Skip to main content

Advertisement

Log in

Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

The onset of heart failure is typically preceded by cardiac hypertrophy, a response of the heart to increased workload, a cardiac insult such as a heart attack or genetic mutation. Cardiac hypertrophy is usually characterized by an increase in cardiomyocyte size and thickening of ventricular walls. Initially, such growth is an adaptive response to maintain cardiac function; however, in settings of sustained stress and as time progresses, these changes become maladaptive and the heart ultimately fails. In this review, we discuss the key features of pathological cardiac hypertrophy and the numerous mediators that have been found to be involved in the pathogenesis of cardiac hypertrophy affecting gene transcription, calcium handling, protein synthesis, metabolism, autophagy, oxidative stress and inflammation. We also discuss new mediators including signaling proteins, microRNAs, long noncoding RNAs and new findings related to the role of calcineurin and calcium-/calmodulin-dependent protein kinases. We also highlight mediators and processes which contribute to the transition from adaptive cardiac remodeling to maladaptive remodeling and heart failure. Treatment strategies for heart failure commonly include diuretics, angiotensin converting enzyme inhibitors, angiotensin II receptor blockers and β-blockers; however, mortality rates remain high. Here, we discuss new therapeutic approaches (e.g., RNA-based therapies, dietary supplementation, small molecules) either entering clinical trials or in preclinical development. Finally, we address the challenges that remain in translating these discoveries to new and approved therapies for heart failure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abdel-Latif A, Bolli R, Tleyjeh IM et al (2007) Adult bone marrow-derived cells for cardiac repair: a systematic review and meta-analysis. Arch Intern Med 167(10):989–997

    Article  PubMed  Google Scholar 

  • Abozguia K, Elliott P, McKenna W et al (2010) Metabolic modulator perhexiline corrects energy deficiency and improves exercise capacity in symptomatic hypertrophic cardiomyopathy. Circulation 122(16):1562–1569

    Article  CAS  PubMed  Google Scholar 

  • Aiello LP, Vignati L, Sheetz MJ et al (2011) Oral protein kinase c beta inhibition using ruboxistaurin: efficacy, safety, and causes of vision loss among 813 patients (1,392 eyes) with diabetic retinopathy in the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study and the Protein Kinase C beta Inhibitor-Diabetic Retinopathy Study 2. Retina 31(10):2084–2094

    Article  CAS  PubMed  Google Scholar 

  • AIRE_Investigators (1993) Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. The Acute Infarction Ramipril Efficacy (AIRE) Study Investigators. Lancet 342(8875):821–828

  • Aker S, Belosjorow S, Konietzka I et al (2003) Serum but not myocardial TNF-α concentration is increased in pacing-induced heart failure in rabbits. Am J Physiol Regul Integr Comp Physiol 285(2):R463–R469

    Article  CAS  PubMed  Google Scholar 

  • Akki A, Smith K, Seymour AM (2008) Compensated cardiac hypertrophy is characterised by a decline in palmitate oxidation. Mol Cell Biochem 311(1–2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Allard MF, Schonekess BO, Henning SL, English DR, Lopaschuk GD (1994) Contribution of oxidative metabolism and glycolysis to ATP production in hypertrophied hearts. Am J Physiol 267(2 Pt 2):H742–H750

    CAS  PubMed  Google Scholar 

  • Al-Shudiefat AA, Sharma AK, Bagchi AK, Dhingra S, Singal PK (2013) Oleic acid mitigates TNF-alpha-induced oxidative stress in rat cardiomyocytes. Mol Cell Biochem 372(1–2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Anand I, Chandrashekhan Y, De Giuli F et al (1998) Acute and chronic effects of propionyl-l-carnitine on the hemodynamics, exercise capacity, and hormones in patients with congestive heart failure. Cardiovasc Drugs Ther 12(3):291–299

    Article  CAS  PubMed  Google Scholar 

  • Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4):468–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anderson ME, Goldhaber J, Houser SR, Puceat M, Sussman MA (2014) Embryonic stem cell-derived cardiac myocytes are not ready for human trials. Circ Res 115(3):335–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arai M, Alpert NR, MacLennan DH, Barton P, Periasamy M (1993) Alterations in sarcoplasmic reticulum gene expression in human heart failure. A possible mechanism for alterations in systolic and diastolic properties of the failing myocardium. Circ Res 72(2):463–469

    Article  CAS  PubMed  Google Scholar 

  • Arsanjani R, McCarren M, Bahl JJ, Goldman S (2011) Translational potential of thyroid hormone and its analogs. J Mol Cell Cardiol 51(4):506–511

    Article  CAS  PubMed  Google Scholar 

  • Ashrafian H, Horowitz JD, Frenneaux MP (2007) Perhexiline. Cardiovasc Drug Rev 25(1):76–97

    Article  CAS  PubMed  Google Scholar 

  • Asokan A, Schaffer DV, Samulski RJ (2012) The AAV vector toolkit: poised at the clinical crossroads. Mol Ther 20(4):699–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ather S, Respress JL, Li N (1832) Wehrens XHT (2013) Alterations in ryanodine receptors and related proteins in heart failure. Biochim Biophys Acta (BBA) Mol Basis Dis 12:2425–2431

    Google Scholar 

  • Augoustides JG, Riha H (2009) Recent progress in heart failure treatment and heart transplantation. J Cardiothorac Vasc Anesth 23(5):738–748

    Article  PubMed  Google Scholar 

  • Aukrust P, Ueland T, Lien E et al (1999) Cytokine network in congestive heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 83(3):376–382

    Article  CAS  PubMed  Google Scholar 

  • Backs J, Worst BC, Lehmann LH et al (2011) Selective repression of MEF2 activity by PKA-dependent proteolysis of HDAC4. J Cell Biol 195(3):403–415

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG (2012) miR-34—a microRNA replacement therapy is headed to the clinic. Front Genet 3:120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ballou LM, Lin RZ, Cohen IS (2015) Control of cardiac repolarization by phosphoinositide 3-kinase signaling to ion channels. Circ Res 116(1):127–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bang HO, Dyerberg J, Hjoorne N (1976) The composition of food consumed by Greenland Eskimos. Acta Med Scand 200(1–2):69–73

    CAS  PubMed  Google Scholar 

  • Banke NH, Wende AR, Leone TC et al (2010) Preferential oxidation of triacylglyceride-derived fatty acids in heart is augmented by the nuclear receptor PPARalpha. Circ Res 107(2):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Banquet S, Gomez E, Nicol L et al (2011) Arteriogenic therapy by intramyocardial sustained delivery of a novel growth factor combination prevents chronic heart failure. Circulation 124(9):1059–1069

    Article  PubMed  Google Scholar 

  • Batista PJ, Chang HY (2013) Long noncoding RNAs: cellular address codes in development and disease. Cell 152(6):1298–1307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baum J, Duffy HS (2011) Fibroblasts and myofibroblasts: what are we talking about? J Cardiovasc Pharmacol 57(4):376–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baumgarten G, Knuefermann P, Kalra D et al (2002) Load-dependent and -independent regulation of proinflammatory cytokine and cytokine receptor gene expression in the adult mammalian heart. Circulation 105(18):2192–2197

    Article  CAS  PubMed  Google Scholar 

  • Bedotto JB, Gay RG, Graham SD, Morkin E, Goldman S (1989) Cardiac hypertrophy induced by thyroid hormone is independent of loading conditions and beta adrenoceptor blockade. J Pharmacol Exp Ther 248(2):632–636

    CAS  PubMed  Google Scholar 

  • Belakavadi M, Saunders J, Weisleder N, Raghava PS, Fondell JD (2010) Repression of cardiac phospholamban gene expression is mediated by thyroid hormone receptor-{alpha}1 and involves targeted covalent histone modifications. Endocrinology 151(6):2946–2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belin RJ, Greenland P, Martin L et al (2011) Fish intake and the risk of incident heart failure: the Women’s Health Initiative. Circ Heart Fail 4(4):404–413

    Article  PubMed  PubMed Central  Google Scholar 

  • Benito M, Oria R, Sanchez-Gimeno AC (2010) Characterization of the olive oil from three potentially interesting varieties from Aragon (Spain). Food Sci Technol Int 16(6):523–530

    Article  CAS  PubMed  Google Scholar 

  • Bernardo BC, Weeks KL, Pretorius L, McMullen JR (2010) Molecular distinction between physiological and pathological cardiac hypertrophy: experimental findings and therapeutic strategies. Pharmacol Ther 128(1):191–227

    Article  CAS  PubMed  Google Scholar 

  • Bernardo BC, Charchar FJ, Lin RCY, McMullen JR (2012a) A MicroRNA guide for clinicians and basic scientists: background and experimental techniques. Heart Lung Circ 21(3):131–142

    Article  CAS  PubMed  Google Scholar 

  • Bernardo BC, Gao XM, Winbanks CE et al (2012b) Therapeutic inhibition of the miR-34 family attenuates pathological cardiac remodeling and improves heart function. Proc Natl Acad Sci USA 109(43):17615–17620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernardo BC, Gao XM, Tham YK et al (2014a) Silencing of miR-34a attenuates cardiac dysfunction in a setting of moderate, but not severe, hypertrophic cardiomyopathy. PLoS ONE 9(2):e90337

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bernardo BC, Nguyen SS, Winbanks CE et al (2014b) Therapeutic silencing of miR-652 restores heart function and attenuates adverse remodeling in a setting of established pathological hypertrophy. FASEB J 28(12):5097–5110

    Article  CAS  PubMed  Google Scholar 

  • Bers DM (2006) Altered cardiac myocyte Ca regulation in heart failure. Am Physiol Soc 21:380–387

    CAS  Google Scholar 

  • Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127

    Article  CAS  PubMed  Google Scholar 

  • Bharadwaj KG, Hiyama Y, Hu Y et al (2010) Chylomicron- and VLDL-derived lipids enter the heart through different pathways: in vivo evidence for receptor- and non-receptor-mediated fatty acid uptake. J Biol Chem 285(49):37976–37986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan MS, Pattison JS, Osinska H et al (2013) Enhanced autophagy ameliorates cardiac proteinopathy. J Clin Invest 123(12):5284–5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienvenu LA, Reichelt ME, Delbridge LM, Young MJ (2013) Mineralocorticoid receptors and the heart, multiple cell types and multiple mechanisms: a focus on the cardiomyocyte. Clin Sci 125(9):409–421

    Article  PubMed  Google Scholar 

  • Bish LT, Morine K, Sleeper MM et al (2008) Adeno-associated virus (AAV) serotype 9 provides global cardiac gene transfer superior to AAV1, AAV6, AAV7, and AAV8 in the mouse and rat. Hum Gene Ther 19(12):1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bolli R, Chugh AR, D’Amario D et al (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378(9806):1847–1857

    Article  PubMed  PubMed Central  Google Scholar 

  • Boon RA, Iekushi K, Lechner S et al (2013) MicroRNA-34a regulates cardiac ageing and function. Nature 495(7439):107–110

    Article  CAS  PubMed  Google Scholar 

  • Bossuyt J, Chang CW, Helmstadter K et al (2011) Spatiotemporally distinct protein kinase D activation in adult cardiomyocytes in response to phenylephrine and endothelin. J Biol Chem 286(38):33390–33400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boström P, Mann N, Wu J et al (2010) C/EBP beta controls exercise-induced cardiac growth and protects against pathological cardiac remodeling. Cell 143(7):1072–1083

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bowling N, Walsh RA, Song G et al (1999) Increased protein kinase C activity and expression of Ca2+-sensitive isoforms in the failing human heart. Circulation 99(3):384–391

    Article  CAS  PubMed  Google Scholar 

  • Bowman JC, Steinberg SF, Jiang T, Geenen DL, Fishman GI, Buttrick PM (1997) Expression of protein kinase C beta in the heart causes hypertrophy in adult mice and sudden death in neonates. J Clin Invest 100(9):2189–2195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradner JE, West N, Grachan ML et al (2010) Chemical phylogenetics of histone deacetylases. Nat Chem Biol 6(3):238–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braunwald E (2014) The war against heart failure: the Lancet lecture. Lancet. doi:10.1016/S0140-6736(14)61889-4

    Google Scholar 

  • Braz JC, Bueno OF, De Windt LJ, Molkentin JD (2002) PKC alpha regulates the hypertrophic growth of cardiomyocytes through extracellular signal-regulated kinase1/2 (ERK1/2). J Cell Biol 156(5):905–919

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braz JC, Gregory K, Pathak A et al (2004) PKC-alpha regulates cardiac contractility and propensity toward heart failure. Nat Med 10(3):248–254

    Article  CAS  PubMed  Google Scholar 

  • Brinks H, Boucher M, Gao E et al (2010) Level of G protein-coupled receptor kinase-2 determines myocardial ischemia/reperfusion injury via pro- and anti-apoptotic mechanisms. Circ Res 107(9):1140–1149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bristow MR (2000) beta-adrenergic receptor blockade in chronic heart failure. Circulation 101(5):558–569

    Article  CAS  PubMed  Google Scholar 

  • Broderick TL, Quinney HA, Barker CC, Lopaschuk GD (1993) Beneficial effect of carnitine on mechanical recovery of rat hearts reperfused after a transient period of global ischemia is accompanied by a stimulation of glucose oxidation. Circulation 87(3):972–981

