
Digital Object Identifier (DOI) 10.1007/s00205-015-0870-1
Arch. Rational Mech. Anal. 218 (2015) 825–861

Ground States of Time-Harmonic Semilinear
Maxwell Equations in R

3 with Vanishing
Permittivity

JarosŁaw Mederski

Communicated by P. Rabinowitz

Abstract

We investigate the existence of solutions E : R3 → R
3 of the time-harmonic

semilinear Maxwell equation

∇ × (∇ × E) + V (x)E = ∂E F(x, E) in R3

where V : R3 → R, V (x) � 0 almost everywhere on R
3, ∇× denotes the curl

operator in R
3 and F : R3 × R

3 → R is a nonlinear function in E . In particular
we find a ground state solution provided that suitable growth conditions on F are
imposed and the L3/2-norm of V is less than the best Sobolev constant. In applica-
tions, F is responsible for the nonlinear polarization and V (x) = −μω2ε(x)where
μ > 0 is themagnetic permeability,ω is the frequency of the time-harmonic electric
field �{E(x)eiωt } and ε is the linear part of the permittivity in an inhomogeneous
medium.

1. Introduction

We study the propagation of electromagnetic waves (E,B) in the absence of
charges, currents and magnetization. The constitutive relations between the electric
displacement field D and the electric field E as well as between the magnetic
induction H and the magnetic field B are given by

D = εE + PN L and H = 1

μ
B, (1.1)

where ε is the (linear) permittivity of an inhomogeneous material, and PN L stands
for the nonlinear polarization which depends nonlinearly on the electric field E . In
inhomogeneous media, ε and PN L depend on the position x ∈ R

3 and we assume
that the magnetic permeability is constant μ > 0. As usual, the Maxwell equations
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{∇ × H = ∂tD, div (D) = 0,
∂tB + ∇ × E = 0, div (B) = 0,

(1.2)

together with the constitutive relations (1.1) lead to the equation (see Saleh and
Teich [22])

∇ ×
(
1

μ
∇ × E

)
+ ∂2t (εE) = −∂2t PN L .

In the time-harmonic case the fields E and PN L are of the form E(x, t) = �{E(x)

eiωt }, PN L(x, t) = �{P(x)eiωt }, where E(x), P(x) ∈ R
3 and we arrive at the

time-harmonic Maxwell equation

∇ × (∇ × E) + V (x)E = f (x, E) in R
3, (1.3)

where V (x) = −μω2ε(x) � 0 and f (x, E) = μω2P(x, E). Here E : R3 → R
3

is a vector field and V : R3 → R. In a Kerr-like medium the strong electric field
E of high intensity causes the refractive index to vary quadratically with the field
and then the polarization has the form PN L = α(x)〈|E |2〉E , where 〈|E |2〉 stands
for the time average of the intensity of E , hence P(x, E) = 1

2α(x)|E |2E (see
Nie [18] and Stuart [23]). In applications, for low intensity |E | the Kerr effect is
often considered to be linear, PN L is negligible and therefore we may assume that
PN L decays rapidly as |E | → 0. In order to model these nonlinear phenomena we
consider nonlinearities of the form

f (x, E) = �(x)min{|E |p−2, |E |q−2}E, 2 < p � q, (1.4)

where � ∈ L∞(R3) is positive, periodic and bounded away from 0. Case p = 4
corresponds to the Kerr effect for the strong field E . In fact, we will able to deal with
general nonlinearities of the form f (x, E) = ∂E F(x, E), where F : R3×R

3 → R.
Some other examples of nonlinearities in physical models can be found for example
in Stuart [23] (see also Section 2).

We look for weak solutions to (1.3) in a certain D(curl, p, q) space, where
p and q are provided by the growth of f ; see Section 3 for details. Note that a
solution E of (1.3) determines PN L andD by the first constitutive relation in (1.1)
whereas B andH are obtained from ∇ × E by time-integration. We will show that
if E ∈ D(curl, p, q) solves (1.3), then the total electromagnetic energy

L(t) := 1

2

∫
R3

ED + BH dx (1.5)

is finite. We do not know whether the fields E , D, B and H are localized, that is
decay to zero as |x | → ∞, however D(curl, p, q) lies in the sum of Lebesgue
spaces L p,q := L p(R3,R3) + Lq(R3,R3) and therefore it does not contain the
usual nontrivial travelling waves E propagating in a given direction z ∈ R

3 such
that E(x) = E(x + z) for all x ∈ R

3. The finiteness of the electromagnetic energy
and the localization problem attract a strong attention in the study of self-guided
beams of light in a nonlinear medium; see for example [23,24].
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We restrict our considerations to optical metamaterials having permittivity ε

close to zero, that is the so-called epsilon-near-zero (ENZ) media (see for exam-
ple [2,12,15] and references therein). The ENZ materials exhibit strong nonlinear
effects, for example the Kerr effect, governed by the polarizationPN L and the prop-
agation of time-harmonic electric field waves is described by (1.3). Our principal
aim is to investigate the existence and the nonexistence of solutions to (1.3) under
appropriate assumptions imposed on V and F . In particular, the closeness to zero

of ε will be expressed in terms of L
3
2 -norm of V (see Section 2). Moreover ground

state solutions which have the least possible energy among all nontrivial solutions
will be of our major interest owing to their physical importance. It is worth men-
tioning that usually naturally occurring materials have the permittivity positive and
bounded away from zero, that is V (x) = −μω2ε(x) is negative and bounded away
from 0. However it is not clear in which space one should seek weak solutions of
this problem with such V and a nonlinearity of the form (1.4), and whether any
variational method can be used. We will show, in fact, that (1.3) does not admit
classical solutions in case of constant and negative V ; see Corollary 2.5.

Recall that semilinear equations involving the the curl-curl operator∇×∇×(·)
in R

3 have been recently studied by Benci and Fortunato in [7]. They introduce
a model for a unified field theory for classical electrodynamics which is based on
a semilinear perturbation of the Maxwell equations. In the magnetostatic case, in
which the electric field vanishes and the magnetic field is independent of time, they
are lead to an equation of the form

∇ × (∇ × A) = W ′(|A|2)A in R
3 (1.6)

for the gauge potential A related to the magnetic field H = ∇ × A. Here F(A) =
1
2W (|A|2) is nonlinear in A. We emphasize that proof of the existence of solutions
to (1.6) in [7] contains a gap and the techniques from [7] do not seem to be sufficient.
Indeed, in order to deal with the lack of compactness issue they restrict the space
of divergence-free vector fields to the radially symmetric ones, which becomes
the null space. Finally in [1] Azzollini et al. use the cylindrical symmetry of the
equation to find solutions of (1.6) of the form

A(x) = α(r, x3)

⎛
⎝−x2

x1
0

⎞
⎠ , r =

√
x21 + x22 .

A field of this form is divergence-free and

∇ × ∇ × A = −�A,

hence standard methods of nonlinear analysis apply. In D’Aprile and Siciliano
[14] one finds another kind of cylindrical solution to the equation again using
symmetry arguments and the scaling properties of (1.6). Observe that (1.3) cannot
be treated neither by the Palais principle of symmetric criticality [19] nor by the
rescaling arguments due to the presence of nonsymmetric and vanishing V , that

is V ∈ L
3
2 (R3). We would like to emphasize that we are also able to deal with

functions F(x, E) that depend on x and are not radial in E . Therefore, we point
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out that the existence of ground states solutions of (1.3) with V = 0 will shed a
new light on Equation (1.6) and on a new formulation of the Maxwell equations
due to Born and Infeld [7,10].

We also mention the papers [23–29] by Stuart and Zhou, who studied trans-
verse electric and transverse magnetic solutions to (1.2) for asymptotically linear
polarizations and if again the cylindrical symmetry is present.

Problem (1.3) has a variational structure and (weak) solutions correspond to
critical points of the energy functional

E(E) = 1

2

∫
R3

|∇ × E |2 dx + 1

2

∫
R3

V (x)|E |2 dx −
∫
R3

F(x, E) dx (1.7)

defined on a space D(curl, p, q) which will be introduced in Section 3. One diffi-
culty from a mathematical point of view is that the curl-curl operator ∇ × ∇ × (·)
has an infinite-dimensional kernel, namely all gradient vector fields. Moreover the
functional E is unbounded from above and from below and its critical points have
infinite Morse index. In addition to these problems related to the strongly indef-
inite geometry of E , we also have to deal with the lack of compactness issues.
Namely functional E ′ is not (sequentially) weak-to-weak∗ continuous, that is the
weak convergence En ⇀ E in D(curl, p, q) does not imply that E ′(En) ⇀ E ′(E)

inD(curl, p, q)∗ (see the discussion preceding Corollary 5.3). Therefore we do not
know whether a weak limit of a bounded Palais–Smale sequence is a critical point.
Moreover the lack of the sufficient regularity of E makes this problem difficult to
treat with the available variational methods for indefinite problems for example
[4,6,21].

In order to find solutions to (1.3) we use a generalization of the Nehari manifold
technique for strongly indefinite functionals obtained recently by Bartsch and the
author in [5] (see also Szulkin and Weth [32,33]). Namely we introduce a Nehari–
Pankov manifold (cf. [20]) which is homeomorphic with a sphere in the subspace
of D(curl, p, q) consisting of divergence-free vector fields. This allows us to find
a minimizing sequence on the sphere and hence on the Nehari–Pankov manifold.
However in [5] we are in a position to find a limit point of the sequence being a crit-
ical point because the space of divergence-free vector fields on a bounded domain
is compactly embedded into certain L p spaces and a variant of the Palais–Smale
condition is satisfied. Since (1.3) is modelled in R3, the minimizing sequences are
no longer compact. Therefore the critical point theory developed in [5, Section 4] is
insufficient to find a solution to (1.3). Moreover the lack of the weak-to-weak∗ con-
tinuity of E ′ makes this problem impossible to treat by a concentration-compactness
argument in the spirit of Lions [16,17] in D(curl, p, q). Our approach is based on
a new careful analysis of a bounded sequence (En) of the Nehari–Pankov manifold
(Theorem 2.2) with a possibly infinite splitting (2.7) of the limit

lim
n→∞

(
1

2

∫
R3

|∇ × En|2 dx − E(En)

)
.

This result enables us to get the the weak-to-weak∗ continuity of E ′ on the Nehari–
Pankovmanifold.Moreover, in the spirit of the global compactness result of Struwe
[30,31] or Coti Zelati andRabinowitz [13], we are able to find a finite splitting of the



Ground states of Time-Harmonic Semilinear Maxwell Equations 829

ground state level limn→∞ E(En) with respect to a minimizing sequence (En) of
the Nehari–Pankov manifold (Theorem 2.3). Finally, comparisons of energy levels
will imply the existence of solutions to (1.3) (Theorem 2.1).

