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Abstract
There exists consensus that the traditional means by which safety of chemicals is assessed—namely through reliance upon 
apical outcomes obtained following in vivo testing—is increasingly unfit for purpose. Whilst efforts in development of 
suitable alternatives continue, few have achieved levels of robustness required for regulatory acceptance. An array of “new 
approach methodologies” (NAM) for determining toxic effect, spanning in vitro and in silico spheres, have by now emerged. 
It has been suggested, intuitively, that combining data obtained from across these sources might serve to enhance overall con-
fidence in derived judgment. This concept may be formalised in the “tiered assessment” approach, whereby evidence gathered 
through a sequential NAM testing strategy is exploited so to infer the properties of a compound of interest. Our intention has 
been to provide an illustration of how such a scheme might be developed and applied within a practical setting—adopting 
for this purpose the endpoint of rat acute oral lethality. Bayesian statistical inference is drawn upon to enable quantification 
of degree of confidence that a substance might ultimately belong to one of five LD50-associated toxicity categories. Inform-
ing this is evidence acquired both from existing in silico and in vitro resources, alongside a purposely-constructed random 
forest model and structural alert set. Results indicate that the combination of in silico methodologies provides moderately 
conservative estimations of hazard, conducive for application in safety assessment, and for which levels of certainty are 
defined. Accordingly, scope for potential extension of approach to further toxicological endpoints is demonstrated.

Keywords New approach methodologies · Bayesian inference · Tiered assessment · Regulatory toxicology · Acute toxicity · 
In silico toxicology

Introduction

The publication of “Toxicity Testing in the 21st Century” 
set an expectation that the manner in which chemical safety 
is assessed with regards to human health would soon radi-
cally change (Krewski et al. 2010). Since that time, many 
initiatives have emerged based upon adoption of novel meth-
odologies (broadly termed New Approach Methodologies, 
or NAM) (Dal Negro et al. 2018). However, the bulk of 
regulatory decision-making, a fifth of the way through the 

twenty-first century, remains grounded in traditional labora-
tory animal-based techniques developed in the third quarter 
of the 20th. Regulators in the 1970s would not have been 
content with making use of methods devised in the 1920s, 
so why should we in the 2020s continue to rely on strategies 
similarly developed half-a-century ago?

Many NAM have been developed, both in vitro and in 
silico, with the aim of assessing biological effect, thereby 
enabling extrapolation to the in vivo sphere. The former 
includes a plethora of biomaterial-based systems incorpo-
rating either whole cells or their components (Anadón et al. 
2014), whereas the latter encompasses techniques spanning 
quantitative structure–activity relationship (QSAR) model-
ling, machine learning and the creation of structural alerts 
(Madden et al. 2020). The rationalisation of NAM findings 
may be underpinned by concepts such as the Adverse Out-
come Pathway (AOP)—which charts mode and mechanism 
of toxic action through stages including molecular initiating 
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and key events (typically cellular), to ultimate adverse out-
come at the organ and organism-level (Edwards et al. 2016; 
Tollefsen et al. 2014; Vinken 2013). Despite such progress, 
regulatory adoption of new approaches has remained slow 
(Knight et al. 2021). Whilst many validation programmes 
have been attempted, a lack of confidence in the general 
applicability of NAM continues to exist (Parish et al. 2020). 
We postulate that there are at least two fundamental reasons 
behind the persistence of this sense of scepticism: potential 
flaws within the methodologies themselves, and concerns 
regarding the lack of a means towards validation. Both fac-
tors may contribute towards lower acceptability for regula-
tory use (Mahony et al. 2020).

The twin factors of flawed methodology and inappro-
priate validation are interlinked. Initially, in the search for 
techniques not involving the use of laboratory animals, indi-
vidual approaches were assessed directly for their ability 
to reproduce the results of the in vivo protocol which they 
were intended to replace (Piersma et al. 2018). Outcomes 
of single tests were compared against those of animal stud-
ies, to gauge the number “correct” answers matched. This 
was often performed using a sensitivity/specificity paradigm 
based upon a simplistic conception of “wrong and right 
answers”, in turn leading to concerns over the occurrence 
of false positive and false negative results. There are issues 
with this approach. Firstly, given the level of complexity 
entailed, it is unrealistic to expect that a single test might 
reliably reproduce the results of an animal study: a combina-
tion of sources shall more likely produce success (Piersma 
et al. 2014). Secondly, there is very little in toxicology which 
is truly binary: a continuum is usually present, with “posi-
tive” and “negative” judgments dictated by the side of a line 
on which the answer lies.

The concept of compounding data derived from an assort-
ment of in silico, in vitro and in vivo sources, to produce 
a tiered assessment of toxic potential, has in recent years 
been advanced as a means of addressing each of these broad 
issues (Andersen et al. 2019; Thomas et al. 2013, 2019). 
Such an approach may not merely allow for the enhance-
ment of confidence in prediction relative to isolated NAM 
(through intensifying weight-of-evidence), but may further 
be adapted to facilitate quantitative expression of certainty—
extending resolution beyond the simple binary call. For this 
to be realised, a statistical methodology must be adopted 
through which the outputs of the various approaches can be 
integrated to produce updated judgments. Bayesian inference 
represents a powerful technique for achieving this, permit-
ting as it does the generation of probabilistic distributions 
which may be related to severity of toxicity (Lazic and 
Williams 2021). Its application within predictive toxicol-
ogy constitutes an emerging field of interest, and as such 
it has been drawn upon in recent studies aimed towards 
development of models describing endpoints spanning skin 

sensitivity (Reynolds et al. 2019), drug-induced liver injury 
(Semenova et al. 2020; Williams et al. 2020) and cardiotox-
icity (Felli and Leishman 2020).

