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Abstract We consider an initial-boundary value problem for the nonstationary
Stokes system in a bounded domain � ⊂ R

3 with slip boundary conditions. We prove
the existence in the Hilbert–Sobolev–Slobodetski spaces with fractional derivatives.
The proof is divided into two main steps. In the first step by applying the compati-
bility conditions an extension of initial data transforms the considered problem to a
problem with vanishing initial data such that the right-hand sides data functions can
be extended by zero on the negative half-axis of time in the above mentioned spaces.
The problem with vanishing initial data is transformed to a functional equation by
applying an appropriate partition of unity. The existence of solutions of the equation
is proved by a fixed point theorem. We prove the existence of such solutions that
v ∈ Hl+2,l/2+1(� × (0, T )), ∇ p ∈ Hl,l/2(� × (0, T )), v—velocity, p—pressure,
l ∈ R+ ∪ {0}, l �= [l] + 1

2 and the spaces are introduced by Slobodetski and used
extensively by Lions–Magenes. We should underline that to show solvability of the
Stokes system we need only solvability of the heat and the Poisson equations in R

3

and R
3+. This is possible because the slip boundary conditions are considered.
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556 W. M. Zaja̧czkowski

1 Introduction

The aim of this paper is solvability in Sobolev–Slobodetski spaces of the Hilbert type
of the following slip boundary value problem for the nonstationary Stokes system

vt − divT(v, p) = f0 in �T = � × (0, T ),

divv = g0 in �T ,

νn̄ · D(v) · τ̄α + γ v · τ̄α = h0α, α = 1, 2, on ST = S × (0, T ),

v · n̄ = h03 on ST ,

v|t=0 = v0 in �,∫

�

pdx = 0,

(1.1)

where � ⊂ R
3, S is the boundary of �, v = (v1(x, t), v2(x, t), v3(x, t)) ∈ R

3

is the velocity of the fluid, x = (x1, x2, x3) the Cartesian system in R
3, f0 =

( f01(x, t), f02(x, t), f03(x, t)) ∈ R
3 the external force field, p = p(x, t) ∈ R the

pressure. Moreover, n̄ is the unit outward vector normal to S, τ̄α, α = 1, 2, tangent
to S, γ ≥ 0 is the constant slip coefficient.

By T(v, p) we denote the stress tensor of the form

T(v, p) = νD(v) − pI, (1.2)

where ν > 0 is the constant viscosity coefficient, I is the unit matrix and D(v) is the
dilatation tensor of the form

D(v) = {vi,x j + v j,xi }i, j=1,2,3 = ∇v + (∇v)T .

To formulate the main result of this paper we need.

Definition 1.1 (see equivalent Definition 2.1) By W l,l/2
2 (QT ), l ∈ R+ ∪ {0}, Q ⊂

R
n , we define the anisotropic Sobolev–Slobodetski space as a set of functions with

the following finite norm

‖u‖
Wl,l/2

2 (QT )
=

⎛
⎜⎝ ∑

|α|+2a≤l

∫

QT

|Dα
x ∂a

t u|2dxdt

+
∑

|α|+2a=[l]

T∫

0

∫

Q

∫

Q

|Dα
x ∂a

t u(x, t) − Dα
x ′∂a

t u(x ′, t)|2
|x − x ′|n+2(l−[l]) dxdx ′dt

+
∑

|α|+2a=[l]

∫

Q

T∫

0

T∫

0

|Dα
x ∂a

t u(x, t) − Dα
x ∂a

t ′u(x, t ′)|2
|t − t ′|1+2(l/2−[l/2]) dxdtdt ′

⎞
⎟⎠

1/2

. (1.3)

In the case of integer l the middle integral and for l even the last two integrals disappear.
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Nonstationary Stokes system in Sobolev–Slobodetski spaces 557

To simplify notation we introduce Hl,l/2(QT ) = W l,l/2
2 (QT ). Let Q be a subman-

ifold of R
n . Then norm (1.3) is defined by an appropriate partition of unity.

To prove the existence of solutions to problem (1.1) in Hs+2,s/2+1(�T ), s ∈ R+ ∪
{0}, we need compatibility conditions.

Definition 1.2 Assume the compatibility conditions

∫

�

g0dx =
∫

S

h03d S. (1.4)

Dα
x divv0 = Dα

x g0|t=0, |α| ≤ s − 1, (1.5)

where Dα
x = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 , |α| = α1 + α2 + α3, α = (α1, α2, α3) is the multiindex.

Dβ
τ (νn̄ · D(v0) · τ̄α + γ v0 · τ̄α) = Dβ

τ h0α|t=0, α = 1, 2, on S,

|β| ≤ s − 3/2, β = (β1, β2), |β| = β1 + β2, Dβ
τ = ∂β1

τ1
∂β2
τ2

, (1.6)

∂τα is the tangent derivative to S directed along the tangent vector τ̄α, α = 1, 2

Dβ
τ v0 · n̄ = Dβ

τ h03|t=0, |β| ≤ s − 1/2, (1.7)∫

�

pdx = 0. (1.8)

A very important step in the existence theory of solutions to the nonstationary prob-
lem (1.1) is its transformation to a problem with time t ∈ R. For this purpose we
transform problem (1.1) to a problem with vanishing initial data by its appropriate
extension.

Next such compatibility conditions on the r.h.s. functions in Eq. (1.1)1,2,3,4 must
be assumed that after the above extension of the initial data they can be extended by
zero for t < 0 in the considered spaces.

For this we extend the initial data in such a way that ṽ0|t=0 = v0, ṽ0 ∈
H2+s,1+s/2(�T ) and

‖ṽ0‖H2+s,1+s/2(�T ) ≤ c‖v0‖H1+s (�). (1.9)

Then we impose the following compatibility conditions

Definition 1.3 Assume that ṽ, f0, g0, h0 satisfy the relations

∂σ
t ( f0 − ṽ0,t + νdivD(ṽ0))|t=0 = 0,

σ <
s

2
for

s

2
�∈ Z, σ ≤ s

2
− 1 for

s

2
∈ Z;

∂σ
t (g0 − divṽ0)|t=0 = 0,

σ <
s + 1

2
for

s + 1

2
�∈ Z, σ ≤ s + 1

2
− 1 for

s + 1

2
∈ Z; (1.10)

∂σ
t (h0α − νn̄ · D(ṽ0) · τ̄α − γ ṽ0 · τ̄α)|t=0 = 0, α = 1, 2,
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558 W. M. Zaja̧czkowski

σ <
s + 1/2

2
for

s + 1/2

2
�∈ Z, σ ≤ s + 1/2

2
− 1 for

s + 1/2

2
∈ Z;

∂σ
t (h03 − ṽ0 · n̄)|t=0 = 0,

σ <
3

4
+ s

2
for

3

4
+ s

2
�∈ Z, σ ≤ 3

4
+ s

2
− 1 for

3

4
+ s

2
∈ Z.

Definition 1.4 (see [1, Proposition 1.7]) Assume that s/2 �= k + 1/2, k ∈ Z+ ∪ {0}.
The main result of this paper reads

Theorem A Assume that S ∈ Cs+2, f0 ∈ Hs,s/2(�T ), g0 ∈ Hs/2+1,s/2(�T ), g0,t ∈
L2(�; Hs/2(0, T )), h′

0 = (h01, h02) ∈ Hs+1/2,s/2+1/4(ST ), h03 ∈ Hs+3/2,s/2+3/4

(ST ), v0 ∈ H1+s(�), s ∈ R+ ∪ {0}. Assume the compatibility conditions introduced
in Definitions 1.2, 1.3, 1.4. Then there exists a solution to problem (1.1) such that
v ∈ Hs+2,s/2+1(�T ), ∇ p ∈ Hs,s/2(�T ) and there exists a constant c0 depending at
most on ‖S‖Cs+2 , s, T , such that

‖v‖H2+s,1+s/2(�T ) + ‖∇ p‖Hs,s/2(�T )

≤ c0(‖ f0‖Hs,s/2(�T ) + ‖g0‖Hs+1,s/2(�T )

+‖g0t‖L2(�;Hs/2(0,T )) + ‖h′
0‖Hs+1/2,s/2+1/4(ST )

+‖h03‖Hs+3/2,s/2+3/4(ST ) + ‖v0‖Hs+1(�)). (1.11)

For c0 independent of T see Sect. 6.