    Article  CAS  PubMed  Google Scholar 

  • Bueno OF, De Windt LJ, Tymitz KM et al (2000) The MEK1-ERK1/2 signaling pathway promotes compensated cardiac hypertrophy in transgenic mice. EMBO J 19(23):6341–6350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno OF, van Rooij E, Molkentin JD, Doevendans PA, De Windt LJ (2002) Calcineurin and hypertrophic heart disease: novel insights and remaining questions. Cardiovasc Res 53(4):806–821

    Article  CAS  PubMed  Google Scholar 

  • Burr ML, Fehily AM, Gilbert JF et al (1989) Effects of changes in fat, fish, and fibre intakes on death and myocardial reinfarction: diet and reinfarction trial (DART). Lancet 2(8666):757–761

    Article  CAS  PubMed  Google Scholar 

  • Byrne MJ, Power JM, Preovolos A, Mariani JA, Hajjar RJ, Kaye DM (2008) Recirculating cardiac delivery of AAV2/1SERCA2a improves myocardial function in an experimental model of heart failure in large animals. Gene Ther 15(23):1550–1557

    Article  CAS  PubMed  Google Scholar 

  • Cabili MN, Trapnell C, Goff L et al (2011) Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev 25(18):1915–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Calvani M, Reda E, Arrigoni-Martelli E (2000) Regulation by carnitine of myocardial fatty acid and carbohydrate metabolism under normal and pathological conditions. Basic Res Cardiol 95(2):75–83

    Article  CAS  PubMed  Google Scholar 

  • Cannavo A, Liccardo D, Koch WJ (2013) Targeting cardiac beta-adrenergic signaling via GRK2 inhibition for heart failure therapy. Front Physiol 4:264

    Article  PubMed  PubMed Central  Google Scholar 

  • Cardinale JP, Sriramula S, Pariaut R et al (2010) HDAC inhibition attenuates inflammatory, hypertrophic, and hypertensive responses in spontaneously hypertensive rats. Hypertension 56(3):437–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan AY, Soltys CL, Young ME, Proud CG, Dyck JR (2004) Activation of AMP-activated protein kinase inhibits protein synthesis associated with hypertrophy in the cardiac myocyte. J Biol Chem 279(31):32771–32779

    Article  CAS  PubMed  Google Scholar 

  • Chan AY, Dolinsky VW, Soltys CL et al (2008) Resveratrol inhibits cardiac hypertrophy via AMP-activated protein kinase and Akt. J Biol Chem 283(35):24194–24201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang S, McKinsey TA, Zhang CL, Richardson JA, Hill JA, Olson EN (2004) Histone deacetylases 5 and 9 govern responsiveness of the heart to a subset of stress signals and play redundant roles in heart development. Mol Cell Biol 24(19):8467–8476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chau VQ, Salloum FN, Hoke NN, Abbate A, Kukreja RC (2011) Mitigation of the progression of heart failure with sildenafil involves inhibition of RhoA/Rho-kinase pathway. Am J Physiol Heart Circ Physiol 300(6):H2272–H2279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen L, Hahn H, Wu G et al (2001) Opposing cardioprotective actions and parallel hypertrophic effects of delta PKC and epsilon PKC. Proc Natl Acad Sci USA 98(20):11114–11119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J-F, Murchison EP, Tang R et al (2008) Targeted deletion of Dicer in the heart leads to dilated cardiomyopathy and heart failure. Proc Natl Acad Sci USA 105(6):2111–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Shearer GC, Chen Q et al (2011) Omega-3 fatty acids prevent pressure overload-induced cardiac fibrosis through activation of cyclic GMP/protein kinase G signaling in cardiac fibroblasts. Circulation 123(6):584–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chien KR, Zangi L, Lui KO (2014) Synthetic Chemically Modified mRNA (modRNA): Toward a New Technology Platform for Cardiovascular Biology and Medicine. Cold Spring Harb Perspect Med 5(1). doi:10.1101/cshperspect.a014035

  • Chong JJH, Yang X, Don CW et al (2014) Human embryonic-stem-cell-derived cardiomyocytes regenerate non-human primate hearts. Nature 510(7504):273–277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choudhary C, Kumar C, Gnad F et al (2009) Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325(5942):834–840

    Article  CAS  PubMed  Google Scholar 

  • Chung J, Nguyen AK, Henstridge DC et al (2008) HSP72 protects against obesity-induced insulin resistance. Proc Natl Acad Sci USA 105(5):1739–1744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • CIBIS-II Investigators (1999) The Cardiac Insufficiency Bisoprolol Study II (CIBIS-II): a randomised trial. Lancet 353(9146):9–13

    Article  Google Scholar 

  • Cittadini A, Monti MG, Iaccarino G et al (2012) SOCS1 gene transfer accelerates the transition to heart failure through the inhibition of the gp130/JAK/STAT pathway. Cardiovasc Res 96(3):381–390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Connelly KA, Kelly DJ, Zhang Y et al (2009) Inhibition of protein kinase C-beta by ruboxistaurin preserves cardiac function and reduces extracellular matrix production in diabetic cardiomyopathy. Circ Heart Fail 2(2):129–137

    Article  CAS  PubMed  Google Scholar 

  • CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). The CONSENSUS Trial Study Group. N Engl J Med 316(23):1429–1435

  • Crackower MA, Oudit GY, Kozieradzki I et al (2002) Regulation of myocardial contractility and cell size by distinct PI3K–PTEN signaling pathways. Cell 110(6):737–749

    Article  CAS  PubMed  Google Scholar 

  • Creemers EE, Tijsen AJ, Pinto YM (2012) Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res 110(3):483–495

    Article  CAS  PubMed  Google Scholar 

  • Crossman DJ, Ruygrok PN, Soeller C, Cannell MB (2011) Changes in the organization of excitation–contraction coupling structures in failing human heart. PLoS ONE 6(3):e17901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • da Costa Martins PA, Bourajjaj M, Gladka M et al (2008) Conditional dicer gene deletion in the postnatal myocardium provokes spontaneous cardiac remodeling. Circulation 118(15):1567–1576

    Article  PubMed  CAS  Google Scholar 

  • Da Silva ND Jr, Fernandes T, Soci UP, Monteiro AW, Phillips MI, de Oliveira EM (2012) Swimming training in rats increases cardiac MicroRNA-126 expression and angiogenesis. Med Sci Sports Exerc 44(8):1453–1462

    Article  CAS  Google Scholar 

  • Dai DF, Johnson SC, Villarin JJ et al (2011) Mitochondrial oxidative stress mediates angiotensin II-induced cardiac hypertrophy and Galphaq overexpression-induced heart failure. Circ Res 108(7):837–846

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daige CL, Wiggins JF, Priddy L, Nelligan-Davis T, Zhao J, Brown D (2014) Systemic delivery of a miR-34a mimic as a potential therapeutic for liver cancer. Mol Cancer Ther 13(10):2352–2360

    Article  CAS  PubMed  Google Scholar 

  • D’Angelo DD, Sakata Y, Lorenz JN et al (1997) Transgenic Galpha q overexpression induces cardiac contractile failure in mice. Proc Natl Acad Sci USA 94(15):8121–8126

    Article  PubMed  PubMed Central  Google Scholar 

  • De Maeyer C, Beckers P, Vrints CJ, Conraads VM (2013) Exercise training in chronic heart failure. Ther Adv Chron Dis 4(3):105–117

    Article  Google Scholar 

  • De Maio A (1999) Heat shock proteins: facts, thoughts, and dreams. Shock 11(1):1–12

    Article  PubMed  Google Scholar 

  • DeBosch B, Treskov I, Lupu TS et al (2006) Akt1 is required for physiological cardiac growth. Circulation 113(17):2097–2104

    Article  CAS  PubMed  Google Scholar 

  • Demarquoy J, Georges B, Rigault C et al (2004) Radioisotopic determination of l-carnitine content in foods commonly eaten in Western countries. Food Chem 86(1):137–142

    Article  CAS  Google Scholar 

  • Den Ruijter HM, Verkerk AO, Schumacher CA et al (2012) A diet rich in unsaturated fatty acids prevents progression toward heart failure in a rabbit model of pressure and volume overload. Circ Heart Fail 5(3):376–384

    Article  CAS  Google Scholar 

  • Dhalla NS, Müller AL (2010) Protein kinases as drug development targets for heart disease therapy. Pharmaceuticals 3:2111–2145

    Article  CAS  PubMed Central  Google Scholar 

  • Dijkstra SC, Brouwer IA, van Rooij FJ, Hofman A, Witteman JC, Geleijnse JM (2009) Intake of very long chain n-3 fatty acids from fish and the incidence of heart failure: the Rotterdam Study. Eur J Heart Fail 11(10):922–928

    Article  CAS  PubMed  Google Scholar 

  • Diwan A, Dorn GW 2nd (2007) Decompensation of cardiac hypertrophy: cellular mechanisms and novel therapeutic targets. Physiology 22:56–64

    Article  CAS  PubMed  Google Scholar 

  • Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryanodine receptor phosphorylation in cardiac disease. Circ Res 114(8):1311–1319 (discussion 1319)

  • Dorn GW II, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dorn GW 2nd, Kitsis RN (2015) The mitochondrial dynamism-mitophagy-cell death interactome: multiple roles performed by members of a mitochondrial molecular ensemble. Circ Res 116(1):167–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du XJ (2008) Distinct role of adrenoceptor subtypes in cardiac adaptation to chronic pressure overload. Clin Exp Pharmacol Physiol 35(3):355–360

    Article  CAS  PubMed  Google Scholar 

  • el Alaoui-Talibi Z, Landormy S, Loireau A, Moravec J (1992) Fatty acid oxidation and mechanical performance of volume-overloaded rat hearts. Am J Physiol 262(4 Pt 2):H1068–H1074

    PubMed  Google Scholar 

  • Engelhardt S, Hein L, Wiesmann F, Lohse MJ (1999) Progressive hypertrophy and heart failure in beta1-adrenergic receptor transgenic mice. Proc Natl Acad Sci USA 96(12):7059–7064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Estruch R, Ros E, Salas-Salvado J et al (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368(14):1279–1290

    Article  CAS  PubMed  Google Scholar 

  • Eurich DT, Weir DL, Majumdar SR et al (2013) Comparative safety and effectiveness of metformin in patients with diabetes mellitus and heart failure: systematic review of observational studies involving 34,000 patients. Circ Heart Fail 6(3):395–402

    Article  CAS  PubMed  Google Scholar 

  • Fan GC, Chu G, Mitton B, Song Q, Yuan Q, Kranias EG (2004) Small heat-shock protein Hsp20 phosphorylation inhibits beta-agonist-induced cardiac apoptosis. Circ Res 94(11):1474–1482

    Article  CAS  PubMed  Google Scholar 

  • Fan GC, Chu G, Kranias EG (2005) Hsp20 and its cardioprotection. Trends Cardiovasc Med 15(4):138–141

    Article  CAS  PubMed  Google Scholar 

  • Fan GC, Yuan Q, Song G et al (2006) Small heat-shock protein Hsp20 attenuates beta-agonist-mediated cardiac remodeling through apoptosis signal-regulating kinase 1. Circ Res 99(11):1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Feldman MD, Copelas L, Gwathmey JK et al (1987) Deficient production of cyclic AMP: pharmacologic evidence of an important cause of contractile dysfunction in patients with end-stage heart failure. Circulation 75(2):331–339

    Article  CAS  PubMed  Google Scholar 

  • Finkle J, Bloomfield D, Uhl K, Sanhai W, Stockbridge N, Krucoff MW (2009) New precompetitive paradigms: focus on cardiac safety. Am Heart J 157(5):825–826

    Article  PubMed  Google Scholar 

  • Finnin MS, Donigian JR, Cohen A et al (1999) Structures of a histone deacetylase homologue bound to the TSA and SAHA inhibitors. Nature 401(6749):188–193

    Article  CAS  PubMed  Google Scholar 

  • Fischer S, Glas KE (2013) A review of cardiac transplantation. Anesthesiol Clin 31(2):383–403

    Article  PubMed  Google Scholar 

  • Fischer R, Dechend R, Qadri F et al (2008) Dietary n-3 polyunsaturated fatty acids and direct renin inhibition improve electrical remodeling in a model of high human renin hypertension. Hypertension 51(2):540–546

    Article  CAS  PubMed  Google Scholar 

  • Fischle W, Dequiedt F, Hendzel MJ et al (2002) Enzymatic activity associated with class II HDACs is dependent on a multiprotein complex containing HDAC3 and SMRT/N-CoR. Mol Cell 9(1):45–57

    Article  CAS  PubMed  Google Scholar 

  • Fish KM, Ladage D, Kawase Y et al (2013) AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 6(2):310–317

    Article  PubMed  PubMed Central  Google Scholar 

  • Foretz M, Guigas B, Bertrand L, Pollak M, Viollet B (2014) Metformin: from mechanisms of action to therapies. Cell Metab 20(6):953–966

    Article  CAS  PubMed  Google Scholar 

  • Friehs I, del Nido PJ (2003) Increased susceptibility of hypertrophied hearts to ischemic injury. Ann Thorac Surg 75(2):S678–S684

    Article  PubMed  Google Scholar 

  • Friehs I, Margossian RE, Moran AM, Cao-Danh H, Moses MA, del Nido PJ (2006) Vascular endothelial growth factor delays onset of failure in pressure-overload hypertrophy through matrix metalloproteinase activation and angiogenesis. Basic Res Cardiol 101(3):204–213