The paper is organized as follows. In Section 2 we formulate our hypothe-
ses on V and F , and we state our main results concerning the existence and the
nonexistence of solutions and ground state solutions. In Section 3 we introduce the
variational setting, in particular the spaces onwhich E will be defined.Moreover we
provide the Helmholtz decomposition of a vector field E into the divergence-free
component u and the curl-free component ∇w, that allows us to treat E as a func-
tional J of two variables (u, w) [see (3.4) and Proposition 3.3]. Next, in Section 4
we introduce the Nehari–Pankov manifold on which we minimize J in order to
find a ground state. In Section 5 we provide an analysis of bounded sequences in
D(R3,R3) and we obtain a splitting of a bounded sequence of the Nehari–Pankov
manifold in Theorem 2.2. We investigate Palais–Smale sequences in Section 6 and
we prove Theorem 2.3. Finally in Section 7 we prove Theorem 2.1 which states the
existence of solutions and ground state solutions of (1.3) andwe obtain a variational
identity in Theorem 2.4 implying a nonexistence result Corollary 2.5.

2. Main Results

We impose on V : R3 → R the following condition.

(V) V ∈ L
p

p−2 (R3) ∩ L
q

q−2 (R3), V � 0 almost everywhere on R
3 and |V | 3

2
< S,

where

S := inf
u∈D1,2\{0}

∫
R3 |∇u|2 dx

|u|26
is the classical best Sobolev constant.

Here and in the sequel | · |q denotes the Lq -norm. Now we collect assumptions on
the nonlinearity F(x, u).

(F1) F : R3×R
3 → R is differentiable with respect to the second variable u ∈ R

3,
and f = ∂u F : R3×R

3 → R
3 is a Carathéodory function (that is measurable

in x ∈ R
3, continuous in u ∈ R

3 for almost everywhere x ∈ R
3). Moreover

f is Z3-periodic in x that is f (x, u) = f (x + y, u) for x, u ∈ R
3 and y ∈ Z

3.
(F2) If V < 0 almost everywhere on R3 then F is convex in u ∈ R

3, otherwise F
is uniformly strictly convex with respect to u ∈ R

3, that is for any compact
A ⊂ (R3 × R

3)\{(u, u) : u ∈ R
3}

inf
x∈R3

(u1,u2)∈A

(
1

2
(F(x, u1) + F(x, u2)) − F

(
x,

u1 + u2

2

))
> 0.

(F3) There are 2 < p < 6 < q and constants c1, c2 > 0 such that

F(x, u) � c1 min(|u|p, |u|q)



830 JarosŁaw Mederski

and

| f (x, u)| � c2 min(|u|p−1, |u|q−1)

for all x, u ∈ R
3.

(F4) For any x ∈ R
3 and u ∈ R

3, u = 0

〈 f (x, u), u〉 > 2F(x, u).

(F5) If 〈 f (x, u), v〉 = 〈 f (x, v), u〉 = 0 then F(x, u) − F(x, v) �
〈 f (x,u),u〉2−〈 f (x,u),v〉2

2〈 f (x,u),u〉 .

If in addition F(x, u) = F(x, v) then the strict inequality holds.

The periodicity arises in the study of dielectric materials, for example in pho-
tonic crystals and we assume it in (F1). The convexity condition (F2) is rather
harmless (see examples below). Also, observe that condition (F4) is reminiscent
of the Ambrosetti–Rabinowitz condition. The growth condition (F3) describes a
supercritical behavior |u|q of F for |u| small and subcritical behavior |u|p for large
|u|. Note that 6 = 2∗ is the critical Sobolev exponent. This kind of growth has
been considered for Schrödinger equations in the zero-mass case for example by
Berestycki and Lions [9] or Benci et al. [8]. Moreover, similarly to [1,7,14] in
the study of (1.6), condition (F3) requires to work in L p,q in order to ensure that
the nonlinear term of energy functional (1.7) is finite; see Section 3 for details.
The technical condition (F5) is a variant of the monotonicity condition for vector
fields (see for example Szulkin and Weth [32]) and will be needed to set up the
Nehari–Pankov manifold (cf. conditions (F1)–(F7) in [5]).

Our model examples are of the form

F(x, u) =
{

�(x)
(
1
p |Mu|p + 1

q − 1
p

)
if |Mu| > 1,

�(x) 1q |Mu|q if |Mu| � 1,
(2.1)

F(x, u) = �(x)
1

p
((1 + |Mu|q)

p
q − 1) (2.2)

with� ∈ L∞(R3) isZ3 periodic, positive and bounded away from0, M ∈ GL(3) is
an invertible 3×3 matrix, 2 < p < 6 < q. Then all assumptions on F are satisfied.
Observe that these functions are not radial when M is not an orthogonal matrix. Of
course, if M = id, then for (2.1), f (x, u) takes the form of (1.4). Other examples
can be provided by considering radial functions of the form F(x, u) = W (|u|2),
where W ∈ C1(R,R), W (0) = W ′(0) = 0 and W ′(t) is strictly increasing on
(0,+∞). Then we check that (F1), (F2), (F4) and (F5) are satisfied.

Our principal aim is to prove the following result.

Theorem 2.1. Assume that (F1)–(F5) and (V) hold. Then there is a solution to (1.3).
If V < 0 almost everywhere on R

3 or V = 0 then (1.3) has a ground state solution,
that is there is a critical point E ∈ M of E such that

E(E) = inf
M

E > 0,
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where

M := {E ∈ D(curl, p, q)| E = 0, E ′(E)(E) = 0,

and E ′(E)(∇ϕ) = 0 for any ϕ ∈ C∞
0 (R3)}. (2.3)

SinceM contains all nontrivial critical points of E , then a ground state solution
is a nontrivial solution with the least possible energy E . Moreover we show that
any E ∈ M admits the Helmholtz decomposition E = u + ∇w with u = 0 and
div (u) = 0.

We provide a careful analysis of bounded sequences inMwhich plays a crucial
role in proof of Theorem 2.1. Namely, setting

I (E) := 1

2

∫
R3

|∇ × E |2 dx − E(E) = −1

2

∫
R3

V (x)|E |2 dx +
∫
R3

F(x, E) dx,

(2.4)
we get the following result.

Theorem 2.2. Assume that (F1)–(F5) and (V) hold. If (En)∞n=0 ⊂ M is bounded
then, up to a subsequence, there is N ∈ N∪{∞}, Ē0 ∈ D(curl, p, q) and there are
sequences (Ēi )

N
i=1 ⊂ M0 and (xi

n)n�i ⊂ Z
3 with x0n = 0 such that the following

conditions hold:

En(·+xi
n) ⇀ Ēi in D(curl, p, q) and En(·+xi

n) → Ēi almost everywhere in R
3 as n →∞,

(2.5)
for any 0 � i < N + 1, and

En −
min{n,N }∑

i=0

Ēi (· − xi
n) → 0 in L p,q = L p(R3,R3) + Lq(R3,R3) as n → ∞.

(2.6)
Moreover

lim
n→∞ I (En) = I (Ē0) +

N∑
i=1

I0(Ēi ) < ∞, (2.7)

where M0 and I0 are given by (2.3) and (2.4) under assumption V = 0.

As a consequence of Theorem 2.2 we get the sequentially weak-to-weak∗ con-
tinuity of E ′ in M ∪ {0} (cf. Corollary 5.3). Moreover, in the spirit of the global
compactness result of Struwe [30,31] or Coti Zelati and Rabinowitz [13], we obtain
a finite splitting of energy levels with respect to a Palais–Smale sequence inM.

Theorem 2.3. Assume that (F1)–(F5) and (V) hold. If (En)
∞
n=0 ⊂ M is a (P S)c-

sequence at level c > 0, that is E(En) → c and E ′(En) → 0, then, up to a
subsequence, there is Ē0 ∈ D(curl, p, q) and a finite sequence (Ēi )

N
i=1 ⊂ M0 of

critical points of E0 such that (2.5), (2.6) hold and

c = E(Ē0) +
N∑

i=1

E0(Ēi ), (2.8)

where E0 is the energy functional given by (1.7) under assumption V = 0.
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Observe that if 0 < c < infM0 J0 then N = 0, J (Ē0) = c and Ē0 is a
nontrivial critical point of J . In this way the comparison of energy levels will
imply the existence of nontrivial solutions.

Finally we provide a variational identity for an autonomous version of (1.3)
and we get a corollary justifying to some extent the optimality of growth condition
(F3).

Theorem 2.4. Suppose that V = 0, F is independent of x and satisfies (F1). If
E = u + ∇w is a classical solution to (1.3) such that div (u) = 0,

u ∈ C2(R3,R3), w ∈ C2(R3) (2.9)

and
F(E), 〈 f (E),∇w〉 and | f (E)||w| ∈ L1(R3), (2.10)

then ∫
R3

|∇ × E |2 dx = 6
∫
R3

F(E) dx . (2.11)

Observe that for any 2 < p � q the following growth condition

(F6) for any x ∈ R
3 and u ∈ R

3, u = 0

q F(x, u) � 〈 f (x, u), u〉 � pF(x, u) > 0

is satisfied by nonlinearities given by (2.1), (2.2) and implies the first inequality in
(F3). Now we formulate nonexistence results as a consequence of Theorem 2.4.

Corollary 2.5. Suppose that F is independent of x, (F1) and (F6) hold.

(a) If V = 0, and 2 < p � q < 6 or 6 < p � q, then there is no classical solution
to (1.3) of the form E = u + ∇w with u = 0, div (u) = 0 satisfying (2.9) and
(2.10).

(b) If V is constant and negative, 2 < p � q � 6, then there is no classical
solution to (1.3) of the form E = u + ∇w with u = 0, div (u) = 0 satisfying
(2.9), (2.10) and u ∈ L2(R3,R3), w ∈ H1(R3).

In particular, for the Kerr nonlinearity, that is p = q = 4 and f (x, E) = |E |2E
there exist no classical solutions to (1.3) for constant V � 0. Therefore example
(1.4) with p = 4 and q > 6 incorporates the Kerr effect only for strong fields E in
order to solve (1.3).

3. Variational Setting

Let 1 < p � q and

L p,q := L p(R3,R3) + Lq(R3,R3)

denote the Banach space of vector fields E = E1 + E2, where E1 ∈ L p(R3,R3)

and E2 ∈ Lq(R3,R3), endowed with the following norm
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|E |p,q =sup

{ ∫
R3〈E, F〉 dx

|F | p
p−1

+ |F | q
q−1

∣∣∣∣ F ∈ L
p

p−1 (R3,R3) ∩ L
q

q−1 (R3,R3), F = 0

}
.

Recall that in L p,q we can introduce an equivalent norm

|E |p,q,1 := inf{|E1|p + |E2|q | E = E1 + E2, E1∈ L p(R3,R3), E2∈ Lq(R3,R3)}
and by [3, Proposition 2.5] the infimum in | · |p,q,1 is attained. Below we recall
some properties of L p,q given for example in [3, Corollary 2.19, Proposition 2.21].