Remark 1.5 To describe the compatibility conditions (1.10) we have first to construct
function ṽ0. From (1.10) the following iterative relation follows

∂k
t ṽ0|t=0 = ∂k−1

t f0|t=0 + νdivD(∂k−1
t ṽ0|t=0), (1.12)

where k < s
2 + 1 for s

2 �∈ Z and k ≤ s
2 for s

2 ∈ Z. Since

ṽ0|t=0 = v0 (1.13)

for k = 1 we have

∂t ṽ0|t=0 = f0|t=0 + νdivD(v0). (1.14)

Calculating ∂k
t ṽ0|t=0 from (1.12) and (1.13) step by step we obtain

∂k
t ṽ0|t=0 = b(k)( f0|t=0, v0), (1.15)

where b(k) is a differential operator with respect to space variables of order 2k for v0
and 2k − 2 for f0|t=0, and k is described above.
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Nonstationary Stokes system in Sobolev–Slobodetski spaces 559

From (1.13), (1.15) there exists a function ṽ0 ∈ Hs+2,s/2+1(�T ) such that (1.13),
(1.15) are satisfied for all k defined above and

‖ṽ0‖Hs+2,s/2+1(�T ) ≤ c

[ s
2 +1

]∑
k=0

‖b(k)( f0|t=0, v0)‖Hs+2−2k (�), (1.16)

where b0 = v0.
Having ṽ0 calculated above conditions (1.10)2,3,4 are restrictions on g0 and h0.
In this paper we prove the existence of solutions to problem (1.1) in the Hilbert–

Sobolev–Slobodetski spaces H2+s,1+s/2(�T ), where s ∈ R+ ∪ {0}. The proof is
divided into two main steps: existence of solutions to problem (1.1) vanishing at time
t ≤ 0 (see Sect. 4) and appropriate extension of the initial data which transforms
problem (1.1) to the problem (3.1) with vanishing initial data (see Sect. 5). The first
step is much more difficult and crucial in the proof. It basis on local considerations
(see Sect. 3) and some ideas of the regularizer (see [10, Ch. 4]).

The local considerations are connected with localization of problem (3.1) by an
appropriate partition of unity (see Sect. 2). We distinguish two kinds of subdomains:
interior and close to the boundary.

Then applying the partition of unity a solution to problem (3.1) is calculated in the
form (4.1), where v(k) and p(k) are expressed explicitly (see Sect. 3). Problem (3.1) is
considered in spaces Hσ,σ/2

γ , γ ≥ 0, σ > 0 (see Definition 2.1), which are invariant
with respect to an extension by zero for t ≤ 0. The spaces are appropriate for examining
the solvability of parabolic problems and were introduced by Agranovich and Vishik
(see [1]) and were strongly developed by Solonnikov in [12] (see also [9, Vol. 2]).

The most natural way to find estimates and solve nonstationary parabolic problems
with vanishing initial data is to find the Fourier–Laplace transforms of solutions and
estimate them in spaces H̃σ,σ/2

γ (see Definition 2.2). By Lemma 2.3 we have equiv-

alence of norms of spaces Hσ,σ/2
γ and H̃σ,σ/2

γ what expresses importance of spaces

Hσ,σ/2
γ .
The main goal of this paper is to prove the existence of solutions to problem (3.1)

using only the existence of solutions to the heat equations in R
3 × R, R

3+ × R and to
the Poisson equation in R

3, R
3+. This can be made by applying the Fourier–Laplace

transform and use estimates in spaces H̃σ,σ/2
γ and H̃σ

γ respectively. This is possible
because the Helmholtz–Weyl decomposition reduces solvability of (3.1) to solvability
of the heat equation and the Poisson equation in the above mentioned spaces.

To show that our method is simple we recall the classical approach of solvability of
an initial-boundary value problem for the nonstationary Stokes system (see [12,13,15,
16]). After appropriate transformation the nonstationary Stokes system with vanishing
initial data in the half space R

3+ × R, where R
3+ = {x ∈ R

3 : x3 > 0} is derived.
Then after the Laplace transform with respect to t and the Fourier transforms with

respect to variables x1, x2 tangent to the plane x3 = 0 a system of ordinary differen-
tial equations with respect to x3 is formulated. Solving this system (see [12] for the
Neumann boundary conditions and [7] for some parabolic system with slip boundary
condition) and applying the definition of H̃σ,σ/2

γ the appropriate estimate follows.
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560 W. M. Zaja̧czkowski

In the L p-approach we can distinguish two ways. First: solving the system in
the half-space we construct a solution by using a corresponding Green function and
next it is estimated by the Calderon–Zygmund theorem. Second: solving the ordinary
differential system for the Fourier–Laplace transform we apply the Marcinkiewicz–
Mikhlin theorem and obtain the estimate directly. The first approach was employed by
Solonnikov in [13–16] in the case of non-slip and the Neumann boundary conditions.
The second approach for the Neumann and the slip boundary conditions was used
in [2,3,11] . In the fourth-coming paper we are going to extend the presented in this
paper proof to the L p-case.

2 Notation and auxiliary results

First we introduce the partition connected with a partition of unity {ω(k), �(k), ζ (k)(x)},
k ∈ M ∪ N , such that ζ (k) = ζ (k)(x) is a smooth function satisfying 0 ≤ ζ (k)(x) ≤
1, suppζ (k)(x) = �(k), ω(k) = {x ∈ �(k) : ζ (k)(x) = 1}.

Hence ω(k) ⊂ �(k) and
⋃

k∈M∪N ω(k) = ⋃
k∈M∪N �(k) = �, ω(k), �(k) for

k ∈ M are interior subdomains but ω(k), �(k), k ∈ N are neighbourhoods near S.
Moreover, we introduce functions ϑ(k)(x) such that

∑
k∈M∪N ϑ(k)(x)ζ (k)(x) = 1.

We assume that at most N0 of �(k) has nonempty intersection, so

ϑ(k) = ζ (k)∑
j (ζ

( j))2

Moreover, there exists λ > 0 such that supk diamω(k) ≤ λ, supk diam�(k) ≤
2λ, mink dist(∂�(k), ω(k)) ≥ dλ, k ∈ M, mink dist((∂�(k) \ S), (∂ω(k) \ S)) ≥ dλ,
k ∈ N for some positive d. There is no relation between N0 and λ. Hence we have

|Dα
x ζ (k)| ≤ c

λ|α| , |Dα
x ϑ(k)| ≤ c

λ|α| ,

where Dα
x = ∂

α1
x1 ∂

α2
x2 ∂

α3
x3 , |α| = α1 + α2 + α3, αi ∈ N0 = N ∪ {0}, α = (α1, α2, α3)

is a multiindex.
By ξ (k) we denote an interior point of ω(k) and �(k) for k ∈ M and the center of

ω̄(k) ∩ S and �̄(k) ∩ S for k ∈ N .
To consider problem (1.1) in a neighbourhood of S we have to make it locally flat.

Since problem (1.1) is invariant with respect to a translation and a rotation we can
introduce a local system of coordinates with origin in ξ (k), k ∈ N . We shall denote it
by y = (y1, y2, y3) and y = Yk(x), where Yk is a composition of a translation and a
rotation, which is such that the part S(k) = S ∩ �̄(k) of the boundary is described by
y3 = Fk(y1, y2), k ∈ N , where Fk ∈ Cs+2. Then we introduce new coordinates

zi = yi , i = 1, 2, z3 = y3 − Fk(y1, y2)
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Nonstationary Stokes system in Sobolev–Slobodetski spaces 561

and denote the mapping by

z = �k(y).

Then we define
�̂(k) = �k ◦ Yk(�

(k)) ≡ �k(�
(k)),

ω̂(k) = �k ◦ Yk(ω
(k)) ≡ �k(ω

(k)), k ∈ N .

We assume that the sets ω̂(k), �̂(k) are described in the local coordinates at ξ (k) by
the inequalitites

|yi | < λ, i = 1, 2, 0 < z3 = y3 − Fk(y1, y2) < λ,

|yi | < 2λ, i = 1, 2, 0 < z3 = y3 − Fk(y1, y2) < 2λ.

Finally, we introduce the notation

u(k)(x, t) = u(x, t)ζ (k)(x, t),

û(k)(z, t) = u(Y −1
k ◦ �−1

k (z), t),

ũ(k)(z, t) = û(k)(z, t)ζ̂ (k)(z)

(2.1)

for k ∈ N and in the case of vector-valued function u we have û(k)
i (z, t) = 0i j u j (Y

−1
k ◦

�−1
k (z), t), where {0i j }i, j=1,2,3 is an orthogonal matrix implied by the transformation

yi = 0i j Yi + ri and ri describes translation. Moreover,

u(k)(x, t) = u(x, t)ζ (k)(x) (2.2)

for k ∈ M.

Definition 2.1 We use the anisotropic Sobolev–Slobodetskii spaces W l,l/2
2 (QT ), l ∈

R+, QT = Q × (0, T ), where Q is either � or S, with the norm (see [1,7,12])

‖u‖2
Wl,l/2

2 (QT )
=

T∫

0

‖u(t)‖2
Wl

2(Q)
dt +

∫

Q

‖u(x)‖2
Wl/2

2 (0,T )
dx

≡ ‖u‖2
Wl,0

2 (QT )
+ ‖u‖2

W 0,l/2
2 (QT )

,

where

‖u‖2
Wl

2(Q)
=

∑
|α|≤l

‖Dα
x u‖2

L2(Q) ≡ ‖u‖2
Wl−1

2 (Q)
+ ‖u‖2

•
W

l

2(Q)

for integer l, and
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562 W. M. Zaja̧czkowski

‖u‖2
Wl

2(Q)
=

∑
|α|≤[l]

‖Dα
x u‖2

L2(Q)

+
∑

|α|=[l]

∫

Q

∫

Q

|Dα
x u(x) − Dα

x ′u(x ′)|2
|x − x ′|s+2(l−[l]) dxdx ′ ≡ ‖u‖2

W [l]
2 (Q)

+ ‖u‖2
•

W
l

2(Q)

for noninteger l, where s = dim Q, Dα
x = ∂

α1
x1 . . . ∂

αs
xs , α = (α1, . . . , αs) is a multi-

indes, [l] is the integer part of l. For Q = S the above norm is introduced by using
local charts and a partition of unity.