This paper describes a route towards the development and 
application of such a tiered approach – adopting, for illustra-
tive purposes, the assessment of acute oral lethality within 
the rat. Bayesian methodology is employed to compute 
distributions relating the probability that a given substance 
might belong to one of five categories, each correspond-
ing to a defined LD50 range mirroring those adopted within 
European Union Classification, Labelling and Packaging 
(CLP) regulation. Three tiers are incorporated, over which a 
variety of in silico and in vitro methodologies are exploited. 
In Bayesian terms, the outputs from the previous tier are 
adopted as the “prior” to inform that which follows. Analysis 
of predictive quality following introduction of each tier ena-
bles the certainty of its outcomes to be determined, in turn 
allowing for the contribution of the constituent techniques 
to be discerned. Alongside the sourcing of data from exist-
ing QSAR schemes, the training of novel machine learning 
algorithms and structural alert sets are reported. In addition 
to validating the tiered approach developed, our intention is 
to demonstrate how the output from such a system may be 
appropriately evaluated. Through this, it should be possible 
to ascertain whether or not the strategy is ultimately success-
ful in its aims of improving, in principle, the acceptability of 
predictions derived from NAM.

Materials and methods

Sourcing of rat acute oral toxicity data

From the publication of Gadaleta et al. (2019), data describ-
ing acute oral toxicity towards rats within an inventory of 
organic substances were acquired. These data are themselves 
drawn from a yet wider selection collated through efforts 
of NICEATM and US EPA (https:// ntp. niehs. nih. gov/ go/ 
tox- models; accessed 1–5–2020)—with final LD50 quan-
tities relating to compounds possessing greater than three 
distinct point estimates being derived in accordance with 
methodology outlined by Nelms et al. (2020). Contained 
within the Gadaleta et al. dataset were records describing 
11,363 substances, of which 8448 contained accompanying 
values relating experimental toxicity (LD50, expressed as 
mg/kgbw). Through removal both of duplicate entries and 
of those possessing undefined chemical structure (includ-
ing mixtures and polymers), a final working set consisting 
of 8186 distinct organic molecules was formulated. Exist-
ing SMILES (www. dayli ght. com) (Weininger 1988) strings 
were retained, whilst chemical names were related to sup-
plied CASRN either through use of the US EPA CompTox 
Chemicals Dashboard (https:// compt ox. epa. gov/ dashb 

https://ntp.niehs.nih.gov/go/tox-models
https://ntp.niehs.nih.gov/go/tox-models
http://www.daylight.com
https://comptox.epa.gov/dashboard
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oard; accessed 1–5–2020) (Williams et al. 2017) or through 
PubChem (https:// pubch em. ncbi. nlm. nih. gov/; accessed 
1–5–2020). For purposes of model development, LD50 esti-
mates were transformed directly into their log mmol/kgbw 
equivalents. Data are presented in full within Supplementary 
Table 1.

Assignment of acute toxicity category 
to compounds

In accordance with the scheme outlined within Table 1, 
chemicals were each assigned a numerical acute oral toxic-
ity category (1–5) derived directly from acute oral LD50. 
This rubric is itself adapted from that specified within Euro-
pean Council Regulation No. 1272/2008 (European Union 
2008)—a minor amendment being the appending of a “Cat-
egory 5”, covering compounds holding LD50 greater than 
2000 mg/kgbw.

Derivation of Cramer scheme classification

The Cramer classification scheme assigns molecules into 
one of three “threshold of toxicological concern (TTC)” 
classes, describing broadly and conservatively their level 
of hazard towards human health under a repeat-exposure 
scenario (EFSA Scientific Committee 2019; Cramer et al. 
1978). It is constituted as a decision tree, with presence or 
absence of characteristic chemical structural features deter-
mining the final placement of a compound. Class I corre-
sponds to substances of least apparent toxic concern, Class 
II to substances of intermediate concern and Class III to sub-
stances of greatest concern. Cramer classifications for each 
compound within the working set were sourced though use 
of the “Cramer rules, with extensions” decision tree (Patle-
wicz et al. 2008), as implemented within ToxTree software 
(v. 3.1.0; EU Joint Research Centre and IDEAconsult; http:// 
toxtr ee. sourc eforge. net/). Classes were definitively assigned 
to 8180 of the 8186 chemicals within.

It was necessary that probability distributions were 
derived describing the relationship associating assigned 
classification with experimentally derived acute toxicity 
category. Raw distributions were initially acquired, based 

upon a simple count of the occurrence of toxicity categories 
amongst those compounds sharing a class. By way of illus-
tration, amongst the 7097 substances assigned Class III, 219 
(3.1%) fell into Category 1 based upon their in vivo LD50, 
629 (8.9%) Category 2, 1385 (19.5%) Category 3, 3003 
(42.3%) Category 4 and 1861 (26.2%) Category 5. How-
ever, adjustments were required on account of the marked 
imbalance present within the spread of experimental tox-
icity across the 8136 compounds forming the dataset. To 
achieve this, these raw counts were scaled in proportion to 
the occurrence of each category within experimental data 
(listed within Table 4, column “Distribution”). Given that 
40.6% of compounds fell into Category 4 and 2.7% into Cat-
egory 1, raw percentages for each were divided respectively 
by 0.406 and 0.027. Applying this to all categories, final 
adjusted distributions were acquired.

Prediction of acute rat oral LD50 through use of US 
EPA Toxicity Estimation Tool

Contained within the US EPA Toxicity Estimation Tool 
(TEST) (v. 4.2.1; US EPA; https:// www. epa. gov/ chemi cal- 
resea rch/ toxic ity- estim ation- softw are- tool- test) is a variety 
of QSAR models relating directly to assignment of acute 
oral LD50 within the rat. Through use of the “hierarchical 
clustering” method, LD50 predictions could be acquired for 
7479 of the 8186 screened substances. A detailed description 
of the methodology underlying this QSAR may be found 
within Martin et al. (2008).