  • Frishman WH (2003) Beta-adrenergic blockers. Circulation 107(18):e117–e119

    Article  CAS  PubMed  Google Scholar 

  • Fruman DA, Rommel C (2014) PI3K and cancer: lessons, challenges and opportunities. Nat Rev Drug Discov 13(2):140–156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fulda S, Galluzzi L, Kroemer G (2010) Targeting mitochondria for cancer therapy. Nat Rev Drug Discov 9(6):447–464

    Article  CAS  PubMed  Google Scholar 

  • Ganesan J, Ramanujam D, Sassi Y et al (2013) MiR-378 controls cardiac hypertrophy by combined repression of mitogen-activated protein kinase pathway factors. Circulation 127(21):2097–2106

    Article  CAS  PubMed  Google Scholar 

  • Gehrig SM, van der Poel C, Sayer TA et al (2012) Hsp72 preserves muscle function and slows progression of severe muscular dystrophy. Nature 484(7394):394–398

    Article  CAS  PubMed  Google Scholar 

  • Ghose Roy S, Mishra S, Ghosh G, Bandyopadhyay A (2007) Thyroid hormone induces myocardial matrix degradation by activating matrix metalloproteinase-1. Matrix Biol 26(4):269–279

    Article  PubMed  CAS  Google Scholar 

  • Giannetta E, Isidori AM, Galea N et al (2012) Chronic inhibition of cGMP phosphodiesterase 5A improves diabetic cardiomyopathy: a randomized, controlled clinical trial using magnetic resonance imaging with myocardial tagging. Circulation 125(19):2323–2333

    Article  CAS  PubMed  Google Scholar 

  • Giannetta E, Feola T, Gianfrilli D et al (2014) Is chronic inhibition of phosphodiesterase type 5 cardioprotective and safe? A meta-analysis of randomized controlled trials. BMC Med 12(1):185

    Article  PubMed  PubMed Central  Google Scholar 

  • Gidlof O, Smith JG, Miyazu K et al (2013) Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord 13:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Giordano FJ (2005) Oxygen, oxidative stress, hypoxia, and heart failure. J Clin Invest 115(3):500–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • GISSI-Prevenzione Investigators (1999) Dietary supplementation with n-3 polyunsaturated fatty acids and vitamin E after myocardial infarction: results of the GISSI-Prevenzione trial. Gruppo Italiano per lo Studio della Sopravvivenza nell’Infarto miocardico. Lancet 354(9177):447–455

  • Gonzalez GE, Rhaleb NE, D’Ambrosio MA et al (2015) Deletion of interleukin-6 prevents cardiac inflammation, fibrosis and dysfunction without affecting blood pressure in angiotensin II-high salt-induced hypertension. J Hypertens 33(1):144–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gray MO, Zhou HZ, Schafhalter-Zoppoth I, Zhu P, Mochly-Rosen D, Messing RO (2004) Preservation of base-line hemodynamic function and loss of inducible cardioprotection in adult mice lacking protein kinase C epsilon. J Biol Chem 279(5):3596–3604

    Article  CAS  PubMed  Google Scholar 

  • Greenberg B, Yaroshinsky A, Zsebo KM et al (2014) Design of a phase 2b trial of intracoronary administration of AAV1/SERCA2a in patients with advanced heart failure: the CUPID 2 trial (calcium up-regulation by percutaneous administration of gene therapy in cardiac disease phase 2b). JACC Heart failure 2(1):84–92

    Article  PubMed  Google Scholar 

  • Gregoretti IV, Lee YM, Goodson HV (2004) Molecular evolution of the histone deacetylase family: functional implications of phylogenetic analysis. J Mol Biol 338(1):17–31

    Article  CAS  PubMed  Google Scholar 

  • Gregorevic P, Blankinship MJ, Allen JM et al (2004) Systemic delivery of genes to striated muscles using adeno-associated viral vectors. Nat Med 10(8):828–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grossman W, Jones D, McLaurin LP (1975) Wall stress and patterns of hypertrophy in the human left ventricle. J Clin Invest 56(1):56–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grozinger CM, Schreiber SL (2000) Regulation of histone deacetylase 4 and 5 and transcriptional activity by 14-3-3-dependent cellular localization. Proc Natl Acad Sci USA 97(14):7835–7840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guazzi M, Vicenzi M, Arena R, Guazzi MD (2011) PDE5 inhibition with sildenafil improves left ventricular diastolic function, cardiac geometry, and clinical status in patients with stable systolic heart failure: results of a 1-year, prospective, randomized, placebo-controlled study. Circ Heart Fail 4(1):8–17

    Article  CAS  PubMed  Google Scholar 

  • Gundewar S, Calvert JW, Jha S et al (2009) Activation of AMP-activated protein kinase by metformin improves left ventricular function and survival in heart failure. Circ Res 104(3):403–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo D, Kassiri Z, Basu R et al (2010) Loss of PI3Kgamma enhances cAMP-dependent MMP remodeling of the myocardial N-cadherin adhesion complexes and extracellular matrix in response to early biomechanical stress. Circ Res 107(10):1275–1289

    Article  CAS  PubMed  Google Scholar 

  • Gwathmey JK, Copelas L, MacKinnon R et al (1987) Abnormal intracellular calcium handling in myocardium from patients with end-stage heart failure. Circ Res 61(1):70–76

    Article  CAS  PubMed  Google Scholar 

  • Hahn HS, Marreez Y, Odley A et al (2003) Protein kinase Calpha negatively regulates systolic and diastolic function in pathological hypertrophy. Circ Res 93(11):1111–1119

    Article  CAS  PubMed  Google Scholar 

  • Hajjar RJ, Zsebo K, Deckelbaum L et al (2008) Design of a phase 1/2 trial of intracoronary administration of AAV1/SERCA2a in patients with heart failure. J Card Fail 14(5):355–367

    Article  CAS  PubMed  Google Scholar 

  • Hamilton KL, Staib JL, Phillips T, Hess A, Lennon SL, Powers SK (2003) Exercise, antioxidants, and HSP72: protection against myocardial ischemia/reperfusion. Free Radic Biol Med 34(7):800–809

    Article  CAS  PubMed  Google Scholar 

  • Han P, Li W, Lin CH et al (2014) A long noncoding RNA protects the heart from pathological hypertrophy. Nature 514(7520):102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hang CT, Yang J, Han P et al (2010) Chromatin regulation by Brg1 underlies heart muscle development and disease. Nature 466(7302):62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haq S, Choukroun G, Lim H et al (2001) Differential activation of signal transduction pathways in human hearts with hypertrophy versus advanced heart failure. Circulation 103(5):670–677

    Article  CAS  PubMed  Google Scholar 

  • Hardie DG, Ross FA, Hawley SA (2012) AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nat Rev Mol Cell Biol 13(4):251–262

    Article  CAS  PubMed  Google Scholar 

  • Harrison BC, Roberts CR, Hood DB et al (2004) The CRM1 nuclear export receptor controls pathological cardiac gene expression. Mol Cell Biol 24(24):10636–10649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasenfuss G (1998) Alterations of calcium-regulatory proteins in heart failure. Cardiovasc Res 37(2):279–289

    Article  CAS  PubMed  Google Scholar 

  • Hasenfuss G, Reinecke H, Studer R et al (1994) Relation between myocardial function and expression of sarcoplasmic reticulum Ca(2+)-ATPase in failing and nonfailing human myocardium. Circ Res 75(3):434–442

    Article  CAS  PubMed  Google Scholar 

  • Haubner BJ, Neely GG, Voelkl JG et al (2010) PI3Kgamma protects from myocardial ischemia and reperfusion injury through a kinase-independent pathway. PLoS ONE 5(2):e9350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hayakawa Y, Chandra M, Miao W et al (2003) Inhibition of cardiac myocyte apoptosis improves cardiac function and abolishes mortality in the peripartum cardiomyopathy of Galpha(q) transgenic mice. Circulation 108(24):3036–3041

    Article  CAS  PubMed  Google Scholar 

  • Hein S, Arnon E, Kostin S et al (2003) Progression from compensated hypertrophy to failure in the pressure-overloaded human heart: structural deterioration and compensatory mechanisms. Circulation 107(7):984–991

    Article  PubMed  Google Scholar 

  • Henderson KK, Danzi S, Paul JT, Leya G, Klein I, Samarel AM (2009) Physiological replacement of T3 improves left ventricular function in an animal model of myocardial infarction-induced congestive heart failure. Circ Heart Fail 2(3):243–252

    Article  PubMed  Google Scholar 

  • Higashikuni Y, Tanaka K, Kato M et al (2013) Toll-like receptor-2 mediates adaptive cardiac hypertrophy in response to pressure overload through interleukin-1beta upregulation via nuclear factor kappaB activation. J Am Heart Assoc 2(6):e000267

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hirota H, Chen J, Betz UA et al (1999) Loss of a gp130 cardiac muscle cell survival pathway is a critical event in the onset of heart failure during biomechanical stress. Cell 97(2):189–198

    Article  CAS  PubMed  Google Scholar 

  • Hohl M, Wagner M, Reil JC et al (2013) HDAC4 controls histone methylation in response to elevated cardiac load. J Clin Invest 123(3):1359–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoshijima M, Ikeda Y, Iwanaga Y et al (2002) Chronic suppression of heart-failure progression by a pseudophosphorylated mutant of phospholamban via in vivo cardiac rAAV gene delivery. Nat Med 8(8):864–871

    CAS  PubMed  Google Scholar 

  • Houser SR (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: protein kinase A-mediated hyperphosphorylation of the ryanodine receptor at serine 2808 does not alter cardiac contractility or cause heart failure and arrhythmias. Circ Res 114(8):1320–1327 (discussion 1327)

  • Huang X, Fan R, Lu Y et al (2014) Regulatory effect of AMP-activated protein kinase on pulmonary hypertension induced by chronic hypoxia in rats: in vivo and in vitro studies. Mol Biol Rep 41(6):4031–4041

    Article  CAS  PubMed  Google Scholar 

  • Hudlicka O, Brown MD (1996) Postnatal growth of the heart and its blood vessels. J Vasc Res 33(4):266–287

    Article  CAS  PubMed  Google Scholar 

  • Hudson JE, Porrello ER (2013) The non-coding road towards cardiac regeneration. J Cardiovasc Transl Res 6(6):909–923

    Article  PubMed  Google Scholar 

  • Hue L, Taegtmeyer H (2009) The Randle cycle revisited: a new head for an old hat. Am J Physiol Endocrinol Metab 297(3):E578–E591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huusko J, Lottonen L, Merentie M et al (2012) AAV9-mediated VEGF-B gene transfer improves systolic function in progressive left ventricular hypertrophy. Mol Ther 20(12):2212–2221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huynh K, Bernardo BC, McMullen JR, Ritchie RH (2014) Diabetic cardiomyopathy: mechanisms and new treatment strategies targeting antioxidant signaling pathways. Pharmacol Ther 142(3):375–415

    Article  CAS  PubMed  Google Scholar 

  • Ibrahim M, Gorelik J, Yacoub MH, Terracciano CM (2011) The structure and function of cardiac t-tubules in health and disease. Proc Biol Sci 278(1719):2714–2723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iemitsu M, Miyauchi T, Maeda S et al (2001) Physiological and pathological cardiac hypertrophy induce different molecular phenotypes in the rat. Am J Physiol Regul Integr Comp Physiol 281(6):R2029–R2036

    CAS  PubMed  Google Scholar 

  • Ishikawa K, Fish KM, Tilemann L et al (2014) Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol Ther 22(12):2038–2045

  • Ishiwata T, Orosz A, Wang X et al (2012) HSPB2 is dispensable for the cardiac hypertrophic response but reduces mitochondrial energetics following pressure overload in mice. PLoS ONE 7(8):e42118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iyer A, Fenning A, Lim J et al (2010) Antifibrotic activity of an inhibitor of histone deacetylases in DOCA-salt hypertensive rats. Br J Pharmacol 159(7):1408–1417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Izumiya Y, Shiojima I, Sato K, Sawyer DB, Colucci WS, Walsh K (2006) Vascular endothelial growth factor blockade promotes the transition from compensatory cardiac hypertrophy to failure in response to pressure overload. Hypertension 47(5):887–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen HL, Reesink HW, Lawitz EJ et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368(18):1685–1694

    Article  CAS  PubMed  Google Scholar 

  • Janssen R, Zuidwijk MJ, Kuster DW, Muller A, Simonides WS (2014) Thyroid hormone-regulated cardiac microRNAs are predicted to suppress pathological hypertrophic signaling. Front Endocrinol 5:171

    Google Scholar 

  • Jarvinen R, Knekt P, Rissanen H, Reunanen A (2006) Intake of fish and long-chain n-3 fatty acids and the risk of coronary heart mortality in men and women. Br J Nutr 95(4):824–829

    Article  CAS  PubMed  Google Scholar 

  • Jaski BE, Jessup ML, Mancini DM et al (2009) Calcium upregulation by percutaneous administration of gene therapy in cardiac disease (CUPID Trial), a first-in-human phase 1/2 clinical trial. J Card Fail 15(3):171–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jeffrey FM, Alvarez L, Diczku V, Sherry AD, Malloy CR (1995) Direct evidence that perhexiline modifies myocardial substrate utilization from fatty acids to lactate. J Cardiovasc Pharmacol 25(3):469–472