Finally,

‖u‖2
Wl/2

2 (0,T )
=

∑
i≤l/2

‖∂ i
t u‖2

L2(0,T )

for integer l/2, and

‖u‖2
Wl/2

2 (0,T )
=

∑
i≤[l/2]

‖∂ i
t u‖2

L2(0,T )

+
∑

i=[l/2]

T∫

0

T∫

0

|∂ i
t u(t) − ∂ i

t ′u(t ′)|2
|t − t ′|1+2(l/2−[l/2]) dtdt ′,

for l/2 noninteger. We shall use the simplified notation

Hl,l/2(QT ) = W l,l/2
2 (QT ).

To consider problems with vanishing initial conditions we need a space of functions
which admits a zero extension to t < 0. Therefore, for every γ ≥ 0, we introduce the
space Hl,l/2

γ (QT ) with the norm (see [1,7,12])

‖u‖2
Hl,l/2

γ (QT )
=

T∫

0

e−2γ t‖u‖2
Wl

2(Q)
dt + ‖u‖2

H0,l/2
γ (QT )

.

For l/2 �∈ Z,

‖u‖2
H0,l/2

γ (QT )
= γ l

T∫

0

e−2γ t‖u‖2
L2(Q)dt

+
T∫

0

e−2γ t dt

∞∫

0

‖∂k
t u0(·, t − τ) − ∂k

t u0(·, t)‖2
L2(Q)

τ 1+2(l/2−k)
dτ,
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Nonstationary Stokes system in Sobolev–Slobodetski spaces 563

where k = [ l
2

]
< l

2 , and u0(x, t) = u(x, t) for t > 0, u0(x, t) = 0 for t <

0, ∂k
t u|t=0 = 0.

For l/2 ∈ Z,

‖u‖2
H0,l/2

γ (QT )
=

T∫

0

e−2γ t (γ l‖u‖2
L2(Q) + ‖∂ l/2

t u‖2
L2(Q))dt

and we assume that ∂
j

t u|t=0 = 0, j = 0, . . . , l/2 − 1, so u0(x, t) has a generalized
derivative ∂

l/2
t u0 in Q × (−∞, T ).

Functions in Hl,l/2
γ (Q × (0, T )) admit an extension by zero for t < 0. A space of

such elements we denote by Hl,l/2
γ (Q × (−∞, T )).

In accordance with [1] we have that u ∈ Hl,l/2
γ (Q × (0, T )) if and only if

ue−γ t ∈ Hl,l/2(Q × (0, T )) and uγ ∈ Hl,l/2(Q × (−∞, T )), T ≤ 0,

where
uγ =

{
e−γ t u for t > 0,

0 for t < 0.

Let us introduce the Fourier–Laplace transform for functions defined in R
3 × R+ by

ũ(ξ, s) =
∫

R3

dx
∫

R+

e−st+iξ ·x u(x, t)dt, (2.3)

and for functions defined in R
3+ × R+ by

ũ(ξ, x3, s) =
∫

R2

dx ′
∫

R+

e−st+iξ ′·x ′
u(x ′, x3, t)dt, (2.4)

where s = γ + iξ0, Res = γ ≥ 0, ξ0 ∈ R, ξ ∈ R
3, ξ · x = ∑3

i=1 ξi xi , ξ ′ · x ′ =∑2
i=1 ξi xi .

For any function u ∈ Hl,l/2
γ (R3 ×R) the Laplace transform is defined for Res ≥ γ .

By the Paley–Wiener theorem the Laplace transform ũ(x, s) is a holomorphic function
of s for Res > γ .

Definition 2.2 By H̃ l,l/2
γ (R3 × R), l ∈ R+, γ ≥ 0, we define a space of functions

with the finite norm

‖u‖
H̃ l,l/2

γ (R3×R)
=

( ∫

R3

dξ

∫

R

dξ0|ũ(ξ, s)|2|s + ξ2|l
)1/2

, (2.5)

where s = iξ0 + γ .
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564 W. M. Zaja̧czkowski

Definition 2.3 By H̃ l,l/2
γ (R3+ × R), l ∈ R+, γ ≥ 0 we define a space of functions

with the finite norm

‖u‖
H̃ l,l/2

γ (R3+×R)
=

⎛
⎜⎝∑

j≤[l]

∫

R2

dξ ′
∫

R

dξ0

∫

R+

dx3|∂ j
x3 ũ(ξ ′, x3, s)|2(ξ ′2 + |s|)l− j

+
∫

R2

dξ ′
∫

R

dξ0

∫

R+

∫

R+

dx ′
3dx ′′

3

|∂ [l]
x ′

3
ũ(ξ ′, x ′

3, s) − ∂
[l]
x ′′

3
ũ(ξ ′, x ′′

3 , s)|2
|x ′

3 − x ′′
3 |1+2(l−[l])

⎞
⎟⎠

1/2

, (2.6)

where s = iξ0 + γ .

By the properties of the Parseval identity and Lemma 2.1 in [12] we have

Lemma 2.4 For any γ ≥ 0 there exist constants c1 and c2 independent of u and γ, l
such that

c1‖u‖
Hl,l/2

γ (R3×R)
≤ ‖u‖

H̃ l,l/2
γ (R3×R)

≤ c2‖u‖
Hl,l/2

γ (R3×R)
. (2.7)

Proof The proof is almost the same as the corresponding proof in [12, Sect. 2]. Since
the result is very important we recall it for the reader convenience.

By the Fourier–Laplace transform (2.3) and the Parseval identity we have

∫

R

dξ0

∫

R3

|ũ(ξ, γ + iξ0)|2dξ = (2π)4
∫

R+

e−2γ t dt
∫

R3

|u(x, t)|2dx .

The above identity implies

∫

R+

e−2γ t‖u‖2•
W 2

l
(R3)

dt = c
∫

R

∫

R3

∑
|α|=[l]

|ξα|2|ξ |2(l−[l])|ũ|2dξ0dξ,

∫

R+

e−2γ t‖u‖2
L2(R3)

γ ldt = (2π)−4
∫

R

∫

R3

γ l |ũ(ξ, γ + iξ0)|2dξ0dξ.

Moreover, for noninteger l/2 we have

∫

R+

e−2γ t dt
∫

R+

∥∥∥∥∂ku(·, t − τ)

∂tk
− ∂ku(·, t)

∂tk

∥∥∥∥
2

L2(R3)

dτ

τ 1+l−2k

= (2π)−4
∫

R3

dξ

∫

R

|s|2k |ũ(ξ, x)|2dξ0

∞∫

0

|e−τ s − 1|2 dτ

τ 1+l−2k
, (2.8)

where k = [ l
2

]
.
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Now we examine the last integral on the r.h.s. of (2.8). Changing variables τ ′ =
|s|τ, |s| =

√
γ 2 + ξ2

0 we obtain

∞∫

0

|e−τ s − 1|2 dτ

τ 1+l−2k
= |s|l−2k

∞∫

0

|e−τ ′ s
|s| − 1|2 dτ ′

τ
′1+l−2k

≡ |s|l−2k I (∞).

Since

|e−τ ′ s
|s| − 1|2 = 1 + e−2τ ′ γ

|s| − 2−τ ′ γ
|s| cos

ξ0

|s|τ
′

= (1 − e−τ ′ γ
|s| )2 + 2e−τ ′ γ

|s|
(

1 − cos
ξ0

|s|τ
′
)

behaves as τ
′2 near τ ′ = 0 we obtain that I (1) < ∞, so there exist constants c1 and

c2 such that

c1 ≤ I (∞) ≤ c2,

because l − 2
[ l

2

]
> 0 for l

2 noninteger.
Hence

c̃1‖u‖2
H̃ l,l/2

γ (R4)
≤

∫

R+

e−2γ t dt
∫

R+

∥∥∥∥∂ku(·, t − τ)

∂tk
− ∂ku(·, t)

∂tk

∥∥∥∥
2

L2(R3)

dτ

τ 1+l−2k

≤ c̃2‖u‖2
H̃ l,l/2

γ (R4)
, (2.9)

where c̃1, c̃2 do not depend on γ and u.
For γ = 0,

∣∣∣∣e−τ ′i ξ0|ξ0 | − 1

∣∣∣∣
2

= 2 − 2 cos τ ′ ξ0

|ξ0| .

Since the expression behaves as τ
′2 near τ ′ = 0 the above considerations imply (2.9)

for γ = 0.
For l/2 integer the above results also holds. This concludes the proof.

Remark 2.5 Similarly as Lemma 2.4 we prove. For any γ ≥ 0 there exist positive
constans c1 and c2 independent of u and γ such that

c1‖u‖
Hl,l/2

γ (R3+×R)
≤ ‖u‖

H̃ l,l/2
γ (R3+×R)

≤ c2‖u‖
Hl,l/2

γ (R3+×R)
. (2.10)

We need the following interpolation inequality
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Lemma 2.6 (see [12, Sect. 4]) Let u ∈ Hl,l/2
γ (R3

T ), γ > 0, l > 0. Let R
3
T =

R
3 × (0, T ). Let β + |α| + k < l. Then

‖∂β/2
t Dα

x u‖
Hk,k/2

γ (R3
T )

≤ εl−|α|−β−k‖u‖
Hl,l/2

γ (R3
T )

+cε−k−|α|−β‖e−γ t u‖L2(R3
T )

≤ (εl−|α|−β−k + cγ −l/2ε−k−|α|−β)‖u‖
Hl,l/2

γ (R3
T )

. (2.11)

Proof Inequality (2.11) is proved by Lemma 2.4, the elementary inequality

|s|β |ξ |2|α||s + ξ2|k ≤ ε|s + ξ2|l + c(1/ε)

and the definition of space Hl,l/2
γ .

