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Abstract

It is nowadays well understood that the multidimensional isentropic Euler sys-
tem is desperately ill-posed. Even certain smooth initial data give rise to infinitely
many solutions and all available selection criteria fail to ensure both global exis-
tence and uniqueness.We propose a different approach to thewell-posedness of this
system based on ideas from the theory of Markov semigroups: we show the exis-
tence of a Borel measurable solution semiflow. To this end, we introduce a notion
of dissipative solution which is understood as time dependent trajectories of the
basic state variables—the mass density, the linear momentum, and the energy—in
a suitable phase space. The underlying system of PDEs is satisfied in a general-
ized sense. The solution semiflow enjoys the standard semigroup property and the
solutions coincide with the strong solutions as long as the latter exist. Moreover,
they minimize the energy (maximize the energy dissipation) among all dissipative
solutions.
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1. Introduction

The motion of a compressible isentropic fluid in the Eulerian reference frame
is described by the time evolution of the mass density � = �(t, x), t � 0, x ∈ Q ⊂
RN , N = 1, 2, 3, and the momentum m = m(t, x) solving the Euler system as
follows:

∂t� + divxm = 0,

∂tm + divx

(
m ⊗ m

�

)
+ a∇x�

γ = 0, a > 0,
(1.1)

where γ > 1 is the adiabatic constant. The problem is closed by prescribing the
initial data

�(0, ·) = �0, m(0, ·) = m0, (1.2)

as well as appropriate boundary conditions. For the sake of simplicity, we eliminate
possible problems connected with the presence of a kinematic boundary by con-
sidering the space–periodic flows, for which the physical domain can be identified
with the flat torus,

Q = T N = {[−1, 1]|{−1;1}
}N

. (1.3)

It is well-known that solutions of (1.1) develop singularities—shock waves—in
finite time no matter how smooth or small the initial data are. Accordingly, the con-
cept of weak (distributional) solutions has been introduced to study global-in-time
behavior of system (1.1). The existence of weak solutions in the simplifiedmonodi-
mensional geometry has been established for a rather general class of initial data,
seeChen and Perepelitsa [8],DiPerna [16], Lions, Perthame and Souganidis
[23], among others. More recently, the theory of convex integration has been used
to show existence of weak solutions for N = 2, 3 again for a rather vast class of
data, see Chiodaroli [9],De Lellis and Székelyhidi [15], Luo,Xie andXin [24].

Uniqueness and stability with respect to the initial data in the framework of
weak solutions is a more delicate issue. Apparently, the Euler system is ill-posed in
the class of weak solutions and explicit examples of multiple solutions emanating
from the same initial state have been constructed, see for example the monograph
of Smoller [26]. An admissibility criterion must be added to the weak formulation
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of (1.1) in order to select the physically relevant solutions. To this end, consider
the total energy e given by

e(�,m) = ekin(�,m) + eint(�), ekin(�,m) = 1

2

|m|2
�

, eint(�) = a

γ − 1
�γ .

Admissible solutions satisfy, in addition to theweak version of (1.1), the total energy
balance

∂t e(�,m) + divx

[(
e(�,m) + a�γ

) m
�

]
� 0, (1.4)

or at least its integrated form,

d

dt
E(t) � 0, E ≡

∫
Q

[ |m|2
�

+ a

γ − 1
�γ

]
dx . (1.5)

Note that (1.5) follows directly form (1.4) thanks to the periodic boundary condi-
tions; the same holds, of course, under suitable conservative boundary conditions,
for instance,

m · n|∂Q = 0.

Note that the inequality in (1.4) is needed to select the physically relevant discon-
tinuous shock-wave solutions.

Even if (1.4) is imposed as an extra selection criterion, weak solutions are still
not unique, see Chiodaroli,De Lellis andKreml [10],Markfelder andKlin-
genberg [25]. The initial data giving rise to infinitely many admissible solutions
are termed wild data. As shown in [10], this class includes certain Lipschitz initial
data. Recently, this result has been extended to smooth initial data by Chiodaroli
et al [12]. Furthermore, even if additional selection criteria as, for instance, max-
imality of the energy dissipation, are imposed, the problem remains ill-posed, see
Chiodaroli and Kreml [11].

An important feature of systems with uniqueness is their semiflow property:
letting the system run from time 0 to time s and then restarting and letting it run
from time s to time t gives the same outcome as letting it run directly from time 0
to time t . In other words, the knowledge of the whole past up to time s provides no
more useful information about the outcome at time t than knowing the state of the
system at time s only. For systems where the uniqueness is unknown or not valid,
a natural question is whether a solution semiflow can be constructed anyway.

Therefore, inspired by the recent work of Cardona and Kapitanski [7], we pro-
pose a different approach to well-posedness of the Euler system based on the theory
of Markov selection in stochastic analysis, see for exampleKrylov [22], Stroock
and Varadhan [27], Flandoli and Romito [19], or [4]. More specifically, we
establish the existence of a semiflow selection for the Euler system (1.1)–(1.3), that
is, a mapping

U : [t, �0,m0, E0] �→ [�(t),m(t), E(t)], t � 0,

enjoying the semigroup property

U [t1 + t2, �0,m0, E0] = U
[
t2,U [t1, �0,m0, E0]

]
for any t1, t2 � 0, (1.6)
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where [�,m] represents a generalized solution to (1.1)–(1.3) with the energy E .
More specifically, the triple [�,m, E] termed dissipative solution will coincide
with the expected value of suitable measure-valued solution satisfying the Euler
system (1.1), together with the energy inequality (1.5), satisfied in a generalized
sense. The precise definitions can be found in Sect. 2. In addition to the semigroup
property (1.6), the semiflow we shall construct enjoys the following properties,
which provides further justification of the physical relevance of our construction:

• Stability of strong solutions. Let the Euler system (1.1)–(1.3) admit a strong
W 1,∞ solution �̂, m̂, with the associated energy

E0 =
∫
Q

[ |m0|2
�0

+ a

γ − 1
�

γ
0

]
dx,

defined on a maximal time interval [0, Tmax).
Then we have

U [t, �0,m0, E0] = [̂�, m̂, E0](t) for all t ∈ [0, Tmax).

This reflects the fact that dissipative solutions satisfy the weak-strong uniqueness
principle.

• Maximal dissipation. Let the Euler system (1.1)–(1.3) admit a dissipative
solution �̂, m̂, with the associated energy Ê such that

Ê(t) � E(t) for all t � 0,

where E is the energy of the solution semiflow U [t, �0,m0, E0].
Then we have

E(t) = Ê(t) for all t � 0.

In other words, our search for physically relevant solutions respects the ideas of
Dafermos [13] who introduced the selection criterion based on the maximization
of the energy dissipation for hyperbolic systems of conservation laws.

• Stability of stationary states. Let � > 0, m ≡ 0 be a stationary solution of
the Euler system (1.1)–(1.3). Suppose that

�(T, ·) = �, m(T, ·) = 0 for some T � 0,

where �,m are the density and the momentum components of a solution semi-
flow U [t, �0,m0, E0].

Then we have

�(t, ·) = �, m(t, ·) = 0 for all t � T .

Hence, if the system reaches a stationary state where the density is constant and
the momentum vanishes, it remains in this state for all future times.
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The fact that a certain form of energy inequality has to be included as an integral
part of the definition of solution is pertinent to the analysis of problems in fluid
mechanics. One of the main novelties of our approach is including the total energy
E as a third variable in the construction of the semiflow. Intuitively speaking, the
knowledge of the initial state for the density and the momentum does not provide
sufficient information to restart the semiflow. We have already observed a similar
phenomenon in the context ofMarkov selection for stochastic compressibleNavier–
Stokes system in [4].