Development of random forest model for estimation 
of acute rat oral LD50

Relationship between chemical structure, calculated molecu-
lar physicochemical properties and corresponding acute oral 
LD50 was further modelled through the training of a ran-
dom forest algorithm. Employed as input variables were a 
combination of molecular fingerprint fragments and phys-
icochemical descriptors. Screening of compounds for their 
PubChem substructure fingerprint (ftp:// ftp. ncbi. nlm. nih. 
gov/ pubch em/ speci ficat ions/ pubch em_ finge rprin ts. txt) was 
performed within KNIME software (v. 4.3.1; www. knime. 
com) (Berthold et al. 2008), through use of the RDKit (v. 
2020.03.6; www. rdkit. org) (Landrum 2006) Fingerprint 
node. Fragments present in fewer than 5% or in greater 
than 95% of compounds were excluded from consideration, 
whilst all others (totalling 300) were retained. An assort-
ment of 1D and 2D Molecular physicochemical descrip-
tors were sourced from Molecular Operating Environment 
(MOE) software (v. 2018.01; Chemical Computing Group; 
https:// www. chemc omp. com/) (Molecular Operating Envi-
ronment 2018). Following removal of parameters unsuitable 
for modelling, a sum of 184 descriptors remained. Pooling 

Table 1  Overview of scheme 
through which acute toxicity 
category is assigned from oral 
LD50

Acute tox. 
category

LD50 range 
(mg/kgbw)

1  < 5
2 5–49
3 50–299
4 300–1999
5  ≥ 2000

https://comptox.epa.gov/dashboard
https://pubchem.ncbi.nlm.nih.gov/
http://toxtree.sourceforge.net/
http://toxtree.sourceforge.net/
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
https://www.epa.gov/chemical-research/toxicity-estimation-software-tool-test
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
ftp://ftp.ncbi.nlm.nih.gov/pubchem/specifications/pubchem_fingerprints.txt
http://www.knime.com
http://www.knime.com
http://www.rdkit.org
https://www.chemcomp.com/
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with the aforementioned fingerprint fragments produced a 
set of 484 variables, characterising the complete collection 
of 8186 compounds. This full parameter set is available from 
the authors upon request. Employing log mmol/kgbw LD50 
as the modelled quantity, a random forest consisting of 500 
trees was constructed within R (v. 4.0.1; R Foundation; 
https:// www.r- proje ct. org/) (R Core Team 2021), through 
use of RStudio (https:// www. rstud io. com/) (RStudio Team 
2020) and the randomForest package (Liaw and Wiener 
2002). Applying ten-fold cross-validation, predictions for 
all modelled compounds were obtained.

Compilation of molecular structural alerts 
associated with elevated acute oral toxicity

A series of tailored chemical structural alerts were devel-
oped, to assess the broader utility of the approach in enhanc-
ing the correct identification of potentially hazardous com-
pounds—notably, those for which corresponding toxicity 
in vivo is liable to be understated through alternative meth-
ods such as QSAR or in vitro cytotoxicity screening. Such 
groups were identified through manual analysis of output 
from TEST hierarchical clustering, random forest and 
in vitro systems—and further rationalised through applica-
tion of expert judgment. Broadly, the highlighted structures 
could be considered to fall into one of two varieties: those 
integral within mediating a mechanism of toxic action not 
reliably recapitulated within simple 2D cell-based assay 
systems (such as neurotoxicity or anticoagulant effect), or 
those representative of specific compound classes (typically 
complex natural products) not adequately modelled through 
global QSAR.

For those alerts which were present within a minimum 
of ten compounds, distributions relating the probability 
of a substance falling within a given acute toxicity cat-
egory were determined through a method similar to that 
described within 2.3 (with raw counts scaled in proportion 
to the prevalence of each category within the experimental 
data). In several instances, the fragment forming the alert 
occurs within fewer than ten compounds across the dataset. 

Distributions in such cases are manually estimated, with 
probability of falling within Category 1 assigned at 90%, 
Category 4 at 10% and the remaining categories each 0%.

Acquisition of in vitro cytotoxicity data

Data relating to cytotoxicity in vitro were gathered ini-
tially from a variety of sources, including the publications 
of Clothier et al. (2008), Prieto et al. (2013) and Kinsner-
Ovaskainen et al. (2013). However, owing to the very lim-
ited overlap apparent between the compounds present within 
these studies and those comprising the LD50 dataset (data 
not shown), their use was deemed impractical.

Cell viability assays present across the ToxCast (Richard 
et al. 2016) and Tox21 (Tice et al. 2013) platforms (accessed 
through US EPA CompTox Chemicals Dashboard) were 
subsequently examined for their suitability, in terms both of 
raw coverage and quality of correlation of AC50 with acute 
in vivo LD50. Assay “TOX21_RT_HEK293_GLO_16HR_
VIABILITY” was found to be optimal in this regard (data 
not shown), covering a total of 543 substances. In brief, the 
technique assessed viability of HEK-293 (human embryonic 
kidney) cells following 16 h treatment with substance of 
interest, though a bioluminometric protocol.

Overview of tiered approach

The aforementioned methodologies were portioned into 
one of three “assessment tiers”, each representing distinct 
approaches towards hazard prediction (Cramer classification, 
in silico and in vitro—as outlined within Table 2). Further 
reference is made within to a hypothetical “Tier 3”, in which 
it is envisioned that a refined in vivo protocol, such as that 
exemplified by OECD Test Guideline 425 (OECD 2008), 
would be selectively initiated to address uncertainties exist-
ing in category assignment towards specific compounds (an 
idea largely beyond the scope of this study, yet considered 
further within Discussion). The concordance of predicted 
and experimentally determined acute toxicity categories 
were assessed following application of each tier, to validate 

Table 2  Overview of assessment tiers, outlining the composition of each in relation to methodologies incorporated

Assessment tier Approach overview Methodologies incorporated Category assignment

0 Cramer classification Cramer scheme (with extensions) Classification-category 
probability distribution 
(Table 5)

1 In silico EPA TEST LD50 Bayesian model
Random forest LD50
Structural alerts

2 In vitro In vitro cytotoxicity (cell viability assay) Bayesian model
3 (hypothetical) In vivo OECD Test Guideline 425: Acute oral toxicity Experimental outcome

https://www.r-project.org/
https://www.rstudio.com/


821Archives of Toxicology (2022) 96:817–830 

1 3

the contribution of each towards improving (or otherwise) 
the quality of forecast—both in terms of the proportion of 
compounds correctly assigned, and of those either under- or 
overpredicted. Details of the Bayesian model employed in 
attributing categories within Tier 1 and Tier 2 are provided 
within section “Bayesian analysis”.