Lemma 3.1. (a) If E ∈ L p,q , then

max

{
1

2
|Eχ�c

E
|q − 1

2
,

1

1 + |�E | 1p − 1
q

|Eχ�E |p

}
� |E |p,q

� max{|Eχ�c
E
|q , |Eχ�E |p},

where χ(·) denotes the characteristic function and

�E = {x ∈ R
3| |E(x)| > 1}.

(b) A sequence {En} ⊂ L p,q is bounded if and only if sequences {|�En |},
{|Enχ�c

En
|q + |Enχ�En

|p} are bounded.

Note that there is a continuous embedding

Ls(R3,R3) ⊂ L p,q for p � s � q. (3.1)

We show that the natural space for the energy functional E is

D(curl, p, q)

being the completion of C∞
0 (R3,R3) with respect to the norm

‖E‖curl,p,q := (|∇ × E |22 + |E |2p,q)1/2.

The subspace of divergence-free vector fields is defined by

U =
{

E ∈ D(curl, p, q)|
∫
R3

〈E,∇ϕ〉 dx = 0 for any ϕ ∈ C∞
0 (R3)

}

= {E ∈ D(curl, p, q)| div E = 0}
where div E has to be understood in the distributional sense. LetD(R3,R3) be the
completion of C∞

0 (R3,R3) with respect to the norm

‖u‖D := |∇u|2
and let W be the completion of C∞

0 (R3) with respect to the norm

‖w‖W := |∇w|p,q .

It is clear that W is linearly isometric to

∇W := {∇w ∈ L p,q : w ∈ W}.
The following Helmholtz’s decomposition holds.
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Lemma 3.2. ∇W is a closed subspace of L p,q and clU ∩ ∇W = {0} in L p,q .
Moreover if p � 6 � q, then

D(curl, p, q) = U ⊕ ∇W (3.2)

and the norms ‖ · ‖D and ‖ · ‖curl,p,q are equivalent on U .

Proof. SinceW is a complete space, then clearly∇W is a closed subspace of L p,q .
Moreover clU ∩ ∇W = {0} in L p,q , hence U ∩ ∇W = {0} in D(curl, p, q). In
view of the Helmholtz’s decomposition any ϕ ∈ C∞

0 (R3,R3) can be written as

ϕ = ϕ1 + ∇ϕ2 (3.3)

such that ϕ1 ∈ D(R3,R3) ∩ C∞(R3,R3), div (ϕ1) = 0 and ϕ2 ∈ C∞(R3)

is the Newton potential of div (ϕ). Since ϕ has compact support, then ∇ϕ2 ∈
L6(R3,R3) ⊂ L p,q and ϕ1 = ϕ − ∇ϕ2 ∈ U . Observe that ∇ × ∇ × ϕ1 = −�ϕ1,
hence

|∇ × u|2 = |∇u|2 = ‖u‖D
for any u ∈ U . By the Sobolev embedding we have that U is continuously em-
bedded in L6(R3,R3) and by (3.1) also in L p,q . Therefore the norms ‖ · ‖D and
‖·‖curl,p,q are equivalent onU andby the density argumentweget the decomposition
(3.2). ��

Let us assume that (F1), (F3) and (V) hold. We introduce a norm in U ×W by
the formula

‖(u, w)‖ = (‖u‖2D + ‖w‖2W )
1
2

and consider a functional J : U × W → R given by

J (u, w) := E(u + ∇w) = 1

2

∫
R3

|∇u|2 dx + 1

2

∫
R3

V (x)|u + ∇w|2 dx

−
∫
R3

F(x, u + ∇w) dx (3.4)

for (u, w) ∈ U × W .
The next Lemma 3.4(a) and [3, Corollary 3.7] imply that E : U ⊕ ∇W → R

and J : U × W → R are well defined and of class C1 with

E ′(u + ∇w)(φ + ∇ψ) =J ′(u, w)(φ,ψ) =
∫
R3

〈∇ × u,∇ × φ〉 dx

+
∫
R3

V (x)〈u + ∇w,φ + ∇ψ〉 dx

−
∫
R3

〈 f (x, u + ∇w), φ + ∇ψ〉 dx

for any (u, w), (φ,ψ) ∈ U × W . Thus we get the following observation.
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Proposition 3.3. (u, w) ∈ U × W is a critical point of J if and only if E =
u + ∇w ∈ U ⊕ ∇W is a critical point of E in space U ⊕ ∇W if and only if
E = u + ∇w ∈ U ⊕ ∇W is a weak solution of (1.3), that is∫
R3

〈E,∇ × ∇ × ϕ〉 dx =
∫
R3

〈−V (x)E+ f (x, E), ϕ〉 dx for any ϕ∈C∞
0 (R3,R3),

and the electromagnetic energy (1.5) is finite for all t .

Proof. The first equivalence follows fromLemma 3.2 and the above discussion. Let
E = u+∇w be a critical point of E and ϕ ∈ C∞

0 (R3,R3). We find a decomposition
ϕ = ϕ1 + ∇ϕ2 with ϕ1 ∈ U , ϕ2 ∈ W according to (3.3) and observe that∫

R3
〈E,∇ × ∇ × ϕ〉 dx =

∫
R3

〈∇ × E,∇ × ϕ〉 dx =
∫
R3

〈∇ × u,∇ × ϕ1〉 dx

=
∫
R3

〈−V (x)E + f (x, E), ϕ〉 dx .

Clearly if E = u+∇w ∈ U⊕∇W is a weak solution, then by the density argument
we have E ′(E) = 0. Now observe that

L(t) = 1

2

∫
R3

ED + BH dx

= 1

2μω2

∫
R3

(−V (x)|E |2+ f (x, E)E) cos2(ωt)+|∇ × E |2 sin2(ωt) dx <∞

since E ′(E)(E) < ∞. ��
At the end of this section we collect some helpful inequalities.

Lemma 3.4. (a) If E, F ∈ L p,q then∫
R3

|V (x)||〈E, F〉| dx � (|V (x)E | p
p−1

+ |V (x)E | q
q−1

)|F |p,q ,

�
(
(|V |

p
p−1

p
p−2

|Eχ�E |
p

p−1
p + |V |

p
p−1
α |Eχ�c

E
|

p
p−1

q )
p−1

p

+ (|V |
q

q−1
α |Eχ�E |

q
q−1
p + |V |

q
q−1

q
q−2

|Eχ�c
A
|

q
q−1
q )

q−1
q

)
|F |p,q

< ∞,

where 1
α

+ 1
p + 1

q = 1.
(b) If E ∈ L p,q then ∫

R3
F(x, E) dx � c1 min{|E |p

p,q , |E |qp,q}.

(c) If E ∈ D(R3,R3) then∫
R3

|∇E |2 + V (x)|E |2 dx � c3|∇E |22

where c3 := 1 − |V | 3
2

S−1 > 0.
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Proof. (a) Since V ∈ L
p

p−2 (R3) ∩ L
q

q−2 (R3) then for any q
q−2 < α <

p
p−2 we

get the following interpolation inequality

|V |α � |V |θ q
q−2

|V |1−θ
p

p−2
< +∞

where θ
q

q−2 + (1 − θ)
p

p−2 = α. Observe that by the Hölder inequality∫
R3

|V (x)E | p
p−1 dx �

∫
�E

|V (x)E | p
p−1 dx +

∫
�c

E

|V (x)E | p
p−1 dx

� |V |
p

p−1
p

p−2
|Eχ�E |

p
p−1
p + |V |

p
p−1
α |Eχ�c

E
|

p
p−1

q < ∞

where 1
α

+ 1
p + 1

q = 1. Similarly we show that
∫
R3

|V (x)E | q
q−1 dx � |V |

q
q−1
α |Eχ�E |

q
q−1
p + |V |

q
q−1

q
q−2

|Eχ�c
E
|

q
q−1
q < ∞.

Therefore for any E ∈ L p,q

V (x)E ∈ L
p

p−1 (R3,R3) ∩ L
q

q−1 (R3,R3)

and hence∫
R3

|V (x)||〈E, F〉| dx � (|V (x)E | p
p−1

+ |V (x)E | q
q−1

)|F |p,q .

(b) Note that by (F3) and by Lemma 3.1(a)∫
R3

F(x, E) dx �c1

∫
R3

|Eχ�c
E
|q +c1

∫
R3

|Eχ�E |p �c1 min{|E |p
p,q , |E |qp,q}.

(c) Let E ∈ D(R3,R3). Then it is enough to observe the following inequalities

−
∫
R3

V (x)|E |2 dx �
∫
R3

|V (x)||E |2 dx � |V | 3
2
|E |26 � |V | 3

2
S−1|∇E |22.

��

4. Nehari–Pankov Manifold

From now onwe assume that (F1)–(F5) and (V) hold.We introduce the Nehari–
Pankov manifold for J .

N := {(u, w) ∈ U × W| u = 0, J ′(u, w)(u, w) = 0,

and J ′(u, w)(0, ψ) = 0 for any ψ ∈ W}. (4.1)

Observe that E = u+∇w ∈ M if and only if (u, w) ∈ N .MoreoverN contains all
nontrivial critical points of J . In generalM andN are not manifolds of C1-class.

Let us define for any u ∈ U
A(u) := {(tu, w) ∈ U × W| t � 0} (4.2)

and similarly as in [5, Lemma 5.2] (cf. [32, Proposition 2.3]) we get the following
result.
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Proposition 4.1. If (u, w) ∈ N then

J (tu, tw + ψ) < J (u, w)

for any ψ ∈ W , t � 0 such that (tu, tw + ψ) = (u, w). Thus (u, w) ∈ N is the
unique global maximum of J |A(u).

Proof. Let (u, w) ∈ N , ψ ∈ W , t � 0 such that (tu, tw + ψ) = (u, w). We take

D(t, ψ) := J (tu, tw + ψ) − J (u, w)

and observe that

D(t, ψ) = t2 − 1

2

∫
R3

|∇u|2 + V (x)|u + ∇w|2 dx

+1

2

∫
R3

V (x)(|tu + t∇w + ∇ψ |2 − t2|u + ∇w|2) dx

−
∫
R3

F(x, tu + t∇w + ∇ψ) − F(x, u + ∇w) dx

= t2−1

2

∫
R3

|∇u|2+V (x)|u + ∇w|2 dx + t
∫
R3

V (x)〈u + ∇w,∇ψ〉 dx

+1

2

∫
R3

V (x)|∇ψ |2 dx−
∫
R3

F(x, tu+t∇w+∇ψ)−F(x, u+∇w) dx .