Our definition of a dissipative solution (see Definition 2.1) is motivated by the
notion of dissipative measure-valued solutions known for example from [18,20].
However, we chose a different formulation which in our opinion reflects better the
nature of the system and is more suitable for the construction of the solution semi-
flow. Similarly to the notion of dissipative measure-valued solution, our definition
permits to establish the weak-strong uniqueness principle. Consequently, strong
solutions are always contained in the selected semiflow as long as they exist.

Note that this desirable property is not granted for the semiflow of weak solu-
tions to the incompressible Navier–Stokes system presented in [7]. More pre-
cisely, even for the incompressible Navier–Stokes system, where global existence
of unique solutions has not yet been excluded for smooth initial data, the semiflow
in [7] may “select” completely pathological solutions like those that start from zero
but have positive energy at later times (such solutions may exist thanks to the recent
work by Buckmaster and Vicol [6]).

To conclude this introduction, we remark that our method applies mutatis
mutandis to the incompressible Navier–Stokes and Euler system as well as to the
isentropic Navier–Stokes system. We have chosen the isentropic Euler system for
this paper as it is the system where uniqueness seems to be the most out of reach.
However, it would be interesting to investigate whether for one of the “easier” sys-
tems one could understand further properties of the solution semiflow such as the
dependence on the initial data. Moreover, uniqueness of the solution semiflow is
also an open problem.

The paper is organized as follows: in Sect. 2we introduce the concept of dissipa-
tive solutions and state the main result concerning the semiflow selection. Section 3
is devoted to the proof of existence and stability of dissipative solutions. In Sect. 4,
we present the abstract setting and in Sect. 5, we show the existence of the semiflow
selection. Section 6 contains concluding discussions concerning refined properties
of the constructed semiflow.

2. Set-up and Main Results

In this section we present several definitions of generalized solutions to the
compressible Euler system. In particular, we introduce dissipative solutions and
explain the concept of admissibility. Finally, we present ourmain result on semiflow
selection in Sect. 2.4.
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2.1. Weak Solutions

Weak solutions of the Euler system (1.1) on the time interval [0,∞) satisfy the
integral identities

[∫
T N

�ϕ dx

]t=τ

t=0
=
∫ τ

0

∫
T N

[
�∂tϕ + m · ∇xϕ

]
dx dt (2.1)

for any ϕ ∈ C1
c ([0,∞) × T N ), and

[∫
T N

m · ϕ dx

]t=τ

t=0
−
∫ τ

0

∫
T N

m · ∂tϕdxdt dx

=
∫ t

0

∫
T N

[
m ⊗ m

�
: ∇xϕ + a�γ divxϕ

]
dx dt (2.2)

for any ϕ ∈ C1
c ([0,∞) × T N ; RN ). A weak solution to (1.1) is a pair of measur-

able functions [�,m] such that all integrals in (2.1) and (2.2) are well-defined. In
accordance with the energy inequality (1.5), we suppose additionally that

E = E(t) is a non-increasing function of t,∫
T N

[
1

2

|m|2
�

+ a

γ − 1
�γ

]
(τ, ·) dx = E(τ ) for a.a. τ.

Consistently with (2.1), (2.2), this can be put in a variational form,

[Eψ]t=τ2+
t=τ1− −

∫ τ2

τ1

E(t)∂tψ(t) dt � 0, 0 � τ1 � τ2, E(0−) = E0, (2.3)

for any ψ ∈ C1
c ([0,∞)), ψ � 0.

2.2. Dissipative Solutions

If N = 2, 3, the energy inequality (2.3) seems to be the only source of a priori
bounds. However, as indicated by the numerous examples of “oscillatory” solutions
(cf. [9,15]) the set of all admissibleweak solutions emanating fromgiven initial data
is not closed with respect to the weak topology on the trajectory space associated
with the energy bounds (2.3). There are two potential sources of difficulties:

• non-controllable oscillations due to the accumulation of singularities;
• blow-up type collapse due to possible concentration points.

To accommodate the above mentioned singularities in the closure of the set of
weak solutions, two kinds of tools are used: (i) the Young measures describing the
oscillations, (ii) concentration defect measures for concentrations, see for example
Brenier, De Lellis, Székelyhidi [5].

Let

S =
{
[�̃, m̃]

∣∣∣ �̃ � 0, m̃ ∈ RN
}
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be the phase space associated to the Euler system. LetP(S) denote the set of proba-
bility measures on S and letM+(T N ) andM+(T N × SN−1), respectively, denote
the set of positive bounded Radon measures on T N and T N × SN−1, respectively,
where SN−1 ⊂ RN denotes the unit sphere. A dissipative solution is defined via
the following quantities:

• the Young measure:

(t, x) �→ νx (t) ∈ L∞
weak−(∗)((0,∞) × T N ;P(S)); (2.4)

• the kinetic and internal energy concentration defect measures:

t �→ Ckin(t) ∈ L∞
weak−(∗)(0,∞;M+(T N )), (2.5)

t �→ Cint(t) ∈ L∞
weak−(∗)(0,∞;M+(T N )); (2.6)

• the convective and pressure concentration defect measures:

t �→ Cconv(t) ∈ L∞
weak−(∗)

(
0,∞;M+ (T N × SN−1

))
, (2.7)

t �→ Cpress(t) ∈ L∞
weak−(∗)

(
0,∞;M+(T N )

)
. (2.8)

The constitutive relations

m ⊗ m
�

= 2

(
m
|m| ⊗ m

|m|
)[

1

2

|m|2
�

]
, a�γ = (γ − 1)

[
a

γ − 1
�γ

]
,

enforce natural compatibility conditions

Cconv(t, dx, dξ) = 2rx (t, dξ) ⊗ Ckin(t, dx), Cpress = (γ − 1)Cint, (2.9)

where rx (t) ∈ P(SN−1) are themeasures associated to disintegration ofCconv(t) on
the product T N × SN−1, see for example Ambrosio, Fusco, and Palara [2, Theorem
2.28].

Hereafter, we denote by [�̃, m̃] the dummy variables in phase spaceS whereas ξ

is a dummyvariable in SN−1.Weare now in the position to present the basic building
block for the semiflow selection—a dissipative solution of the Euler system (1.1).