Application of tiered approach

The tiered predictive approach was subsequently applied 
to a representative selection of 50 compounds from out of 
the 8186 forming the working dataset. On account of the 
inherent imbalance present within the distribution of toxicity 
across the unfiltered set, it was necessary to ensure that these 
representatives were drawn in equivalent numbers from each 
of the five acute toxicity categories. To meet criteria for 
inclusion, substances had to have received a valid Cramer 
classification, LD50 assignments through both EPA TEST 
and random forest techniques, and data from the “TOX21_
RT_HEK293_GLO_16HR_VIABILITY” assay. Presence of 
a structural alert was, however, not a requirement.

A total of 496 molecules were found to meet the above 
stipulations. Ten each were drawn from Categories 3, 4 
and 5. Since only six eligible substances were observed to 
fall into Category 1, an additional four were drawn from 
amongst those in Category 2 to account for shortfall. The 
composition of this selection may be found within Supple-
mentary Table 2.

Bayesian analysis

Bayesian predictive models were constructed based upon 
proportional odds logistic regression (POLR). The outcome 
variable yi is represented by ordered categorical data, i.e. 
compound’s acute toxicity category. For each compound i 
the model calculates the underlying continuous severity ηi 
based on available predictors Xi using a set of regression 
coefficients βi. A set of cut-points c1,.., c4 subdivides the 
continuous severity to define boundaries between five dis-
crete ordered categories. Regression coefficients and cut-
points are inferred from data. Tier 1 model incorporates the 

distribution emerging from Tier 0, updating with outputs 
acquired from EPA TEST, random forest and (as applicable) 
from matched structural alerts. Subsequently, this is brought 
forward to Tier 2—whereby in vitro data is integrated to 
provide the ultimate posterior.

The Bayesian approach to model fitting requires speci-
fication of a likelihood and priors for each parameter. We 
adopt the priors from Williams et al. (2020), i.e. the regres-
sion coefficients are described by a Laplace distribution with 
mean μ and standard deviation σ; μ and σ are the hyperpa-
rameters of the model and are also estimated by the model. 
The cut-points are assigned weakly informative normal pri-
ors with mean 0 and standard deviation 20. We used RStan 
interface (v. 2.21.2; http:// mc- stan. org/) (Stan Development 
Team 2020) of the Stan modelling language (Carpenter et al. 
2017). Predictions were derived from the samples obtained 
from four chains, 10,000 iterations each of the No-U-Turn 
sampling algorithm.

Category attribution (exclusionary method)

Assignment of predicted acute toxicity category was per-
formed based upon categorical probability distributions 
obtained following application of each respective tier. In 
the instance of Tier 0, this was the scaled probability dis-
tributions derived from Cramer classification. Bayesian 
models drawn from data presented within Tiers 1 and 2 
produced corresponding outputs which were treated iden-
tically. For a given compound, all categories for which 
probability of belonging fell beneath a specified thresh-
old (be it 10% or 5%) were excluded from consideration 
(termed “exclusionary method”). Compounds were then 
attributed to the remaining category indicating the great-
est hazard. This tended to produce conservative alloca-
tions, which would be preferable for purposes of risk 
assessment. By way of illustration, consider compounds 
holding distributions outlined within Table 3: applying 
a 10% threshold to Compound A leads to the exclusion 
of all with the exception of Categories 2 and 3. It is Cat-
egory 2, representing as it does greatest toxicity, which 
is assigned. Optional lowering of the threshold to 5% 

Table 3  Category-probability 
distributions relating to three 
hypothetical compounds—A, 
B and C

Acute toxicity categories, assigned following application of exclusionary thresholds 5.0% and 10.0%, are 
listed

Scaled probability distribution (%) Category  
assignment

Acute toxicity category Threshold (%)

1 2 3 4 5 5.0 10.0

Compound A 8.0 55.0 30.0 4.0 3.0 1 2
Compound B 0.0 5.0 15.0 50.0 30.0 2 3
Compound C 0.0 0.0 1.0 9.0 90.0 4 5

http://mc-stan.org/
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expands the remit to incorporate Category 1—which is 
accordingly granted. Compounds B and C provide further 
example of the approach in action.

Results

Overview of data landscape

Application of the acute toxicity categorisation scheme 
described within section “Assignment of acute toxicity 
category to compounds” to the collection of 8136 com-
pounds possessing rat acute oral LD50 data produced the 
distribution outlined through Table 4. As is apparent, 
greater than 70% of substances possessed toxicity suf-
ficient to place them within the two categories of least 
concern (4 and 5). By contrast, only approximately 10% 
fell within those representing the greatest hazard (1 and 
2)—notable being neurotoxicants of the organophosphate 
and carbamate classes, vitamin K-antagonist anticoagu-
lants and various natural products (such as strychnine and 
saxitoxin) representative of wider toxin families.