Since (u, w) ∈ N , then

D(t, ψ) = 1

2

∫
R3

V (x)|∇ψ |2 dx +
∫
R3

t2 − 1

2
〈 f (x, u + ∇w), u + ∇w〉

+F(x, u + ∇w) dx+
∫
R3

〈t f (x, u+∇w),∇ψ〉
−F(x, tu + t∇w + ∇ψ) dx

= 1

2

∫
R3

V (x)|∇ψ |2 dx+
∫
R3

〈 f (x, u+∇w),
t2−1

2
(u + ∇w)+t∇ψ〉 dx

+
∫
R3

F(x, u + ∇w) − F(x, t (u + ∇w) + ∇ψ) dx .

Define a map ϕ : [0,+∞) × R
3 → R as follows

ϕ(t, x) := 〈 f (x, u + ∇w),
t2 − 1

2
(u + ∇w) + t∇ψ〉 + F(x, u + ∇w)

−F(x, t (u + ∇w) + ∇ψ).

Take x ∈ R
3 such thatu(x)+∇w(x) = 0.Observe that by (F4)wehaveϕ(0, x) < 0

and by (F3)

lim
t→∞ ϕ(t, x) = −∞.

Let t0 � 0 be such that ϕ(t0, x) = maxt�0 ϕ(t, x). If t0 = 0 then ϕ(t, x) < 0 for
any t � 0. Let us assume that t0 > 0. Then ∂tϕ(t0, x) = 0, that is
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〈 f (x, u + ∇w), t0(u + ∇w) + ∇ψ〉 = 〈 f (x, t0(u + ∇w) + ∇ψ), u + ∇w〉
Note that if 〈 f (x, u + ∇w), t0(u + ∇w) + ∇ψ〉 = 0 then by (F4)

ϕ(t0, x) = 〈 f (x, u + ∇w),
−t20 − 1

2
(u + ∇w)〉 + F(x, u + ∇w)

−F(x, t0(u + ∇w) + ∇ψ)

< −t20 F(x, v + ∇w) − F(x, t0(v + ∇w) + ∇ψ)

� 0.

If 〈 f (x, u + ∇w), t0(u + ∇w) + ∇ψ〉 = 0 then by (F5)

ϕ(t0, x) = − (t0 − 1)2

2
〈 f (x, u + ∇w), u + ∇w〉

+t0(〈 f (x, u+∇w), t0(u + ∇w)+∇ψ〉−〈 f (x, u + ∇w), u + ∇w〉)
+F(x, v + ∇w) − F(x, t0(u + ∇w) + ∇ψ)

� − (〈 f (x, u + ∇w),∇ψ〉)2
2〈 f (x, u + ∇w), u + ∇w〉

� 0, (4.3)

and if F(x, u + ∇w) = F(x, t0(u + ∇w) + ∇ψ) then ϕ(t0, x) < 0. If F(x, u +
∇w) = F(x, t0(u + ∇w) + ∇ψ) then (F5) yields

〈 f (x, u + ∇w), t0(u + ∇w) + ∇ψ〉 � 〈 f (x, u + ∇w), u + ∇w〉.
Therefore (4.3) implies

ϕ(t0, x) � − (t0 − 1)2

2
〈 f (x, u + ∇w), u + ∇w〉.

As a consequence, if t0 = 1 we deduce for t � 0 that ϕ(t, x) � ϕ(t0, x) < 0. Now
suppose t0 = 1. If ϕ(t, x) = ϕ(t0, x) for some 0 < t = t0 then ∂tϕ(t, x) = 0 and
the above considerations imply ϕ(t, x) < 0. Summing up, we have shown that if
v(x) + ∇w(x) = 0 then ϕ(t, x) � 0 for any t � 0 and ϕ(t, x) < 0 if t = 1. Since
u + ∇w = 0 then we obtain

D(t, ψ) < 0

for any t = 1 and ψ ∈ W . Let us check the case t = 1. Hence ∇ψ = 0 and

D(1, ψ) < 0

for V < 0 almost everywhere on R
3. If V = 0 almost everywhere on a subset of

positive measure then by (F2)

ϕ(1, x) = f (x, u + ∇w)(∇ψ) + F(x, u + ∇w) − F(u + ∇w + ∇ψ) < 0

provided that ∇ψ(x) = 0. Finally we get

D(t, ψ) = J (tu, tw + ψ) − J (u, w) < 0

if (tu, tw + ψ) = (u, w). ��
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Let us consider I : L p,q → R defined by formula (2.4). Moreover I : L p,q ×
W → R is given by

I(u, w) := I (u + ∇w) for (u, w) ∈ L p,q × W. (4.4)

Similarly as above by Lemma 3.4(a) and [3, Corollary 3.7] we check that I , I are
of C1-class. In view of (F2) we have that I , I are strictly convex. Moreover the
following property holds.

Lemma 4.2. If En ⇀ E in L p,q and I (En) → I (E) then En → E in L p,q .

Before we prove the above lemma we need a variant of Brezis–Lieb result for
sequences in L p,q (cf. [11]).

Lemma 4.3. Let {En} be a bounded sequence in L p,q such that En → E almost
everywhere on R

3. Then

lim
n→+∞

∫
R3

F(x, En) − F(x, En − E) dx =
∫
R3

F(x, E) dx .

Proof. Note that∫
R3

F(x, En) − F(x, En − E) dx =
∫
R3

∫ 1

0

d

dt
F(x, En − E + t E) dt dx

=
∫ 1

0

∫
R3

〈 f (x, En − E + t E), E〉 dx dt

and f (x, En − E + t E) is bounded in L
p

p−1 (R3,R3) ∩ L
q

q−1 (R3,R3). Thus for
any � ⊂ R

3

∫
�

|〈 f (x, En − E + t E), E〉| dx � (| f (x, En − E + t E)| p
p−1

+| f (x, En − E + t E)| q
q−1

)|Eχ�|p,q .

In view of Lemma 3.1(a), for any ε > 0 there is n0 ∈ N and δ > 0 such that for
any � with |�| < δ the following inequality holds∫

�

|〈 f (x, En − E + t E), E〉| dx < ε

for any n � n0. Thus (〈 f (x, En − E + t E), E〉)n is uniformly integrable. Moreover
for any ε > 0 there is n0 ∈ N and � ⊂ R

3 with |�| < +∞ such that for for any
n � n0 ∫

�c
〈 f (x, En − E + t E), E〉 dx < ε.

Hence (〈 f (x, En − E + t E), E〉)n is tight. Since En(x) − E(x) → 0 almost
everywhere on R

3 then in view of the Vitali convergence theorem 〈 f (x, t E)E〉 is
integrable and∫
R3

F(x, En)−F(x, En −E) dx →
∫ 1

0

∫
R3

〈 f (x, t E)E〉 dx dt =
∫
R3

F(x, E) dx .

��
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Proof of Lemma 4.2. We show that (up to a subsequence) En(x) → E(x) almost
everywhere on R

3. Since I (En) → I (E) by lower semicontinuity we have

lim
n→∞

∫
R3

−1

2
V (x)|En|2 dx =

∫
R3

−1

2
V (x)|E |2 dx, (4.5)

lim
n→∞

∫
R3

F(x, En) dx =
∫
R3

F(x, E) dx . (4.6)

IfV < 0 almost everywhere onR3 then passing to a subsequence (−V (x))1/2En ⇀

(−V (x))1/2E in L2(R3,R3) and by (4.5) we get (−V (x))1/2En → (−V (x))1/2E
in L2(R3,R3). Thus En → E almost everywhere on R

3. Assume that F is uni-
formly strictly convex in u ∈ R

3 (see (F2)). Then for any 0 < r � R

m := inf
x∈R3,u1,u2∈R3

r�|u1−u2 |,|u1|,|u2 |� R

1

2
(F(x, u1) + F(x, u2)) − F

(
x,

u1 + u2

2

)
> 0

Observe that by the convexity of F in u ∈ R
3

0 � lim sup
n→∞

∫
R3

1

2
(F(x, En) + F(x, E)) − F

(
x,

En + E

2

)
dx � 0.

Therefore setting

�n := {x ∈ �| |En − E | � r, |En| � R, |E | � R}
there holds

μ(�n)m �
∫
R3

1

2
(F(x, En) + F(x, E)) − F

(
x,

En + E

2

)
dx

and thusμ(�n) → 0 as n → ∞. Since 0 < r � R are arbitrary chosen, we deduce

En → E almost everywhere on R
3.

In view of Lemma 4.3 we obtain∫
R3

F(x, En) dx −
∫
R3

F(x, En − E) dx →
∫
R3

F(x, E) dx

and thus ∫
R3

F(x, En − E) dx → 0.

By Lemma 3.4(b) we get |En − E |p,q → 0.

Now we are able to apply the critical point theory on the Nehari–Pankov man-
ifold developed in [5, Section 4]. Namely we get the following result.

Proposition 4.4. (a) For any u ∈ U\{0}, there are unique t = t (u) > 0 and w ∈ W
such that
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m(u) := (tu, w) ∈ N ∩ A(u)

and

J (m(u)) = sup
A(u)

J .

Moreover m : U\{0} → N is continuous and m|SU is a homeomorphism,
where

SU := {u ∈ U | ‖u‖D = 1}.

(b) There is a sequence (un) ⊂ SU such that (m(un)) is a (P S)c-sequence for J
at level c, that is J (m(un)) → c and J ′(m(un)) → 0 as n → ∞, where

c := inf
(u,w)∈N

J (u, w) > 0.

Proof. Setting X := U × W , X+ := U × {0} and X̃ := {0} × V we check
assumptions (A1)–(A4), (B1)–(B3) of [5, Theorem 4.1, Proposition 4.2] for J :
X → R of the form:

J (u, w) = 1

2
‖u‖2D − I(u, w),

The convexity of I ∈ C1(L p,q ,R), (V), (F3) and Lemma 4.2 yield:

(A1) I|U×W ∈ C1(U × W,R) and I(u, w) � I (0, 0) = 0 for any (u, w) ∈
U × W .

(A2) If un → u in U , wn ⇀ w inW , then lim infn→∞ I(un, wn) � I(u, w).
(A3) If un → u in U ,wn ⇀ w inW and I(un, wn) → I(u, w), then (un, wn) →

(u, w).

Moreover the following condition holds.

(A4) There exists r > 0 such that inf‖u‖D=r J (u, 0) > 0.

Indeed, in view of Lemma 3.4(c) and by (F3) for any u ∈ U

J (u, 0) � c3‖u‖2D −
∫
R3

F(x, u) dx � c3‖u‖2D − c2
2

∫
R3

|u|6 dx

� c3‖u‖2D − c2
2

S−3‖u‖6D

and thus (A4) is satisfied. Moreover by Lemma 3.4(b) it is easy to verify

(B1) ‖u‖D + I(u, w) → ∞ as ‖(u, w)‖ → ∞.

We prove the following condition.