Definition 2.1. (Dissipative solution) The triple of functions [�,m, E] with
� ∈ Cweak,loc([0,∞); Lγ (T N )),

m ∈ Cweak,loc([0,∞); L 2γ
γ+1 (T N ; RN )),

E ∈ BVloc([0,∞)),

is called dissipative solution of the Euler system (1.1) with the initial data

[�0,m0, E0] ∈ Lγ (T N ) × L
2γ

γ+1 (T N ; RN ) × [0,∞)

if there exists a family of parametrized measures specified through (2.4)–(2.9) such
that
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(a) for a.a τ > 0 we have

�(τ, x) = 〈νx (τ ); �̃〉 � 0, m(τ, x) = 〈νx (τ ); m̃〉 for a.a x ∈ T N ,

E(τ ) =
∫
T N

〈
νx (τ ); 1

2

|m̃|2
�̃

+ a

γ − 1
�̃γ

〉
dx

+
∫
T N

dCkin(τ ) +
∫
T N

dCint(τ ) ;

(2.10)

(b) for any τ > 0 the integral identity[∫
T N

�ϕ dx

]t=τ

t=0
=
∫ τ

0

∫
T N

[
�∂tϕ + m · ∇xϕ

]
dx dt (2.11)

holds for any ϕ ∈ C1
c ([0,∞) × T N ), where �(0, ·) = �0;

(c) for any τ > 0 the integral identity

[∫
T N

m · ϕ dx

]t=τ

t=0
−
∫ τ

0

∫
T N

m · ∂tϕ dx dt

=
∫ τ

0

∫
T N

[〈
νx (t); 1�̃>0

m̃ ⊗ m̃
�̃

〉
: ∇xϕ + 〈νx (t); a�̃γ

〉
divxϕ

]
dx dt

+ 2
∫ τ

0

∫
T N

〈rx (t); ξ ⊗ ξ〉 : ∇xϕ dCkin dt

+ (γ − 1)
∫ τ

0

∫
T N

divxϕ dCint dt

(2.12)

holds for any ϕ ∈ C1
c ([0,∞) × T N ; RN ), where m(0, ·) = m0;

d) for any 0 � τ1 � τ2 the inequality

[
Eψ
]t=τ2+
t=τ1−

−
∫ τ2

τ1

E∂tψ dt � 0, (2.13)

holds for any ψ ∈ C1
c ([0,∞)) with ψ � 0, where E(0−) = E0.

Note that our definition is slightly different from the one used by Gwiazda,
Świerczewska-Gwiazda, and Wiedemann [20] based on the concentration defect
measures introduced by Alibert and Bouchitté [1]. We believe that the present
setting based on the energy defects rather than the recession functions reflects better
the underlying system of PDEs. It is also worth noting that the present definition
contains definitelymore information on the dissipative solutions than its counterpart
introduced in [18] in the context of the compressible Navier–Stokes system. The
class of solutions considered in [18] is apparently larger but still guarantees the
weak–strong uniqueness principle. Indeed, the corresponding proof in [18] adapts
easily to the Euler setting. In particular, we obtain the following result that can be
proved exactly as [18] (see also Gwiazda et al. [20] and Sect. 6.5 below):

Proposition 2.2. (Weak-strong uniqueness) Let [�,m, E] be a dissipative solution
to (1.1) in the sense of Definition 2.1 starting from the initial state [�0, m0, E0],
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�0 > 0. Let [̂�, m̂] be a strong solution1 to (1.1) in [0, Tmax) × T N starting from
the same initial data �̂0 = �0, m̂0 = m0, with∫

T N

[
1

2

|m̂0|2
�̂0

+ a

γ − 1
�̂

γ
0

]
dx = E0.

Then we have

� = �̂, m = m̂, E = E0 in [0, Tmax) × T N .

2.3. Admissible Dissipative Solutions

Finally, we introduce a subclass of dissipative solutions that reflect the physical
principle ofmaximization of the energy dissipation. To this end, let [�i ,mi , Ei ], i =
1, 2, be two dissipative solutions starting from the same initial data [�0,m0, E0].
We introduce the relation

[�1,m1, E1] ≺ [�2,m2, E2] ⇔ E1(τ±) � E2(τ±) for any τ ∈ (0,∞).

Definition 2.3. (Admissible dissipative solution)We say that a dissipative solution
[�,m, E] starting from the initial data [�0,m0, E0] is admissible if it is minimal
with respect to the relation ≺. Specifically, if

[�̃, m̃, Ẽ] ≺ [�,m, E],
where [�̃, m̃, Ẽ] is another dissipative solution starting from [�0,m0, E0], then

E = Ẽ in [0,∞).

Maximizing the energy dissipation or, equivalently, minimizing the total energy of
the system is motivated by a similar selection criterion proposed by Dafermos [14].
In view of the arguments discussed in Sect. 6, such a selection criterion

• rules out a large part of wild solutions obtained via “available” methods;
• guarantees stability of equilibrium states in the class of dissipative solutions.

2.4. Semiflow Selection: Main Result

We start by introducing suitable topologies on the space of the initial data and
the space of dissipative solutions. Fix 
 > N/2+ 1 and consider the Hilbert space

X = W−
,2(T N ) × W−
,2(T N ; RN ) × R,

together with its subset containing the initial data

D =
{
[�0,m0, E0] ∈ X

∣∣∣�0 � 0,
∫
T N

[
1

2

|m0|2
�0

+ a

γ − 1
�

γ
0

]
dx � E0

}

1 A strong solution belongs to the class W 1,∞ and satisfies (1.1) almost everywhere
pointwise.
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Here the convex function [�,m] �→ |m|2
�

is defined for � � 0, m ∈ RN as

|m|2
�

=

⎧⎪⎨
⎪⎩
0 ifm = 0,
|m|2
�

if � > 0,
∞ otherwise.

Note that D is a closed convex subset of X . We consider the trajectory space

� = Cloc([0,∞);W−
,2(T N )) × Cloc([0,∞);W−
,2(T N ; RN ))

× L1
loc(0,∞),

which is a separable metric space. Dissipative solutions [�,m, E], as defined in
Definition 2.1, belong to this class. Indeed, equations (2.11) and (2.12) give an
information on the time regularity of the density and the momentum whereas the
energy can be controlled by (2.13). Moreover, for initial data [�0,m0, E0] ∈ D
it follows from (2.10) and Jensen’s inequality that a dissipative solution [�,m, E]
evaluated at a.a. times t � 0 also belongs to the set D. Finally, for initial data
[�0,m0, E0] ∈ D, we introduce the solution set

U[�0,m0, E0] =
{
[�,m, E] ∈ �

∣∣∣ [�,m, E] is a dissipative solution
with initial data [�0,m0, E0]

}
.

We are now ready to define a semiflow selection to (1.1).

Definition 2.4. (Semiflow selection)A semiflow selection in the class of dissipative
solutions for the compressible Euler system (1.1) is a mapping

U : D → �, U {�0,m0, E0} ∈ U[�0,m0, E0] for any [�0,m0, E0] ∈ D

enjoying the following properties:

(a) Measurability. The mapping U : D → � is Borel measurable.
(b) Semigroup property. We have

U {�0,m0, E0} (t1 + t2) = U {�(t1),m(t1), E(t1−)} (t2)

for any [�0,m0, E0] ∈ D and any t1, t2 � 0, where [�,m, E] =
U {�0,m0, E0}.
Our main result reads as follows:

Theorem 2.5. The isentropic Euler system (1.1) admits a semiflow selection U in
the class of dissipative solutions in the sense of Definition 2.4. Moreover, we have
that

U {�0,m0, E0} is admissible in the sense of Definition 2.3

for any [�0,m0, E0] ∈ D.

In the next section we prove the existence of at least one dissipative solution for
given initial data and the sequential stability of the solution set. The abstract setting
for the selection principle is presented in Sect. 4 and the proof of Theorem 2.5 can
be found in Sect. 5. The additional regularity properties of the selection mentioned
in Sect. 1 will be discussed in Sect. 6.
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3. Existence and Sequential Stability

We aim to show

• The existence of a dissipative solution for any initial data [�0,m0, E0] ∈ D,
meaning

U[�0,m0, E0] �= ∅;
• The sequential stability of the solution set, meaning

U[�0,m0, E0] ⊂ � is compact

and the multivalued mapping

[�0,m0, E0] ∈ D ⊂ X → U[�0,m0, E0] ∈ 2�

has closed graph; whence by Lemma 12.1.8 in [27] it is (strongly) Borel mea-
surable.