    Article  CAS  PubMed  Google Scholar 

  • Jessup M, Greenberg B, Mancini D et al (2011) Calcium Upregulation by Percutaneous Administration of Gene Therapy in Cardiac Disease (CUPID): a phase 2 trial of intracoronary gene therapy of sarcoplasmic reticulum Ca2+-ATPase in patients with advanced heart failure. Circulation 124(3):304–313

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Takahashi R, Hiura Y, Hirokawa G, Fukushima Y, Iwai N (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55(11):1944–1949

    Article  CAS  PubMed  Google Scholar 

  • Jiang DS, Wei X, Zhang XF et al (2014) IRF8 suppresses pathological cardiac remodelling by inhibiting calcineurin signalling. Nat Commun 5:3303

    PubMed  PubMed Central  Google Scholar 

  • Kagawa Y, Nishizawa M, Suzuki M et al (1982) Eicosapolyenoic acids of serum lipids of Japanese islanders with low incidence of cardiovascular diseases. J Nutr Sci Vitaminol 28(4):441–453

    Article  CAS  PubMed  Google Scholar 

  • Karch R, Neumann F, Ullrich R et al (2005) The spatial pattern of coronary capillaries in patients with dilated, ischemic, or inflammatory cardiomyopathy. Cardiovasc Pathol 14(3):135–144

    Article  PubMed  Google Scholar 

  • Kasinski AL, Kelnar K, Stahlhut C et al (2014) A combinatorial microRNA therapeutics approach to suppressing non-small cell lung cancer. Oncogene. doi:10.1038/onc.2014.282

    PubMed  PubMed Central  Google Scholar 

  • Kawase Y, Ly HQ, Prunier F et al (2008) Reversal of cardiac dysfunction after long-term expression of SERCA2a by gene transfer in a pre-clinical model of heart failure. J Am Coll Cardiol 51(11):1112–1119

    Article  CAS  PubMed  Google Scholar 

  • Kaye DM, Preovolos A, Marshall T et al (2007) Percutaneous cardiac recirculation-mediated gene transfer of an inhibitory phospholamban peptide reverses advanced heart failure in large animals. J Am Coll Cardiol 50(3):253–260

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Sohn IS, Nam KI et al (2006) Inhibition of histone deacetylation blocks cardiac hypertrophy induced by angiotensin II infusion and aortic banding. Circulation 113(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Kee HJ, Bae EH, Park S et al (2013) HDAC inhibition suppresses cardiac hypertrophy and fibrosis in DOCA-salt hypertensive rats via regulation of HDAC6/HDAC8 enzyme activity. Kidney Blood Press Res 37(4–5):229–239

    Article  CAS  PubMed  Google Scholar 

  • Kehat I, Davis J, Tiburcy M et al (2011) Extracellular signal-regulated kinases 1 and 2 regulate the balance between eccentric and concentric cardiac growth. Circ Res 108(2):176–183

    Article  CAS  PubMed  Google Scholar 

  • Keith M, Geranmayegan A, Sole MJ et al (1998) Increased oxidative stress in patients with congestive heart failure. J Am Coll Cardiol 31(6):1352–1356

    Article  CAS  PubMed  Google Scholar 

  • Kenessey A, Ojamaa K (2006) Thyroid hormone stimulates protein synthesis in the cardiomyocyte by activating the Akt-mTOR and p70S6K pathways. J Biol Chem 281(30):20666–20672

    Article  CAS  PubMed  Google Scholar 

  • Khan R, Sheppard R (2006) Fibrosis in heart disease: understanding the role of transforming growth factor-beta in cardiomyopathy, valvular disease and arrhythmia. Immunology 118(1):10–24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kho C, Lee A, Jeong D et al (2011) SUMO1-dependent modulation of SERCA2a in heart failure. Nature 477(7366):601–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kienesberger PC, Pulinilkunnil T, Nagendran J, Dyck JR (2013) Myocardial triacylglycerol metabolism. J Mol Cell Cardiol 55:101–110

    Article  CAS  PubMed  Google Scholar 

  • Kim TT, Dyck JR (2015) Is AMPK the savior of the failing heart? Trends Endocrinol Metab 26(1):40–48

    Article  CAS  PubMed  Google Scholar 

  • Kim YK, Suarez J, Hu Y et al (2006) Deletion of the inducible 70-kDa heat shock protein genes in mice impairs cardiac contractile function and calcium handling associated with hypertrophy. Circulation 113(22):2589–2597

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Wende AR, Sena S et al (2008) Insulin-like growth factor I receptor signaling is required for exercise-induced cardiac hypertrophy. Mol Endocrinol 22(11):2531–2543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim M, Shen M, Ngoy S, Karamanlidis G, Liao R, Tian R (2012) AMPK isoform expression in the normal and failing hearts. J Mol Cell Cardiol 52(5):1066–1073

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiriazis H, Wang K, Xu Q et al (2008) Knockout of beta(1)- and beta(2)-adrenoceptors attenuates pressure overload-induced cardiac hypertrophy and fibrosis. Br J Pharmacol 153(4):684–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiss E, Ball NA, Kranias EG, Walsh RA (1995) Differential changes in cardiac phospholamban and sarcoplasmic reticular Ca(2 +)-ATPase protein levels. Effects on Ca2+ transport and mechanics in compensated pressure-overload hypertrophy and congestive heart failure. Circ Res 77(4):759–764

    Article  CAS  PubMed  Google Scholar 

  • Kitamura K, Shibata R, Tsuji Y, Shimano M, Inden Y, Murohara T (2011) Eicosapentaenoic acid prevents atrial fibrillation associated with heart failure in a rabbit model. Am J Physiol Heart Circ Physiol 300(5):H1814–H1821

    Article  CAS  PubMed  Google Scholar 

  • Klattenhoff CA, Scheuermann JC, Surface LE et al (2013) Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152(3):570–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein G, Schaefer A, Hilfiker-Kleiner D et al (2005) Increased collagen deposition and diastolic dysfunction but preserved myocardial hypertrophy after pressure overload in mice lacking PKCepsilon. Circ Res 96(7):748–755

    Article  CAS  PubMed  Google Scholar 

  • Kleinbongard P, Schulz R, Heusch G (2011) TNFalpha in myocardial ischemia/reperfusion, remodeling and heart failure. Heart Fail Rev 16(1):49–69

    Article  CAS  PubMed  Google Scholar 

  • Koeth RA, Wang Z, Levison BS et al (2013) Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med 19(5):576–585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kolwicz SC Jr, Purohit S, Tian R (2013) Cardiac metabolism and its interactions with contraction, growth, and survival of cardiomyocytes. Circ Res 113(5):603–616

    Article  CAS  PubMed  Google Scholar 

  • Kong Y, Tannous P, Lu G et al (2006) Suppression of class I and II histone deacetylases blunts pressure-overload cardiac hypertrophy. Circulation 113(22):2579–2588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong P, Christia P, Frangogiannis NG (2014) The pathogenesis of cardiac fibrosis. Cell Mol Life Sci 71(4):549–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Konstantinidis K, Whelan RS, Kitsis RN (2012) Mechanisms of cell death in heart disease. Arterioscler Thromb Vasc Biol 32(7):1552–1562

    Article  CAS  PubMed  Google Scholar 

  • Kook H, Lepore JJ, Gitler AD et al (2003) Cardiac hypertrophy and histone deacetylase-dependent transcriptional repression mediated by the atypical homeodomain protein Hop. J Clin Invest 112(6):863–871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulatome. Circ Res 110(12):1646–1660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kreusser MM, Lehmann LH, Keranov S et al (2014) Cardiac CaM kinase II genes delta and gamma contribute to adverse remodeling but redundantly inhibit calcineurin-induced myocardial hypertrophy. Circulation 130(15):1262–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubli DA, Gustafsson AB (2012) Mitochondria and mitophagy: the yin and yang of cell death control. Circ Res 111(9):1208–1221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubota T, McNamara DM, Wang JJ et al (1998) Effects of tumor necrosis factor gene polymorphisms on patients with congestive heart failure. VEST Investigators for TNF Genotype Analysis. Vesnarinone Survival Trial. Circulation 97(25):2499–2501

    Article  CAS  PubMed  Google Scholar 

  • Kumarswamy R, Thum T (2013) Non-coding RNAs in cardiac remodeling and heart failure. Circ Res 113(6):676–689

    Article  CAS  PubMed  Google Scholar 

  • Kumarswamy R, Bauters C, Volkmann I et al (2014) Circulating long noncoding RNA, LIPCAR, predicts survival in patients with heart failure. Circ Res 114(10):1569–1575

    Article  CAS  PubMed  Google Scholar 

  • Kunisada K, Negoro S, Tone E et al (2000) Signal transducer and activator of transcription 3 in the heart transduces not only a hypertrophic signal but a protective signal against doxorubicin-induced cardiomyopathy. Proc Natl Acad Sci USA 97(1):315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ladage D, Tilemann L, Ishikawa K et al (2011) Inhibition of PKCalpha/beta with ruboxistaurin antagonizes heart failure in pigs after myocardial infarction injury. Circ Res 109(12):1396–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahey R, Wang X, Carley AN, Lewandowski ED (2014) Dietary fat supply to failing hearts determines dynamic lipid signaling for nuclear receptor activation and oxidation of stored triglyceride. Circulation 130(20):1790–1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lahm A, Paolini C, Pallaoro M et al (2007) Unraveling the hidden catalytic activity of vertebrate class IIa histone deacetylases. Proc Natl Acad Sci USA 104(44):17335–17340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lal H, Ahmad F, Woodgett J, Force T (2015) The GSK-3 family as therapeutic target for myocardial diseases. Circ Res 116(1):138–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Landry J, Sutton A, Tafrov ST et al (2000) The silencing protein SIR2 and its homologs are NAD-dependent protein deacetylases. Proc Natl Acad Sci USA 97(11):5807–5811

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langenickel TH, Dole WP (2012) Angiotensin receptor–neprilysin inhibition with LCZ696: a novel approach for the treatment of heart failure. Drug Discov Today Ther Strateg 9(4):e131–e139

    Article  Google Scholar 

  • Laskowski A, Woodman OL, Cao AH et al (2006) Antioxidant actions contribute to the antihypertrophic effects of atrial natriuretic peptide in neonatal rat cardiomyocytes. Cardiovasc Res 72(1):112–123

    Article  CAS  PubMed  Google Scholar 

  • Lee RC, Feinbaum RL, Ambros V (2004) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell S 116(2):843–854

    Google Scholar 

  • Lee L, Campbell R, Scheuermann-Freestone M et al (2005) Metabolic modulation with perhexiline in chronic heart failure: a randomized, controlled trial of short-term use of a novel treatment. Circulation 112(21):3280–3288

    Article  CAS  PubMed  Google Scholar 

  • Lee SP, Kim HK, Kim YJ, Oh S, Sohn DW (2014) Association of myocardial angiogenesis with structural and functional ventricular remodeling in aortic stenosis patients with normal ejection fraction. J Cardiovasc Ultrasound 22(2):72–79

    Article  PubMed  PubMed Central  Google Scholar 

  • Lefkowitz RJ, Rockman HA, Koch WJ (2000) Catecholamines, cardiac beta-adrenergic receptors, and heart failure. Circulation 101(14):1634–1637

    Article  CAS  PubMed  Google Scholar 

  • Lehmann LH, Worst BC, Stanmore DA, Backs J (2014) Histone deacetylase signaling in cardioprotection. Cell Mol Life Sci 71(9):1673–1690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leopold JA (2011) Aldosterone, mineralocorticoid receptor activation, and cardiovascular remodeling. Circulation 124(18):e466–e468

    Article  PubMed  PubMed Central  Google Scholar 

  • Levine B, Kalman J, Mayer L, Fillit HM, Packer M (1990) Elevated circulating levels of tumor necrosis factor in severe chronic heart failure. N Engl J Med 323(4):236–241

    Article  CAS  PubMed  Google Scholar 

  • Levitan EB, Wolk A, Mittleman MA (2009) Fish consumption, marine omega-3 fatty acids, and incidence of heart failure: a population-based prospective study of middle-aged and elderly men. Eur Heart J 30(12):1495–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li HL, Yin R, Chen D et al (2007) Long-term activation of adenosine monophosphate-activated protein kinase attenuates pressure-overload-induced cardiac hypertrophy. J Cell Biochem 100(5):1086–1099

    Article  CAS  PubMed  Google Scholar 

  • Liao R, Nascimben L, Friedrich J, Gwathmey JK, Ingwall JS (1996) Decreased energy reserve in an animal model of dilated cardiomyopathy. Relationship to contractile performance. Circ Res 78(5):893–902

    Article  CAS  PubMed  Google Scholar 

  • Lichtenstein AH, Ausman LM, Jalbert SM, Schaefer EJ (1999) Effects of different forms of dietary hydrogenated fats on serum lipoprotein cholesterol levels. N Engl J Med 340(25):1933–1940

    Article  CAS  PubMed  Google Scholar 

  • Liedtke AJ, DeMaison L, Nellis SH (1988) Effects of l-propionylcarnitine on mechanical recovery during reflow in intact hearts. Am J Physiol 255(1 Pt 2):H169–H176