(B2) I(tn(un, wn))/t2n → ∞ if tn → ∞ and un → u for some u = 0 as n → ∞.
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Observe that by Lemma 3.4 (b)

I(tn(un, wn)) �
∫
R3

F(x, tn(un + ∇wn)) dx

� c1 min{|tnun + ∇wn|p
p,q , |tnun + ∇wn|qp,q}

� c1t2n min{t p−2
n |un + ∇wn/tn|p

p,q , tq−2
n |un + ∇wn/tn|qp,q}.

If lim infn→∞ |un + ∇wn/tn|p,q = 0 as n → ∞, then passing to a subsequence
we get

|u + ∇(wn/tn)|p,q → 0.

Hence we get a contradiction to the assumption u = 0. Therefore |un +∇wn/tn|p,q

is bounded away from 0 and I(tn(un, wn))/t2n → ∞ as n → ∞. Finally the
arguments provided in proof of Proposition 4.1 show that:

(B3) t2−1
2 〈I ′(u, w), (u, w)〉+ t〈I ′(u, w), (0, ψ)+I(u, w)−I(tu, tw +ψ) < 0

for any t � 0, u ∈ U and w,ψ ∈ W such that (tu, tw + ψ) = (u, w).

Finally we obtain statements (a) and (b) applying [5, Theorem 4.1 a), Proposition
4.2]. The continuity of m : U\{0} → N follows directly from arguments given in
proof of [5, Theorem 4.1]. ��

Since there is no compact embedding of U into L p,q , the critical point theory
provided in [5, Section 4] is not sufficient to show that c = infN J is achieved
by a critical point of J . Therefore in the next Section 5 we provide an analysis of
bounded sequences inD(R3,R3) and of bounded sequences of the Nehari–Pankov
manifold.

5. Analysis of Bounded Sequences

We need further properties of I.
Lemma 5.1. (a) There is the unique continuous map w : L p,q → W such that

I(u, w(u)) = inf
w∈W

I(u, w). (5.1)

(b) w maps bounded sets into bounded sets and w(0) = 0.
(c) If u ∈ U\{0} then m(u) = (t (u)u, w(t (u)u)).

Proof. (a) Let u ∈ L p,q . Since W � w �→ I(u, w) ∈ R is continuous, strictly
convex and coercive, then there exists a unique w(u) ∈ W such that (5.1)
holds. We show that the map w : L p,q → W is continuous. Let un → u in
L p,q . Since

0 � I(un, w(un)) � I(un, 0) (5.2)

we obtain that w(un) is bounded and we may assume that w(un) ⇀ w0 for
some w0 ∈ W . Observe that by the (sequentially) lower semi-continuity of I
we get
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I(u, w(u)) � I(u, w0) � lim inf
n→∞ I(un, w(un)) � lim inf

n→∞ I(un, w(u))

= I(u, w(u)).

Hence w(u) = w0 and by Lemma 4.2 we have un + ∇w(un) → u + ∇w(u)

in L p,q . Thus w(un) → w(u) inW .
(b) This follows from inequality (5.2) and Lemma 3.4(b).
(c) Let u ∈ U\{0} and m(u) = (t (u)u, w). Note that

J (m(u)) = 1

2
‖t (u)u‖2D + I(t (u)u, w) � 1

2
‖t (u)u‖2D − I(t (u)u, w(t (u)u))

= J (t (u)u, w(t (u)u)).

In view of Proposition 4.4(a) we get m(u) = (t (u)u, w(t (u)u). ��
Belowweanalyse a bounded sequence (un) inD(R3,R3) andprovide a possibly

infinite splitting of limn→∞ I(un, w(un)).

Lemma 5.2. If (un) is bounded in D(R3,R3) then, up to a subsequence, there is
N ∈ N ∪ {∞} and there are sequences (ūi )i∈N ⊂ D(R3,R3), (xi

n)n�i ⊂ Z
3 such

that x0n = 0 and the following conditions hold:

(a) If N < ∞ then ūi = 0 for 1 � i � N and ūi = 0 for i > N, if N = ∞ then
ūi = 0 for all i � 1,

(b) un(· + xi
n) ⇀ ūi in D(R3,R3) for any 0 � i < N + 1 (If N = ∞ then

N + 1 = ∞ as well.),
(c) un(· + xi

n) → ūi in L p,q
loc and almost everywhere in R

3 for any 0 � i < N + 1,
(d) un − ∑n

i=0 ūi (· − xi
n) → 0 in L p,q . Moreover

(e) ∇w(un) ⇀ ∇w(ū0) and ∇w0(un)(· + xi
n) ⇀ ∇w0(ūi ) in L p,q for any 1 �

i < N + 1,
(f) ∇w(un) → ∇w(ū0) and ∇w0(un)(· + xi

n) → ∇w0(ūi ) in L p,q
loc and almost

everywhere in R
3 for any 1 � i < N + 1,

(g) ∇w(un) − ∇w(ū0) − ∑n
i=1 ∇w0(ūi )(· − xi

n) → 0 in L p,q ,
(h) limn→∞ I(un, w(un)) = I(ū0, w(ū0)) + ∑∞

i=1 I0(ūi , w0(ūi )) < ∞, where
w0 and I0 are maps given by (5.1) and (4.4) under assumption V = 0.

Proof. Wemayassume thatun ⇀ ū0 inD(R3,R3) for some ū0 ∈ D(R3,R3). Then
(b), (c) and (d) has been obtained in proof of [14, Lem. 4.2]. Indeed, recall that using
a variant of the concentration compactness argument [14, Lem. 4.1] we show that
there is N ∈ N∪{∞} and there are sequences (ūi )i∈N ⊂ D(R3,R3), (xi

n)n�i ⊂ R
3

and positive numbers (ci )i∈N such that x0n = 0 and, up to a subsequence, (b), (d)

hold. Moreover for any 0 � i < N + 1, n � i

un(· + xi
n)χB(0,n) → ūi in L p,q , (5.3)

|xi
n − x j

n | � n − 2 for j = i, 0 � j < N + 1 (5.4)

∫
B(xi+1

n ,1)

∣∣∣∣∣∣un −
i∑

j=0

ū j (· − x j
n )

∣∣∣∣∣∣
2

dx � ci+1. (5.5)
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If N < ∞ then we take ūi = 0 for i > N . If N = ∞ then the above conditions
hold for any i � 0. Observe that we may assume that (xi

n)n�i ⊂ Z
3. Hence the

local convergence in (c) follows directly from (5.3). Moreover the boundedness of
(w(un))n∈N and (w0(un))n∈N inW implies that we may assume

∇w(un) ⇀ ∇w̄0 in L p,q , (5.6)

∇w0(un)(· + xi
n) ⇀ ∇w̄i in L p,q for i � 1. (5.7)

Observe that (a), (e)–(h) are a consequence of the following claims and the almost
everywhere convergence in (c) and (f) follows from the local convergence in L p,q

(see [3, Prop. 2.8]).

Claim 1. ūi = 0 for 1 � i < N + 1.
Let 0 � i < N . Observe that (5.5) implies that

0 <
√

ci+1 �

⎛
⎜⎝

∫
B(xi+1

n ,1)

∣∣∣∣∣∣un −
i∑

j=0

ū j (· − x j
n )

∣∣∣∣∣∣
2

dx

⎞
⎟⎠

1
2

�
(∫

B(0,1)
|un(· + xi+1

n )|2 dx

) 1
2 +

i∑
j=0

(∫
B(xi+1

n −x j
n ,1)

|ū j |2 dx

) 1
2

.

From (5.3) we easily see that ū jχB(xi+1
n −x j

n ,1)
→ 0 in L p,q and then ū j (· + xi+1

n −
x j

n )χB(0,1) → 0 in L p,q for any 0 � j � i . In view of [3, Prop. 2.14] we know

that ū j (· + xi+1
n − x j

n ) → 0 in L2(B(0, 1),R3). Therefore, up to a subsequence,
un(· + xi+1

n ) → ūi+1 in L2(B(0, 1),R3) and then

0 <
√

ci+1 �
(∫

B(0,1)
|ūi+1|2 dx

) 1
2

.

Thus ūi+1 = 0 for 0 � i < N .

Claim 2. Up to a subsequence

∞∑
i=1

|ūi + ∇w0(ūi )|p,q < +∞. (5.8)

Indeed, observe that Lemma 3.4(b), the weak lower semicontinuity of I0 and con-
ditions (b), (5.7) imply that

k∑
i=1

c1 min{|ūi + ∇w0(ūi )|p
p,q , |ūi + ∇w0(ūi )|qp,q} �

k∑
i=1

I0(ūi , w0(ūi ))

�
k∑

i=1

I0(ūi , wi ) �
k∑

i=1

lim inf
n→∞ I0(un(· + xi

n)χB(0, n−2
2 ), w0(un)(· + xi

n)χB(0, n−2
2 ))

� lim inf
n→∞

k∑
i=1

I0(unχB(xi
n , n−2

2 ), w0(un)χB(xi
n , n−2

2 )) � I0(un, w0(un))
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for any k ∈ N. By Lemma 5.1(b) we obtain that (I0(un, w0(un)))n∈N is bounded.
Therefore, up to a subsequence, (5.8) holds.

Claim 3.

lim
n→∞

∫
⋃n

j=1 B(x j
n , n−2

2 )

V (x)

∣∣∣∣∣
n∑

i=1

(ūi + ∇w0(ūi ))(· − xi
n))

∣∣∣∣∣
2

dx = 0. (5.9)

Note that similarly as in Lemma 3.4(a) we obtain

∫
⋃n

j=1 B(x j
n , n−2

2 )

V (x)

∣∣∣∣∣
n∑

i=1

(ūi + ∇w0(ūi ))(· − xi
n))

∣∣∣∣∣
2

dx

� C max

{
|V χ⋃n

j=1 B(x j
n , n−2

2 )
| p

p−2
, |V χ⋃n

j=1 B(x j
n , n−2

2 )
| q

q−2

}

for some constant C > 0. Since

n⋃
j=1

B

(
x j

n ,
n − 2

2

)
⊂ R

3\B

(
0,

n − 2

2

)

then we get (5.9).

Claim 4.

lim sup
n→∞

I
(

n∑
i=0

ūi (· − xi
n), w(ū0) +

n∑
i=1

w0(ūi )(· − xi
n)

)

� I(ū0, w(ū0)) +
∞∑

i=1

I0(ūi , w0(ūi )). (5.10)

Let

v0 := ∇w(ū0)

and for i � 1

vi := ∇w0(ūi ).