It is informative to note that, although the in  vivo 
experimental LD50 values described above are pre-
sented as point estimates, they are in fact the medians of 
a probability distribution. LD50 is usually determined 
through use of a probit calculation derived from lethality 
dose–response, with the median taken as a final value. 
In a prior analysis of this dataset (Kleinstreuer et  al. 
2018), it was reported that 28% of member chemicals 
possessed greater than two values corresponding to point 
estimates of acute oral LD50. This enabled evaluation of 
the variation in LD50 which ideally must be considered 
when framing concordance between the experimental 
LD50 and results derived from the tiered approach. It 
was determined that the 95% confidence limit for LD50 
values was ± 0.31  log10 (mg/kg). It is thus illuminating 
to compare the calculated 95% confidence limits for the 
LD50 values, which is equivalent to a probability range 
of 0.62  log10 (mg/kg), with the ranges for categories 2–4 
which have both upper and lower limits. The limits for 
the classification categories are themselves 0.8 or 1  log10 
(mg/kg), and so it is likely that some chemicals with a 
single value would fall into a different category were the 
study to be repeated. Confusion matrices (Supplementary 
Table 3) were constructed to assess the impact of add-
ing or subtracting 0.31  log10 (mg/kg) to the experimental 
value for the balanced subset of 50 LD50 values used to 
evaluate the tiered approach. It can be seen that 32% of 
all chemicals changed category when the confidence limit 
was added, whereas 24% switched when the limit was 
instead subtracted.

Cramer classification

Scaled probability distributions related to Cramer classifi-
cation are displayed within Table 5. As may be seen, the 
great majority of compounds were assigned Class III—that 
representing highest concern with respect to repeat-dose 
toxicity. Across those compounds falling within Classes I 
and II, clear trends are observed highlighting a similar, trans-
ferable association with reduced acute toxicity. Substances 
matching either call display steadily increasing probabilities 
of belonging to higher, more inert categories. This should 
be contrasted with Class III, for which the corresponding 
distribution is essentially flat.

EPA test

Predicted acute oral LD50 values (covering 7479 com-
pounds) sourced using the US EPA TEST hierarchical 
clustering model were found to, in general, correlate well 
with experimental quantities (r2 of 0.739). Relationship is 
depicted graphically within Fig. 1.

Random forest

The performance of the random forest model in the predic-
tion of LD50 was, overall, inferior to that of EPA TEST (r2 
of 0.602). Relationship is depicted graphically within Fig. 2.

Structural alerts

A total of thirteen structural alerts were formulated, high-
lighting molecular fragments represented notably within 
compounds prevalent across acute toxicity categories 1 and 
2. Dependent upon the absolute frequency of their occur-
rence within the dataset, category-probability distributions 
for each were either calculated or estimated. Details relat-
ing to those five features present with sufficient coverage so 
that their distributions were calculated may be found within 
Table 6.

Eight further alerts were identified—representative of 
those classes associated with high oral toxicity, yet present 

Table 4  Distribution of compounds in accordance with acute toxicity 
category occupied—expressed in terms both of raw quantity and of 
percentage of total

Acute tox. 
category

LD50 range 
(mg/kgbw)

Number of 
compounds

Distribution (%)

1  < 5 219 2.7
2 5–49 638 7.8
3 50–299 1452 17.7
4 300–1999 3326 40.6
5  ≥ 2000 2551 31.2
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only sparsely within the working dataset (fewer than ten 
compounds). Six of these described the core structural fea-
tures of complex natural product families: aflatoxins, ochra-
toxins, saxitoxins, strychnine, trichothecenes and vitamins 
D. The remaining two corresponded, respectively to syn-
thetic bromethalin neurotoxicants and indandione antico-
agulants. Expanded description of all is presented within 
Supplementary Table 4.

Cytotoxicity in vitro

Of the variety of ToxCast cell viability assays examined, 
none were found to provide meaningful concordance 
with experimental acute oral LD50 (as noted within Sec-
tion “Acquisition of in vitro cytotoxicity data”). Across the 
50 compounds forming the balanced representative set, the 
settled-upon assay (TOX21_RT_HEK293_GLO_16HR_
VIABILITY) produced a correlation with r2 merely 0.0877. 
Figure 3 depicts this relationship graphically.

Tiered approach

Each of the 50 compounds selected to form a balanced, rep-
resentative sample of the larger dataset (refer to Supplemen-
tary Table 2) were passed through the series of assessment 

tiers outlined within section “Overview of tiered approach”. 
Chosen primarily on account of the range of toxicity 
spanned, the sample cohort furthermore exhibited diversity 
with respect to chemical space and functional use—from 
comparatively simple molecules such as 4-tert-butyltoluene 
and 2-methylbutanal to complex natural products emetine 
and digitoxin. Examples of pharmaceuticals, endogenous 
biomolecules, synthetic intermediates and pesticides were 
each present.

Tier zero: Cramer classification

Applying the exclusionary method (see section  “Cat-
egory attribution (exclusionary method)”) to the Cramer 
classification-derived probability distributions presented 
within Table 5 produced overly conservative estimations 
of acute toxicity category (presented in the form of a con-
fusion matrix applicable to both 5% and 10% thresholds—
Table 7). As is expressed within Fig. 4, 44 compounds 
from 50 were predicted to hold categories indicative of 
higher toxicity than that which they exhibit in vivo—that 
is, they are overpredicted. This is largely a consequence of 
the automatic assignment of Cramer class III compounds 
(46 from 50, including nine Category 4 and seven Cat-
egory 5) to toxicity Category 1. Given the extremity of 
the toxicity represented by such a label, it is inevitable that 
this relationship shall, in the great majority of instances, 
produce marked overstatement of associated hazard. The 
four compounds falling into Cramer class I were each 
attributed Category 3—again, a cautious assessment of 
their experimentally-defined toxicity.

Tier one: in silico (EPA TEST + random forest + structural 
alerts)

Through adoption of a Bayesian statistical approach (as 
outlined within section “Bayesian analysis”), Cramer clas-
sification-derived distributions were supplemented with 
outcomes from the aforementioned suite of in silico tech-
niques: EPA TEST, random forest and structural alerts. Their 
effect, as anticipated, was to mitigate against the excessively 
conservative nature of the Tier 0 assignments—producing a 

Table 5  Scaled category-
probability distributions derived 
from Cramer classification

Scaled probability distribution (%) Dataset 
coverage 
(%)Acute toxicity category

1 2 3 4 5

Cramer classification
 I 0.0 2.6 10.2 22.3 64.8 11.4
 II 0.0 7.6 13.3 25.2 53.8 1.9
 III 21.9 21.6 20.9 19.7 16.0 86.7

Fig. 1  Plot outlining correlation between acute oral LD50 as pre-
dicted through EPA TEST hierarchical clustering model, and that 
determined experimentally (r2 = 0.739)



824 Archives of Toxicology (2022) 96:817–830

1 3

series of category-level predictions exhibiting a far greater 
degree of resolution and balance. Extent of overprediction 
was noted to fall, whilst instance of correct assignment grew 
(see matrices presented within Table 8).