    CAS  PubMed  Google Scholar 

  • Lijnen P, Petrov V (1999) Renin–angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cell Cardiol 31(5):949–970

    Article  CAS  PubMed  Google Scholar 

  • Lin RCY, Weeks KL, Gao X-M et al (2010) PI3K (p110α) protects against myocardial infarction-induced heart failure/identification of PI3K-regulated miRNAs and mRNAs. Arterioscler Thromb Vasc Biol 30:724–732

    Article  CAS  PubMed  Google Scholar 

  • Lin Z, Zhou P, von Gise A et al (2015) Pi3kcb links Hippo-YAP and PI3K–AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res 116(1):35–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindner M, Brandt MC, Sauer H, Hescheler J, Bohle T, Beuckelmann DJ (2002) Calcium sparks in human ventricular cardiomyocytes from patients with terminal heart failure. Cell Calcium 31(4):175–182

    Article  CAS  PubMed  Google Scholar 

  • Literati-Nagy B, Kulcsar E, Literati-Nagy Z et al (2009) Improvement of insulin sensitivity by a novel drug, BGP-15, in insulin-resistant patients: a proof of concept randomized double-blind clinical trial. Horm Metab Res 41(5):374–380

    Article  CAS  PubMed  Google Scholar 

  • Literati-Nagy B, Peterfai E, Kulcsar E et al (2010) Beneficial effect of the insulin sensitizer (HSP inducer) BGP-15 on olanzapine-induced metabolic disorders. Brain Res Bull 83(6):340–344

    Article  CAS  PubMed  Google Scholar 

  • Literati-Nagy Z, Tory K, Literati-Nagy B et al (2012) The HSP co-inducer BGP-15 can prevent the metabolic side effects of the atypical antipsychotics. Cell Stress Chaperones 17(4):517–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Molkentin JD (2011) Protein kinase Calpha as a heart failure therapeutic target. J Mol Cell Cardiol 51(4):474–478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu JC, Chan P, Chen JJ et al (2004) The inhibitory effect of trilinolein on norepinephrine-induced beta-myosin heavy chain promoter activity, reactive oxygen species generation, and extracellular signal-regulated kinase phosphorylation in neonatal rat cardiomyocytes. J Biomed Sci 11(1):11–18

    CAS  PubMed  Google Scholar 

  • Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90(1):207–258

    Article  CAS  PubMed  Google Scholar 

  • Lorenz K, Schmitt JP, Schmitteckert EM, Lohse MJ (2009) A new type of ERK1/2 autophosphorylation causes cardiac hypertrophy. Nat Med 15(1):75–83

    Article  CAS  PubMed  Google Scholar 

  • Lou Q, Janardhan A, Efimov IR (2012) Remodeling of calcium handling in human heart failure. Adv Exp Med Biol 740:1145–1174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lu J, McKinsey TA, Zhang CL, Olson EN (2000) Regulation of skeletal myogenesis by association of the MEF2 transcription factor with class II histone deacetylases. Mol Cell 6(2):233–244

    Article  CAS  PubMed  Google Scholar 

  • Luczak ED, Anderson ME (2014) CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol 73:112–116

    Article  CAS  PubMed  Google Scholar 

  • Luo J, McMullen JR, Sobkiw CL et al (2005) Class IA phosphoinositide 3-kinase regulates heart size and physiological cardiac hypertrophy. Mol Cell Biol 25(21):9491–9502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lydell CP, Chan A, Wambolt RB et al (2002) Pyruvate dehydrogenase and the regulation of glucose oxidation in hypertrophied rat hearts. Cardiovasc Res 53(4):841–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma Z, Qi J, Meng S, Wen B, Zhang J (2013) Swimming exercise training-induced left ventricular hypertrophy involves microRNAs and synergistic regulation of the PI3K/AKT/mTOR signaling pathway. Eur J Appl Physiol 113(10):2473–2486

    Article  CAS  PubMed  Google Scholar 

  • Maejima Y, Chen Y, Isobe M, Gustafsson AB, Kitsis RN, Sadoshima J (2014) Recent progress in research on molecular mechanisms of autophagy in the heart. Am J Physiol Heart Circ Physiol. doi:10.1152/ajpheart.00711.2014:ajpheart00711

    PubMed  Google Scholar 

  • Mai W, Janier MF, Allioli N et al (2004) Thyroid hormone receptor alpha is a molecular switch of cardiac function between fetal and postnatal life. Proc Natl Acad Sci USA 101(28):10332–10337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Makkar RR, Smith RR, Cheng K et al (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379(9819):895–904

    Article  PubMed  PubMed Central  Google Scholar 

  • Malliaras K, Makkar RR, Smith RR et al (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63(2):110–122

    Article  PubMed  PubMed Central  Google Scholar 

  • Mann DL (2002) Inflammatory mediators and the failing heart: past, present, and the foreseeable future. Circ Res 91(11):988–998

    Article  CAS  PubMed  Google Scholar 

  • Mann DL (2011) The emerging role of innate immunity in the heart and vascular system: for whom the cell tolls. Circ Res 108(9):1133–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marber MS, Mestril R, Chi SH, Sayen MR, Yellon DM, Dillmann WH (1995) Overexpression of the rat inducible 70-kD heat stress protein in a transgenic mouse increases the resistance of the heart to ischemic injury. J Clin Invest 95(4):1446–1456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marin-Garcia J, Goldenthal MJ, Moe GW (2001) Abnormal cardiac and skeletal muscle mitochondrial function in pacing-induced cardiac failure. Cardiovasc Res 52(1):103–110

    Article  CAS  PubMed  Google Scholar 

  • Maron BA, Leopold JA (2010) Aldosterone receptor antagonists: effective but often forgotten. Circulation 121(7):934–939

    Article  PubMed  PubMed Central  Google Scholar 

  • Martelli AM, Zweyer M, Ochs RL et al (2001) Nuclear apoptotic changes: an overview. J Cell Biochem 82(4):634–646

    Article  CAS  PubMed  Google Scholar 

  • Martin ML, Blaxall BC (2012) Cardiac intercellular communication: are myocytes and fibroblasts fair-weather friends? J Cardiovasc Transl Res 5(6):768–782

    Article  PubMed  PubMed Central  Google Scholar 

  • Martin ED, Bassi R, Marber MS (2014) p38 MAPK in cardioprotection—are we there yet? Br J Pharmacol. doi:10.1111/bph.12901

    PubMed Central  Google Scholar 

  • Marx SO, Reiken S, Hisamatsu Y et al (2000) PKA phosphorylation dissociates FKBP12.6 from the calcium release channel (ryanodine receptor): defective regulation in failing hearts. Cell 101(4):365–376

    Article  CAS  PubMed  Google Scholar 

  • Masumura Y, Kobayashi A, Yamazaki N (1990) Myocardial free carnitine and fatty acylcarnitine levels in patients with chronic heart failure. Jpn Circ J 54(12):1471–1476

    Article  CAS  PubMed  Google Scholar 

  • Matkovich SJ (2014) MicroRNAs in the stressed heart: sorting the signal from the noise. Cells 3(3):778–801

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKinsey TA (2011) Isoform-selective HDAC inhibitors: closing in on translational medicine for the heart. J Mol Cell Cardiol 51(4):491–496

    Article  CAS  PubMed  Google Scholar 

  • McKinsey TA, Zhang CL, Lu J, Olson EN (2000a) Signal-dependent nuclear export of a histone deacetylase regulates muscle differentiation. Nature 408(6808):106–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2000b) Activation of the myocyte enhancer factor-2 transcription factor by calcium/calmodulin-dependent protein kinase-stimulated binding of 14-3-3 to histone deacetylase 5. Proc Natl Acad Sci USA 97(26):14400–14405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McKinsey TA, Zhang CL, Olson EN (2002) Signaling chromatin to make muscle. Curr Opin Cell Biol 14(6):763–772

    Article  CAS  PubMed  Google Scholar 

  • McLean BA, Zhabyeyev P, Pituskin E, Paterson I, Haykowsky MJ, Oudit GY (2013) PI3K inhibitors as novel cancer therapies: implications for cardiovascular medicine. J Card Fail 19(4):268–282

    Article  CAS  PubMed  Google Scholar 

  • McMullen JR (2008) Role of insulin-like growth factor 1 and phosphoinositide 3-kinase in a setting of heart disease. Clin Exp Pharmacol Physiol 35(3):349–354

    Article  CAS  PubMed  Google Scholar 

  • McMullen JR, Shioi T, Zhang L et al (2003) Phosphoinositide 3-kinase (p110alpha) plays a critical role for the induction of physiological, but not pathological, cardiac hypertrophy. Proc Natl Acad Sci USA 100(21):12355–12360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen JR, Shioi T, Huang W-Y et al (2004) The insulin-like growth factor 1 receptor induces physiological heart growth via the phosphoinositide 3-kinase (p110alpha) pathway. J Biol Chem 279(6):4782–4793

    Article  CAS  PubMed  Google Scholar 

  • McMullen JR, Amirahmadi F, Woodcock EA et al (2007) Protective effects of exercise and phosphoinositide 3-kinase (p110alpha) signaling in dilated and hypertrophic cardiomyopathy. Proc Natl Acad Sci USA 104(2):612–617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMullen JR, Boey EJH, Ooi JYY, Seymour JF, Keating MJ, Tam CS (2014) Ibrutinib increases the risk of atrial fibrillation, potentially through inhibition of cardiac PI3K–Akt signaling. Blood 124(25):3829–3830

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJ (2010) Clinical practice. Systolic heart failure. N Engl J Med 362(3):228–238

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJV, Pfeffer MA (2005) Heart failure. Lancet 365:1877–1889

    Article  PubMed  Google Scholar 

  • McMurray J, Chopra M, Abdullah I, Smith WE, Dargie HJ (1993) Evidence of oxidative stress in chronic heart failure in humans. Eur Heart J 14(11):1493–1498

    Article  CAS  PubMed  Google Scholar 

  • McMurray JJ, Packer M, Desai AS et al (2014) Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med 371(11):993–1004

    Article  PubMed  CAS  Google Scholar 

  • Melling CW, Thorp DB, Milne KJ, Krause MP, Noble EG (2007) Exercise-mediated regulation of Hsp70 expression following aerobic exercise training. Am J Physiol Heart Circ Physiol 293(6):H3692–H3698

    Article  CAS  PubMed  Google Scholar 

  • Menasche P, Alfieri O, Janssens S et al (2008) The Myoblast Autologous Grafting in Ischemic Cardiomyopathy (MAGIC) trial: first randomized placebo-controlled study of myoblast transplantation. Circulation 117(9):1189–1200

    Article  PubMed  Google Scholar 

  • Mende U, Kagen A, Cohen A, Aramburu J, Schoen FJ, Neer EJ (1998) Transient cardiac expression of constitutively active Galphaq leads to hypertrophy and dilated cardiomyopathy by calcineurin-dependent and independent pathways. Proc Natl Acad Sci USA 95(23):13893–13898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mercer TR, Mattick JS (2013) Structure and function of long noncoding RNAs in epigenetic regulation. Nat Struct Mol Biol 20(3):300–307

    Article  CAS  PubMed  Google Scholar 

  • MERIT-HR Study Group (1999) Effect of metoprolol CR/XL in chronic heart failure: metoprolol CR/XL Randomised Intervention Trial in Congestive Heart Failure (MERIT-HF). Lancet 353(9169):2001–2007

    Article  Google Scholar 

  • Michalik KM, You X, Manavski Y et al (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114(9):1389–1397

    Article  CAS  PubMed  Google Scholar 

  • Miller TA, LeBrasseur NK, Cote GM et al (2005) Oleate prevents palmitate-induced cytotoxic stress in cardiac myocytes. Biochem Biophys Res Commun 336(1):309–315

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F, High KA (2011) Therapeutic in vivo gene transfer for genetic disease using AAV: progress and challenges. Nat Rev Genet 12(5):341–355

    Article  CAS  PubMed  Google Scholar 

  • Mingozzi F, High KA (2013) Immune responses to AAV vectors: overcoming barriers to successful gene therapy. Blood 122(1):23–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miska EA, Karlsson C, Langley E, Nielsen SJ, Pines J, Kouzarides T (1999) HDAC4 deacetylase associates with and represses the MEF2 transcription factor. EMBO J 18(18):5099–5107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miyamoto MI, del Monte F, Schmidt U et al (2000) Adenoviral gene transfer of SERCA2a improves left-ventricular function in aortic-banded rats in transition to heart failure. Proc Natl Acad Sci USA 97(2):793–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moc C, Taylor AE, Chesini GP et al (2015) Physiological activation of Akt by PHLPP1 deletion protects against pathological hypertrophy. Cardiovasc Res 105(2):160–170

    Article  PubMed  PubMed Central  Google Scholar 

  • Modesti PA, Vanni S, Bertolozzi I et al (2000) Early sequence of cardiac adaptations and growth factor formation in pressure- and volume-overload hypertrophy. Am J Physiol Heart Circ Physiol 279(3):H976–H985

  • Molkentin JD, Lu J-R, Antos CL et al (1998) A calcineurin-dependent transcriptional pathway for cardiac hypertrophy. Cell 93(2):215–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montano MM, Desjardins CL, Doughman YQ et al (2013) Inducible re-expression of HEXIM1 causes physiological cardiac hypertrophy in the adult mouse. Cardiovasc Res 99(1):74–82