Note that B(xi
n, n−2

2 ) ∩ B(x j
n , n−2

2 ) = ∅ for i = j and

I
(

n∑
i=0

ūi (· − xi
n), w(ū0) +

n∑
i=1

w0(ūi )(· − xi
n)

)

=
∫

B(0, n−2
2 )

−1

2
V (x)

∣∣∣∣∣
n∑

i=0

(ūi + vi )(· − xi
n))

∣∣∣∣∣
2

+F

(
x,

n∑
i=0

(ūi + vi ))(· − xi
n)

)
dx
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+
∫

⋃n
j=1 B(x j

n , n−2
2 )

−1

2
V (x)

∣∣∣∣∣
n∑

i=0

(ūi + vi )(· − xi
n))

∣∣∣∣∣
2

dx

+
n∑

j=1

∫
B(x j

n , n−2
2 )

F

(
x,

n∑
i=0

(ūi + vi )(· − xi
n)

)
dx

+
∫
R3\ ⋃n

j=0 B(x j
n , n−2

2 )

−1

2
V (x)

∣∣∣∣∣
n∑

i=0

(ūi + vi )(· − xi
n))

∣∣∣∣∣
2

+F

(
x,

n∑
i=0

(ūi + vi )(· − xi
n)

)
dx . (5.11)

Note that for given 0 � j � n∣∣∣∣∣∣
∑

0�i�n,i = j

(ūi + vi )(· − xi
n)χ

B(x j
n , n−2

2 )

∣∣∣∣∣∣
p,q

�
∑

0�i�n,i = j

|(ūi + vi )(· − xi
n)χ

B(x j
n , n−2

2 )
|p,q

=
∑

0�i�n,i = j

|(ūi + vi )χB(x j
n −xi

n , n−2
2 )

|p,q

�
n∑

i=0

|(ūi + vi )χR3\B(0, n−2
2 )|p,q .

Let ε > 0 and observe that by (5.8) there is n0 � 1 such that

∞∑
i=n0

|(ūi + vi )χR3\B(0, n−2
2 )|p,q �

∞∑
i=n0

|ūi + vi |p,q <
ε

2
.

Then for sufficiently large n

n∑
i=0

|(ūi + vi )χR3\B(0, n−2
2 )|p,q < ε

and hence ∣∣∣∣∣∣
∑

0�i�n,i = j

(ūi + vi )(· − xi
n)χ

B(x j
n , n−2

2 )

∣∣∣∣∣∣
p,q

→ 0

as n → ∞. Moreover similarly we show that∣∣∣∣∣
n∑

i=0

(ūi +vi )(· − xi
n)χ

R3\⋃n
j=0 B(x j

n , n−2
2 )

∣∣∣∣∣
p,q

�
n∑

i=0

|(ūi +vi )χR3\B(0, n−2
2 )|p,q → 0

as n → ∞. Therefore from (5.11), (5.9) we obtain (5.10).
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Claim 5. Up to a subsequence we have

∇w(un)χB(0, n−2
2 ) → ∇w(ū0) in L p,q , (5.12)

∇w0(un)(· + xi
n)χB(0, n−2

2 ) → ∇w0(ūi ) in L p,q , (5.13)

as n → ∞. Moreover (h) holds.
Let ε > 0, k ∈ N. Then for sufficiently large n

ε + I
(

n∑
i=0

ūi (· − xi
n), w(ū0) +

n∑
i=1

w0(ūi )(· − xi
n)

)

� I
(

un, w(ū0) +
n∑

i=1

w0(ūi )(· − xi
n)

)
� I(un, w(un))

�
k∑

i=0

I(unχB(xi
n , n−2

2 ), w(un)χB(xi
n , n−2

2 ))

� −ε +
k∑

i=0

lim inf
n→∞ I(unχB(xi

n , n−2
2 ), w(un)χB(xi

n , n−2
2 ))

� −ε + lim inf
n→∞ I(unχB(0, n−2

2 ), w(un)χB(0, n−2
2 ))

+
k∑

i=1

lim inf
n→∞ I0(unχB(xi

n , n−2
2 ), w(un)χB(xi

n , n−2
2 ))

� −ε + lim inf
n→∞ I(unχB(0, n−2

2 ), w(un)χB(0, n−2
2 ))

+
k∑

i=1

lim inf
n→∞ I0(un(· + xi

n)χB(0, n−2
2 ), w(un)(· + xi

n)χB(0, n−2
2 ))

� −ε + I(ū0, w̄0) +
k∑

i=1

I0(ūi , w̄i )

� −ε + I(ū0, w(ū0)) +
k∑

i=1

I0(ūi , w0(ūi )).

Thus taking into account (5.10) we see that (h) holds and we get

lim inf
n→∞ I(unχB(0, n−2

2 ), w(un)χB(0, n−2
2 )) = I(ū0, w(ū0)),

lim inf
n→∞ I0(un(· + xi

n)χB(0, n−2
2 ), w(un)(· + xi

n)χB(0, n−2
2 )) = I0(ūi , w0(ūi )).

Passing to a subsequence if necessary, by Lemma 4.2 we obtain

unχB(0, n−2
2 ) + ∇w(un)χB(0, n−2

2 ) → ū0 + ∇w(ū0) in L p,q ,

un(· + xi
n)χB(0, n−2

2 ) + ∇w0(un)(· + xi
n)χB(0, n−2

2 ) → ūi + ∇w0(ūi ) in L p,q .

Therefore by (5.3) we obtain (5.12) and (5.13).
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Claim 6. (g) holds.
From (c) and ( f ) we know that for any i � 0

un(x + xi
n) → ūi (x), ∇w(un)(x) → ∇w(ū0)(x), ∇w0(un)(x + xi

n)

→ ∇w0(ūi )(x) almost everywhere on R
3.

Replacing F by F̄ in Lemma 4.3, where F̄(x, u) = −V (x)|u|2 + F(x, u), x, u ∈
R
3, we obtain

lim
n→∞(I(un, w(un)) − I(un − ū0, w(un) − w(ū0))) = I(ū0, w(ū0)).

Thus

lim
n→∞ I(un, w(un)) = I(ū0, w(ū0)) + lim

n→∞ I(un − ū0, w(un) − w(ū0)).

Let En := un + ∇w(un) − ū0 − ∇w(ū0). Since the infimum in | · |p,q,1 is attained
(see [3, Prop. 2.5]), then there are E1

n ∈ L p(R3,R3), E2
n ∈ Lq(R3,R3) such that

EnχB(0, n−2
2 ) = E1

n + E2
n and

|EnχB(0, n−2
2 )|p,q,1 = |E1

n |p + |E2
n |q .

Thus E1
n → 0 in L p(R3,R3) and E2

n → 0 in Lq(R3,R3). Observe that∫
R3

|V (x)||En|2 dx =
∫

B(0, n−2
2 )

|V (x)||En|2 dx +
∫

B(0, n−2
2 )c

|V (x)||En|2 dx

� 2
∫

B(0, n−2
2 )

V (x)|E1
n |2 dx + 2

∫
B(0, n−2

2 )

V (x)|E2
n |2 dx

+
∫

B(0, n−2
2 )c

V (x)|En|2 dx

� 2|V | p
p−2

|E1
n |2p + 2|V | q

q−2
|E1

n |2q
+|V χB(0, n−2

2 )c | p
p−2

|Enχ�En
|2p

+|V χB(0, n−2
2 )c | q

q−2
|Enχ�c

En
|2q

Since En is bounded in L p,q then∫
R3

|V (x)||En|2 dx → 0

and thus

lim
n→∞ I(un, w(un)) = I(ū0, w(ū0)) + lim

n→∞ I0(un − ū0, w(un) − w(ū0))

= I(ū0, w(ū0)) + lim
n→∞ I0(u0

n, w0
n),

where

u j
n = un −

j∑
i=0

ūi (· − xi
n)
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and

w
j
n = w(un) − w(ū0) −

j∑
i=1

w0(ūi )(· − xi
n)

for n ∈ N, 0 � j < N + 1. Again by Lemma 4.3

lim
n→∞(I0(u0

n(· + x1n), w0
n(· + x1n))−I0(u1

n(· + x1n), w1
n(· + x1n)))=I0(ū1, w0(ū1))

and then
lim

n→∞ I0(u0
n, w0

n) = I0(ū1, w0(ū1)) + lim
n→∞ I0(u1

n, w1
n).

Similarly we show for any 0 � j < N

lim
n→∞(I0(u j

n(· + x j+1
n ), w

j
n(· + x j+1

n )) − I0(u j+1
n (· + x j+1

n ), w
j+1
n (· + x j+1

n )))

= I0(ū j+1, w0(w̄ j+1))

and then

lim
n→∞ I0(u j

n, w
j
n) = I0(ū j+1, w0(ū j+1)) + lim

n→∞ I0(u j+1
n , w

j+1
n ).

Thus we obtain

lim
n→∞ I(un, w(un)) = I(ū0, w(ū0)) +

j+1∑
i=1

I0(ūi , w(ūi )) + lim
n→∞ I0(u j+1

n , w
j+1
n )

for any 0 � j < N . If N < ∞ then owing to (h) we get

lim
n→∞ I0(uN

n , wN
n ) = 0.

By (d) we have uN
n → 0 in L p,q . Hence by Lemma 3.4(b) we get wN

n → 0 in L p,q

as well. If N = ∞ then

lim
n→∞ I0(un

n, wn
n ) = 0

and thus wn
n → 0 in L p,q and we get (g). ��

Proof of Theorem 2.2. Observe that byLemma5.1 andProposition4.4, if (En)∞n=0 ⊂
M then En = un + ∇w(un) for some (un, w(un)) ∈ N . In view of Lemma 5.2
we get (ūi , w(ūi )) ∈ N , hence Ēi := ūi + ∇w(ūi ) ∈ M0 for i � 1. Moreover
(2.5), (2.6) and (2.7) follows from Lemma 5.2.

In general J ′ is not (sequentially) weak-to-weak∗ continuous. Indeed, take for
example F(x, u) = 1

p ((1 + |u|q)
p
q − 1), and observe that ∇wn ⇀ ∇w in L p,q

does not imply

(1 + |∇wn|q)
p
q |∇wn|q−2(∇wn) ⇀ (1 + |∇w|q)

p
q |∇w|q−2(∇w)

in (L p,q)∗ = L
p

p−1 (R3,R3)∩L
q

q−1 (R3,R3). Howeverwe show theweak-to-weak∗
continuity of J ′ for sequences on the Nehari–Pankov manifold N . Obviously the
same regularity holds for E and M.
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Corollary 5.3. If (un, wn) ∈ N and (un, wn) ⇀ (u0, w0) in U × W then J ′(un,

wn) ⇀ J ′(u0, w0), that is

J ′(un, wn)(φ,ψ) → J ′(u0, w0)(φ,ψ)

for any (φ,ψ) ∈ U × W .

Proof. Observe that by Propositions 4.1, 4.4(a) and Lemma 5.1(c) we get wn =
w(un). In viewof Lemma5.2(c) and (f)wemay assume that un+∇wn → u0+∇w0
almost everywhere on R3. Observe that for (φ,ψ) ∈ U × W

J ′(un, wn)(φ,ψ) − J ′(u0, w0)(φ,ψ)

=
∫
R3

〈∇un − ∇u0,∇φ〉 dx

+
∫
R3

V (x)〈un + ∇wn − u0 − ∇w0, φ + ∇ψ〉 dx

−
∫
R3

〈 f (x, un + ∇wn) − f (x, u0 + ∇w0), φ + ∇ψ〉 dx .