Comparing within-tier, the inherent enhanced conserva-
tism of the 5.0% exclusionary threshold relative to 10.0% 
was readily apparent. With application of the 5.0% thresh-
old, quantity of compounds for which toxicity category 

was predicted correctly rose from six (in Tier 0) to ten. On 
10.0%, this expanded further to fifteen. Concurrently, the 
number overpredicted fell from 44 to 39 and 33, respectively. 
Severity of this overprediction was notably diminished—
with the proportion of substances assigned categories three 
or four increments higher than their experimental equiva-
lents (for example, Category 5 predicted either as Category 
1 or 2) falling at the expense of those merely one or two 
higher. This may be seen reflected in the general shift from 
darker to lighter blue shades as evident within Fig. 4. With 

Fig. 2  Plot outlining correlation between acute oral LD50 as pre-
dicted through random forest model, and that determined experimen-
tally (r2 = 0.602)

Table 6  Overview of structural alerts present within ten or greater compounds

Depicted is the defining structural fragment, alongside details relating to the known toxic mechanism associated with the class, its scaled cate-
gory-probability distribution and its absolute coverage

Alert title Defining structure Mechanistic considerations Scaled prob. distribution (%) Coverage

Acute toxicity category

1 2 3 4 5

Organophosphate

 

Neurotoxin
(acetylcholinesterase inhibition)

41.8 33.9 16.7 4.6 3.1 730

Carbamate

 

Neurotoxin
(acetylcholinesterase inhibition)

31.5 40.0 16.4 8.3 4.2 327

Fluoromethyl-
benzimidazole 
(fenazaflor-like)

 

Apparent inhibition of  
oxidative phosphorylation

51.6 41.3 7.0 0.0 0.0 128

Vitamin K  
antagonist 
(warfarin-like)

 

Anti-coagulant 84.4 5.8 7.6 2.2 0.0 11

Dibenzodioxin

 

Uncertain 96.3 3.7 0.0 0.0 0.0 10

Fig. 3  Plot outlining correlation between in  vitro cytotoxicity 
(expressed as log AC50) and acute oral LD50 (r2 = 0.0877)
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Table 7  Confusion matrix outlining category assignment following application of Tier 0 (applicable both to exclusionary thresholds 5.0% and 
10.0%)

Category (predicted)

1 2 3 4 5

Category (experimental)  1 6 0 0 0 0
 2 14 0 0 0 0
 3 10 0 0 0 0
 4 9 0 1 0 0
 5 7 0 3 0 0

Fig. 4  Variation in extent of 
deviation in category assign-
ment relative to experimentally 
determined classification, in 
accordance with assessment 
tier and exclusionary threshold. 
Colouration relates to extent 
of over- or underprediction, 
defined as differential between 
predicted and experimental 
toxicity categories

adoption of the 10.0% threshold, 42 from the 50 compounds 
were attributed categories either identical to, or one step 
more conservative than, experimental. By contrast, instances 
of underprediction, absent entirely at Tier 0, were observed. 
Quantities, however, were minimal—limited only to a single 
substance at the 5.0% limit, and to two at 10%.

To further illustrate the general progression in prediction 
suitability, specific reference is made to performance against 
three compounds—each depicted within Fig. 5. These are 
the Category 3 substance 2,6-di-tert-butyl-4-nitrophenol 
(DTBNP; ID 4682), the Category 4 sodium bithionolate (ID 
2365) and the Category 5 succinimide (ID 6524). Tier 0 
assigns each to Category 1—a clear overstatement of meas-
ured toxicity. Upon application of the Tier 1 model, figures 
are revised: 2,6-di-tert-butyl-4-nitrophenol to Categories 2 
(5% exclusionary threshold) or 3 (10% exclusionary thresh-
old), sodium bithionolate to Categories 3 or 4 respectively, 
and succinimide uniformly to Category 4. A visual depiction 
of the variation in prediction accuracy is presented within 
Table 9 (being an excerpt from the broader “Predictivity 
heatmap” present within Supplementary Table 2).

Tier two: in vitro cytotoxicity

Further updating of the Bayesian model through incorpora-
tion of in vitro cytotoxicity outcomes served to have only 

minor impact upon performance, relative to that of Tier 1. 
At the broadest level, an extremely modest shift away from 
tendency towards conservatism was witnessed—with the 
quantity of compounds overpredicted falling from 39 and 
33 within Tier 1 (at the 5.0% and 10.0% thresholds respec-
tively) to 37 and 32. These drops were compensated directly 
by increases in the number of substances assigned to their 
correct categories, as extent of underprediction remained 
constant (refer to Table 10).

The described trends were reflected within each of the 
three exemplar compounds referenced previously, with vari-
ation from Tier 1 being either absent in its entirety or instead 
tending very mildly away from overprediction (Table 9). 
Category assignments of 2,6-di-tert-butyl-4-nitrophenol 
remained completely unchanged. Those of sodium bith-
ionolate and succinimide were subject to minor alteration: 
the former now predicted as Category 4 (with application of 
either exclusion threshold), and the latter seeing its attribu-
tion at the 10.0% threshold switch from Category 4 to 5 (in 
line with experimentally-derived classification).
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Discussion

Concerns have been expressed over the reluctance of bod-
ies such as regulatory agencies to adopt new approaches in 
the assessment of chemical safety for human health (Knight 
et al. 2021; Parish et al. 2020). A key consequence of this 
has been the continued employment of in vivo protocols, 
which has in turn, owing to limits imposed by financial 
cost and availability of expertise, restricted the volume of 
substances which may feasibly be screened. In many cases, 
these animal-based laboratory techniques were developed 
more than 50 years ago. The static nature of this situation 
indicates in general a lack of confidence in NAM—a posi-
tion which we postulated may have arisen from inadequa-
cies both in the techniques themselves, and also in the man-
ner through which they have been validated (Mahony et al. 
2020).