We note that if U[�0,m0, E0] is a compact subset of the separable metric space
� for any [�0,m0, E0] ∈ D, then the (Borel) measurability of the multivalued
mapping

U : D → 2�

corresponds to measurability with respect to the Hausdorff metric on the space of
all compact subsets of �.

3.1. Sequential Stability

We first address the issue of sequential stability as the existence proof leans
basically on identical arguments.

Proposition 3.1. Suppose that {�0,ε,m0,ε, E0,ε}ε>0 ⊂ D is a sequence of data giv-
ing rise to a family of dissipative solutions {�ε,mε, Eε}ε>0, that is, [�ε,mε, Eε] ∈
U[�0,ε,m0,ε, E0,ε]. Moreover, we assume that there exists E > 0 such that
E0,ε � E for all ε > 0.

Then, at least for suitable subsequences,

�0,ε → �0 weakly in Lγ (T N ),

m0,ε → m0 weakly in L
2γ

γ+1 (T N ; RN )),

E0,ε → E0. (3.1)

and

�ε → � in Cweak,loc([0,∞); Lγ (T N )),

mε → m in Cweak,loc([0,∞); Lγ (T N ; RN )),

Eε(τ ) → E(τ ) for any τ ∈ [0,∞) and in L1
loc(0,∞),

where

[�,m, E] ∈ U[�0,m0, E0].
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Proof. We proceed via several steps.

• First of all, observe that the convergence (3.1) follows immediately from the
fact that the energy E0,ε is bounded uniformly for ε → 0.

• It follows from Jensen’s inequality that

1

2

|mε|2
�ε

+ a

γ − 1
ργ

ε �
〈
νε
x (t);

1

2

|m̃|2
ρ̃

+ a

γ − 1
ρ̃γ

〉
(3.2)

a.a. in (0,∞) × T N , where νε is the Young measure associated with the solu-
tion [�ε,mε, Eε]. Consequently, as E0,ε → E0, we deduce from the energy
inequality (2.13), (2.10), and equations (2.11), (2.12) that (up to a subsequence)

�ε → � in Cweak,loc([0,∞); Lγ (T N )), � � 0,

mε → m in Cweak,loc([0,∞); L 2γ
γ+1 (T N ; RN )),

where

�(0, ·) = �0, m(0, ·) = m0.

In addition, by (2.13) and (2.10) the energy is non-increasing and non-negative;
whence its total variation can be bounded by the initial value and the latter one
is uniformly bounded by assumption. Hence by Helly’s selection theorem, we
have

Eε(τ ) → E(τ ) for any τ ∈ [0,∞) and in L1
loc(0,∞), E(0+) � E0.

• In view of the above observations, it is easy to perform the limit in the equation
of continuity (2.11) to obtain

[∫
T N

�ϕ dx

]t=τ

t=0
=
∫ τ

0

∫
T N

[
�∂tϕ + m · ∇xϕ

]
dx dt

for any ϕ ∈ C1
c ([0,∞) × T N ), as well as in the energy balance (2.13): we get

∫ ∞

0
E(t)∂tψ dt � 0 for any ψ ∈ C1

c ((0,∞)), ψ � 0, E(0+) � E0,

from which we deduce (2.13). Moreover, we have

[∫
T N

mε · ϕ dx

]t=τ

t=0
→
[∫

T N
m · ϕ dx

]t=τ

t=0
,

and ∫ τ

0

∫
T N

mε · ∂tϕ dx dt →
∫ τ

0

∫
T N

m · ∂tϕ dx dt

for any test function admissible in the momentum balance (2.12).
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• Next, we denote by Cε
kin and Cε

int the kinetic and internal energy concentration
defect measure associated with [�ε,mε, Eε]. Using again the energy inequality
(2.13) and (2.10), we deduce (up to a subsequence) the convergence of the
concentration measures:

Cε
kin → C∞,1

kin weakly-(*) in L∞(0,∞;M+(T N )),

Cε
int → C∞,1

int weakly-(*) in L∞(0,∞;M+(T N )).

In view of (2.9) we denote by

Cε,1
conv(t) ≡ 2rε(t) ⊗ Cε

kin(t), (3.3)

the convective concentration defect measure associated with [�ε,mε, Eε] and
deduce

Cε,1
conv → C∞,1

conv weakly-(*) in L∞(0,∞;M+(T N × SN−1)). (3.4)

We remark that the final convective concentration defect measure will be con-
structed below as a sum of C∞,1

conv and another measure obtained from the con-
centrations of the Young measures νε

x (t).
With the above convergences at hand, we are able to pass to the limit in the kinetic
as well as internal energy concentration defect measure in (2.10) and also in the
pressure concentration defect measure in (2.12). Furthermore, we can pass to the
limit in the integrals related to the convective term.More precisely, in view of (3.3),
we have

2
∫ ∞

0

∫
T N

〈
rε
x (t); ξ ⊗ ξ

〉 : ∇xϕ Cε
kin(t, dx) dt

=
∫ ∞

0

∫
T N

∫
SN−1

(ξ ⊗ ξ) : ∇xϕ Cε,1
conv(t, dx, dξ) dt

and the right hand side converges by (3.4) to
∫ ∞

0

∫
T N

∫
SN−1

(ξ ⊗ ξ) : ∇xϕ C∞,1
conv(t, dx, dξ) dt.

Finally, we realize that 2C∞,1
kin (t, dx) is themarginal ofC∞,1

conv(t, dx, dξ) correspond-
ing to the variable x , that is,

2C∞,1
kin (t, dx) = C∞,1

conv(t, dx, S
N−1). (3.5)

Indeed, by (3.3), this is true on the approximate level and the property is preserved
through the passage to the limit as ε → 0.

• Finally, it remains to handle the terms containing the Young measure. First, we
deduce from the energy inequality (2.13) together with (2.10) and (3.2) that the
Young measures νε

x (t) have uniformly bounded first moments. This implies their
(relative) compactness leading to

νε
x (t) → νx (t) weakly-(*) in L∞ ((0,∞) × T N ;P(S)

)
. (3.6)
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Note that the fact that the limit is again a (parametrized) probabilitymeasure follows
from the finiteness of the first moments, see for example Ball [3].
Next, let χk and and ψk , k ∈ N, be cut-off functions satisfying

χk ∈ C∞(R), 0 � χk(Z) � 1,

χk(Z) = 0 if Z � k − 1, 0 � χk(Z) � 1, χk(Z) = 1 if Z � k;
ψk ∈ C∞(R), 0 � ψk(Z) � 1,

ψk(Z) = 0 for Z � 0, 0 � ψk(Z) � 1 if 0 � Z ≤ 1

k
, ψk(Z) = 1 if Z � 1

k
.

We consider the two families of measures (here b ∈ C(SN−1))

Cε,k,2
conv ∈ L∞

weak−(∗)(0,∞;M+(T N × SN−1)),

∫
SN−1

b(ξ)Cε,k,2
conv (t, dx, dξ) = 2

〈
νε
x (t); b

(
m̃
|m̃|
)

ψk (̃�)χ̃k

(
1

2

|m̃|2
�̃

)
1

2

|m̃|2
�̃

〉
dx

+2

〈
νt,x ; b

(
m̃
|m̃|
)
1�̃>0(1 − ψk(�̃))

1

2

|m̃|2
�̃

〉
dx,

and

Cε,k,2
press ∈ L∞

weak−(∗)(0,∞;M+(T N )), Cε,k,2
press(t, dx) = 〈νε

x (t);χk
(
a�̃γ

)
a�̃γ

〉
dx .