Remark 2.7 Inequality (2.11) holds for u ∈ Hl,l/2
γ (�T ) after applying a partition of

unity in �.

Lemma 2.8 Let us consider spaces Hl,l/2
γ (� × (−∞, T )), l ∈ R+, γ ∈ [0,∞).

For any finite T the norms of spaces Hl,l/2
γ1 (� × (−∞, T )) and Hl,l/2

γ2 (� ×
(−∞, T )), γ1, γ2 ∈ [0,∞) are equivalent.

The proof of the lemma follows directly from the definition of Hl,l/2
γ and the fact

that elements of that space vanish for t < 0.

Lemma 2.9 Let bi ∈ H2(l−i)+1(�), � ⊂ R
n, i ≤ [l], l ∈ R+. Then there exists a

function u ∈ H2l+2,l+1(�T ) such that

∂ i
t u|t=0 = bi , i ≤ [l], (2.12)

and

‖u‖H2l+2,l+1(�T ) ≤ c
[l]∑

i=0

‖bi‖H2(l−i)+1(�). (2.13)

Lemma 2.10 Let R
n+ = {x ∈ R

n : xn > 0}. Let ai ∈ Hl−i−1/2,l/2−i/2−1/4(Rn−1 ×
R+), i ≤ [l − 1/2]. Then there exists a function u ∈ Hl,l/2(Rn+ × R+) such that

∂ i
xn

u|xn=0 = ai , i ≤ [l − 1/2]

and the estimate holds

‖u‖Hl,l/2(Rn+×R+) ≤ c
[l−1/2]∑

i=0

‖ai‖Hl−i−1/2,l/2−i/2−1/4(Rn−1×R+). (2.14)
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The anisotropic Sobolev–Slobodetski spaces W l,l/2
p (�T ), l ∈ R+ \ Z+, p ∈

(1,∞) are called by Besov (see [4]) the generalized Sobolev spaces. They are equiv-
alent to the Besov spaces Bl,l/2

p,p (�T ) = Bl,l/2
p (�T ) (see also [4]). Then Lemmas 2.9

and 2.10 are special cases of Theorems 2.1 and 2.2 from [4]. For l ∈ Z Lemmas 2.9
and 2.10 follow from [5, Ch. 5]. Lemmas 2.9 and 2.10 for Besov spaces with mixed
norms are proved in [6]. Theorems of direct and inverse traces for Hilbert–Sobolev–
Slobodetski spaces were proved also in [9, Vol. 2, Ch. 4].

Finally we consider the problems

ut − �u = f in Rn+ × R,

u|xn=0 = b1 on R
n−1 × R

(2.15)

and

ut − �u = f in R
n+ × R,

∂u
∂xn

∣∣∣∣
xn=0

= b2 on R
n−1 × R,

(2.16)

where x = (x1, . . . , xn) = (x ′, xn).
Following [7,12] we have

Lemma 2.11 Assume that

f ∈ Hs,s/2
γ (Rn+ × R),

b1 ∈ Hs+3/2,s/2+3/4
γ (Rn−1 × R),

b2 ∈ Hs+1/2,s/2+1/4
γ (Rn−1 × R).

Then there exist solutions to problems (2.15) and (2.16) such that u ∈ Hs+2,s/2+1
γ (Rn+×

R) and the esitmates hold

‖u‖
Hs+2,s/2+1

γ (Rn+×R)
≤ c

(
‖ f ‖

Hs,s/2
γ (Rn+×R)

+‖b1‖Hs+3/2,s/2+3/4
γ (Rn−1×R)

)
(2.17)

for (2.15), and

‖u‖
Hs+2,s/2+1

γ (Rn+×R)
≤ c

(
‖ f ‖

Hs,s/2
γ (Rn+×R)

+‖b2‖Hs+1/2,s/2+1/4
γ (Rn−1×R)

)
(2.18)

for (2.16).

Proof Let us restrict our considerations to problem (2.15). Extending f on xn < 0 by
the Hestenes–Whitney method we solve the equation

ut − �u = f ′ in R
n × R,
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568 W. M. Zaja̧czkowski

where f ′ is the extension of f , by applying the Fourier–Laplace transform (2.3) and
using the Parseval identity to get solutions in spaces Hs+2,s/2+1

γ (Rn × R) introduced
in Definition 2.2.

Then (2.15) is transformed to the problem

ut − �u = 0,

u|xn=0 = d.

Applying transform (2.4) we get

τ 2ũ − ∂2
xn

ũ = 0, ũ|xn=0 = d̃, (2.19)

where τ = √
s + |ξ ′|2. Solving (2.19) yields ũ = d̃e−τ xn .

Using spaces H̃ l,l/2
γ (Rn+ × R) introduced in Definition 2.3 and then Remark 2.5

(for details see [7,12]) we prove the lemma.
Let us consider the elliptic problem

−�u = f in R
3 × R, (2.20)

where t is parameter.
By the Fourier–Laplace transform and the Parseval identity we have

Lemma 2.12 Let f ∈ Hs,s/2+1
γ (R3 × R), s ∈ R+, γ ≥ 0. Then for solutions to

(2.20) we obtain

‖u‖
Hs+2,s/2+1

γ (R3×R)
≤ c‖ f ‖

Hs,s/2+1
γ (R3×R)

. (2.21)

3 Local considerations

The aim of this section is to transform problem (1.1) with vanishing initial data to the
Poisson equation in R

3, R
3+ and the heat equation in R

3 × R, R
3+ × R for localized

velocity and pressure. The localization is made by an appropriate partition of unity
and the Helmholtz–Weyl decomposition.

Therefore we consider the following problem

vt − ν�v + ∇ p = f in � × R,

divv = g in � × R,

n̄ · D(v) · τ̄α + γ v · τ̄α = hα, α = 1, 2, on S × R,

v · n̄ = h3 on S × R,∫

�

pdx = 0,

(3.1)

where we assumed that functions f, g, hα, α = 1, 2, 3, are extended by zero for t < 0
and next by the Hestenes–Whitney method for t > T .
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First we consider problem (3.1) in an interior subdomain. Multiplying (3.1) by
ζ (k), k ∈ M, and using notation (2.2) we obtain

v
(k)
t − ν�v(k) + ∇ p(k) = f (k)

1 in R
3 × R,

divv(k) = g(k)
1 in R

3 × R,
(3.2)

where f (k)
1 = −2ν∇ζ (k)∇v − ν�ζ (k)v + p∇ζ (k) + f (k),

g(k)
1 = g(k) + v · ∇ζ (k).

To apply the Helmholtz–Weyl decomposition we have to work with divergence free
functions. For this purpose we introduce a function ϕ(k) by

�ϕ(k) = g(k)
1 in R

3. (3.3)

Defining the new function

u(k) = v(k) − ∇ϕ(k) (3.4)

we transform problem (3.2) into the following problem

u(k)
t − ν�u(k) + ∇ p(k) = f (k)

1 − ∇ϕ
(k)
t + ν�∇ϕ(k) ≡ f (k)

2 in R
3 × R,

divu(k) = 0 in R
3 × R.

(3.5)

By the Helmholtz–Weyl decomposition (see [8, Vol. 1, Ch. 3]) there exist functions
η(k) and f (k)

3 such that

f (k)
2 = ∇η(k) + f (k)

3 , (3.6)

where f (k)
3 is divergence free, so

div f (k)
3 = 0 (3.7)

and η(k) is a solution to the problem

�η(k) = div f (k)
2 in R

3. (3.8)

Then problem (3.5) splits up into

p(k) = η(k), (3.9)

where η(k) is a solution to (3.8) and

u(k)
t − ν�u(k) = f (k)

3 in R
3 × R. (3.10)

123



570 W. M. Zaja̧czkowski

Now we consider a neighbourhood near the boundary. Then for k ∈ N instead of (3.2)
we have

v
(k)
t − ν�v(k) + ∇ p(k) = f (k)

1 in �(k) × R,

divv(k) = g(k)
1 in �(k) × R,

νn̄ · D(v(k)) · τ̄α + γ v(k) · τ̄α = h(k)
α

+νni (v jζ
(k)
,xi + viζ

(k)
,x j )τα j ≡ h(k)

α1 , α = 1, 2, on S(k) × R,

v(k) · n̄ = h(k)
3 ≡ h(k)

31 on S(k) × R,

(3.11)

where f (k)
1 and g(k)

1 have the same form as in the case k ∈ M and the summation
convention over the repeated indices is assumed.