There was once an expectation that there would be direct 
one-to-one replacement of existing laboratory animal-based 
protocols with appropriate in vitro tests (Piersma et  al. 
2018). However, it has been demonstrated, even in such 
relatively simple endpoints as localised irritation, that it is 
beyond the capability of a single assay to cover the range of 
modes of action which may contribute to ultimate adverse 
effect (Piersma et al. 2014). The development of Integrated 
Approaches to Testing and Assessment (IATA) and tiered 
approaches has seen different sources of information, such as 
physicochemical properties, QSAR and in vitro methodolo-
gies, brought together to ascribe potential for toxicity (Worth 
and Patlewicz 2016). The outputs from methods combining 
different data sources exist in the form of probability dis-
tributions, not fixed points. Accordingly, they do not lend 

themselves well to specificity/sensitivity type analysis—in 
turn making it difficult for regulators to formulate and justify 
decisions in an objective fashion.

The purpose of this study has been to assess how, through 
integrating information sourced from various NAM (both 
in silico and in vitro) into a tiered assessment approach, it 
might prove possible to enhance overall confidence in the 
validity of conclusions over those drawn from individual 
techniques. Acute oral lethality was chosen as the endpoint 
of interest, owing to its intermediate complexity: whilst 
many modes of action may contribute, it lacks much of 
the additional ambiguity inherent within studies of repeat-
dose toxicity. Bayesian methodology was adopted as a 
means through which the information gathered from these 
approaches might be combined quantitatively, enabling reli-
able analysis of the contribution added by each to the overall 
verdict. This was itself expressed in terms of the probability 
that a substance might belong to one of five categories, each 
corresponding to defined ranges of LD50.

When considering a range of possibilities, it may be valu-
able to initially exclude those clearly least likely. Such an 
approach was adopted in the attribution of toxicity catego-
ries to compounds, producing an “exclusionary method”. 
This proved to have an inherent conservatism, the extent of 
which could be adjusted through variation of the probability 
threshold beneath which a category was eliminated. This 
tendency to overstate hazard is, within limits, an acceptable 
feature for safety assessments. Within the study, chemicals 
were assigned to the most severe category holding probabil-
ity greater than either 5.0 or 10.0%—with the lower value 
naturally leading to the more conservative judgment. This 
protocol allowed for the tiered approach to be used with 
quantifiable certainty, enhancing confidence in decision 

Table 8  Confusion matrices outlining category assignment following application of Tier 1, following application of exclusionary thresholds 
5.0% (a) and 10.0% (b)

Category (predicted)

1 2 3 4 5

(a) Category  
(experimental)

 1 5 1 0 0 0
 2 10 4 0 0 0
 3 5 5 0 0 0
 4 0 7 2 1 0
 5 0 2 4 4 0

Category (predicted)

1 2 3 4 5

(b) Category  
(experimental)

 1 4 2 0 0 0
 2 8 6 0 0 0
 3 1 8 1 0 0
 4 0 1 7 2 0
 5 0 1 3 4 2
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making and in turn providing objective justification for its 
adoption. In principle, the methodology could be applied to 
other areas of toxicity for which a large reference database 
is present—for instance in determining repeat-dose derived 
no-effect levels (DNEL) from in vitro studies.

Analysis revealed that the introduction of a second tier of 
assessment (in silico) imparted substantial improvement in 
the balance of category assignments, relative to that obtained 
from the Cramer classification. This is to be anticipated, 
owing to the fact that Cramer’s scheme was devised for the 
purposes of a conservative TTC assignment in which the 
great majority of compounds, with the exception of those 
most definitively recognised as inert, were assumed to 
exhibit a uniform toxicity (EFSA Scientific Committee 2019; 
Cramer et al. 1978). Both the EPA Test method (a series of 
linked QSARs), and the random forest algorithm (trained 
using a combination of molecular fingerprint fragments and 
physicochemical descriptors) contributed greatly to enhanc-
ing predictive resolution. These techniques generated esti-
mates at the level of LD50, which could in turn input directly 
into the Bayesian model. It should be noted that there is 
potential overlap between the training data adopted in con-
struction of TEST hierarchical clustering and that present 
within the Gadaleta et al. set. Since scope for improvement 

existed within the performance of each (r2 values equal to 
0.74 and 0.60, respectively), the further addition of specified 
molecular structural alerts was considered worthwhile as a 
route towards addressing the issues arising from presence 
of outliers. As powerful as the pattern-recognition capacity 
of QSAR and machine learning might be, this potential can 
only be realised in the presence of adequate data (Sheri-
dan 2012). As such, it is perhaps inevitable that high toxic 
potential within compounds possessing unique and complex 
structural motifs might evade detection. The creation of spe-
cific alerts relating families such as trichothecene, saxitoxin, 
aflatoxin was intended to mitigate this.