Due to (2.13) and (2.10) they are bounded uniformly in ε, k and hence passing to
the limit, first for ε → 0 then k → ∞ we obtain

Cε,k,2
conv → C∞,2

conv weakly-(*) in L∞
weak−(∗)(0,∞;M+(T N × SN−1)),

Cε,k,2
press → C∞,2

press weakly-(*) in L∞
weak−(∗)(0,∞;M+(T N )). (3.7)

We set

2C∞,2
kin (t) = C∞,2

conv(t, dx, S
N−1), C∞,2

int (t) = 1

γ − 1
C∞,2
press. (3.8)

Accordingly, the convective term in the momentum equation (2.12) can be decom-
posesd as

〈
νε
x (t); 1�̃>0

m̃ ⊗ m̃
�̃

〉
dx

=
〈
νε
x (t);

(
m̃ ⊗ m̃

�̃

)
ψk(�̃)(1 − χk)

(
1

2

|m̃|2
�̃

)〉
dx

+
〈
νε
x (t);

(
m̃ ⊗ m̃

�̃

)
ψk(�̃)χk

(
1

2

|m̃|2
�̃

)〉
dx

+
〈
νε
x (t);

(
m̃ ⊗ m̃

�̃

)
1�̃>0(1 − ψk(�̃))

〉
dx

=
〈
νε
x (t);

(
m̃ ⊗ m̃

�̃

)
ψk(�̃)(1 − χk)

(
1

2

|m̃|2
�̃

)〉
dx
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+ 2

〈
νε
x (t);

(
m̃
|m̃| ⊗ m̃

|m̃|
)

ψk(�̃)χk

(
1

2

|m̃|2
�̃

)
1

2

|m̃|2
�̃

〉
dx

+ 2

〈
νε
x (t);

(
m̃
|m̃| ⊗ m̃

|m̃|
)
1�̃>0(1 − ψk(�̃))

1

2

|m̃|2
�̃

〉
dx .

Performing successively the limits ε → 0, k → ∞ we obtain
〈
νε
x (t);

(
m̃ ⊗ m̃

�̃

)
ψk(�̃)(1 − χk)

(
1

2

|m̃|2
�̃

)〉
dx →

〈
νx (t); 1�̃>0

(
m̃ ⊗ m̃

�̃

)〉
dx .

Indeed, the passage to the limit as ε → 0 is follows from (3.6) since the Young
measures are applied to continuous and bounded functions, whereas the passage
to the limit k → ∞ is a consequence of dominated convergence together with the
energy inequality (2.13) and (2.10).
On the other hand, by definition of Cε,k,2

conv and (3.7) we obtain

2

〈
νε
x (t);

(
m̃
|m̃| ⊗ m̃

|m̃|
)

ψk(�̃)χk

(
1

2

|m̃|2
�̃

)
1

2

|m̃|2
�̃

〉
dx

+ 2

〈
νε
x (t);

(
m̃
|m̃| ⊗ m̃

|m̃|
)
1�̃>0(1 − ψk(�̃))

1

2

|m̃|2
�̃

〉
dx

=
∫
SN−1

(ξ ⊗ ξ)Cε,k,2
conv (t, dx, dξ) →

∫
SN−1

(ξ ⊗ ξ)C∞,2
conv(t, dx, dξ).

The pressure term can be handled in a similar manner.
Finally, we set

Ckin = C∞,1
kin + C∞,2

kin , Cint = C∞,1
int + C∞,2

int = C∞,1
int + 1

γ − 1
C∞,2
press

and use relations (3.5), (3.8) to obtain, after final disintegration

Cconv = C∞,1
conv + C∞,2

conv = 2rx (t) ⊗
(
C∞,1
kin + C∞,2

kin

)

for some measures rx (t) ∈ P(SN−1).
• Finally, we can pass to the limit in (2.10). Arguing as for the convective term we
obtain ∫

T N

〈
νε
x (τ ); 1

2

|m̃|2
�̃

+ a

γ − 1
�̃γ

〉
dx

→
∫
T N

〈
νx (τ ); 1

2

|m̃|2
�̃

+ a

γ − 1
�̃γ

〉
dx

+
∫
T N

dC∞,2
kin (τ ) +

∫
T N

dC∞,2
int (τ )

weakly-(*) in L∞(0, T ) such that

E(τ ) = ∫T N

〈
νx (τ ); 1

2
|m̃|2
�̃

+ a
γ−1 �̃

γ
〉
dx

+ ∫T N dCkin(τ ) + ∫T N dCint(τ ).

The proof is hereby complete. ��
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3.2. Existence

The sequential stability from the previous part combinedwith a suitable approx-
imation implies the existence of a dissipative solution. The precise statement is the
content of the following proposition:

Proposition 3.2. Let [�0,m0, E0] ∈ D be given. Then the isentropic Euler system
(1.1) admits a dissipative solution in the sense of Definition 2.1 with the initial data
[�0,m0, E0].
Proof. We adapt the method of Kröner and Zajaczkowski [21] adding an artificial
viscosity term of higher order to the momentum equation. First observe that the
definition of D implies

�0 ∈ Lγ (T N ), m0 ∈ L
2γ

γ+1 (T N ; RN )

with the respective bounds in terms of E0. It is a routine matter to construct approx-
imating sequences satisfying,

�0,ε → �0 in Lγ (T N ), m0,ε = �0,εu0,ε → m0 in L
2γ

γ+1 (T N ; RN )

and
∫
T N

[
1

2
�0,ε|u0,ε|2 + a

γ − 1
�

γ
0,ε

]
dx →

∫
T N

[
1

2

|m0|2
�0

+ a

γ − 1
�

γ
0

]
dx

as ε → 0, where �0,ε > 0 and the velocity u0,ε are smooth functions.
We consider the “multipolar fluid” type approximation of the Euler system

(1.1):
∂t� + divx (�u) = 0,

∂t (�u) + divx (�u ⊗ u) + a∇x�
γ = −ε�2m

x u,
(3.9)

where ε > 0, m ∈ N, and the initial data is chosen as

�(0, ·) = �0,ε, u(0, ·) = u0,ε. (3.10)

It is well known that for m ∈ N large enough, see for example [21], problem
(3.9), (3.10) admits a unique smooth solution [�ε,uε] in the time interval (0,∞).
Moreover, we have the total energy balance,

d

dt

∫
T N

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε

]
dx + ε

∫
T N

|�m
x uε|2 dx = 0. (3.11)

Using the arguments of the preceding section, it is easy to perform the limit
ε → 0 in the sequence of approximate solutions

{
�ε,mε = �εuε, Eε =

∫
T N

[
1

2
�ε|uε|2 + a

γ − 1
�γ

ε

]
dx

}
ε>0
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to obtain the desired dissipative solution as long as we control the artificial viscosity
terms. However, this is standard as (3.11) yields

√
ε�m

x uε bounded in L2(0,∞; L2(T N ; RN )) uniformly for ε → 0.