Next we apply the mapping �k and introduce the notation

∇z = ∂z, ∇�k j = ∂�ki

∂x j
· ∇zi = �ki,x j · ∇zi ,

n̄z = (0, 0, 1), τ̄z1 = (1, 0, 0), τ̄z2 = (0, 1, 0),

n̄�k = 1

|∇yχk |∇yχk

∣∣∣∣
y=�−1

k (z)
,

τ̄�k 1 = n̄�k × τ̄z2, τ̄�k 2 = n̄�k × τ̄z1

and χk = y3 − Fk(y1, y2).
Applying mapping �k and notation (2.1) problem (3.11) takes the form

ṽ
(k)
t − ν∇2

z ṽ(k) + ∇z p̃(k)

= −ν(∇2
z ṽ(k) − ∇2

�k
ṽ(k)) + ∇z p̃(k) − ∇�k p̃(k)

+ f̃ (k)
1 ≡ f̃ (k)

2 in R
3+ × R,

divz ṽ
(k) = divz ṽ

(k) − div�k ṽ
(k) + g̃(k)

1 ≡ g̃(k)
2 in R

3+ × R,

n̄z · Dz(ṽ
(k)) · τ̄zα + γ ṽ(k) · τ̄zα

= n̄z · Dz(ṽ
(k)) · τ̄zα − n̄�k · D�k (ṽ

(k)) · τ̄�kα

+γ (ṽ(k) · τ̄zα − ṽ(k) · τ̄�kα) + h̃(k)
α1

≡ h̃(k)
α2 , α = 1, 2, z3 = 0, on R

2 × R,

n̄z · ṽ(k) = n̄z · ṽ(k) − n̄�k · ṽ(k) + h̃(k)
31 ≡ h̃(k)

32 z3 = 0 on R
2 × R.

(3.12)

Let us express problem (3.12) in the form

ṽ
(k)
t − ν∇2

z ṽ(k) + ∇z p̃(k) = f̃ (k)
2 z3 > 0,

divz ṽ
(k) = g̃(k)

2 z3 > 0,

ṽ
(k)
α,z3 = h̃(k)

α2 , α = 1, 2, z3 = 0,

ṽ
(k)
3 = h̃(k)

32 z3 = 0.

(3.13)
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Let ϕ(k) be a solution to the Neumann problem for the Poisson equation

�ϕ(k) = g̃(k)
2 z3 > 0,

n̄ · ∇ϕ(k) = h̃(k)
32 z3 = 0.

(3.14)

Introducing the new function

u(k) = ṽ(k) − ∇ϕ(k) (3.15)

we see that (u(k), p̃(k)) is a solution to the problem

u(k)
t − ν∇2

z u(k) + ∇z p̃(k) = f̃ (k)
2 − ∇ϕ

(k)
t + ν∇�ϕ(k) ≡ f̃ (k)

3 , z3 > 0,

divu(k) = 0 z3 > 0,

u(k)
α,z3 = h̃(k)

α2 − ∇zαϕ
(k)
,z3 ≡ h̃(k)

α3 , α = 1, 2, z3 = 0,

u(k)
3 = 0 z3 = 0.

(3.16)

We need the Helmholtz–Weyl decomposition

f̃ (k)
3 = ∇η(k) + f̃ (k)

4 , div f̃ (k)
4 = 0, f̃ (k)

4 · n̄z = 0 on z3 = 0. (3.17)

Then

�η(k) = div f̃ (k)
3 , z3 > 0,

n̄z · ∇η(k) = n̄z · f̃ (k)
3 z3 = 0.

(3.18)

Using the decomposition (3.17) in (3.16) yields

p̃(k) = η(k), z3 > 0,

n̄z · ∇ p̃ = n̄z · ∇η(k) = n̄z · f̃ (k)
3 z3 = 0,

(3.19)

and u(k) is a solution to the problem

u(k)
t − ν�zu(k) = f̃ (k)

4 z3 > 0,

u(k)
α,z3 = h̃(k)

α3 , α = 1, 2, z3 = 0,

u(k)
3 = 0 z3 = 0.

(3.20)

In view of the above considerations problem (3.1) is replaced by a system of local
problems (3.8)–(3.10) for k ∈ M and (3.18)–(3.20) for k ∈ N . Hence the complicated
problem (3.1) is replaced by the Poisson and the heat equations in R

3 and in R
3+,

respectively. Solvability of these equations in the Sobolev–Slobodetski spaces Hl,l/2
γ

can be shown by applying the Laplace–Fourier transform and the Parseval identity.
Since the Poisson Eqs. (3.8) and (3.18) and the heat Eqs. (3.10) and (3.20) determine

local solutions (solutions with support in �(k), k ∈ M ∪ N ) we describe solutions
to (3.1) in � by using the properties of the partition of unity and express them in
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form (4.1). However, the above construction does not imply existence of solutions
to problem (3.1) because functions f (k)

2 , f (k)
3 for k ∈ M and f (k)

3 , f (k)
4 for k ∈ N

depend on v and p.
Hence to prove the existence of solutions to (3.1) some fixed point argument

must be applied. To make this possible the pressure p occuring in the r.h.s. of
Eqs. (3.8), (3.10), (3.18), (3.20) must be expressed in terms of v. This is possible
for slip boundary conditions because in this case p can be calculated from the Neu-
mann problem to the Poisson equations (see [18]). The existence of solutions to (3.1)
is proved in Sect. 4.

4 Existence of solutions with vanishing initial data

In this section we prove the existence of solutions to problem (3.1). To show this we
use the local considerations from Sect. 3. By the property of the partition of unity we
have

v =
∑

k∈M∪N
ϑ(k)v(k),

p =
∑

k∈M∪N
ϑ(k) p(k).

(4.1)

Now we express v(k) and p(k) in the more explicit form. Let k ∈ M. From (3.3), (3.4),
(3.6), (3.7) and (3.10) we have

v(k) = u(k) + ∇ϕ(k), (4.2)

where

u(k) − ν�u(k) = f (k)
3 in R

3 × R,

f (k)
3 = f (k)

2 − ∇
∫

R3

E(x − y)divy f (k)
2 (y, t)dy

f (k)
2 = f (k)

1 − ∇ϕ
(k)
t + ν∇�ϕ(k),

f (k)
1 = −2ν∇ζ (k)∇v − ν�ζ (k)v + p∇ζ (k) + f (k),

(4.3)

where E(x − y) is the fundamental solution to the Laplace equation and

�ϕ(k) = g(k) + v · ∇ζ (k) in R
3. (4.4)

Next

p(k) = η(k), (4.5)

123



Nonstationary Stokes system in Sobolev–Slobodetski spaces 573

where

�η(k) = div f (k)
2 in R

3. (4.6)

Hence

(v(k), p(k)) = L(k)(v, p, f, g, h)

≡ (L(k)
1 (v, p, f, g, h), L(k)

2 (v, p, f, g, h)), k ∈ M (4.7)

where L(k) is an operator determined by relations (4.2)–(4.6).
Let k ∈ N . Let Zk be such operator that

Zk : X (�̂(k)) → X (�(k))

for any function space X . Then

v(k) = Zk ṽ
(k), (4.8)

where v(k) and ṽ(k) are solutions to problems (3.11) and (3.12), respectively. In view
of (3.15) we have

ṽ(k) = u(k) + ∇ϕ(k), (4.9)

where u(k) is a solution to (3.16) and ϕ(k) is the function described by (3.14). Finally,
we obtain

p̃(k) = η(k), (4.10)

where η(k) is a solution to (3.18). Then

p(k) = Zk p̃(k), k ∈ N . (4.11)

From (4.8)–(4.11) we obtain

(v(k), p(k)) = L(k)(v, p, f, g, h) for k ∈ N . (4.12)

Relations (4.1), (4.7), (4.12) imply

(v, p) =
∑

k∈M∪N
ϑ(k)L(k)(v, p, f, g, h) ≡ L(v, p, f, g, h). (4.13)

Existence of solutions to problem (3.1) is equivalent to find (v, p) satisfying (4.13). Let
�(v, p) = L(v, p, f, g, h). Then solvability of (4.13) means an existence of a fixed
point of the mapping

(v, p) = �(v̂, p̂). (4.14)
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For this we need to show that � is a contraction. This, however, is impossible if p
appears in (4.13). Hence to show the contraction we need a global estimate for pressure
on �. Let ϕ be a solution to the Neumann problem

�ϕ = g in �,

n̄ · ∇ϕ = h3 on S,
(4.15)

∫

�

ϕdx = 0, (4.16)

with the following compatibility condition

∫

�

gdx =
∫

S

h3d S. (4.17)

Introducing the new functions

u = v − ∇ϕ, q = p + ϕt − ν�ϕ (4.18)

problem (3.1) takes the form

ut − ν�u + ∇q = f,

divu = 0,

u · n̄|S = 0,

νn̄ · D(u) · τ̄α + γ u · τ̄α = hα − νn̄ · D(∇ϕ) · τ̄α − γ∇ϕ · τ̄α

≡ dα, α = 1, 2.