By contrast, the in vitro cytotoxicity data contributed 
little significant information when integrated within the 
tiered approach—producing only a very moderate redistri-
bution in category assignment. Given the poor correlation 
between EC50 and LD50, this is very much to be expected. 
Whilst alternative studies have noted the improved perfor-
mance of assays such as neutral red uptake (3T3 cells) in 
capturing in vivo lethality (Prieto Peraita et al. 2013), uncer-
tainties remain concerning the general applicability of the 
methodology (Schrage et al. 2011). Effective or otherwise, 
scope for wider use is at present limited on account of the 
comparatively small quantities of compounds screened. In 
practice, we were restricted with respect to the data which 
could realistically be adopted: any candidate system would 
necessarily be required to cover a significant proportion of 
the compound inventory set. ToxCast proved the only read-
ily available source matching this description—although the 
performance of the HEK-293 (human embryonic kidney) 
viability assay was clearly sub-optimal. This is a predica-
ment which is highly likely to persist until the spread of 
substances tested through more suitable approaches, such 
as the aforementioned neutral red uptake screen, is system-
atically expanded. Shortcomings are even then likely still 
to remain, owing to the inherent challenges in interpolat-
ing organism lethality from the outcomes of simple, two-
dimensional cell-based in vitro techniques (Ekwall 1983; 
Garle et al. 1994). Modes of toxic action such as coagulation 
impairment and neurotoxicity are, amongst others, liable to 
be overlooked through such methods—and would perhaps 
be best accounted for during the in silico assessment phase.

Fig. 5  Structures of each of the three illustrative compounds: DTBNP 
(experimental Category 3), sodium bithionolate (Category 4) and 
succinimide (Category 5)

Table 9  Variation in extent of deviation in category assignment relative to experimentally determined classification for three representative com-
pounds: DTBNP (experimental Category 3), sodium bithionolate (Category 4) and succinimide (Category 5)

Colouration relates to extent of overprediction (OP), defined as differential between predicted and experimental toxicity categories
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As alluded to with section “Overview of tiered approach”, 
a further tier (Tier 3), may be introduced to incorporate the 
targeted application of in vivo testing. This would be con-
sidered necessary only if there was large uncertainty with 
respect to the final verdict, or there existed an imperative 
to otherwise challenge the assigned category. This might 
arise for commercial reasons—for example, if an important 
product was to be attributed a category suggesting severe 
toxicity, in turn necessitating its exclusion. Alternatively, 
there may be concerns that a chemical had been predicted as 
low toxicity, despite the presence of additional evidence sug-
gesting that it might in fact present a greater hazard. In these 
cases, it would not be necessary to carry out a full assess-
ment of LD50. Instead, a refined means of assessing acute 
lethality, such as the OECD Guideline 425 (OECD 2008), 
could be employed. In brief, this is a stepwise procedure uti-
lising single animals, whereby the first receives a dose mar-
ginally below the best estimate of the LD50 (which would 
itself be derived from Tier 2). Depending on the outcome 
for the previous animal, the dose for the next is increased or 
decreased—usually by a factor of 3:2. This sequence con-
tinues until there is a reversal of the initial outcome (i.e., 
the point where an increasing dose results in death rather 
than survival, or decreasing dose results in survival rather 
than death); at this stage, additional animals are dosed. The 
exclusionary method adopted within this study could be used 
to limit the use of further animals if no response is seen at a 
dose which would provide a level of confidence indicating 
that a particularly severe category of concern could safely 
be excluded.

Our investigation has indicated that Bayesian methodol-
ogy can be used in the development and evaluation of tiered 

approaches for acute lethality assessment. Accordingly, the 
question arises of how successful such a technique might 
be if applied to alternative manifestations of toxicity. Previ-
ously, Bayesian analysis has been employed in the integra-
tion of data describing drug-induced liver injury (Semenova 
et al. 2020; Williams et al. 2020), cardiotoxicity (Felli and 
Leishman 2020) and skin sensitisation (Reynolds et  al. 
2019). Whilst potencies in many toxicological endpoints 
may be expressed readily within categorical terms (this 
format being particularly amenable to Bayesian treatment), 
there remain those for which such framing is not so practical 
(National Research Council 2014). Although it is compara-
tively trivial to assign bands of potency to points of depar-
ture, it is more difficult to imagine how ranges of effects 
could similarly be categorised. The idea of “protection not 
prediction” challenges whether the “free form” recording 
we currently have of adverse effects is necessary. Would 
it be sufficient simply to categorise outcomes as “severe”, 
“moderate” or “mild” in order for risk assessment and risk 
management to operate? In more general terms, use of the 
tiered approach is dependent upon both the sourcing of large 
inventories containing outcomes of conventional laboratory 
animal-based protocols, and on the acquisition of NAM data 
(in the form of relevant in vitro endpoints, QSAR etc.) which 
may readily be integrated across the various stages of assess-
ment. Some difficulties were experienced in accessing data 
on account of the varying formats within which it may be 
held. Agreement on the formatting of databases containing 
in vivo and in vitro outcomes would enable the development 
of methodology in which regulatory authorities could have 
confidence.

In conclusion, we have shown that Bayesian inference 
can be adopted to integrate data from a variety of NAM 

Table 10  Confusion matrices outlining category assignment following application of Tier 2, following application of exclusionary thresholds 
5.0% (a) and 10.0% (b)

Category (predicted)

1 2 3 4 5

(a) Category  
(experimental)

 1 5 1 0 0 0
 2 10 4 0 0 0
 3 3 7 0 0 0
 4 0 5 3 2 0
 5 0 3 4 2 1

Category (predicted)

1 2 3 4 5

(b) Category  
(experimental)

 1 4 2 0 0 0
 2 7 7 0 0 0
 3 0 9 1 0 0
 4 0 2 6 2 0
 5 0 0 5 3 2
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sources—producing output from in the form of probability 
distributions which may subsequently be used in provision 
of objective assessments of toxic potential (in this instance, 
acute oral lethality). An exclusionary approach enabled 
assignment of chemicals to established toxicity categories, 
with a defined level of certainty. In terms of validation, this 
has potential to offer increased confidence relative to the 
simple quantification of sensitivity and specificity. Whilst 
the remit of this particular investigation has remained lim-
ited to the relatively narrow area of acute lethality, there is 
great scope for wider application of the approach. Accord-
ingly, it is our intention that the demonstrated methodology 
might ultimately serve in providing a level of confidence 
in NAM sufficient to gain wider use in regulatory decision 
making—offering as it does the benefit of reducing the num-
ber of laboratory animals used, in turn allowing more effi-
cient assessment of chemicals within existing financial and 
expert resources.
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