Accordingly, the corresponding term in the weak formulation of the momentum
equation (3.9)2 can be handled as∣∣∣∣ε

∫ τ

0

∫
T N

�2m
x uε · ϕ dx dt

∣∣∣∣ =
∣∣∣∣ε
∫ τ

0

∫
T N

�m
x uε · �m

x ϕ dx dt

∣∣∣∣
�

√
ε sup
t∈[0,τ ]

‖�m
x ϕ‖L∞(T N ;RN ),

and vanishes asymptotically. ��

4. Abstract Setting

Our goal is to adapt the abstract machinery developed by Cardona and Kapi-
tanski [7] to the family U[�0,m0, E0], [�0,m0, E0] ∈ D. The following statement
is a direct consequence of Propositions 3.1 and 3.2:

Lemma 4.1. For any [�0,m0, E0] ∈ D, the set U[�0,m0, E0] is a non-empty,
compact subset of �. Moreover, [�(T ),m(T ), E] ∈ D for any T > 0, and for
arbitrary E � E(T+).

4.1. Shift and Continuation Operations

Two main ingredients for the construction of the semiflow are the shift invari-
ance property and the continuation property of the set of solutions (this corre-
sponds to the disintegration and reconstruction property in the probabilistic setting
of Markov selections). For ω ∈ �, we define the positive shift operator

ST ◦ ω, ST ◦ ω(t) = ω(T + t), t � 0.

Lemma 4.2. (Shift invariance property) Let [�0,m0, E0] ∈ D and [�,m, E] ∈
U[�0,m0, E0]. Then we have

ST ◦ [�,m, E] ∈ U[�(T ),m(T ), E]
for any T > 0, and any E � E(T+).

Proof. Obviously, a dissipative solution on the time interval (0,∞) solves also the
same problem on (T,∞)with the initial data [�(T, ·),m(T, ·), E(T+)].Moreover,
the energy is non-increasing; whence

lim
t→T+ E(t) = E(T+) � E .

The rest follows by shifting the test functions in the integrals. ��
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For ω1, ω2 ∈ � we define the continuation operator ω1 ∪T ω2 by

ω1 ∪T ω2(τ ) =
⎧⎨
⎩

ω1(τ ) for 0 � τ � T,

ω2(τ − T ) for τ > T .

Lemma 4.3. (Continuation property) Let [�0,m0, E0] ∈ D and

[�1,m1, E1] ∈ U [�0,m0, E0],
[�2,m2, E2] ∈ U [�1(T ),m1(T ),E],

where ε ≤ E1(T−) Then

[�1,m1, E1] ∪T [�2,m2, E2] ∈ U[�0,m0, E0].
Proof. We have only to realize that the energy of the solution [�1,m1, E1] ∪T

[�2,m2, E2] indeed remains non-increasing on (0,∞). ��

4.2. General Ansatz

Summarizing the previous part of this section and the results of Sect. 3, we have
shown the existence of a set-valued mapping

D � [�0,m0, E0] �→ U[�0,m0, E0] ∈ 2�

enjoying the following properties:

(A1) Compactness: For any [�0,m0, E0] ∈ D, the set U[�0,m0, E0] is a non-
empty compact subset of �.

(A2) Measurability: The mapping

D � [�0,m0, E0] �→ U[�0,m0, E0] ∈ 2�

is Borel measurable, where the range of U is endowed with the Hausdorff
metric on the subspace of compact sets in 2�.

(A3) Shift invariance: For any

[�,m, E] ∈ U[�0,m0, E0],
we have

ST ◦ [�,m, E] ∈ U[�(T ),m(t), E(T−)] for any T > 0.

(A4) Continuation: If T > 0, and

[�1,m1, E1] ∈ U[�0,m0, E0],
[�2,m2, E2] ∈ U[�1(T ),m1(T ), E1(T−)],

then

[�1,m1, E1] ∪T [�2,m2, E2] ∈ U[�0,m0, E0].
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The conditions (A1)–(A4) have been introduced in Cardona and Kapitanski [7].
In what follows, we will adopt their method based on the ideas of Krylov [22] and
Strook and Varadhan [27] to select the desired solution semiflow. We remark that
the value E(T−) in (A3) and (A4) can be replaced by

E = ηE(T−) + (1 − η)E(T+)

where η ∈ [0, 1] is given.

5. Semiflow Selection

Following the general method by Krylov [22], we consider the family of func-
tionals

Iλ,F [�,m, E] =
∫ ∞

0
exp(−λt)F(�(t),m(t), E(t)) dt, λ > 0,

where

F : X = W−
,2(T N ) × W−
,2(T N ; RN ) × R → R

is a bounded and continuous functional. Given Iλ,F and a set-valued mapping U
we define a selection mapping Iλ,F ◦ U , by

Iλ,F ◦ U[�0,m0, E0]
=
{
[�,m, E] ∈ U[�0,m0, E0]

∣∣∣ Iλ,F [�,m, E] � Iλ,F [�̃, m̃, Ẽ]
for all [�̃, m̃, Ẽ] ∈ U[�0,m0, E0]

}
.

In other words, the selection is choosing minima of the functional Iλ,F . Note that a
minimum exists since Iλ,F is continuous on� and the setU[�0,m0, E0] is compact
in �. We obtain the following result for the set Iλ,F ◦ U .
Proposition 5.1. Let λ > 0 and F be a bounded continuous functional on X. Let

U : [�0,m0, E0] ∈ D �→ U[�0,m0, E0] ∈ 2�

be a multivalued mapping having the properties (A1)–(A4). Then the map Iλ,F ◦U
enjoys (A1)–(A4) as well.

Proof. Apart from the proof of (A2), we follow the lines of the proof of Cardona
and Kapitanski [7, Section 2], which in turn relies on the classical approach by
Krylov [22] for stochastic differential equations. As a matter of fact, Cardona and
Kapitanski [7] consider � as a space of continuous functions on a separable com-
plete metric space X . This is not true in our case since, due to the possibility of
energy sinks, the energy E lacks continuity. We therefore present the details of the
proof also for the convenience of the reader.

• The map Iλ,F : U[�0,m0, E0] ⊂ � → R is continuous. As the set
U[�0,m0, E0] is non-empty and compact, the set Iλ,F ◦ U[�0,m0, E0] is a
non-empty compact subset of �, which completes the proof of (A1).
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• Let dH be the Hausdorff metric on the subspace K ⊂ 2� of compact sets,
specifically,

dH (K1, K2) = inf
ε�0

{K1 ⊂ Vε(K2) and K2 ⊂ Vε(K1)} , K1, K2 ∈ K,

where Vε(A) denotes the ε-neighborhood of a set A in the topology of �. To
show Borel measurability of the multivalued mapping

[�0,m0, E0] ∈ D �→ Iλ,F ◦ U[�0,m0, E0] ∈ K ⊂ 2�,

it is enough to show that the mapping Iλ,F defined for any K ∈ K as

Iλ,F [K ] =
{
z ∈ K

∣∣∣ Iλ,F (z) � Iλ,F (z̃) for all z̃ ∈ K
}

∈ K,

is continuous as a mapping on K endowed with the Hausdorff metric dH .
Suppose

Kn
dH→ K , Kn, K ∈ K.

As Iλ,F is continuous, we easily observe that

min
Kn

Iλ,F → min
K

Iλ,F . (5.1)

Consider the ε-neighborhood Vε(Iλ,F [K ]) of the compact set Iλ,F [K ]. Our
goal is to show that

Iλ,F [Kn] ⊂ Vε(Iλ,F [K ]) for all n � n0(ε).