(4.19)

Then q is a solution to the problem

�q = div f in �,

n̄ · ∇q = f · n̄ + νn̄ · �u on S,∫

�

qdx = −ν

∫

S

h3d S.
(4.20)

From [18] we have

n̄ · �u|S = aαβuα,τβ + aαuα + bαuα,n − dα,τα , (4.21)

where the summation convention with respect toα, β is assumed,α, β = 1, 2, τα, α =
1, 2, are tangent coordinates to S, n is the normal coordinate to S, aαβ, aα, bα ∈ Cs

if S ∈ Cs+2.
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Lemma 4.1 Assume that S ∈ Cs+2, h ∈ Hs+1/2,s/2
γ (S × R), f ∈ Hs,s/2

γ (� ×
R), ∇ϕ ∈ Hs+2,s/2+1

γ (� × R). Then the following inequality holds

‖p‖
Hs,s/2

γ (�×R)
+ ‖∇ p‖

Hs,s/2
γ (�×R)

≤ c(‖v‖
Hs+1,s/2

γ (�×R)

+‖ f ‖
Hs,s/2

γ (�×R)
+ ‖∂t∇ϕ‖

Hs,s/2
γ (�×R)

+ ‖∇2∇ϕ‖
Hs,s/2

γ (�×R)

+
2∑

α=1

(‖hα‖Hs+1/2(S;L2,γ (R)) + ‖hα‖
H1/2(S;Hs/2

γ (R))
)

+‖h3‖L2(S;Hs/2
γ (R))

. (4.22)

Proof Problem (4.20) is elliptic with respect to spatial variables where time t is a
parameter. Therefore to obtain an estimate for

I = ‖∇q‖
Hs,s/2

γ (�×R)

it is sufficient to obtain estimates for

I1 = ‖∇q‖
L2(�;Hs/2

γ (R))
and I2 = ‖∇q‖L2,γ (R;Hs (�)).

In view of the Laplace transform appeared in (2.3) and the definition of the space
H̃ s/2

γ (R) with its equivalence to space Hs/2
γ (R) described by Lemma 2.3 we see that

to estimate I1 it is sufficient to find an estimate for ‖∇q‖L2(�).

Multiplying (4.20)1 by q and integrating over � we obtain

∫

S

n̄ · ∇qqd S −
∫

�

|∇q|2dx =
∫

S

n̄ · f qd S −
∫

�

f · ∇qdx .

In view of (4.20)2 and application of the Hölder and the Young inequalities to the last
term on the r.h.s. we obtain the inequality

‖∇q‖2
L2(�) ≤ c‖ f ‖2

L2(�) + ν

∫

S

n̄ · �uqd S

≤ c‖ f ‖2
L2(�) + ‖n̄ · �u‖H−1/2(S)‖q‖H1/2(S). (4.23)

In view of (4.21) we have

‖n̄ · �u‖H−1/2(S) ≤ c‖u‖H1(�) +
2∑

α=1

‖dα‖H1/2(S)

≤ c

(
‖v‖H1(�) + ‖∇ϕ‖H2(�) +

2∑
α=1

‖hα‖H1/2(S)

)
,

where in the second inequality we used (4.18)1 and (4.19)4.

123



576 W. M. Zaja̧czkowski

By the Poincare inequality and (4.20)3 we have

‖q‖L2(�) ≤ c(‖∇q‖L2(�) + ‖h3‖L2(S)).

Using the above estimates in (4.23) yields

‖q‖H1(�) ≤ c

(
‖v‖H1(�) + ‖∇ϕ‖H2(�) + ‖ f ‖L2(�)

+
2∑

α=1

‖hα‖H1/2(S) + ‖h3‖L2(S)

)
. (4.24)

Applying the Laplace transform to (4.20) and (4.21), multiplying the results by |γ +
iξ0|s/2, taking the inverse Laplace transform and repeating the considerations leading
to (4.24) we obtain

‖q‖
H1(�;Hs/2

γ (R))
≤ c

(
‖v‖

H1(�;Hs/2
γ (R))

+‖∇ϕ‖
H2(�;Hs/2

γ (R))
+ ‖ f ‖

L2(�;Hs/2
γ (R))

+
2∑

α=1

‖hα‖
H1/2(S;Hs/2

γ (R))
+ ‖h3‖L2(S;Hs/2

γ (R))

)
. (4.25)

For solutions to (4.20) we have

‖∇q‖Hs (�) ≤ c
(‖div f ‖Hs−1(�) + ‖ f · n̄ + νn̄ · �u‖Hs−1/2(S)

)

≤ c

(
‖ f ‖Hs (�) + ‖u‖Hs+1(�) +

2∑
α=1

‖dα‖Hs+1/2(S)

)

≤ c

(
‖ f ‖Hs (�) + ‖v‖Hs+1(�) + ‖∇2ϕ‖Hs+1(�)

+
2∑

α=1

‖hα‖Hs+1/2(S)

)
, (4.26)

where we used (4.21) and (4.19)4.
Existence of solutions to problem (4.20) and estimate (4.26) follows from the theory

developed in [9, Vol. 1]. The proof can be also made directly using [7,12]. Applying
the partition of unity problem (4.20) is transformed to the local problems

�u = f in R
3

and
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�u = 0 in R
3+, u = b for x3 = 0.

Applying the Fourier transform with respect to x ′ to the problem in R
3+ we get

−|ξ ′|2ũ + ∂2
x3

ũ = 0, ũ|x3=0 = b̃.

Solving we get ũ = b̃e−|ξ ′|x3 . Using the definition of space Hl(R3+),

‖u‖Hl (R3+) =
( ∑

j≤[l]

∫

R2

dξ ′
∫

R+

dx3|∂ j
x3 ũ|2|ξ ′|2(l− j)

+
∫

R2

dξ ′
∫

R+

dx ′
3

∫

R+

dx ′′
3

|∂ [l]
x ′

3
ũ(ξ ′, x ′

3) − ∂
[l]
x ′′

3
ũ(ξ ′, x ′′

3 )|2
|x ′

3 − x ′′
3 |1+2(l−[l]

)1/2

,

the Parseval indentity, summing up local solutions and employing a perturbation argu-
ment we have existence of solutions to (4.20) and estimate (4.26).

From (4.25) and (4.26) we have

‖∇q‖
Hs,s/2

γ (�×R)
≤ c

(
‖v‖

Hs+1,s/2
γ (�×R)

+ ‖ f ‖
Hs,s/2

γ (�×R)

+‖∇ϕt‖Hs,s/2
γ (�×R)

+ ‖∇2∇ϕ‖
Hs,s/2

γ (�×R)

+
2∑

α=1

(
‖hα‖Hs+1/2(S;L2,γ (R)) + ‖hα‖

H1/2(S;Hs/2
γ (R))

)

+‖h3‖L2(S;Hs/2
γ (R))

)
. (4.27)

From (4.18)2 and (4.27) we obtain (4.22). This concludes the proof.

Lemma 4.2 Assume that g ∈ Hs+1,s/2
γ (� × R), gt ∈ Hs−1,s/2

γ (� × R), h3 ∈
Hs+3/2,3/2

γ (S × R), h3t ∈ Hs−1/2,s/2
γ (S × R), s ∈ R+. Then for solutions to prob-

lem (4.15), (4.16) we have the estimates

‖∇ϕ‖
Hs+2,s/2

γ (�×R)
≤ c(‖g‖

Hs+1,s/2
γ (�×R)

+ ‖h3‖Hs+3/2,s/2
γ (S×R)

) (4.28)

and

‖∂t∇ϕ‖Hs,s/2(�×R) ≤ c(‖gt‖Hs−1,s/2
γ (�×R)

+ ‖h3t‖Hs−1/2,s/2
γ (S×R)

). (4.29)

Moreover, we have also existence in the corresponding spaces.
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Proof Time dependence is not essential in proofs of (4.28) and (4.29) because (4.15),
(4.16) is an elliptic problem and time is only a parameter. Since s is real we prove the
existence and estimates (4.28), (4.29) using [9, Ch. 2, Sect. 5.4]. The proofs can be
made as follows. By a partition of unity we transform problem (4.15) to local problems
in R

3 and in R
3+. Then estimates in spaces Hs, s ∈ R+, follow by interpolation having

estimates in Hk, k ∈ N. For a bounded domain we can apply considerations from
[9, Ch. 1, Sect. 7, 9]. This concludes the proof.

Remark 4.3 Proof of I2 from the proof of Lemma 4.1 can be explained in the same
way as it was made in the proof of Lemma 4.2.

Lemma 4.4 Let the assumptions of Lemmas 4.1, 4.2 be satisfied.
Then

‖p‖
Hs,s/2

γ (�×R)
+ ‖∇ p‖

Hs,s/2
γ (�×R)

≤ c

(
‖v‖

Hs+1,s/2
γ (�×R)

+‖ f ‖
Hs,s/2

γ (�×R)
+ ‖gt‖Hs−1,s/2

γ (�×R)
+ ‖h3,t‖Hs−1/2,s/2

γ (S×R)

+‖g‖
Hs+1,s/2

γ (�×R)
+ ‖h3‖Hs+3/2,s/2

γ (S×R)

+‖h′‖Hs+1/2(S;L2,γ (R)) + ‖h′‖
H1/2(S;Hs/2

γ (R))

)

≡ c‖v‖
Hs+1,s/2

γ (�×R)
+ cF1(s, f, g, h) (4.30)

where h′ = (h1, h2).

In view of Lemma 4.4 we have that p = F(v), where F describes a linear functional
with respect to v such that

F : Hs+1,s/2
γ (� × R) → Hs+1,s/2

γ (� × R)

and its estimate is expressed by (4.30).
Therefore, by (4.13), we obtain

v =
∑

k

ϑ(k)L(k)
1 (v,F(v), f, g, h) ≡ L∗(v, f, g, h). (4.31)

To show an existence of solutions to (4.31) we construct the mapping

v = L∗(ṽ, f, g, h). (4.32)

We prove the existence of a fixed point to (4.32) by showing that
L∗(v, f, g, h) is a contraction with respect to v.