In view of the Vitaly convergence theorem we obtain

J ′(un, wn)(φ,ψ) − J ′(u0, w0)(φ,ψ) → 0.

��
6. Analysis of Palais–Smale Sequences in N

The following lemma implies that any Palais–Smale sequence of J in N is
bounded.

Lemma 6.1. J is coercive on N .

Proof. Suppose that (un, wn) ∈ N ,‖(un, wn)‖ → ∞ asn → ∞ andJ (un, wn) �
M for some constant M > 0. Let

ūn := un

‖(un, wn)‖ .

In view of Lemma 5.2(c) we may assume that ūn ⇀ ū0 in U and ūn → ū0 almost
everywhere in R

3. Moreover there is a sequence (xn)n∈N ⊂ R
3 such that

lim inf
n→∞

∫
B(xn ,1)

|ūn|2 dx > 0. (6.1)

Otherwise, in view of [14, Lemma 4.1]) we get that ūn → 0 in L p,q . By the
continuity of I0 ∫

RN
F(x, sūn) dx → 0

for any s � 0. Let us fix s � 0. By Proposition 4.1

M � lim sup
n→∞

J (un, wn) � lim sup
n→∞

J (sūn, 0) = s2

2
lim sup

n→∞
‖ūn‖2D. (6.2)
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In view of Lemma 3.4(b) and Proposition 4.4(b) we have

1

2
‖un‖2D−c1 min{|un +∇wn|p

p,q , |un +∇wn|qp,q} � J (un, wn) � c := inf
N

J > 0.

Moreover by Lemma 3.2 there are continuous projections of clU ⊕∇W onto ∇W
and onto U in L p,q . Hence there is a constant C1 ∈ (0, 1) such that

C1|∇wn|p,q � |un + ∇wn|p,q , (6.3)

C1|un|p,q � |un + ∇wn|p,q (6.4)

for every n. Then

2‖un‖2D � ‖un‖2D + 2c + 2c1 min{|un + ∇wn|p
p,q , |un + ∇wn|qp,q}

� ‖un‖2D + 2c + 2c1Cq
1 min{|∇wn|p

p,q , |∇wn|qp,q}
If lim infn→∞ |∇wn|p,q = 0 then, up to a subsequence, |∇wn|p,q → 0, and for
sufficiently large n we get

2‖un‖2D � ‖un‖2D + |∇wn|2p,q = ‖(un, wn)‖2.
If lim infn→∞ |∇wn|p,q > 0 then there is C2 ∈ (0, 1) such that for sufficiently
large n

2‖un‖2D � C2(‖un‖2D + |∇wn|2p,q) = C2‖(un, wn)‖2.
Therefore, passing to a subsequence if necessary,

inf
n∈N

‖ūn‖2D = inf
n∈N

‖un‖2D
‖(un, wn)‖2 > 0

and by (6.2)

M � s2

2
inf
n∈N

‖ūn‖2D

for any s � 0. The obtained contradiction shows that (6.1) holds. Then we may
assume that (xn) ⊂ Z

3 and

lim inf
n→∞

∫
B(0,r)

|ūn(x + xn)|2 dx > 0

for some r > 1, hence ūn(· + xn) → ū0 in L2
loc(R

N ) for some ū0 = 0. Take any
bounded � ⊂ R

3 of positive measure such that

� ⊂ {x ∈ R
3| ū0(x) = 0}.

Observe that for any x ∈ �

|un(x + xn)| = |ūn(x + xn)| · ‖(un, wn)‖ → ∞
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and by Fatou’s lemma

∫
�

|un(x + xn)|p

‖(un, wn)‖2 dx =
∫

�

|un(x + xn)|p−2|ūn(x + xn)|2 dx → ∞ (6.5)

as n → ∞. Since norms | · |p,q and | · |p are equivalent on L p(�,R3) (see [3,
Corollary 2.15]), then the periodicity of F in x , Lemma 3.4(b) and (6.4) imply

J (un, wn)

‖(un, wn)‖2 � 1

2
‖ūn‖2D −

∫
R3 F(x, un(x + xn) + ∇wn(x + xn)) dx

‖(un, wn)‖2

� 1

2
‖ūn‖2D − c1

min{C p
1 |un(· + xn)χ�|p

p,q , Cq
1 |un(· + xn)χ�|qp,q}

‖(un, wn)‖2

� 1

2
‖ūn‖2D − C3 min

{
|un(· + xn)χ�|p

p

‖(un, wn)‖2 ,
|un(· + xn)χ�|qp

‖(un, wn)‖2
}

fore some constant C3 > 0. Thus by (6.5) we get

J (un, wn)

‖(un, wn)‖2 → ∞

as n → ∞ and the obtained contradiction completes proof. ��
Lemma 6.2. If E ∈ L p,q and xn ∈ R

3 is such that |xn| → +∞ as n → +∞, then

lim
n→∞

∫
R3

V (x + xn)|E |2 dx = 0.

Proof. Observe that

∫
R3

|V (x+xn)||E |2 dx =
∫

B(0,R)

|V (x+xn)||E |2 dx+
∫

B(0,R)c
|V (x + xn)||E |2 dx

�
(∫

B(xn ,R)

|V (x)| q
q−2 dx

) q−2
q |Eχ�c

E
|2q

+
(∫

B(xn ,R)

|V (x)| p
p−2 dx

) p−2
p |Eχ�E |2p

+|V | q
q−2

|Eχ�c
E ∩B(0,R)c |2q + |V | p

p−2
|Eχ�E∩B(0,R)c |2p.

for any R > 0. Therefore

lim
n→∞

∫
R3

|V (x + xn)||E | dx � (|V | q
q−2

+ |V | p
p−2

)(|Eχ�E∩B(0,R)c |2q
+|Eχ�E∩B(0,R)c |2p)

and we get the conclusion by taking R → +∞. ��
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Lemma 6.3. Let J0 : U × W → R be the functional given by

J0(u, w) = 1

2

∫
R3

|∇u|2 dx −
∫
R3

F(x, u + ∇w) dx . (6.6)

for (u, w) ∈ U ×W . Let (un, wn) ∈ N be a (P S)c-sequence for some c > 0. Then
there is N � 0 and there are sequences (ūi , w̄i )

N
i=0 ⊂ U×W and (xi

n)0�i�N ,n�i ⊂
Z
3 such that x0n = 0 and, up to a sequence,

J ′(ū0, w̄0) = 0, (6.7)

J ′
0(ūi , w̄i ) = 0 for i = 1, . . . , N , (6.8)

ūi = 0 for i = 1, . . . , N , (6.9)

un −
N∑

i=0

ūi (· − xi
n) → 0 in D(R3,R3) (6.10)

wn −
N∑

i=0

w̄i (· − xi
n) → 0 in W (6.11)

J (ū0, w̄0) +
N∑

i=1

J0(ūi , w̄i ) = c. (6.12)

Proof. Step 1. Construction of (ūi , w̄i ), (xi
n)n�i and proof of (6.7).

Since (un, wn) ∈ N then by Propositions 4.1, 4.4(a) and Lemma 5.1

m(un) = (un, wn) and wn = w(un).

In view of Lemma 6.1 (un, wn) is bounded in U × W . Thus we may assume that

un ⇀ ū0 in D(R3,R3) and ∇wn ⇀ ∇w̄0 in L p,q .

In view of Lemma 5.2 there is N ∈ N ∪ {∞} and there exist sequences (ūi )i∈N ⊂
D(R3,R3) and (xi

n)n�i ⊂ Z
3 such that x0n = 0 and, up to a subsequence, (a)–(h)

are satisfied. We take

w̄0 := w0(ū0)

and

w̄i := w0(ūi )

for i � 1. In view of Corollary 5.3

J ′(ū0, w̄0) = 0.

Step 2. J ′
0(ūi , w̄i ) = 0 for 1 � i < N + 1.

From (b) and (e) of Lemma 5.2 and arguing as in Corollary 5.3 we obtain

J ′
0(un(· + xi

n), wn(· + xi
n))(φ,ψ) → J ′

0(ūi , w̄i )(φ,ψ)
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for any (φ,ψ) ∈ U × W . On the other hand

|J ′
0(un(· + xi

n), wn(· + xi
n))(φ,ψ)|

� |J ′(un, wn)(φ(· − xi
n), ψ(· − xi

n))|
+

∫
R3

|V (x)||〈un + ∇wn, φ(· − xi
n) + ∇ψ(· − xi

n)〉| dx

� |J ′(un, wn)(φ(· − xi
n), ψ(· − xi

n))|

+
(∫

R3
|V (x)||un + ∇wn|2 dx

) 1
2 ·

(∫
R3

|V (x + yn)||φ + ∇ψ |2 dx

) 1
2

and by Lemma 6.2 we get

J ′
0(un(· + xi

n), wn(· + xi
n))(ψ, φ) → 0

for any (φ,ψ) ∈ U × W . Hence

J ′
0(ūi , w̄i ) = 0.

Step 3. inf1�i<N+1 |ūi |p,q > 0.
If N < ∞ then we conclude directly from Lemma 5.2(a). Assume that N = ∞
and let i � 1. Similarly as in proof of Proposition 4.4(a) (see (A4)) we get

inf‖u‖D=r
J0(u, 0) > 0

for sufficiently small r > 0. Since J ′
0(ūi , w̄i ) = 0 and ūi = 0 then (ūi , w̄i ) ∈ N0,

where N0 is given by (4.1) under assumption V = 0. Assuming that V = 0 in
Proposition 4.1 we show that

J0(ūi , w̄i ) � J0(t ūi , 0)

for any t � 0. Thus

J0(ūi , w̄i ) � J0

(
r

‖ūi‖D ūi , 0

)
� inf‖u‖D=r

J0(u, 0) > 0. (6.13)

Note that by (5.8) (ūi + ∇w̄i )i�1 is bounded and if, up to a subsequence ūi → 0
in L p,q , then

‖ūi‖2D = J ′
0(ūi , w̄i )(ūi , w̄i ) +

∫
R3

〈 f (x, ūi + ∇w̄i ), ūi 〉 dx

=
∫
R3

〈 f (x, ūi + ∇w̄i ), ūi 〉 dx → 0

as i → ∞. Furthermore

lim sup
n→∞

J0(ūi , w̄i ) = lim sup
n→∞

(
−

∫
R3

F(x, ūi + ∇w̄i ) dx

)
� 0
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which contradicts (6.13). Therefore

inf
i�1

|ūi |p,q > 0.