Arguing by contradiction, we construct a sequence such that

zn ∈ Kn, Iλ,F (zn) = min
Kn

Iλ,F , zn → z ∈ K \ Vε(Iλ,F [K ]).

Continuity of Iλ,F yields

Iλ,F (zn) → Iλ,F (z) > min
K

Iλ,F

in contrast to (5.1). Interchanging the roles of Kn and K we get the opposite
inclusion

Iλ,F [K ] ⊂ Vε(Iλ,F [Kn]) for all n � n0(ε)

by a similar argument. This implies that Iλ,F [Kn] dH→ Iλ,F [K ] and completes
the proof of (A2).
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• For the shift invariance let us consider some [�,m, E] ∈ Iλ,F ◦ U[�0,m0, E0]
for some [�0,m0, E0] ∈ D.We aim to show that the shift ST ◦[�,m, E] belongs
to the set Iλ,F ◦ U[�(T ),m(T ), E(T−)] for T > 0 arbitrary. Indeed, for any
[�T ,mT , ET ] ∈ Iλ,F ◦ U[�(T ),m(T ), E(T−)] we obtain

[�,m, E] ∪T [�T ,mT , ET ] ∈ U[�0,m0, E0]
by (A4) and hence

Iλ,F (ST ◦ [�,m, E]) =
∫ ∞

0
e−λt F(ST ◦ [�,m, E](t)) dt

=
∫ ∞

0
e−λt F([�,m, E](T + t)) dt

= eλT
∫ ∞

T
e−λt F([�,m, E](t)) dt

= eλT
(
Iλ,F [�,m, E] −

∫ T

0
e−λt F([�,m, E](t)) dt

)

� eλT
(
Iλ,F ([�,m, E] ∪T [�T ,mT , ET ])

−
∫ T

0
e−λt F([�,m, E](t)) dt

)

= eλT
∫ ∞

T
e−λt F([�T ,mT , ET ](t − T )) dt

= Iλ,F [�T ,mT , ET ],
where the inequality follows from the fact that [�,m, E] minimizes Iλ,F on
U[�0,m0, E0] by assumption. This implies that ST ◦ [�,m, E] minimizes Iλ,F

and consequently belongs to Iλ,F ◦ U[�(T ),m(T ), E(T−)]. We have shown
property (A3).

• On the other hand, let us consider [�1,m1, E1] ∈ Iλ,F ◦U[�0,m0, E0] as well
as [�2,m2, E2] ∈ Iλ,F ◦ U[�1(T ),m1(T ), E1(T−)] where [�0,m0, E0] ∈ D
and T > 0. We obtain for the continuation [�1,m1, E1] ∪T [�2,m2, E2] that
Iλ,F ([�1,m1, E1] ∪T [�2,m2, E2])

=
∫ T

0
e−λt F([�1,m1, E1](t)) dt +

∫ ∞

T
e−λt F([�2,m2, E2](t − T )) dt

=
∫ T

0
e−λt F([�1,m1, E1](t)) dt + e−λT Iλ,F [�2,m2, E2]

�
∫ T

0
e−λt F([�1,m1, E1](t)) dt + e−λT Iλ,F (ST ◦ [�1,m1, E1])

= Iλ,F [�1,m1, E1],
where the inequality follows from the fact that [�2,m2, E2] is a minimizer of
Iλ,F in the set U[�1(T ),m1(T ), E1(T−)]. As [�1,m1, E1] is a minimizer in
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U[�0,m0, E0] and [�1,m1, E1] ∪T [�2,m2, E2] ∈ U[�0,m0, E0] by (A4) we
must have equality and [�1,m1, E1] ∪T [�2,m2, E2] is a minimizer too. This
proves (A4) for Iλ,F ◦ U and the proof is complete. ��

5.1. Selection Sequence

The first step is to select only those solutions that are admissible, meaning
minimal with respect to the relation ≺ introduced in Definition 2.3. To this end, we
consider the functional I1,β with

β(�,m, E) = β(E), β : R → R

smooth, bounded, and strictly increasing.

Lemma 5.2. Suppose that [�,m, E] ∈ U[�0,m0, E0] satisfies∫ ∞

0
exp(−t)β(E(t)) dt �

∫ ∞

0
exp(−t)β(Ẽ(t)) dt

for any [�̃, m̃, Ẽ] ∈ U[�0,m0, E0]. Then [�,m, E] is≺minimal, meaning, admis-
sible.

Proof. We proceed by contradiction. Let [�̃, m̃, Ẽ] ∈ U[�0,m0, E0] be such that
[�̃, m̃, Ẽ] ≺ [�,m, E], that is, Ẽ � E in (0,∞). Then we get

β(E) � β(Ẽ), and
∫ ∞

0
exp(−t)

[
β(E) − β(Ẽ)

]
dt � 0;

whence E = Ẽ a.a. in (0,∞) since β is strictly increasing. ��
Proof of Theorem 2.5. Selecting I1,β ◦ U from U we know that the new selec-
tion contains only admissible solutions (minimal with respect to ≺) for any
[�0,m0, E0] ∈ D.

Next, we choose a countable basis {en}∞n=1 in L2(T N ) formed by trigonometric
polynomials, its vector valued analogue {wm}∞m=1 in L2(T N ; RN ), and a countable
set {λk}∞k=1 which is dense in (0,∞).We consider a countable family of functionals,

Ik,0,0[�,m, E] =
∫ ∞

0
exp(−λk t)β(E(t)) dt,

Ik,n,0[�,m, E] =
∫ ∞

0
exp(−λk t)β

(∫
T N

�en dx

)
dt,

Ik,0,m[�,m, E] =
∫ ∞

0
exp(−λk t)β

(∫
T N

m · wm dx

)
dt,

and let {(k( j), n( j),m( j))}∞j=1 be an enumeration of all the involved combinations
of indices, that is, an enumeration of the countable set

(N × {0} × {0}) ∪ (N × N × {0}) ∪ (N × {0} × N).
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We define

U j = Ik( j),n( j),m( j) ◦ · · · ◦ Ik(1),n(1),m(1) ◦ I1,β ◦ U , j = 1, 2, . . . ,

and

U∞ = ∩∞
j=1U j .��

By Proposition 5.1 the set-valued mapping

D � [�0,m0, E0] �→ U∞[�0,m0, E0]
enjoys the properties (A1)–(A4). Indeed, since U∞[�0,m0, E0] is an intersection
of countably many non-empty compact nested sets, it is non-empty and compact.
As it is an intersection of set-valued maps obtained from measurable set-valued
maps, it is also measurable. The shift property (A3) as well as the continuation
property (A4) are straightforward.

Finally, we claim that for every [�0,m0, E0] ∈ D the set U∞[�0,m0, E0] is a
singleton, meaning there exists a single trajectory U {�0,m0, E0} ∈ � such that

U∞[�0,m0, E0] = {U {�0,m0, E0}
}

(5.2)

for any [�0,m0, E0] ∈ D, which completes the proof of Theorem 2.5. Indeed, the
semigroup property follows from the definition of the shift property (A3); for all
t1, t2 � 0 it holds that

U {�0,m0, E0}(t1 + t2) = St1 ◦U {�0,m0, E0}(t2)
= U {U {�0,m0, E0}(t1−)}(t2).