Lemma 4.5 Let the assumptions of Lemmas 4.1, 4.2 be satisfied.
Then L∗(v, f, g, h) as the mapping with respect to v

Hs+2,s/2+1
γ (� × R) → Hs+2,s/2+1

γ (� × R)
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is a contraction.

Proof We shall show that there exists δ ∈ (0, 1) such that

‖L∗(v, f, g, h)‖
Hs+2,s/2+1

γ (�×R)

≤ δ‖v‖
Hs+2,s/2+1

γ (�×R)
+ cF(s, f, g, h) (4.33)

where

F(s, f, g, h) = ‖h‖
Hs,s/2

γ (�×R)
+ ‖gt‖L2(�;Hs/2

γ (R))

+‖g‖
Hs+1,s/2

γ (�×R)
+ ‖h′‖

Hs+1/2,s/2+1/4
γ (S×R)

+‖h3‖Hs+3/2,s/2+1
γ (S×R)

. (4.34)

First we consider the case k ∈ M. From (4.2) we have

‖v(k)‖
Hs+2,s/2+1

γ (R3×R)
≤ ‖u(k)‖

Hs+2,s/2+1
γ (R3×R)

+‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3×R)
≡ I1. (4.35)

To estimate the first norm in I1 we use problem (4.3). Since (4.3) is considered for
all x ∈ R

3 and all t ∈ R we can apply the Fourier–Laplace transform (2.3) and use
spaces H̃ l,l/2

γ (R3 × R) introduced in Definition 2.2. Then we have

‖u(k)‖
H̃ s+2,s/2+1

γ (R3×R)
≤ c‖ f (k)

3 ‖
H̃ s,s/2

γ (R3×R)
. (4.36)

Hence in view of (4.3)2 we obtain

‖u(k)‖
Hs+2,s/2+1

γ (R3×R)
≤ c‖ f (k)

2 ‖
Hs,s/2

γ (R3×R)
. (4.37)

Now (4.37) and (4.3)3 imply

I1 ≤ ‖ f (k)
1 ‖

Hs,s/2
γ (R3×R)

+ ‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3×R)
,

where

‖ f (k)
1 ‖

Hs,s/2
γ (R3×R)

≤ c

(
‖v‖

Hs+1,s/2
γ (R3∩suppζ (k)×R)

+‖p‖
Hs,s/2

γ (R3∩suppζ (k)×R)
+ ‖ f (k)‖

Hs,s/2
γ (R3×R)

)
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and

‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3×R)

=
∥∥∥∥∇x

∫

R3

E(x − y)(g(k)
t + v · ∇ζ (k))

∥∥∥∥
Hs+2,s/2+1

γ (R3×R)

=
∥∥∥∥∇x

∫

R3

E(x − y)(g(k)
t + vt · ∇ζ (k)dy

∥∥∥∥
L2(R3;Hs/2

γ (R))

+
∥∥∥∥∇x

∫

R3

E(x − y)(g(k) + v · ∇ζ (k)dy

∥∥∥∥
L2(R;Hs+2

γ (R3))

≡ I2,

where E is the fundamental solution to the Laplace equation.
In view of Lemma 2.12 we have

I2 ≤ c

(
‖g(k)

t ‖
L2(R3;Hs/2

γ (R))
+ ‖g(k)‖

Hs+1,s/2
γ (R3×R)

+‖v‖L2(R;Hs+1
γ (R3∩suppζ (k)))

+
∥∥∥∥∇x

∫
E(x − y)vt∇ζ (k)dy

∥∥∥∥
L2(R3;Hs/2

γ (R))

)
≡ I3.

Using the Stokes system the last term in I3 yields

∥∥∥∥∇x

∫
E(x − y)(ν�v − ∇ p + f )∇ζ (k)dy

∥∥∥∥
L2(R3;Hs/2

γ (R))

≤ c(‖v‖H1(R3∩suppζ (k);Hs/2(R)) + ‖p‖
L2(R3∩suppζ (k);Hs/2

γ (R))

+‖ f ‖
L2(R3∩suppζ (k);Hs/2

γ (R))
).

Summarizing the above considerations we have

‖v(k)‖
Hs+2,s/2+1

γ (R3×R)
≤ c

(
‖v‖

Hs+1,s/2
γ (R3∩suppζ (k)×R)

+‖p‖
Hs,s/2

γ (R3∩suppζ (k)×R)

+‖∇v‖
L2(R3∩suppζ (k);Hs/2

γ (R)

)
+ cF (k)

1 (s), (4.38)

where

F (k)
1 (s) = ‖ f (k)‖

Hs,s/2
γ (R3×R)

+ ‖g(k)
t ‖

L2(R3;Hs/2
γ (R))

+‖g(k)‖
Hs+1,s/2

γ (R3×R)
+ ‖ f ‖

L2(R3∩suppζ (k);Hs/2
γ (R))

. (4.39)
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Let us consider the case k ∈ N . Hence we want to estimate the norm

‖v(k)‖
Hs+2,s/2+1

γ (�∩suppζ (k)×R)
. (4.40)

In view of the mapping �(k) and formulas (2.1) we have

‖v(k)‖
Hs+2,s/2+1

γ (�∩suppζ (k)×R)
≤ c‖ṽ(k)‖

Hs+2,s/2+1
γ (R3+×R)

≡ cI1, (4.41)

where functions ṽ(k) and p̃(k) are solutions to problem (3.12).
In view of (3.15) we have

I1 ≤ ‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3+×R)
+ ‖u(k)‖

Hs+2,s/2+1
γ (R3+×R)

≡ I2.

Applying Lemma 2.11 to problem (3.20) yields

‖u(k)‖
Hs+2,s/2+1

γ (R3+×R)
≤c

(
‖ f̃ (k)

4 ‖
Hs,s/2

γ (R3+×R)
+

2∑
α=1

‖h̃(k)
α3 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

)
.

(4.42)

From (3.16)3 it follows

2∑
α=1

‖h̃(k)
α3 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

≤ c
2∑

α=1

‖h̃(k)
α2 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

+c‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3+×R)
.

Continuing (3.12)3 implies

2∑
α=1

‖h̃(k)
α2 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

≤ cλ‖ṽ(k)‖
Hs+2,s/2+1

γ (R3+×R)

+c
2∑

α=1

‖h̃(k)
α1 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

.

Finally in view of (3.11)3 we obtain

2∑
α=1

‖h̃(k)
α1 ‖

Hs+1/2,s/2+1/4
γ (R2×R)

≤ c‖v̂(k)‖
Hs+1,s/2+1/2

γ (R3+×R)

+c
2∑

α=1

‖h(k)
α ‖

Hs+1/2,s/2+1/4
γ (S×R)

.
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Now we shall estimate the first norm on the r.h.s. of (4.42). The decomposition (3.17)
yields

‖ f̃ (k)
4 ‖

Hs,s/2
γ (R3+×R)

≤ c
(
‖ f̃ (k)

3 ‖
Hs,s/2

γ (R3+×R)
+ ‖∇η(k)‖

Hs,s/2
γ (R3×R)

)
.

Solving problem (3.18) gives (see [9, Ch. 2, Sect. 5])

‖∇η(k)‖
Hs,s/2

γ (R3×R)
≤ c

(
‖ f̃ (k)

3 ‖
Hs,s/2

γ (R3+×R)

+‖n̄z · f̃ (k)
3 ‖

Hs−1/2,s/2−1/4
γ (R2×R)

)
≤ c‖ f̃ (k)

3 ‖
Hs,s/2

γ (R3+×R)
, (4.43)

where s > 1/2.
Therefore, in view of (4.43) and (3.16) we obtain

‖ f̃ (k)
4 ‖

Hs,s/2
γ (R3+×R)

≤ c‖ f̃ (k)
3 ‖

Hs,s/2
γ (R3+×R)

≤ c
(
‖ f̃ (k)

2 ‖
Hs,s/2

γ (R3+×R)
+ ‖∇ϕ(k)‖

Hs+2,s/2+1
γ (R3+×R)

)
.

Next, (3.12)1 implies

‖ f̃ (k)
2 ‖

Hs,s/2
γ (R3+×R)

≤ cλ(‖ṽ(k)‖
Hs+2,s/2+1

γ (R3+×R)

+‖∇ p̃(k)‖
Hs,s/2

γ (R3+×R)
) + c‖ f̃ (k)

1 ‖
Hs,s/2

γ (R3+×R)
.

Finally,

‖ f̃ (k)
1 ‖

Hs,s/2
γ (R3+×R)

≤ c‖v̂‖
Hs+1,s/2

γ (R3+ ∩ supp ζ̂ (k)×R)

+c‖ p̂‖
Hs,s/2

γ (R+ ∩ supp ζ̂ (k)×R)
+ c‖ f (k)‖

Hs,s/2
γ (�×R)

.