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Montgomery RL, Hullinger TG, Semus HM et al (2011) Therapeutic inhibition of miR-208a improves cardiac function and survival during heart failure/clinical perspective. Circulation 124(14):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morissette MR, Howes AL, Zhang T, Heller Brown J (2003) Upregulation of GLUT1 expression is necessary for hypertrophy and survival of neonatal rat cardiomyocytes. J Mol Cell Cardiol 35(10):1217–1227

    Article  CAS  PubMed  Google Scholar 

  • Mortensen SA, Rosenfeldt F, Kumar A et al (2014) The effect of coenzyme Q10 on morbidity and mortality in chronic heart failure: results from Q-SYMBIO: a Randomized Double-Blind Trial. JACC Heart Fail 2(6):641–649

    Article  PubMed  Google Scholar 

  • Mourouzis I, Mantzouratou P, Galanopoulos G et al (2012) Dose-dependent effects of thyroid hormone on post-ischemic cardiac performance: potential involvement of Akt and ERK signalings. Mol Cell Biochem 363(1–2):235–243

    Article  CAS  PubMed  Google Scholar 

  • Mullard A (2014) New drugs cost US$2.6 billion to develop. Nat Rev Drug Discov 13(12):877

    Google Scholar 

  • Munger MA, Johnson B, Amber IJ, Callahan KS, Gilbert EM (1996) Circulating concentrations of proinflammatory cytokines in mild or moderate heart failure secondary to ischemic or idiopathic dilated cardiomyopathy. Am J Cardiol 77(9):723–727

    Article  CAS  PubMed  Google Scholar 

  • Murdoch CE, Zhang M, Cave AC, Shah AM (2006) NADPH oxidase-dependent redox signalling in cardiac hypertrophy, remodelling and failure. Cardiovasc Res 71(2):208–215

    Article  CAS  PubMed  Google Scholar 

  • Murry CE, Chong JJH, Laflamme MA (2014) Letter by Murry et al regarding article, “Embryonic stem cell-derived cardiac myocytes are not ready for human trials”. Circ Res 115(10):e28–e29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naga Prasad SV, Esposito G, Mao L, Koch WJ, Rockman HA (2000) G-beta-gamma-dependent phosphoinositide 3-kinase activation in hearts with in vivo pressure overload hypertrophy. J Biol Chem 275(7):4693–4698

    Article  CAS  PubMed  Google Scholar 

  • Nagayama T, Hsu S, Zhang M et al (2009) Sildenafil stops progressive chamber, cellular, and molecular remodeling and improves calcium handling and function in hearts with pre-existing advanced hypertrophy caused by pressure overload. J Am Coll Cardiol 53(2):207–215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakai A, Yamaguchi O, Takeda T et al (2007) The role of autophagy in cardiomyocytes in the basal state and in response to hemodynamic stress. Nat Med 13(5):619–624

    Article  CAS  PubMed  Google Scholar 

  • Nakamura Y, Ueshima H, Okamura T et al (2005) Association between fish consumption and all-cause and cause-specific mortality in Japan: NIPPON DATA80, 1980–99. Am J Med 118(3):239–245

    Article  PubMed  Google Scholar 

  • Narula J, Haider N, Virmani R et al (1996) Apoptosis in myocytes in end-stage heart failure. N Engl J Med 335(16):1182–1189

    Article  CAS  PubMed  Google Scholar 

  • Neubauer S (2007) The failing heart—an engine out of fuel. N Engl J Med 356(11):1140–1151

    Article  PubMed  Google Scholar 

  • Neubauer S, Horn M, Cramer M et al (1997) Myocardial phosphocreatine-to-ATP ratio is a predictor of mortality in patients with dilated cardiomyopathy. Circulation 96(7):2190–2196

    Article  CAS  PubMed  Google Scholar 

  • Nienaber JJ, Tachibana H, Naga Prasad SV et al (2003) Inhibition of receptor-localized PI3K preserves cardiac beta-adrenergic receptor function and ameliorates pressure overload heart failure. J Clin Invest 112(7):1067–1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishino Y, Miura T, Miki T et al (2004) Ischemic preconditioning activates AMPK in a PKC-dependent manner and induces GLUT4 up-regulation in the late phase of cardioprotection. Cardiovasc Res 61(3):610–619

    Article  CAS  PubMed  Google Scholar 

  • Nordberg J, Arner ES (2001) Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 31(11):1287–1312

    Article  CAS  PubMed  Google Scholar 

  • O’Connell TD, Jensen BC, Baker AJ, Simpson PC (2014) Cardiac alpha1-adrenergic receptors: novel aspects of expression, signaling mechanisms, physiologic function, and clinical importance. Pharmacol Rev 66(1):308–333

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Oka T, Akazawa H, Naito AT, Komuro I (2014) Angiogenesis and cardiac hypertrophy: maintenance of cardiac function and causative roles in heart failure. Circ Res 114(3):565–571

    Article  CAS  PubMed  Google Scholar 

  • Okonko DO, Shah AM (2015) Heart failure: mitochondrial dysfunction and oxidative stress in CHF. Nat Rev Cardiol 12(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Olivetti G, Abbi R, Quaini F et al (1997) Apoptosis in the failing human heart. N Engl J Med 336(16):1131–1141

    Article  CAS  PubMed  Google Scholar 

  • Olson EN (2014) MicroRNAs as therapeutic targets and biomarkers of cardiovascular disease. Sci Transl Med 6(239):239ps3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Omori Y, Ohtani T, Sakata Y et al (2012) l-Carnitine prevents the development of ventricular fibrosis and heart failure with preserved ejection fraction in hypertensive heart disease. J Hypertens 30(9):1834–1844

    Article  CAS  PubMed  Google Scholar 

  • O’Neill BT, Kim J, Wende AR et al (2007) A conserved role for phosphatidylinositol 3-kinase but not Akt signaling in mitochondrial adaptations that accompany physiological cardiac hypertrophy. Cell Metab 6(4):294–306

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ooi JYY, Bernardo BC, McMullen JR (2014) The therapeutic potential of microRNAs regulated in settings of physiological cardiac hypertrophy. Future Med Chem 6(2):205–222

    Article  CAS  PubMed  Google Scholar 

  • Orom UA, Shiekhattar R (2013) Long noncoding RNAs usher in a new era in the biology of enhancers. Cell 154(6):1190–1193

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Rourke B, Kass DA, Tomaselli GF, Kaab S, Tunin R, Marban E (1999) Mechanisms of altered excitation–contraction coupling in canine tachycardia-induced heart failure, I: experimental studies. Circ Res 84(5):562–570

    Article  PubMed  Google Scholar 

  • Oudit GY, Kassiri Z (2007) Role of PI3 kinase gamma in excitation–contraction coupling and heart disease. Cardiovasc Hematol Disord: Drug Targets 7(4):295–304

    Article  CAS  Google Scholar 

  • Oudit GY, Crackower MA, Eriksson U et al (2003) Phosphoinositide 3-kinase gamma-deficient mice are protected from isoproterenol-induced heart failure. Circulation 108(17):2147–2152

    Article  CAS  PubMed  Google Scholar 

  • Ounzain S, Micheletti R, Beckmann T et al (2015) Genome-wide profiling of the cardiac transcriptome after myocardial infarction identifies novel heart-specific long non-coding RNAs. Eur Heart J 36(6):353–368

    Article  PubMed  PubMed Central  Google Scholar 

  • Packer M, Coats AJ, Fowler MB et al (2001) Effect of carvedilol on survival in severe chronic heart failure. N Engl J Med 344(22):1651–1658

    Article  CAS  PubMed  Google Scholar 

  • Packer M, McMurray JJV, Desai AS et al (2015) Angiotensin receptor neprilysin inhibition compared with enalapril on the risk of clinical progression in surviving patients with heart failure. Circulation 131(1):54–61

    Article  CAS  PubMed  Google Scholar 

  • Palaniyandi SS, Sun L, Ferreira JCB, Mochly-Rosen D (2009) Protein kinase C in heart failure: a therapeutic target? Cardiovasc Res 82(2):229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pantos C, Mourouzis I, Galanopoulos G et al (2010) Thyroid hormone receptor alpha1 downregulation in postischemic heart failure progression: the potential role of tissue hypothyroidism. Horm Metab Res 42(10):718–724

    Article  CAS  PubMed  Google Scholar 

  • Pantos C, Mourouzis I, Saranteas T et al (2011) Acute T3 treatment protects the heart against ischemia–reperfusion injury via TRalpha1 receptor. Mol Cell Biochem 353(1–2):235–241

    Article  CAS  PubMed  Google Scholar 

  • Papoutsidakis N, Deftereos S, Kaoukis A et al (2013) MicroRNAs and the heart: small things do matter. Curr Top Med Chem 13(2):216–230

    Article  CAS  PubMed  Google Scholar 

  • Pathak A, del Monte F, Zhao W et al (2005) Enhancement of cardiac function and suppression of heart failure progression by inhibition of protein phosphatase 1. Circ Res 96(7):756–766  

  • Patrucco E, Notte A, Barberis L et al (2004) PI3Kgamma modulates the cardiac response to chronic pressure overload by distinct kinase-dependent and -independent effects. Cell 118(3):375–387

    Article  CAS  PubMed  Google Scholar 

  • Paulin R, Sutendra G, Gurtu V et al (2015) A miR-208-Mef2 axis drives the decompensation of right ventricular function in pulmonary hypertension. Circ Res 116(1):56–69

    Article  CAS  PubMed  Google Scholar 

  • Perrino C, Naga Prasad SV, Mao L et al (2006) Intermittent pressure overload triggers hypertrophy-independent cardiac dysfunction and vascular rarefaction. J Clin Invest 116(6):1547–1560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petretta M, Condorelli GL, Spinelli L et al (2000) Circulating levels of cytokines and their site of production in patients with mild to severe chronic heart failure. Am Heart J 140(6):E28

    Article  CAS  PubMed  Google Scholar 

  • Pfeffer MA, Braunwald E, Moye LA et al (1992) Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction. Results of the survival and ventricular enlargement trial. The SAVE Investigators. N Engl J Med 327(10):669–677

    Article  CAS  PubMed  Google Scholar 

  • Piccini JP, Whellan DJ, Berridge BR et al (2009) Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the Critical Path Initiative. Am Heart J 158(3):317–326

    Article  PubMed  Google Scholar 

  • Piña IL, Apstein CS, Balady GJ et al (2003) Exercise and heart failure: a statement from the American Heart Association Committee on Exercise, Rehabilitation, and Prevention. Circulation 107(8):1210–1225

    Article  PubMed  Google Scholar 

  • Pitt B, Zannad F, Remme WJ et al (1999) The effect of spironolactone on morbidity and mortality in patients with severe heart failure. Randomized Aldactone Evaluation Study Investigators. N Engl J Med 341(10):709–717

    Article  CAS  PubMed  Google Scholar 

  • Pitt B, Remme W, Zannad F et al (2003) Eplerenone, a selective aldosterone blocker, in patients with left ventricular dysfunction after myocardial infarction. N Engl J Med 348(14):1309–1321

    Article  CAS  PubMed  Google Scholar 

  • Plumier JC, Ross BM, Currie RW et al (1995) Transgenic mice expressing the human heat shock protein 70 have improved post-ischemic myocardial recovery. J Clin Invest 95(4):1854–1860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porrello ER, Mahmoud AI, Simpson E et al (2011) Transient regenerative potential of the neonatal mouse heart. Science 331(6020):1078–1080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pretorius L, Du X-J, Woodcock EA et al (2009) Reduced phosphoinositide 3-kinase (p110alpha) activation increases the susceptibility to atrial fibrillation. Am J Pathol 175(3):998–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qian J, Vafiadaki E, Florea SM et al (2011) Small heat shock protein 20 interacts with protein phosphatase-1 and enhances sarcoplasmic reticulum calcium cycling. Circ Res 108(12):1429–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raake PW, Vinge LE, Gao E et al (2008) G protein-coupled receptor kinase 2 ablation in cardiac myocytes before or after myocardial infarction prevents heart failure. Circ Res 103(4):413–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raake PW, Schlegel P, Ksienzyk J et al (2013) AAV6.betaARKct cardiac gene therapy ameliorates cardiac function and normalizes the catecholaminergic axis in a clinically relevant large animal heart failure model. Eur Heart J 34(19):1437–1447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravasi T, Suzuki H, Pang KC et al (2006) Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res 16(1):11–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Recchia FA, Bernstein RD, Sehgal PB, Ferreri NR, Hintze TH (2000) Cytokines are not a requisite part of the pathophysiology leading to cardiac decompensation. Proc Soc Exp Biol Med 223(1):47–52

    Article  CAS  PubMed  Google Scholar 

  • Regitz V, Shug AL, Fleck E (1990) Defective myocardial carnitine metabolism in congestive heart failure secondary to dilated cardiomyopathy and to coronary, hypertensive and valvular heart diseases. Am J Cardiol 65(11):755–760

    Article  CAS  PubMed  Google Scholar 

  • Rengo G, Lymperopoulos A, Zincarelli C et al (2009) Myocardial adeno-associated virus serotype 6-betaARKct gene therapy improves cardiac function and normalizes the neurohormonal axis in chronic heart failure. Circulation 119(1):89–98