Step 4. N < ∞ and proof of (6.8), (6.9) and (6.11).
Observe that for some constant C1 > 0 and for any k � 1

C1

k∑
i=1

|ūi |6p,q �
k∑

i=1

|ūi |66 �
k∑

i=1

lim inf
n→∞ |un(· + xi

n)χB(0, n−2
2 )|66 � lim inf

n→∞ |un|66

where the last inequalities follows from the fact that B(xi
n, n−2

2 )∩ B(x j
n , n−2

2 ) = ∅
if i = j . Since (un) is bounded in L6(R3,R3) and taking into account Step 3 we
obtain that ūi = 0 for finitely many i � 1. Thus N < ∞ and (6.8), (6.9), (6.11)
follow from Step 2, Step 3 and Lemma 5.2(g).
Step 5. Proof of (6.10).
Let vn := ∑N

i=0 ūi (·−xi
n) and note that un−vn ⇀ 0 inD(R3,R3) and un−vn → 0

in L p,q . Since

J ′(un, wn)(un − vn, 0) = ‖un − vn‖2D +
∫
R3

〈∇vn,∇un − ∇vn〉 dx

+
∫
R3

V (x)〈un + ∇wn, un − vn〉 dx −
∫
R3

〈 f (x, un + ∇wn), un − vn〉 dx

then ‖un − vn‖D → 0.
Step 6. Proof of (6.12).
Since N < ∞ and Lemma 5.2(h) holds, then we need to prove the following
convergence

lim
n→∞ ‖un‖2D =

N∑
i=0

‖ūi‖2D. (6.14)

Note that∥∥∥∥∥
N∑

i=0

ūi (· − xi
n)

∥∥∥∥∥
2

D
=

N∑
i=0

‖ūi‖2D + 2
N∑

1�i< j�N

∫
R3

〈ūi (· − xi
n), ū j (· − x j

n )〉 dx

and∫
R3

|〈ūi (· − xi
n), ū j (· − x j

n )〉| dx =
∫

B(0,R)

|〈ūi , ū j (· + xi
n − x j

n )〉| dx

+
∫
R3\B(0,R)

|〈ūi , ū j (· + xi
n − x j

n )〉| dx

� ‖ūi‖D‖ū jχB(xi
n−x j

n ,R)
‖D

+‖ūiχR3\B(0,R)‖D‖ū j‖D
for any R > 0. If i < j then∫

R3
|〈ūi (· − xi

n), ū j (· − x j
n )〉| dx → ‖ūiχR3\B(0,R)‖D‖ū j‖D
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as n → ∞. If R → ∞ then we obtain

lim
n→∞ ‖un‖2D = lim

n→∞

∥∥∥∥∥
N∑

i=0

ūi (· − xi
n)

∥∥∥∥∥
2

D
=

N∑
i=0

‖ūi‖2D.

��
Proof of Theorem 2.3. Proof follows directly from Lemma 6.3 by decomposing
En = un+∇wn , where (un, wn) ∈ N and by taking Ēi = ūi +∇w̄i for 0 � i � N .

��

7. Proofs of Theorems 2.1 and 2.4

Now we are ready to prove the existence and nonexistence results.

Proposition 7.1. There is a critical point (u0, w0) ∈ N0 of J0 such that u0 = 0
and

J0(u0, w0) = c0 := inf
N0

J0 > 0. (7.1)

Proof. In view of Proposition 4.4(b) there is un ∈ SU such that J0(m0(un)) →
c0 > 0 and J ′

0(m0(un)) → 0, where m0 is given in Proposition 4.4(a) under
assumption V = 0. Then by Lemma 6.3 condition (6.12) holds. Thus N = 0 and
(u0, w0) := (ū0, w̄0) is a critical point of J0, (u0, w0) ∈ N0 and u0 = 0. ��
Proposition 7.2. There is a critical point (u, w) of J such that u = 0. If∫

R3
V (x)|u0 + ∇w0|2 dx < 0, (7.2)

where (u0, w0) is Proposition 7.1, then (u, w) ∈ N and

J0(u0, w0) > J (u, w) = c := inf
N

J > 0.

Proof. Let (7.2) hold. Observe that by Propositions 7.1 and 4.1 we have

c0 = J0(u0, w0) � J0(m(u0)) > J (m(u0)) � c.

Note that any critical point (ū, w̄) of J0 such that ū = 0 belongs to N0 and hence

J0(ū, w̄) � c0 > 0.

In view of Proposition 4.4(b) there is a (P S)c-sequence (un, wn) ∈ N . Therefore
by Lemma 6.3 condition (6.12) implies that N = 0 and from (6.10), (6.11) we have
un → ū0 in U and wn → w̄0 in W . Thus (u, w) := (ū0, w̄0) is a critical point of
J such that J (u, w) = c > 0 and u = 0. Suppose that∫

R3
V (x)|u0 + ∇w0|2 dx = 0

then V (x)|u0(x) + ∇w0(x)|2 = 0 almost everywhere on R
3. Then we easily see

that J (u0, w0) = J0(u0, w0) and J ′(u0, w0) = J ′
0(u0, w0) and by Proposition

7.1 (u, w) := (u0, w0) is a critical point of J such that u = 0. ��
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Proof of Theorem 2.1. Proof follows directly from Propositions 7.1, 7.2 and 3.3.

Proof of Theorem 2.4. Let E = u + ∇w be a classical solution of (1.3), that is

∇ × ∇ × E = f (E) in R3 (7.3)

such that div (u) = 0 and (2.9), (2.10) holds. Let ϕ ∈ C∞
0 (R) be such that 0 �

ϕ � 1, ϕ(r) = 1 for r � 1 and ϕ(r) = 0 for r � 2. Similarly as in [34, Theorem
B.3.] we define ϕn ∈ C∞

0 (R3) by the following formula

ϕn(x) = ϕ

( |x |2
n2

)
.

Then there exists C � 0 such that

ϕn(x) � C and |x ||∇ϕn(x)| � C

for every n and x ∈ R
3. Recall that (see [34])

�uiϕn〈x,∇ui 〉 = div

(
ϕn

(
∇ui 〈x,∇ui 〉 − x

|∇ui |2
2

))
+ 1

2
ϕn|∇ui |2

−〈∇ϕn,∇ui 〉〈x,∇ui 〉 + 〈∇ϕn, x〉 |∇ui |2
2

for i = 1, 2, 3. Since supp(ϕn) ⊂ �n := B(0, 3n2), then by the divergence theorem∫
�n

�uiϕn〈x,∇ui 〉 dx = 1

2

∫
�n

ϕn|∇ui |2 dx

+
∫

�n

−〈∇ϕn,∇ui 〉〈x,∇ui 〉 + 〈∇ϕn, x〉 |∇ui |2
2

dx .

Hence∫
R3

�uiϕn〈x,∇ui 〉 dx = 1

2

∫
R3

ϕn|∇ui |2 dx

+
∫
R3

−〈∇ϕn,∇ui 〉〈x,∇ui 〉 + 〈∇ϕn, x〉 |∇ui |2
2

dx .

(7.4)

Observe that

div (xϕn F(E)) = 3ϕn F(E) + 〈 f (E), ϕn

3∑
i=1

xi∂xi E〉 + 〈∇ϕn, x〉F(E)

and again by the divergence theorem

∫
R3

〈
f (E), ϕn

3∑
i=1

xi∂xi u

〉
dx = −

∫
R3

〈
f (E), ϕn

3∑
i=1

xi∂xi ∇w

〉
dx

−3
∫
R3

ϕn F(E) dx −
∫
R3

〈∇ϕn, x〉F(E) dx .

(7.5)
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Multiplying (7.3) by ϕn
∑3

i=1 xi∂xi u and integrating over R3 we get

∫
R3

〈
f (E), ϕn

3∑
i=1

xi∂xi u

〉
dx =

∫
R3

〈
∇ × ∇ × E, ϕn

3∑
i=1

xi∂xi u

〉
dx

=
∫
R3

〈
∇ × ∇ × u, ϕn

3∑
i=1

xi∂xi u

〉
dx

=
∫
R3

〈
−�u, ϕn

3∑
i=1

xi∂xi u

〉
dx .

Therefore in view of (7.4) and (7.5) we obtain

∫
R3

〈
f (E), ϕn

3∑
i=1

xi∂xi ∇w

〉
dx+3

∫
R3

ϕn F(E) dx+
∫
R3

〈∇ϕn, x〉F(E) dx

= 1

2

∫
R3

ϕn|∇u|2 dx+
3∑

i=1

∫
R3

−〈∇ϕn,∇ui 〉〈x,∇ui 〉+〈∇ϕn, x〉 |∇ui |2
2

dx .

(7.6)

By direct computations we show that

∇(ϕn(〈x,∇w〉 − w)) = ϕn(〈x, ∂x1(∇w)〉, 〈x, ∂x2(∇w)〉, 〈x, ∂x3(∇w)〉)
+∇ϕn(〈x,∇w〉 − w)

and

〈 f (E), ϕn

3∑
i=1

xi∂xi ∇w〉 = 〈 f (E),∇(ϕn(〈x,∇w〉 − w))〉

−〈 f (E),∇ϕn(〈x,∇w〉 − w)〉.
Multiplying (7.3) by ∇(ϕn(〈x,∇w〉 − w)) and integrating over R3 we get∫

R3
〈 f (E),∇(ϕn(〈x,∇w〉 − w))〉 dx = 0,

and thus (7.6) takes the following form

−
∫
R3

〈 f (E),∇ϕn(〈x,∇w〉−w)〉 dx+3
∫
R3

ϕn F(E) dx+
∫
R3

〈∇ϕn, x〉F(E) dx

= 1

2

∫
R3

ϕn|∇u|2 dx +
3∑

i=1

∫
R3

−〈∇ϕn,∇ui 〉〈x,∇ui 〉 + 〈∇ϕn, x〉 |∇ui |2
2

dx .

Since ∇ϕn(x) = 0 for |x | < n2, then by the Lebesgue dominated theorem we get

3
∫
R3

F(E) dx = 1

2

∫
R3

|∇u|2 dx = 1

2

∫
R3

|∇ × E |2 dx

which completes the proof. ��
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Proof of Corollary 2.5. Suppose that V = 0 and E = u+∇w is a classical solution
to (7.3) with u = 0 and p > 6 or q < 6. Then by (2.11)∫

R3
〈 f (E), E〉 dx =

∫
R3

|∇ × E |2 dx = 6
∫
R3

F(E) dx .

From (F6) we get

p
∫
R3

F(E) dx � 6
∫
R3

F(E) dx � q
∫
R3

F(E) dx .

Therefore
∫
R3 F(E) dx = 0 and E = 0 almost everywhere on R3. Thus u = 0 and

we obtain a contradiction. If V (x) = V0 < 0 is constant and E = u + ∇w is a
classical solution to (1.3) with u = 0 and q � 6, then by Theorem 2.4

(−V0)|E |22 +
∫
R3

〈 f (E), E〉 dx =
∫
R3

|∇ × E |2 dx

= 6

(∫
R3

F(E) dx + 1

2
(−V0)|E |22

)

and, similarly to the above, we get a contradiction. ��
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