Using the above estimates in I2 yields

I2 ≤ cλ
(
‖ṽ(k)‖

Hs+2,s/2+1
γ (R3+×R)

+ ‖∇ p̃(k)‖
Hs,s/2

γ (R3+×R)

)

+c
(
‖v̂‖

Hs+1,s/2+1/2
γ (R3+∩suppζ̂ (k)×R)

+‖ p̂‖
Hs,s/2

γ (R3+∩suppζ̂ (k)×R)

)
+ c

2∑
α=1

‖h(k)
α ‖

Hs+1/2,s/2+1/4
γ (�×R)

+c‖ f (k)‖
Hs,s/2

γ (�×R)
+ c‖∇ϕ(k)‖

Hs+2,s/2+1
γ (R3+×R)

≡ I3.
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Now we estimate the last norm in I3. Using that G is the Green function to the Neumann
problem (3.14) we have

‖∇ϕ(k)‖
Hs+2,s/2+1

γ (R3+×R)
=

∥∥∥∥∇z

∫

R
3+

G(z, y)g̃(k)
2 dy

∥∥∥∥
Hs+2,s/2+1

γ (R3+×R)

+
∥∥∥∥∇z

∫

R2

G(z, y′)h̃(k)
32 dy′

∥∥∥∥
Hs+2,s/2+1

γ (R3+×R)

≡ J1 + J2.

First we consider J1. Using the form of g̃(k)
2 from (3.12)2 and g̃(k)

1 from (3.2) we have

J1 =
∥∥∥∥∇y

∫

R
3+

G(y, z)[divz ṽ
(k) − div�k ṽ

(k) + v̂ · ∇�k ζ̂
(k)

+ĝ(k)]dz

∥∥∥∥
Hs+2,s/2+1

γ (R3+×R)

≤ cλ‖ṽ(k)‖
Hs+2,s/2+1

γ (R3+×R)
+ c‖ĝ(k)‖

Hs+1,s/2+1
γ (R3+×R)

+
∥∥∥∥∇y

∫

R
3+

G(y, z)v̂∇�k ζ̂
(k)dz

∥∥∥∥
Hs+2,s/2+1

γ (R3+×R)

.

The last norm in the above inequality we split as follows

∥∥∥∥∇y

∫

R
3+

G(y, z)v̂ · ∇�k ζ̂
(k)dz

∥∥∥∥
L2,γ (R;Hs+2(R3+)

+
∥∥∥∥∇y

∫

R
3+

G(y, z)v̂ · ∇�k ζ̂
(k)dz

∥∥∥∥
L2(R

3+;Hs/2+1
γ (R))

≡ K1 + K2,

where

K1 ≤ c‖v̂‖L2,γ (R;Hs+1(R3+∩suppζ̂ (k)))

and

K2 =
∥∥∥∥∇y

∫

R
3+

G(y, z)v̂t∇�k ζ̂
(k)dz

∥∥∥∥
L2(R3+;Hs/2

γ (R))

.
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Using Eq. (3.1)1 transformed to variables z we get

K2 =
∥∥∥∥∇y

∫

R
3+

G(y, z)(div�k T�k (v̂
(k), p̂(k)) + f̂ (k))∇̂�k ζ̂

(k)

∥∥∥∥
L2(R

3+;Hs/2
γ (R))

≤ c
(
‖v̂(k)‖

L2(R3+;Hs/2
γ (R))

+ ‖ p̂(k)‖
L2(R3+;Hs/2

γ (R))

+‖ f̂ (k)‖
L2(R3+;Hs/2

γ (R))

)
,

where we use the Poincare inequality to have the estimate

‖ p̂(k)‖
L2(R3+;Hs/2

γ (R))
≤ cλ‖∇ p̂(k)‖

L2(R3+;Hs/2
γ (R))

.

Finally,

J2 ≤ cλ‖ṽ(k)‖
Hs+2,s/2+1

γ (R3+×R)
+ c‖h̃(k)

3 ‖
Hs+3/2,s/2+1

γ (R2×R)
.

Summarizing the above estimates we obtain

‖v(k)‖
Hs+2,s/2+1

γ (�×R)
≤ cλ

(
‖ṽ(k)‖

Hs+2,s/2+1
γ (R3+×R)

+ ‖∇ p̃(k)‖
Hs,s/2

γ (R3+×R)

)
+ c

(
‖v‖

Hs+1,s/2+1/2
γ (�∩suppζ (k)×R)

+ ‖p‖
Hs,s/2

γ (�∩suppζ (k)×R)

)
+ c

(
‖ f (k)‖

Hs,s/2
γ (�×R)

+‖g̃(k)
t ‖

L2(R3+;Hs/2
γ (R))

+ ‖g̃(k)‖L2,γ (R;Hs+1(R3+))

+
2∑

α=1

‖h̃(k)
α ‖

Hs+1/2,s/2+1/4
γ (R2×R)

+ ‖h̃(k)
3 ‖

Hs+3/2,s/2+1
γ (R2×R)

)
. (4.44)

Adding (4.38) and (4.44) for all k ∈ M ∪ N , passing to the old variables x and
using (4.30) yields

‖v‖
Hs+2,s/2+1

γ (�×R)

≤ c(λ + ε + c(1/ε)γ −1)‖v‖
Hs+2,s/2+1

γ (�×R)
+ cF(s, f, g, h), (4.45)

where F(s, f, g, h) is defined by (4.34). For λ, ε sufficiently small and γ sufficiently
large we obtain (4.33). This concludes the proof.

Now we shall formulate the main result of this section

Theorem 4.6 Assume that s ∈ R+. Assume that f, g, h are such that quantity (4.34)
is finite. Assume that S ∈ Cs+2 and γ > 0 is sufficiently large. Then there exists a
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solution to problem (3.1) such v ∈ Hs+2,s/2+1
γ (� × R), ∇ p ∈ Hs,s/2

γ (� × R) and

‖v‖
Hs+2,s/2+1

γ (�×R)
+ ‖∇ p‖

Hs,s/2
γ (�×R)

≤ cF(s, f, g, h). (4.71)

5 Proof of Theorem A

The proof is based on a transformation of problem (1.1) to problem (3.1) with vanishing
initial data. Let us consider problem (1.1). Let ṽ0 ∈ Hs+2,s/2+1(�T ) be an extension
of the initial data such that (see Lemma 2.9)

‖ṽ0‖Hs+2,s/2+1(�T ) ≤ c‖v0‖Hs+1(�) (5.1)

and

ṽ0|t=0 = v0. (5.2)

Introducing the new function

u = v − ṽ0 (5.3)

we see that u and p are solutions to the problem

ut − divT(u, p) = f0 − ṽ0t + νdivD(ṽ0) ≡ f in �T ,

divu = g0 − divṽ0 ≡ g in �T ,

νn̄ · D(u) · τ̄α + γ u · τ̄α = h0α − νn̄ · D(ṽ0) · τ̄α

−γ ṽ0 · τ̄α ≡ hα, α = 1, 2, on ST ,

u · n̄ = h03 − ṽ0 · n̄ ≡ h3 on ST ,

u|t=0 = 0 in �.

(5.4)

By the compatibility conditions (1.10) we obtain that

f ∈ Hs,s/2
0 (�T ), g ∈ Hs+1,s/2

0 (�T ), gt ∈ Hs,s/2
0 (�T ),

h′ = (h1, h2) ∈ Hs+1/2,s/2+1/4
0 (ST ), h3 ∈ Hs+3/2,s/2+3/4

0 (ST ). (5.5)

By the properties of spaces Hl,l/2
0 we know that functions f, g, h can be extended by

zero for t < 0 and the extended functions belong to the same norms.
For T < ∞ the norms Hl,l/2

γ (QT ) and Hl,l/2
0 (QT ) are equivalent (see Lemma 2.8).

Hence for T < ∞,

‖ f ‖
Hs,s/2

γ (�T )
≤ c(T )‖ f ‖

Hs,s/2
0 (�T )

,

‖g‖Hs+1,s
γ (�T )

≤ c(T )‖g‖Hs+1,s
0 (�T )

,

‖h′‖
Hs+1/2,s/2+1/4

γ (ST )
≤ c(T )‖h′‖

Hs+1/2,s/2+1/4
0 (ST )

,

‖h3‖Hs+3/2,s/2+3/4
γ (ST )

≤ c(T )‖h3‖Hs+3/2,s/2+3/4
0 (ST )

.

(5.6)
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Extending functions f, g, h by the Hestenes–Whitney method for t > T we denote
them by f̃ , g̃, h̃.

Considering problem (5.4) with f̃ , g̃, h̃ Theorem 4.6 can be applied. Hence Theo-
rem 1 is proved.

6 Conclusions

In view of (5.6) the constant c0 which appears in (1.11) depends exponentially on T .
We eliminate the dependence on T for system (1.1) with g0 = 0, h03 = 0. In this
case we obtain for solutions of (1.1) the following energy estimate

‖v(t)‖L2(�) + ‖v‖L2(0,t;H1(�)) +
2∑

α=1

‖v · τ̄α‖L2(0,t;L2(S))

≤ c∗

(
‖ f0‖L2(�t ) + ‖v0‖L2(�) +

2∑
α=1

‖h0α‖L2(0,t;L2(S))

)
, (6.1)

where t ≤ T and c∗ is an absolute constant independent of T .
Using (6.1) and Theorem 3.1.1 from [17, Ch. 3] we obtain that in this case constant

c0 does not depend on T . To prove (6.1) the Korn inequality was used (see [19]).

Open Access This article is distributed under the terms of the Creative Commons Attribution License
which permits any use, distribution, and reproduction in any medium, provided the original author(s) and
the source are credited.
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