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rengo G, Cannavo A, Liccardo D et al (2013) Vascular endothelial growth factor blockade prevents the beneficial effects of beta-blocker therapy on cardiac function, angiogenesis and remodeling in heart failure. Circ Heart Fail 6(6):1259–1267

    Article  CAS  PubMed  Google Scholar 

  • Respress JL, Gershovich PM, Wang T et al (2014) Long-term simulated microgravity causes cardiac RyR2 phosphorylation and arrhythmias in mice. Int J Cardiol 176(3):994–1000

    Article  PubMed  PubMed Central  Google Scholar 

  • Ritchie RH, Love JE, Huynh K et al (2012) Enhanced phosphoinositide 3-kinase (p110α) activity prevents diabetes-induced cardiomyopathy and superoxide generation in a mouse model of diabetes. Diabetologia 55(12):3369–3381

    Article  CAS  PubMed  Google Scholar 

  • Rizos I (2000) Three-year survival of patients with heart failure caused by dilated cardiomyopathy and l-carnitine administration. Am Heart J 139(2 Pt 3):S120–S123

    Article  CAS  PubMed  Google Scholar 

  • Rockman HA, Koch WJ, Lefkowitz RJ (2002) Seven-transmembrane-spanning receptors and heart function. Nature 415(6868):206–212

    Article  CAS  PubMed  Google Scholar 

  • Roman BB, Geenen DL, Leitges M, Buttrick PM (2001) PKC-beta is not necessary for cardiac hypertrophy. Am J Physiol Heart Circ Physiol 280(5):H2264–H2270

    CAS  PubMed  Google Scholar 

  • Rose BA, Force T, Wang Y (2010) Mitogen-activated protein kinase signaling in the heart: angels versus demons in a heart-breaking tale. Physiol Rev 90(4):1507–1546

    Article  CAS  PubMed  Google Scholar 

  • Rothermel BA, Hill JA (2008) Autophagy in load-induced heart disease. Circ Res 103(12):1363–1369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruppert C, Deiss K, Herrmann S et al (2013) Interference with ERKThr188 phosphorylation impairs pathological but not physiological cardiac hypertrophy. Proc Natl Acad Sci USA 110(18):7440–7445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saddik M, Lopaschuk GD (1991) Myocardial triglyceride turnover and contribution to energy substrate utilization in isolated working rat hearts. J Biol Chem 266(13):8162–8170

    CAS  PubMed  Google Scholar 

  • Sadoshima J, Malhotra R, Izumo S (1996) The role of the cardiac renin–angiotensin system in load-induced cardiac hypertrophy. J Card Fail 2(4 Suppl):S1–S6

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto M, Minamino T, Toko H et al (2006) Upregulation of heat shock transcription factor 1 plays a critical role in adaptive cardiac hypertrophy. Circ Res 99(12):1411–1418

    Article  CAS  PubMed  Google Scholar 

  • Samanen J (2013) Chapter 5—Similarities and differences in the discovery and use of biopharmaceuticals and small-molecule chemotherapeutics. In: Ganellin R, Roberts S, Jefferis R (eds) Introduction to biological and small molecule drug research and development. Elsevier, Oxford, pp 161–203. doi:10.1016/B978-0-12-397176-0.00005-4

  • Sanganalmath SK, Bolli R (2013) Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res 113(6):810–834

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sapra G, Tham YK, Cemerlang N et al (2014) The small-molecule BGP-15 protects against heart failure and atrial fibrillation in mice. Nat Commun 5:5705

    Article  CAS  PubMed  Google Scholar 

  • Sayed D, Abdellatif M (2011) MicroRNAs in development and disease. Physiol Rev 91(3):827–887

    Article  CAS  PubMed  Google Scholar 

  • Schaper J, Meiser E, Stammler G (1985) Ultrastructural morphometric analysis of myocardium from dogs, rats, hamsters, mice, and from human hearts. Circ Res 56(3):377–391

    Article  CAS  PubMed  Google Scholar 

  • Schonekess BO, Allard MF, Lopaschuk GD (1995) Propionyl l-carnitine improvement of hypertrophied heart function is accompanied by an increase in carbohydrate oxidation. Circ Res 77(4):726–734

    Article  CAS  PubMed  Google Scholar 

  • Schwartz BG, Levine LA, Comstock G, Stecher VJ, Kloner RA (2012) Cardiac uses of phosphodiesterase-5 inhibitors. J Am Coll Cardiol 59(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Schwarzer M, Osterholt M, Lunkenbein A, Schrepper A, Amorim P, Doenst T (2014) Mitochondrial reactive oxygen species production and respiratory complex activity in rats with pressure overload-induced heart failure. J Physiol 592(Pt 17):3767–3782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwinger RH, Munch G, Bolck B, Karczewski P, Krause EG, Erdmann E (1999) Reduced Ca(2 +)-sensitivity of SERCA 2a in failing human myocardium due to reduced serin-16 phospholamban phosphorylation. J Mol Cell Cardiol 31(3):479–491

    Article  PubMed  Google Scholar 

  • Schwingshackl L, Hoffmann G (2014) Monounsaturated fatty acids, olive oil and health status: a systematic review and meta-analysis of cohort studies. Lipids Health Dis 13:154

    Article  PubMed  PubMed Central  Google Scholar 

  • Scimia MC, Cannavo A, Koch WJ (2013) Gene therapy for heart disease: molecular targets, vectors and modes of delivery to myocardium. Expert Rev Cardiovasc Ther 11(8):999–1013

    Article  CAS  PubMed  Google Scholar 

  • Scimia MC, Gumpert AM, Koch WJ (2014) Cardiovascular gene therapy for myocardial infarction. Expert Opin Biol Ther 14(2):183–195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serati AR, Motamedi MR, Emami S, Varedi P, Movahed MR (2010) l-carnitine treatment in patients with mild diastolic heart failure is associated with improvement in diastolic function and symptoms. Cardiology 116(3):178–182

    Article  CAS  PubMed  Google Scholar 

  • Serneri GG, Modesti PA, Boddi M et al (1999) Cardiac growth factors in human hypertrophy. Relations with myocardial contractility and wall stress. Circ Res 85(1):57–67

    Article  CAS  PubMed  Google Scholar 

  • Shah AS, White DC, Emani S et al (2001) In vivo ventricular gene delivery of a beta-adrenergic receptor kinase inhibitor to the failing heart reverses cardiac dysfunction. Circulation 103(9):1311–1316

    Article  CAS  PubMed  Google Scholar 

  • Sheetz MJ, Aiello LP, Shahri N et al (2011) Effect of ruboxistaurin (RBX) On visual acuity decline over a 6-year period with cessation and reinstitution of therapy: results of an open-label extension of the Protein Kinase C Diabetic Retinopathy Study 2 (PKC-DRS2). Retina 31(6):1053–1059

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Wei L (2012) Regulation of JAK/STAT signalling by SOCS in the myocardium. Cardiovasc Res 96(3):345–347

    Article  CAS  PubMed  Google Scholar 

  • Shibata R, Ouchi N, Ito M et al (2004) Adiponectin-mediated modulation of hypertrophic signals in the heart. Nat Med 10(12):1384–1389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shioi T, Kang PM, Douglas PS et al (2000) The conserved phosphoinositide 3-kinase pathway determines heart size in mice. EMBO J 19(11):2537–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiojima I, Sato K, Izumiya Y et al (2005) Disruption of coordinated cardiac hypertrophy and angiogenesis contributes to the transition to heart failure. J Clin Invest 115(8):2108–2118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siliprandi N, Di Lisa F, Menabo R (1991) Propionyl-l-carnitine: biochemical significance and possible role in cardiac metabolism. Cardiovasc Drugs Ther 5(Suppl 1):11–15

    Article  PubMed  Google Scholar 

  • Small EM, Frost RJA, Olson EN (2010) MicroRNAs add a new dimension to cardiovascular disease. Circulation 121(8):1022–1032

    Article  PubMed  PubMed Central  Google Scholar 

  • Solaro RJ (2010) Sarcomere control mechanisms and the dynamics of the cardiac cycle. J Biomed Biotechnol 2010:105648

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • SOLVD Investigators (1991) Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. The SOLVD Investigators. N Engl J Med 325(5):293–302

  • SOLVD Investigators (1992) Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med 327(10):685–691

    Article  Google Scholar 

  • Song M, Chen Y, Gong G, Murphy E, Rabinovitch PS, Dorn GW 2nd (2014) Super-suppression of mitochondrial reactive oxygen species signaling impairs compensatory autophagy in primary mitophagic cardiomyopathy. Circ Res 115(3):348–353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Soonpaa MH, Field LJ (1998) Survey of studies examining mammalian cardiomyocyte DNA synthesis. Circ Res 83(1):15–26

    Article  CAS  PubMed  Google Scholar 

  • Sorokina N, O’Donnell JM, McKinney RD et al (2007) Recruitment of compensatory pathways to sustain oxidative flux with reduced carnitine palmitoyltransferase I activity characterizes inefficiency in energy metabolism in hypertrophied hearts. Circulation 115(15):2033–2041

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Chandler MP (2002) Energy metabolism in the normal and failing heart: potential for therapeutic interventions. Heart Fail Rev 7(2):115–130

    Article  CAS  PubMed  Google Scholar 

  • Stanley WC, Recchia FA, Lopaschuk GD (2005) Myocardial substrate metabolism in the normal and failing heart. Physiol Rev 85(3):1093–1129

    Article  CAS  PubMed  Google Scholar 

  • Suckau L, Fechner H, Chemaly E et al (2009) Long-term cardiac-targeted RNA interference for the treatment of heart failure restores cardiac function and reduces pathological hypertrophy. Circulation 119(9):1241–1252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sussman MA, Puceat M (2014) Response to letter regarding article, “Embryonic stem cell-derived cardiac myocytes are not ready for human trials”. Circ Res 115(10):e30–e31

    Article  CAS  PubMed  Google Scholar 

  • Sussman MA, Lim HW, Gude N et al (1998) Prevention of cardiac hypertrophy in mice by calcineurin inhibition. Science 281(5383):1690–1693

    Article  CAS  PubMed  Google Scholar 

  • Suzuki Y, Kamikawa T, Yamazaki N (1981) Effect of l-carnitine on cardiac hemodynamics. Jpn Heart J 22(2):219–225

    Article  CAS  PubMed  Google Scholar 

  • Sweitzer NK (2003) What is an angiotensin converting enzyme inhibitor? Circulation 108(3):e16–e18

    Article  PubMed  Google Scholar 

  • Taegtmeyer H (2002) Switching metabolic genes to build a better heart. Circulation 106(16):2043–2045

    Article  PubMed  Google Scholar 

  • Taha M, Lopaschuk GD (2007) Alterations in energy metabolism in cardiomyopathies. Ann Med 39(8):594–607

    Article  CAS  PubMed  Google Scholar 

  • Takahashi T, Allen PD, Izumo S (1992) Expression of A-, B-, and C-type natriuretic peptide genes in failing and developing human ventricles. Correlation with expression of the Ca(2 +)-ATPase gene. Circ Res 71(1):9–17

    Article  CAS  PubMed  Google Scholar 

  • Takeishi Y, Ping P, Bolli R, Kirkpatrick DL, Hoit BD, Walsh RA (2000) Transgenic overexpression of constitutively active protein kinase C epsilon causes concentric cardiac hypertrophy. Circ Res 86(12):1218–1223

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Kass DA (2007) Role of oxidative stress in cardiac hypertrophy and remodeling. Hypertension 49(2):241–248

    Article  CAS  PubMed  Google Scholar 

  • Takimoto E, Champion HC, Li M et al (2005) Chronic inhibition of cyclic GMP phosphodiesterase 5A prevents and reverses cardiac hypertrophy. Nat Med 11(2):214–222

    Article  CAS  PubMed  Google Scholar 

  • Tannous P, Zhu H, Nemchenko A et al (2008) Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation 117(24):3070–3078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • ter Maaten JM, Valente MAE, Damman K, Hillege HL, Navis G, Voors AA (2015) Diuretic response in acute heart failure—pathophysiology, evaluation, and therapy. Nat Rev Cardiol. doi:10.1038/nrcardio.2014.215

  • Thum T (2014) Noncoding RNAs and myocardial fibrosis. Nat Rev Cardiol 11(11):655–663

    Article  CAS  PubMed  Google Scholar 

  • Thum T, Galuppo P, Wolf C et al (2007) MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure. Circulation 116(3):258–267

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Nascimben L, Ingwall JS, Lorell BH (1997) Failure to maintain a low ADP concentration impairs diastolic function in hypertrophied rat hearts. Circulation 96(4):1313–1319

    Article  CAS  PubMed  Google Scholar 

  • Tian R, Musi N, D’Agostino J, Hirshman MF, Goodyear LJ (2001) Increased adenosine monophosphate-activated protein kinase activity in rat hearts with pressure-overload hypertrophy. Circulation 104(14):1664–1669

    Article  CAS  PubMed  Google Scholar 

  • Tilemann L, Lee A, Ishikawa K et al (2013) SUMO-1 gene transfer improves cardiac function in a large-animal model of heart failure. Sci Transl Med 5(211):211ra159