To verify (5.2), we observe that

Ik( j),n( j),m( j)[�1,m1, E1] = Ik( j),n( j),m( j)[�2,m2, E2]
for any [�1,m1, E1], [�2,m2, E2] ∈ U∞[�0,m0, E0]

for all j = 1, 2, . . . . This implies, by means of Lerch’s theorem and the choice of
{(k( j), n( j),m( j))}∞j=1, that

β(E1(t)) = β(E2(t)),

β

(∫
T N

�1en dx

)
= β

(∫
T N

�2en dx

)
,

β

(∫
T N

m1 · wm dx

)
= β

(∫
T N

m2 · wm dx

)

for all n,m ∈ N and a.a. t ∈ (0,∞). As β is strictly increasing and {en}∞n=1 and
{wm}∞m=1 form a basis in L2(T N ) and L2(T N ; RN ), respectively, we conclude that

�1 = �2, m1 = m2, and E1 = E2 a.a. in (0,∞),

which finishes the proof. ��
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6. Concluding Remarks

Regularity of the constructed semiflow as well as possible dependence of the
trajectories on the initial data represent major open issues that probably cannot be
solved within the present abstract framework. In what follows, we discuss some
simple observations that may shed some light on the complexity of the problem.

6.1. Energy Profile

The hypothetical possibility of “energetic sinks”–the times T > 0 for which
∫
T N

[ |m|2
�

+ a

γ − 1
�γ

]
(T, ·) dx < E(T+)

implies the existence of solutions in the semiflow with positive jump of the initial
energy

∫
T N

[ |m0|2
�0

+ a

γ − 1
�

γ
0

]
dx < E(0+).

It is interesting to note that the existence proof presented in Proposition 3.2 does not
provide solutions of this type. One may be tempted to say that these are exactly the
solutions obtained via themethod of convex integration, however, such a conclusion
is not straightforward as shown in the next section.

6.2. Wild Weak Solutions

In the context of the recent results achieved by themethod of convex integration,
see [9,15,17], some of the solutions involved in the semiflowmight be the so-called
wild (weak) solutions producing energy. This seems particularly relevant for the
initial data of the form

�0, m0, with E(0+) >

∫
T N

[
1

2

|m0|2
�0

+ a

γ − 1
�

γ
0

]
dx .

However, such a possibility seems to be ruled out by the available convex integration
ansatz used in the context of compressible flow, cf. [17]. Indeed the weak solutions
are “constructed” with prescribed energy profile ekin(t, x) + eint(t, x)—a given
continuous function of t and x—as limits of subsolutions [�s,ms]. The subsolutions
�s , ms satisfy the strict inequality

[
1

2

|ms |2
�s

+ a

γ − 1
(�s)γ

]
(t, x) < ekin(t, x) + eint(t, x)

for any t > 0, x ∈ T N . Consequently, the same method gives rise to another
solution with the same initial data with a chosen energy profile

ẽkin(t, x) + ẽint(t, x) < ekin(t, x) + eint(t, x), t > 0, x ∈ T N ,

which rules out the former solution on the basis of the ≺ minimality.
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6.3. Total Mass Conservation and Stability of Equilibrium States

It follows directly from the continuity equation (2.11) that any dissipative solu-
tion conserves the total mass,∫

T N
�(τ, ·) dx =

∫
T N

�0 dx = M for any τ � 0. (6.1)

The equilibrium states

�M ≡ M

|T N | � 0, mM ≡ 0, EM ≡ a

γ − 1

∫
T N

�
γ

M dx

are global in time regular solutions; whence, in accordance with the weak-strong
uniqueness principle stated in Proposition 2.2,

U {�M ,mM = 0, EM } = [�M , 0, EM ] for any M � 0.

We claim that

U {�M ,mM = 0, E0} = [�M , 0, EM ] for any E0 > EM ,

meaning the energy cannot “jump up” for any dissipative solution in the selection
starting from the equilibrium [�M ,mM ]. Indeed suppose that

[�,m, E] ∈ U∞[�M , 0, E0], E0 > EM .

In accordance with (6.1), the total mass is conserved, namely∫
T N

�(τ, ·) dx =
∫
T N

�M dx = M for any τ � 0. (6.2)

On the other hand, the energy is weakly lower semi-continuous, whence

a

γ − 1

∫
T N

�γ (τ, ·) dx �
∫
T N

[
1

2

|m|2
�

+ a

γ − 1
�γ

]
(τ, ·) dx � E(τ±)

for any τ > 0. Finally, we use (6.2) and Jensen’s inequality to obtain

1

|T N |
∫
T N

�
γ

M dx =
(

1

|T N |
∫
T N

�M dx

)γ

=
(

1

|T N |
∫
T N

� dx

)γ

� 1

|T N |
∫
T N

�γ dx,

where the equality holds if and only if � = �M . Consequently E(τ±) � EM for
any τ > 0, meaning [�,m, E0] can be ≺ minimal if and only if � = �M , m = 0.

We have obtained the following:

Corollary 6.1. Let [�,m, E] = U {�0,m0, E0} belong to the semiflow constructed
in Theorem 2.5. Suppose that

�(T, ·) = �M , m(T, ·) = 0 for some T � 0.

Then

�(τ, ·) = �M , m(τ, ·) = 0 for all τ � T .
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6.4. General Equation of State

The results presented above can be extended in a straightforward manner to a
more general barotropic equation of state provided the pressure p = p(�) and the
pressure potential P(�) given by

P ′(�)� − P(�) = p(�),

satisfy the asymptotic “adiabatic law”

p′(�) > 0 for � > 0, lim
�→∞

p(�)

P(�)
= γ − 1, with γ > 1.

If γ = 1, we need the extra hypothesis

lim inf
�→∞ p′(�) > 0.

6.5. Relative Energy Inequality

Let P be the pressure potential introduced in the previous section. We define
the relative energy

E
(
�,m

∣∣∣r,U) = 1

2
�

∣∣∣∣m� − U

∣∣∣∣
2

+ P(�) − P ′(r)(� − r) − P(r).

Following [20], we can derive the relative energy inequality∫
T N

E
(
�,m

∣∣∣r,U) (τ, ·) dx

�
(
E(0+) −

∫
T N

[
|m0|2

�0
+ P(�0)

]
dx

)

+
∫
T N

E
(
�0,m0

∣∣∣r(0, ·),U(0, ·)
)

dx

+
∫ τ

0

∫
T N

1

r

(
r (∂tU + U · ∇xU) + ∇x p(r)

)(
�U − m

)
dx dt

+
∫ τ

0

∫
T N

P ′′(r)(r − �)
(
∂t r + divx (rU)

)
dx dt

+ c
∫ τ

0
‖∇xU‖L∞(T N )

∫
T N

E
(
�,m

∣∣∣r,U) dx dt,

which holds for any dissipative solution [�,m, E] starting from the initial data
[�0,m0, E0] ∈ D, and any r ∈ W 1,∞

loc ([0,∞) × T N ), U ∈ W 1,∞
loc ([0,∞) ×

T N ; RN ), r > 0. In particular, we have, by Gronwall’s lemma,
∫
T N

E
(
�,m

∣∣∣r,U) (τ, ·) dx

�
[(

E(0+) −
∫
T N

[ |m0|2
�0

+ P(�0)

]
dx

)

+
∫
T N

E
(
�0,m0

∣∣∣r(0, ·),U(0, ·)
)

dx

]

× exp

(
c
∫ τ

0
‖∇xU‖L∞(T N ) dt

)
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for any strong solution r,M = rU, r > 0, of the Euler system, which yields the
weak-strong uniqueness property stated in Proposition 2.2.
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