξ0−ν0)t G ′

0(z),
(29)

where ν0 is as above and ξ0 ∈ R �= {0}. Moreover, for the solutions (28), univalence
at any time is ensured once it holds at time t = 0. Univalence holds for the solutions
(29) if and only if F0 + λG0 is univalent for all λ with |λ| = 1.

Proof By Theorem 2, we know that there exist C1 functions α, β : [0,∞) → C with
|α(t)|2 − |β(t)|2 = 1 for all t ≥ 0 and ξ : [0,∞) → R such that

{
f (t, z) = α(t) f0(z) + eiξ(t) β(t) g0(z),
g(t, z) = β(t) f0(z) + eiξ(t) α(t) g0(z).

(30)

Note that since f (0, ·) = f0, g(0, ·) = g0, and the dilatation of F0 + G0 is non-
constant, we have the initial conditions

α(0) = 1, β(0) = 0, and ξ(0) = 0. (31)

A straightforward calculation shows that

ft f − g gt = (αt α − βt β)(| f0|2 − |g0|2) + 2i Re
{
ξtαβe−iξ f0g0

}

+iξt (|α|2 + |β|2) |g0|2
=

(
αt α − βt β − iξt |α|2

) (
| f0|2 − |g0|2

)
+ iξt |α f0 + βeiξ g0|2.

(32)
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Now, by (13), we know that ft f − g gt = iν(z, z). Since the function | f0|2 − |g0|2
only depends on z and z and is always different from zero, we obtain that

(
αt (t)α(t) − βt (t)β(t) − iξt (t)|α(t)|2

)

+i
ξt (t)|α(t) f0(z) + β(t)eiξ(t)g0(z)|2

| f0(z)|2 − |g0(z)|2 = i ν̃(z, z), (33)

where ν̃ = ν/((| f0|2−|g0|)2). Let us re-write the previous equation using that | f0|2−
|g0|2 = | f0|2(1−|ω|2), where ω = g0/ f0 is the dilatation of F0 +G0. Note that since
we are assuming that ω is not constant, we have that there exists an open disk D ⊂ �0
such that ω′(z) �= 0 for all z ∈ �0. From now on, we will assume that z ∈ D. Within
these terms (33) becomes

(
αt (t)α(t) − βt (t)β(t) − iξt (t)|α(t)|2

)

+i
ξt (t)|α(t) + β(t)eiξ(t)ω(z)|2

1 − |ω(z)|2 = i ν̃(z, z). (34)

Taking derivatives with respect to z in (34), we obtain that the function

iξt (t)
ω′(z)

(1 − |ω(z)|2)2
(
β(t) eiξ(t) + α(t)ω(z)

) (
α(t) + β(t)e−iξ(t)ω(z)

)

= iξt (t)
(
α(t)β(t)eiξ(t) +

(
|α(t)|2 + |β(t)|2

)
ω(z) + α(t)β(t)e−iξ(t)ω(z)

2
)

× ω′(z)
(1 − |ω(z)|2)2

only depends on z and on z. Hence, so does

iξt (t)
(
α(t)β(t)eiξ(t) +

(
|α(t)|2 + |β(t)|2

)
ω(z) + α(t)β(t)e−iξ(t)ω(z)

2
)

,

which has derivative with respect to z equal to

iξt (t)
(
|α(t)|2 + |β(t)|2

)
ω′(z) + 2iξt (t)α(t)β(t)e−iξ(t)ω(z)ω′(z).

Since ω′ is supposed to be non-zero, we have that

iξt (t)
(
|α(t)|2 + |β(t)|2

)
+ 2iξt (t)α(t)β(t)e−iξ(t)ω(z) = γ (z, z), (35)

where γ is a function of z and z. This fact finally implies (again taking derivatives
with respect to z in (35) and dividing out by ω′) the equation

ξtαβe−iξ = c1
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for some constant c1 and, in particular, by using this information in (35) we get that
(|α|2+|β|2)ξt is constant as well. Moreover, by (32), we see that ααt −ββ t is constant
too (indeed, using that |α|2 − |β|2 = 1, it is easy to check that αt α − βt β is a purely
imaginary complex number). In other words, we have seen that the following system
must be satisfied by the functions α, β, and ξ (here, c1, c2, and c3 are certain constants
with c3 ∈ R):

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ξtαβe−iξ = c1,

(|α|2 + |β|2)ξt = c2,

αtα − βtβ = ic3,

|α|2 − |β|2 = 1.

(36)

Now, note that the second and fourth equations in (36) can be re-written as

{
|α|2ξt + |β|2ξt = c2,

|α|2ξt − |β|2ξt = ξt ,

which gives

{
2|α|2ξt = c2 + ξt ,

2|β|2ξt = c2 − ξt .
(37)

On the other hand, using the first equation in (36), a direct consequence of (37) is that

4|c1|2 = 4(ξtαβe−iξ )(ξtαβe−iξ ) = 2|α|2ξt · 2|β|2ξt = c22 − ξ2t .

This shows that ξ2t (hence ξt ) must be a constant function.
We distinguish between two types of solutions.
Case 1 ξt ≡ 0. Then ξ must be constant and hence, by (31), we see that ξ ≡ 0.

Moreover, in this case (36) becomes

{
αtα − βtβ = ic3,
|α|2 − |β|2 = 1.

Notice that the above system is a particular case of (26), with ν0 = c3, c = 1, and
where β is replaced by β̄. Taking into account that α(0) = 0, the previous approach
shows that its solution is given by

α(t) =
√

|β(t)|2 + 1 exp

(
i
∫ t

0

c3 + Im{βt (s) β(s)}
1 + |β(s)|2 ds

)
,

and β : [0,∞) → C is an arbitrary C1-function with β(0) = 0. These considerations
prove the first part of the theorem. The univalence is obtained as in Remark 2.
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Case 2 ξt ≡ ξ0, ξ0 �= 0. Note that in this case [using that, by (31), ξ(0) = 0],
we have ξ(t) = ξ0t . By (37) we see that both functions |α| and |β| are constants. A
further application of (31) gives that β ≡ 0 and α(t) = eiϕ(t) for some C1 function
ϕ : [0,∞) → Rwith ϕ(0) = 0. Moreover, by (36) we get ϕ′ ≡ c3, so that ϕ(t) = c3t .
Therefore, according to (30), we have that

(
F ′(t, z)
G ′(t, z)

)
=

(
1 0
0 eiξ0t

) (
eic3t 0
0 e−ic3t

) (
F ′
0(z)

G ′
0(z)

)
,

which is (29) with ν0 = c3. Concerning the issue of univalence for the flows (29),
note that

(
F(t, z)
G(t, z)

)
=

(
1 0
0 eiξ0t

) (
eiν0t 0
0 e−iν0t

)(
F0(z)
G0(z)

)
+

(
μ(t)
ν(t)

)
,

where μ and ν are real-valued C1 functions in [0,∞). That is,

F(t, z) + G(t, z) = eiν0t
(
F0(z) + e−iξ0tG0(z)

)
+ v(t),

where v(t) is the translation vector (μ(t), ν(t)). The translation vector v, as well as
the multiplication factor eiν0t , play no role regarding univalence. Since e−iξ0t covers
the unit circle as t ∈ [0,∞), the claim is proved. 
�
Example 2 Gerstner’s flow [9] corresponds to the case of (29) in which

ν0 = 0, ξ0 = √
k g, F ′

0 = 1, and G ′
0(z) = −e−ikz,

where k > 0, g is the gravitational constant of acceleration, and z ∈ �0 = {z ∈
C : Im{z} < 0}.
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