    Article  PubMed  CAS  Google Scholar 

  • Torre-Amione G, Kapadia S, Lee J et al (1996) Tumor necrosis factor-alpha and tumor necrosis factor receptors in the failing human heart. Circulation 93(4):704–711

    Article  CAS  PubMed  Google Scholar 

  • Urpi-Sarda M, Casas R, Chiva-Blanch G et al (2012) The Mediterranean diet pattern and its main components are associated with lower plasma concentrations of tumor necrosis factor receptor 60 in patients at high risk for cardiovascular disease. J Nutr 142(6):1019–1025

    Article  CAS  PubMed  Google Scholar 

  • Ussher JR, Lopaschuk GD, Arduini A (2013) Gut microbiota metabolism of l-carnitine and cardiovascular risk. Atherosclerosis 231(2):456–461

    Article  CAS  PubMed  Google Scholar 

  • Vaduganathan M, Greene SJ, Ambrosy AP, Gheorghiade M, Butler J (2013) The disconnect between phase II and phase III trials of drugs for heart failure. Nat Rev Cardiol 10(2):85–97

    Article  CAS  PubMed  Google Scholar 

  • van Berlo JH, Molkentin JD (2014) An emerging consensus on cardiac regeneration. Nat Med 20(12):1386–1393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Berlo JH, Maillet M, Molkentin JD (2013) Signaling effectors underlying pathologic growth and remodeling of the heart. J Clin Invest 123(1):37–45

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Bilsen M, Planavila A (2014) Fatty acids and cardiac disease: fuel carrying a message. Acta Physiol 211(3):476–490

    Article  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Liu N et al (2006) A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA 103(48):18255–18260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • van Rooij E, Sutherland LB, Qi XX, Richardson JA, Hill J, Olson EN (2007) Control of stress-dependent cardiac growth and gene expression by a microRNA. Science 316(5824):575–579

    Article  PubMed  CAS  Google Scholar 

  • van Rooij E, Purcell AL, Levin AA (2012) Developing microRNA therapeutics. Circ Res 110(3):496–507

    Article  PubMed  CAS  Google Scholar 

  • Vandeput F, Krall J, Ockaili R et al (2009) cGMP-hydrolytic activity and its inhibition by sildenafil in normal and failing human and mouse myocardium. J Pharmacol Exp Ther 330(3):884–891

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vanderheyden M, Paulus WJ, Voss M et al (2005) Myocardial cytokine gene expression is higher in aortic stenosis than in idiopathic dilated cardiomyopathy. Heart 91(7):926–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vausort M, Wagner DR, Devaux Y (2014) Long noncoding RNAs in patients with acute myocardial infarction. Circ Res 115(7):668–677

    Article  CAS  PubMed  Google Scholar 

  • Vega RB, Harrison BC, Meadows E et al (2004) Protein kinases C and D mediate agonist-dependent cardiac hypertrophy through nuclear export of histone deacetylase 5. Mol Cell Biol 24(19):8374–8385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Virtanen JK, Mursu J, Voutilainen S, Tuomainen TP (2009) Serum long-chain n-3 polyunsaturated fatty acids and risk of hospital diagnosis of atrial fibrillation in men. Circulation 120(23):2315–2321

    Article  CAS  PubMed  Google Scholar 

  • Volkers M, Toko H, Doroudgar S et al (2013) Pathological hypertrophy amelioration by PRAS40-mediated inhibition of mTORC1. Proc Natl Acad Sci USA 110(31):12661–12666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wahlquist C, Jeong D, Rojas-Munoz A et al (2014) Inhibition of miR-25 improves cardiac contractility in the failing heart. Nature 508:531–535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wakasaki H, Koya D, Schoen FJ et al (1997) Targeted overexpression of protein kinase C beta2 isoform in myocardium causes cardiomyopathy. Proc Natl Acad Sci USA 94(17):9320–9325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wallace DC (1999) Mitochondrial diseases in man and mouse. Science 283(5407):1482–1488

    Article  CAS  PubMed  Google Scholar 

  • Wallace DC (2005) A mitochondrial paradigm of metabolic and degenerative diseases, aging, and cancer: a dawn for evolutionary medicine. Annu Rev Genet 39:359–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh K, Shiojima I (2007) Cardiac growth and angiogenesis coordinated by intertissue interactions. J Clin Invest 117(11):3176–3179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang EY, Biala AK, Gordon JW, Kirshenbaum LA (2012) Autophagy in the heart: too much of a good thing? J Cardiovasc Pharmacol 60(2):110–117

    Article  CAS  PubMed  Google Scholar 

  • Wang K, Liu F, Zhou LY et al (2014) The long noncoding RNA CHRF regulates cardiac hypertrophy by targeting miR-489. Circ Res 114(9):1377–1388

    Article  CAS  PubMed  Google Scholar 

  • Weeks KL, Avkiran M (2014) Roles and post-translational regulation of cardiac class IIa histone deacetylase isoforms. J Physiol. doi:10.1113/jphysiol.2014.282442

    PubMed  Google Scholar 

  • Weeks KL, Gao X, Du XJ et al (2012) Phosphoinositide 3-kinase p110alpha is a master regulator of exercise-induced cardioprotection and PI3K gene therapy rescues cardiac dysfunction. Circ Heart Fail 5(4):523–534

    Article  CAS  PubMed  Google Scholar 

  • Wei JQ, Shehadeh LA, Mitrani JM et al (2008) Quantitative control of adaptive cardiac hypertrophy by acetyltransferase p300. Circulation 118(9):934–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wencker D, Chandra M, Nguyen K et al (2003) A mechanistic role for cardiac myocyte apoptosis in heart failure. J Clin Invest 111(10):1497–1504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Westenbrink BD, Ling H, Miyamoto S et al (2015) Mitochondrial reprogramming induced by CaMKIIdelta mediates hypertrophy decompensation. Circ Res. doi:10.1161/CIRCRESAHA.116.304682

    PubMed  Google Scholar 

  • Wettschureck N, Rutten H, Zywietz A et al (2001) Absence of pressure overload induced myocardial hypertrophy after conditional inactivation of Galphaq/Galpha11 in cardiomyocytes. Nat Med 7(11):1236–1240

    Article  CAS  PubMed  Google Scholar 

  • White FC, Bloor CM, McKirnan MD, Carroll SM (1998) Exercise training in swine promotes growth of arteriolar bed and capillary angiogenesis in heart. J Appl Physiol 85(3):1160–1168

    CAS  PubMed  Google Scholar 

  • White DC, Hata JA, Shah AS, Glower DD, Lefkowitz RJ, Koch WJ (2000) Preservation of myocardial beta-adrenergic receptor signaling delays the development of heart failure after myocardial infarction. Proc Natl Acad Sci USA 97(10):5428–5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  • Willett WC (2006) Trans fatty acids and cardiovascular disease-epidemiological data. Atheroscler Suppl 7(2):5–8

    Article  CAS  PubMed  Google Scholar 

  • Williams SM, Golden-Mason L, Ferguson BS et al (2014) Class I HDACs regulate angiotensin II-dependent cardiac fibrosis via fibroblasts and circulating fibrocytes. J Mol Cell Cardiol 67:112–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wisloff U, Stoylen A, Loennechen JP et al (2007) Superior cardiovascular effect of aerobic interval training versus moderate continuous training in heart failure patients: a randomized study. Circulation 115(24):3086–3094

    Article  PubMed  Google Scholar 

  • Wong MY, Yu Y, Walsh WR, Yang JL (2011) microRNA-34 family and treatment of cancers with mutant or wild-type p53 (review). Int J Oncol 38(5):1189–1195

    CAS  PubMed  Google Scholar 

  • Woodall MC, Ciccarelli M, Woodall BP, Koch WJ (2014) G protein-coupled receptor kinase 2: a link between myocardial contractile function and cardiac metabolism. Circ Res 114(10):1661–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Toyokawa T, Hahn H, Dorn GW 2nd (2000) Epsilon protein kinase C in pathological myocardial hypertrophy. Analysis by combined transgenic expression of translocation modifiers and Galphaq. J Biol Chem 275(39):29927–29930

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Zhang T, Bossuyt J et al (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation–transcription coupling. J Clin Invest 116(3):675–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Kobilka BK (2003) Myocyte adrenoceptor signaling pathways. Science 300(5625):1530–1532

    Article  CAS  PubMed  Google Scholar 

  • Xie M, Hill JA (2013) HDAC-dependent ventricular remodeling. Trends Cardiovasc Med 23(6):229–235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie M, Kong Y, Tan W et al (2014) Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation 129(10):1139–1151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Q, Ye L, Zhang P et al (2013) Functional consequences of human induced pluripotent stem cell therapy: myocardial ATP turnover rate in the in vivo swine heart with postinfarction remodeling. Circulation 127(9):997–1008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu X, Lu Z, Fassett J et al (2014) Metformin protects against systolic overload-induced heart failure independent of AMP-activated protein kinase alpha2. Hypertension 63(4):723–728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamazaki T, Komuro I, Yazaki Y (1999) Role of the renin–angiotensin system in cardiac hypertrophy. Am J Cardiol 83(12A):53H–57H

    Article  CAS  PubMed  Google Scholar 

  • Yancy CW, Jessup M, Bozkurt B et al (2013) 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 128(16):1810–1852

    Article  PubMed  Google Scholar 

  • Yang KC, Jay PY, McMullen JR, Nerbonne JM (2012) Enhanced cardiac PI3Kalpha signalling mitigates arrhythmogenic electrical remodelling in pathological hypertrophy and heart failure. Cardiovasc Res 93(2):252–262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang K-C, Yamada KA, Patel AY et al (2014) Deep RNA sequencing reveals dynamic regulation of myocardial noncoding RNAs in failing human heart and remodeling with mechanical circulatory support. Circulation 129(9):1009–1021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yeh ETH, Tong AT, Lenihan DJ et al (2004) Cardiovascular complications of cancer therapy: diagnosis, pathogenesis, and management. Circulation 109(25):3122–3131

    Article  PubMed  Google Scholar 

  • Yeh YH, Wakili R, Qi XY et al (2008) Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure. Circ Arrhythm Electrophysiol 1(2):93–102

    Article  CAS  PubMed  Google Scholar 

  • Young MJ (2013) Targeting the mineralocorticoid receptor in cardiovascular disease. Expert Opin Ther Targets 17(3):321–331

    Article  CAS  PubMed  Google Scholar 

  • Zaglia T, Milan G, Ruhs A et al (2014) Atrogin-1 deficiency promotes cardiomyopathy and premature death via impaired autophagy. J Clin Invest 124(6):2410–2424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangi L, Lui KO, von Gise A et al (2013) Modified mRNA directs the fate of heart progenitor cells and induces vascular regeneration after myocardial infarction. Nat Biotechnol 31(10):898–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zangrando J, Zhang L, Vausort M et al (2014) Identification of candidate long non-coding RNAs in response to myocardial infarction. BMC Genom 15:460

    Article  CAS  Google Scholar 

  • Zannad F, McMurray JJ, Krum H et al (2011) Eplerenone in patients with systolic heart failure and mild symptoms. N Engl J Med 364(1):11–21

    Article  CAS  PubMed  Google Scholar 

  • Zarrinpashneh E, Beauloye C, Ginion A et al (2008) AMPKalpha2 counteracts the development of cardiac hypertrophy induced by isoproterenol. Biochem Biophys Res Commun 376(4):677–681

    Article  CAS  PubMed  Google Scholar 

  • Zhabyeyev P, McLean B, Patel VB, Wang W, Ramprasath T, Oudit GY (2014) Dual loss of PI3Kalpha and PI3Kgamma signaling leads to an age-dependent cardiomyopathy. J Mol Cell Cardiol 77C:155–159

    Article  CAS  Google Scholar 

  • Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002a) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110(4):479–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang CL, McKinsey TA, Olson EN (2002b) Association of class II histone deacetylases with heterochromatin protein 1: potential role for histone methylation in control of muscle differentiation. Mol Cell Biol 22(20):7302–7312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang T, Maier LS, Dalton ND et al (2003) The deltaC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92(8):912–919

    Article  CAS  PubMed  Google Scholar 

  • Zhang P, Hu X, Xu X et al (2008) AMP activated protein kinase-alpha2 deficiency exacerbates pressure-overload-induced left ventricular hypertrophy and dysfunction in mice. Hypertension 52(5):918–924

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu YC, Zhu YZ, Gohlke P, Stauss HM, Unger T (1997) Effects of angiotensin-converting enzyme inhibition and angiotensin II AT1 receptor antagonism on cardiac parameters in left ventricular hypertrophy. Am J Cardiol 80(3A):110A–117A

    Article  CAS  PubMed  Google Scholar 

  • Zsebo K, Yaroshinsky A, Rudy JJ et al (2014) Long-term effects of AAV1/SERCA2a gene transfer in patients with severe heart failure: analysis of recurrent cardiovascular events and mortality. Circ Res 114(1):101–108

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bianca C. Bernardo or Julie R. McMullen.

Additional information

Yow Keat Tham and Bianca C. Bernardo have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tham, Y.K., Bernardo, B.C., Ooi, J.Y.Y. et al. Pathophysiology of cardiac hypertrophy and heart failure: signaling pathways and novel therapeutic targets. Arch Toxicol 89, 1401–1438 (2015). https://doi.org/10.1007/s00204-015-1477-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-015-1477-x

Keywords

Navigation